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SOME REDUCED FREE PRODUCTS OF ABELIAN
C∗-ALGEBRAS AND SOME C∗-SUBALGEBRA

IN A FREE PRODUCT

Jaeseong Heo and Jeong Hee Kim

Abstract. We prove that the reduced free product of k × k matrix al-
gebras over abelian C∗-algebras is not the minimal tensor product of
reduced free products of k× k matrix algebras over abelian C∗-algebras.
It is shown that the reduced group C∗-algebra associated with a group
having the property T of Kazhdan is not isomorphic to a reduced free
product of abelian C∗-algebras or the minimal tensor product of such
reduced free products. The infinite tensor product of reduced free prod-
ucts of abelian C∗-algebras is not isomorphic to the tensor product of a
nuclear C∗-algebra and a reduced free product of abelian C∗-algebra. We
discuss the freeness of free product II1-factors and solidity of free prod-
uct II1-factors weaker than that of Ozawa. We show that the freeness in
a free product is related to the existence of Cartan subalgebras in free
product II1-factors. Finally, we give a free product factor which is not
solid in the weak sense.

1. Introduction

The study of the free probability theory has seen rapid and impressive
progress since it was introduced by Voiculescu in the framework of operator al-
gebras. Free probability theory has turned out to be very powerful in the study
of von Neumann algebras associated with free products of discrete groups, in
particular, of free group factors. In the non-commutative probability theory
there is a notion of the free product of finite von Neumann algebras with spec-
ified traces, for which one has L(G1) ∗ L(G2) ' L(G1 ∗G2) where L(G) is the
finite von Neumann algebra associated to a discrete group G. In particular,
the reduced free product of C∗-algebras is closely related to the free product of
groups via the reduced group C∗-algebras. The notion of freeness in operator
algebras can be viewed as an abstract extension of freeness in groups.
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There are many questions about (reduced) free products. One of most basic
questions concerns simplicity of free product C∗-algebras or C∗-subalgebras
of free product von Neumann algebras. Powers [12] showed that the reduced
group C∗-algebra C∗r (G) is simple and has a unique trace when G is the free
group F2 on two generators. This example intrigued the further deep structure
theory for C∗-algebras and notably K-theory for C∗-algebras. Furthermore, his
method turned out to be a prototype for inferring the simplicity of C∗-algebras.
Avitzour [1] introduced a free product of C∗-algebras with faithful states and
generalized Powers’ result to free products of C∗-algebras. There are also many
questions concerning the basic structure of factors, in particular, of free group
factors. It has recently proved by Ozawa and Popa [10] that

⊗n
k=1 L(F2) is not

∗-isomorphic to
⊗m

k=1 L(F2) if n 6= m. We will here consider the C∗-algebraic
analogue of this result. We refer the survey paper [14] for a detail discussion,
some properties of operator algebras associated to the free groups and related
geometric groups giving rise to algebras with similar properties. See [16, 8] for
more detailed information of free products of C∗-algebras.

In this paper we concern with the simplicity, primality and freeness of (re-
duced) free products. We first show that the reduced free product of k × k
matrix algebras over abelian C∗-algebras is not the minimal tensor product of
reduced free products of k × k matrix algebras over abelian C∗-algebras and
that they are exact and have stable rank 1. It is shown that the reduced group
C∗-algebra associated with a group having the Kazhdan’s property T is not
isomorphic to a reduced free product of abelian C∗-algebras or the minimal
tensor product of such reduced free products. Furthermore, the infinite tensor
product of reduced free products of abelian C∗-algebras is not isomorphic to the
tensor product of a nuclear C∗-algebra and a reduced free product of abelian
C∗-algebra. In the third section, we show the simplicity of the C∗-algebra gen-
erated by some C∗-subalgebra and a Haar unitary in a free product of finite
von Neumann algebras and the uniqueness of a trace. This result has already
been proved by Dykema [4], but we are showing by the different method ex-
tending directly the Powers’ technique. We discuss the freeness of free product
II1-factors and solidity of free product II1-factors weaker than that of Ozawa
[9]. We show that the freeness in a free product is related to the existence of
Cartan subalgebras in free product II1-factors. Finally, we give a free product
factor which is not solid in the weak sense.

2. On reduced free products of abelian C∗-algebras

In this section we investigate the simplicity and stable rank of free products
of abelian C∗-algebras. We first would like to remind the definition of reduced
free products of C∗-algebras [15]. Let I be an index set and let Aι (ι ∈ I)
be a unital C∗-algebra with a state φι whose associated GNS representation
is faithful. The reduced free product of {Aι, φι : ι ∈ I} is the (unique) unital
C∗-algebra (A,φ) with unital embeddings Aι ↪→ A such that
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(i) the GNS representation associated with φ is faithful on A;
(ii) φ|Aι = φι;
(iii) {Aι : ι ∈ I} is free with respect to φ;
(iv) A is generated by {Aι : ι ∈ I}.

We denote the reduced free product by (A,φ) = ∗ι∈I(Aι, φι). It is known that
φ is a trace if φι is a trace for each ι and that φ is faithful if φι is faithful for
each ι.

We now describe Avitzour’s result [1]. Let A and B be unital C∗-algebras
with states φ and ψ, respectively. If there are unitaries u, v ∈ kerφ and w ∈
kerψ such that φ(u∗v) = 0 and φ and ψ are invariant under conjugation by u
and w, respectively, then the reduced free product C∗-algebra (A ∗B,φ ∗ψ) is
simple. Furthermore, if φ and ψ are tracical states, φ ∗ ψ is a unique tracical
state. Let C[0, 1] be the C∗-algebra of all continuous functions on the unit
interval [0, 1] and let µ be the tracial state on C[0, 1] given by integration with
respect to the Lebesgue measure. We denote by (An, µn) the reduced free
product (C[0, 1], µ) ∗ · · · ∗ (C[0, 1], µ) of n copies of C[0, 1] with respect to the
tracial state µ.

Proposition 2.1. For any integer n ≥ 2, the reduced free product (An, µn) is
simple and exact. Moreover, An has a unique tracial state and stable rank 1.

Proof. To prove this theorem, we will use Avitzour’s result [1] described as
above. To do this, we decomposition (An, µn) as (A1, µ1) ∗ (An−1, µn−1). We
only have to show that Avitzour’s conditions hold. That is, we will show the
existence of unitaries u, v ∈ kerµ1 and w ∈ kerµn−1 such that µ1(u∗v) = 0 and
µ1 and µn−1 are invariant under conjugation by u and w, respectively. We take
continuous functions u and v on [0, 1] as follows: u(t) = e2πit and v(t) = e4πit.
We can identify A1 with the first component of An−1. Let w ∈ An−1 be
the image of u in the first component of An−1. It is not hard to see that
µ1(u) = µ1(v) = µn−1(w) = 0 and µ1(u∗v) = 0. Moreover, we have that

µ1(u∗au) = µ1(a) for a ∈ A1,

µn−1(w∗bw) = µn−1(b) for b ∈ An−1.

By Avitzour’s result, (An, µn) is simple and has a unique trace. It follows from
[4] that each An has stable rank 1. Exactness also follows from the Dykema’s
result that every reduced amalgamated free product of exact separable C∗-
algebras is exact. �

Corollary 2.2. For any integer n,m ≥ 2, An ⊗min Am is simple and has a
unique trace where the tensor product is spatial.

Proof. The simplicity follows from the fact that the spatial tensor product of
simple C∗-algebras is simple. Furthermore, this algebra has a unique trace. �

Popa [11] presented a method of computing the von Neumann algebra gen-
erated by the normalizer of certain subalgebras in some II1-factors. Using this,
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he showed that L(FS) has no Cartan subalgebras and is not a tensor product
of II1-factors where FS is a free group with generators in an uncountable set
S. Using Voiculescu’s free entropy theory, Ge [6] has proved that free group
factors L(Fn) (n ≥ 2) are prime, that is, L(Fn) are not isomorphic to the tensor
product of any two factors of type II1. The existence of prime II1-factors was
one of longstanding questions concerning the basic structure of factors. The
following result is motivated by Ge’s result.

Proposition 2.3. For any integer n ≥ 2, An is not isomorphic to Ap⊗minAq

(p, q ≥ 1) where the tensor product is spatial.

Proof. If p or q is 1, then Ap ⊗min Aq is not simple, so that Ap ⊗min Aq is
not isomorphic to An since each An (n ≥ 2) is simple. Suppose that p, q ≥ 2
and that An is isomorphic to Ap ⊗min Aq for some integer n ≥ 2. We first
note that the tracial state µn is unique for each n ≥ 2. Let πk be the GNS
representation associated with a faithful normalized tracial state µk of Ak (k ≥
2). Then πk(Ak)′′ is isomorphic to the free group factor L(Fk) (k ≥ 2) (see
Theorem 7.9 in [8]). The latter is not the tensor product of any two factors
of type II1 (see [6] for the proof). From the uniqueness of the tracial state, it
follows that this isomorphism induces an isomorphism of weak operator closures
such that πn(An)′′ is isomorphic to the von Neumann algebra tensor product
πp(Ap)′′⊗̄πq(Aq)′′. However, this contradicts the fact that L(Fk) (k ≥ 2) is a
prime factor. Thus An is not isomorphic to Ap ⊗min Aq. �

For each positive integer k, let Mk denote the C∗-algebra of k × k matrices
over C and let trk be the normalized trace on Mk. Consider the spatial tensor
product C[0, 1]⊗Mk of two C∗-algebras C[0, 1] and Mk and we denote by τ the
tracial state µ ⊗ trk on C[0, 1] ⊗Mk. We denote by (Bn, τn) the reduced free
product (C[0, 1]⊗Mk, τ) ∗ · · · ∗ (C[0, 1]⊗Mk, τ) of n-copies of the C∗-algebra
C[0, 1]⊗Mk with respect to the tracial state τ where τn is obtained by the free
product of n-copies of τ . We will identify the C∗-algebra C[0, 1]⊗Mk with the
algebra C([0, 1] →Mk) of continuous functions from [0, 1] to Mk.

Corollary 2.4. Let m,n ≥ 2 be positive integers.

(1) (Bn, τn) is simple and has a unique tracial state.
(2) Bm ⊗min Bn is simple and has a unique trace.
(3) For each integer q ≥ 2, Bq is not isomorphic to Bm ⊗min Bn.

Moreover, each Bn has stable rank 1 and is exact.

Proof. To prove (1), we first decompose (Bn, τn) as (B1, τ) ∗ (Bn−1, τn−1). We
define two functions f and g in C([0, 1] →Mk) as follows:

f(t) = diag(e2πit, . . . , e2πit) and g(t) = diag(e4πit, . . . , e4πit),

that is, f(t) and g(t) are diagonal k × k matrices with entries e2πit and e4πit,
respectively. Identifying B1 with the first factor of Bn−1, we let h ∈ Bn−1 be
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the image of f in the first factor of Bn−1. It is not hard to see that τ(f) =
τ(g) = τn−1(h) = 0 and τ(f∗g) = 0. Moreover, we have that

τ(f∗bf) = τ(b) for b ∈ B1,

τn−1(h∗ch) = τn−1(c) for c ∈ Bn−1.

Hence (Bn, τn) is simple and has a unique trace.
(2) It follows from (1) and the simplicity of the spatial tensor product of

simple C∗-algebras.
(3) We still denote by µ the tracial state on L∞[0, 1] induced by the Lebesgue

integration and also denote by τ the trace µ ⊗ trk on L∞[0, 1] ⊗Mk. Since
the free product Mk(L∞[0, 1]) ∗ · · · ∗Mk(L∞[0, 1]) of n copies of Mk(L∞[0, 1])
with respect to the trace τ is isomorphic to L(Fn), the result follows from the
uniqueness of the trace and the primality of the free group factors. By the
Dykema’s results [4], the remains are true. �

In Corollary 2.4, we showed that each Bq (q ≥ 2) is not isomorphic to tensor
products of two or more of Bm’s. It follows from [10] that minimal tensor
products of different lengths are non-isomorphic like the case of free group
factors. In particular, the spatial tensor product

⊗p
k=1 Bn is not isomorphic to

the spatial tensor product
⊗q

k=1 Bn if p 6= q. A countable group G is said to
have the Kazhdan’s property T if the trivial representation 1G is isolated in the
set of all irreducible representations of G. Connes [2] proved that the group von
Neumann algebra L(G) has a countable discrete outer automorphism group if
G is a countable discrete i.c.c. group with the Kazhdan’s property T . Connes
and Jones have defined property T for a finite von Neumann algebra. They [3]
proved that a countable i.c.c. group has the Kazhdan’s property T if and only
if the corresponding group von Neumann algebra L(G) has property T .

Theorem 2.5. Let G be a countable group with the Kazhdan’s property T . The
reduced group C∗-algebra C∗r (G) is not isomorphic to An1 ⊗min · · · ⊗min Ank

or Bn1 ⊗min · · · ⊗min Bnk
for ni ≥ 1 and k ≥ 1. In particular, C∗r (G) can not

be expressed by the minimal tensor product of C∗r (Fn) (n ≥ 2) together with
C∗-algebra with a unique normalized trace.

Proof. Note first that the outer automorphism group of a free product of fi-
nite von Neumann algebras is very large, at least, uncountable (see Proposi-
tion 3.5 in [7]). Since πni(Ani)

′′ and πni(Bni)
′′ have uncountable outer au-

tomorphism groups, C∗r (G) is not isomorphic to An1 ⊗min · · · ⊗min Ank
or

Bn1⊗min · · ·⊗minBnk
. To show the second part, note that the free group factor

L(Fn) is isomorphic to a free product of n copies of L∞([0, 1]) with the trace
given by the Lebesgue integration. It is known that the automorphism group
of L∞([0, 1]) is uncountable, in particular, non-trivial automorphisms are all
outer, so that the outer automorphism group of L(Fn) is uncountable (see [7]
for the detailed proof). However, the outer automorphism group Out(L(G))
of L(G) is countable. Hence we get the conclusion, that is, C∗r (G) is not the
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minimal tensor product of C∗r (Fn) (n ≥ 2) together with C∗-algebra with a
unique normalized trace. �

In fact, we can see that the C∗-algebra C∗r (G) in Theorem 2.5 is not isomor-
phic to the reduced free product of C∗-algebras with unique faithful normalized
traces. Let Π be the group of all finite permutations of positive integers N, that
is, an element g ∈ Π is a one-to-one mapping of N onto itself which leaves all but
a finite number of positive integers fixed. Then we can see that Ap⊗minC

∗
r (Π)

and Aq are not isomorphic (p, q ≥ 1).
Let A be the infinite C∗-minimal tensor product

⊗∞
k=1A0 (see [13] for in-

finite tensor products) where A0 = An for some fixed n ≥ 2 where An is as
in Proposition 2.1. Let µ∞ be the infinite product tracial state

⊗∞
k=1 φ0 on

A with φ0 = µn. Similarly, let B be the infinite C∗-minimal tensor product⊗∞
k=1 B0 with B0 = Bn (n ≥ 2) and τ∞ the infinite product tracial state.

Proposition 2.6. Let n ≥ 2 be a positive integer. The infinite C∗-minimal
tensor product A (respectively, B) is not isomorphic to the tensor product
An ⊗min C

∗
r (Π) (respectively, Bn ⊗min C

∗
r (Π)).

Proof. Since the proof for A is similar to one for B, we will only show the
case for A. Suppose that A is isomorphic to An ⊗min C

∗
r (Π). Let π∞ be

the GNS representation associated with a faithful tracial state µ∞ and let τ
be a normalized faithful trace on C∗r (Π). Denote by π1 (respectively, π2) the
GNS representation associated with faithful normalized traces µn (respectively,
τ) on An (respectively, C∗r (Π)). From the uniqueness of the tracial states, it
follows that this isomorphism induces an isomorphism of weak operator closures
such that π∞(A)′′ is isomorphic to the von Neumann algebra tensor product
π1(An)′′⊗̄π2(C∗r (Π))′′. We know that the former is isomorphic to the W ∗-
infinite tensor product

⊗̄∞
k=1L(Fn), but the latter is isomorphic to L(Fn)⊗̄R

where R is the hyperfinite II1-factor. However,
⊗̄∞

k=1L(Fn) and L(Fn)⊗̄R are
not isomorphic [10] since while the former is asymptotically abelian, the latter
is not. Therefore, A is not isomorphic to An ⊗min C

∗
r (Π). �

3. On simplicity and freeness of free product factors

When we study free products of C∗-algebras and von Neumann algebras,
the first thing we want to understand is the freeness in the free product. In
this section we will discuss the freeness in free product factors. Before the
discussion, we will give an elementary proof of Dykema result [4] of free product
of C∗-algebras. The following proposition may be known, but we do not know
a reference.

Proposition 3.1. Suppose that F1 and F2 are subsets of finite von Neumann
algebras M1 and M2, respectively, such that F1 ∪ {I} and F2 ∪ {I} are or-
thogonal (or orthonormal) bases for L2(M1, τ1) and L2(M2, τ2), respectively.
Then (F1∗F2)∪{I} is an orthogonal (or orthonormal) basis of L2(M1∗M2, τ)
where τ = τ1 ∗ τ2.
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Proof. We first show that (F1 ∗ F2) ∪ {I} is an orthogonal subset of L2(M1 ∗
M2, τ). For any two elements x and y in F1 ∗F2, suppose that x = x1x2 · · ·xm

and y = y1y2 · · · yn with xi and yj in F1 ∪F2. Since elements in F1 and F2 are
orthogonal to I, we have that

τ(xi) = τ(yj) = 0 for i = 1, . . . ,m and j = 1, . . . , n.

Hence we obtain that 〈x, I〉 = τ(x) = 0, which implies that F1∗F2 is orthogonal
to I. We want to show that 〈x, y〉 = 0 for x 6= y. Without loss of generality,
we may assume that x1 ∈ F1. If x1 6= y1, then either y1 lies in F1, or in F2.
In the first case, x1 and y1 lie in F1 and thus are orthogonal in L2(M1, τ1),
that is, τ(y∗1x1) = 〈x1, y1〉 = 0. By the definition of F1 ∗ F2, we know that x2

and y2 lie in F2 (⊆ M2). Then y∗x = y∗n · · · y∗2(y∗1x1)x2 · · ·xm is a monomial
of length n+m− 1. In the other case (when y1 ∈ F2) y∗x is also a monomial
of length n+m, so that 〈x, y〉 = τ(y∗x) = 0.

If x1 = y1, then there is k ≥ 1 such that xj = yj for 1 ≤ j ≤ k and
xk+1 6= yk+1. Since x 6= y, we may assume that n ≥ m and n > k. Then xk+1

and yk+1 belong to the same set F1 or F2, and τ(y∗k+1xk+1) = 0. Now we have
that

〈x, y〉 = τ(y∗x) = τ(y∗n · · · y∗2y∗1x1x2 · · ·xm)

= τ(y∗n · · · y∗k+1x
∗
k · · ·x∗2(x∗1x1 − τ(x∗1x1)I)x2 · · ·xkxk+1 · · ·xm)

+ τ(x∗1x1)τ(y∗n · · · y∗k+1x
∗
k · · ·x∗2x2 · · ·xkxk+1 · · ·xm)

= τ(x∗1x1)τ(y∗n · · · y∗k+1x
∗
k · · ·x∗2x2 · · ·xkxk+1 · · ·xm)

· · ·
= τ(x∗1x1) · · · τ(x∗kxk)τ(y∗n · · · y∗k+1xk+1 · · ·xm)

= τ(x∗1x1) · · · τ(x∗kxk)τ(y∗n · · · y∗k+2(y
∗
k+1xk+1)xk+2 · · ·xm)

= 0.

Therefore, x is orthogonal to y. From the above computation, we see that if
τ(x∗i xi) = 1, then

τ(x∗x) = τ(x∗1x1) · · · τ(x∗mxm) = 1.

Thus when F1 and F2 consist of unit vectors, then so does F1 ∗ F2.
Now we show that the linear span of (F1 ∗ F2) ∪ {I} is dense in L2(M1 ∗

M2, τ). To see this, we only need to show that finite linear combinations of
elements in (F1 ∗F2)∪{I} approximate any monomial z1z2 · · · zn in M1 ∗M2

arbitrarily close in the trace norm. This follows from the inequality

‖ABC‖2 ≤ ‖A‖‖B‖2‖C‖
and the assumption that F1 ∪ {I} and F2 ∪ {I} are orthogonal bases where
‖B‖2 = τ(B∗B)

1
2 means the trace norm of B. �

Given a finite von Neumann algebra M with a finite faithful trace τ , a Haar
unitary (with respect to τ) is a unitary, u ∈M, such that τ(un) = 0 for every
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non-zero integer n. If u is a Haar unitary in a ∗-probability space, then the
normalized Lebesgue measure on the circle serves as a ∗-distribution for u.

Let M1 and M2 be finite von Neumann algebras with finite faithful traces
τ1 and τ2, respectively. Let A be a unital separable C∗-subalgebra ofM1 which
is ultraweakly dense in M1 and contains a Haar unitary u. Let v be a Haar
unitary in M2 with respect to τ2. We denote by A the C∗-subalgebra in the
free product (M1 ∗M2, τ) generated by A and v where τ is the trace given as
in Proposition 3.1. We define sets Fi (i = 1, 2) as follows:

F1 = {vn0a1v
n1 · · · akv

nk : aj ∈ A with τ1(aj) = 0, k ≥ 1 and

nj 6= 0 (1 ≤ j ≤ k − 1)},
F2 = {vn : n ∈ Z \ {0}}.

Note that n0 and nk may be zero. Let F0 = F1 ∪ F2 and F = F0 ∪ {I}. We
denote still by τ the restriction of the trace on M1 ∗M2 to A. All finite linear
combinations of elements in F , denoted by CF , form a norm dense ∗-subalgebra
of A. The length `(x) of an element x in F is defined by

`(x) =

{
|n0|+ · · ·+ |nk| if x = vn0a1v

n1 · · · akv
nk

0 if x = I.

The following theorem which extends Powers’ result to a free product of
finite von Neumann algebras are the same as that of Dykema [4], but we will
give a proof by a direct variation on Powers’ proof for the reduced C∗-algebra
of non-abelian free groups.

Theorem 3.2. Let A be a C∗-subalgebra in M1 ∗M2 generated by A and v
where M1, M2, A and v are same as above. Then the C∗-algebra A is simple
and has a unique trace.

Proof. Suppose that J is a non-zero two-sided ideal in A. We can choose a non-
zero positive element x in J with τ(x) 6= 0. Multiplying x by some constant
λ ∈ C if necessary, we may assume that τ(x) = 1. From the Kaplansky’s
density theorem, we know that for any ε > 0 there is a self-adjoint element y
in CF such that

‖x− y‖ < ε and ‖y‖ ≤ ‖x‖.
We also assume that τ(y) = 1 so that we can write

y = I +
n∑

j=1

λjyj for some λj ∈ C and yj ∈ F0 (j = 1, . . . , n)

since traces of all elements in F0 are zero.
Let m0 − 1 be the maximum of lengths of y1, . . . , yn, that is,

m0 − 1 = max{`(yj) : 1 ≤ j ≤ n}.
Then the elements v−m0yjv

m0 begin and end with a nonzero power of v for all
j = 1, . . . , n. Let C be the set of elements in F0 which begins by vm0 (followed
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by a non-trivial element in A, or by nothing at all) and let D = F−C. Then we
see that C and D are orthogonal. From above argument, we also see that yjC
and C are orthogonal for each j = 1, . . . , n. Since D = F − C, one can see that
uiv−m0D and ujv−m0D are orthogonal whenever i 6= j. Since A is ultraweakly
dense in M1, we have that L2(A, τ) = L2(M1 ∗ {v}′′, τ).

Let K be the closed subspace spanned by D and P the projection from
L2(A, τ) onto K. For each positive integer j, we define wj and Qj by

wj = ujv−m0 and Qj = wjPw
−1
j .

Since wiD and wjD are orthogonal for i 6= j, we see that Q1, Q2, . . . are pairwise
orthogonal projections. Moreover, yjC and C are also orthogonal. Hence we
have that

(I − P )yj(I − P ) = 0 for j = 1, . . . , n.

It follows from the definition of Qj that I − P = w−1
j (I −Qj)wj . Since

(I − P )yj(I − P ) = 0 for each 1 ≤ j ≤ n,

we obtain that (I −P )(
∑n

j=1 λjyj)(I −P ) = 0. Therefore, we get the equality

0 = (I −Qj)wj

( n∑

j=1

λjyj

)
w−1

j (I −Qj).

Now we prove that the inequality

(1)

∥∥∥∥∥∥
1
k

k∑

j=1

wj

( n∑

i=1

λiyi

)
w−1

j

∥∥∥∥∥∥
≤ 2√

k

∥∥∥∥∥
n∑

i=1

λiyi

∥∥∥∥∥

holds for each positive integer k ≥ 1. If ξ ∈ L2(A, τ) is a unit vector, we have
that∣∣∣∣∣∣

〈
1
k

k∑

j=1

wj

( n∑

i=1

λiyi

)
w−1

j ξ, ξ

〉∣∣∣∣∣∣

≤ 1
k

k∑

j=1

∣∣∣∣∣

〈
wj

( n∑

i=1

λiyi

)
w−1

j ξ, ξ

〉∣∣∣∣∣

=
1
k

k∑

j=1

∣∣∣∣∣

〈
(I −Qj +Qj)wj

( n∑

i=1

λiyi

)
w−1

j (I −Qj +Qj)ξ, ξ

〉∣∣∣∣∣

≤ 1
k

k∑

j=1

{∣∣∣∣∣

〈
(I −Qj)wj

( n∑

i=1

λiyi

)
w−1

j (I −Qj)ξ, ξ

〉∣∣∣∣∣

+

∣∣∣∣∣

〈
(I −Qj)wj

( n∑

i=1

λiyi

)
w−1

j Qjξ, ξ

〉∣∣∣∣∣+
∣∣∣∣∣

〈
Qjwj

( n∑

i=1

λiyi

)
w−1

j ξ, ξ

〉∣∣∣∣∣

}
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≤ 1
k

k∑

j=1

{∥∥∥∥∥(I −Qj)wj

( n∑

i=1

λiyi

)
w−1

j

∥∥∥∥∥ ‖Qjξ‖+

∥∥∥∥∥wj

( n∑

i=1

λiyi

)
w−1

j

∥∥∥∥∥ ‖Qjξ‖
}

≤ 1
k

k∑

j=1

∥∥∥∥∥
n∑

i=1

λiyi

∥∥∥∥∥ (‖Qjξ‖+ ‖Qjξ‖)

≤ 2√
k

∥∥∥∥∥
n∑

i=1

λiyi

∥∥∥∥∥ .

Since y is a self-adjoint element, y−I =
∑n

i=1 λiyi is also a self-adjoint element
in CF . Hence get the inequality (1).

Next we will show that

(2)

∥∥∥∥∥∥
I − 1

k

k∑

j=1

wjxw
−1
j

∥∥∥∥∥∥
≤ 2√

k
‖x‖+ ε

for each integer k ≥ 1. Using the triangle inequality, we have
∥∥∥∥∥∥
I − 1

k

k∑

j=1

wjxw
−1
j

∥∥∥∥∥∥

≤
∥∥∥∥∥∥
I − 1

k

k∑

j=1

wjyw
−1
j

∥∥∥∥∥∥
+

∥∥∥∥∥∥
1
k

k∑

j=1

wjyw
−1
j − 1

k

k∑

j=1

wjxw
−1
j

∥∥∥∥∥∥

=

∥∥∥∥∥∥
1
k

k∑

j=1

wj

( n∑

i=1

λiyi

)
w−1

j

∥∥∥∥∥∥
+ ‖y − x‖

≤ 2√
k

∥∥∥∥∥
n∑

i=1

λiyi

∥∥∥∥∥+ ε

≤ 2√
k
‖x‖+ ε.

By the inequality (2) we have the inequality
∥∥∥∥∥∥
I − 1

k

k∑

j=1

wjxw
−1
j

∥∥∥∥∥∥
< 1 for sufficiently large k.

This inequality implies that b = 1
k

∑k
j=1 wjxw

−1
j is invertible in A. However,

the element x belongs to J and J is a two-sided ideal, so that b lies in J.
Since the ideal J contains an invertible element, the closed ideal J contains A.
Therefore, the C∗-algebra A is simple.

To show that A has a unique trace, let τ ′ be any normalized trace on A.
Suppose that x ∈ A and ε > 0 are given. Then it follows from the above proof
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that there are unitaries wj ∈ F and λj ∈ C (j = 1, . . . , n) with
∑

j λj = 1 such
that ∥∥∥∥τ(x)I −

n∑

j=1

λjwjxw
∗
j

∥∥∥∥ < ε.

Hence, we have that
∣∣∣∣τ ′(τ(x)I −

n∑

j=1

λjwjxw
∗
j )
∣∣∣∣ =

∣∣∣∣τ(x)−
n∑

j=1

λjτ
′(wjxw

∗
j )
∣∣∣∣

= |τ(x)− τ ′(x)| < ε.

Since ε > 0 is arbitrary, we have that τ(x) = τ ′(x) for every x ∈ A. Hence A
has a unique trace. �

Suppose thatM is a finite von Neumann algebra with a faithful normal trace
τ . Let Aut(M) denote the group of the trace preserving ∗-automorphisms of
M and Int(M) the group of inner automorphisms of M. Let Out(M) be the
quotient Aut(M)/Int(M). When M is a factor of type II1, there is a unique
normalized trace on M and all ∗-automorphisms always preserve the trace.
The following proposition shows that any pair of automorphisms on finite von
Neumann algebras M1 and M2 implement in a natural way an automorphism
on the free product M1 ∗ M2. It may be well-known, but we cannot find a
reference so that we give a more detailed proof for the convenience of a reader.

Proposition 3.3. Let M1 and M2 be finite von Neumann algebras with nor-
malized faithful normal traces τ1 and τ2, respectively. For any α1 in Aut(M1)
and α2 in Aut(M2), there is a unique trace preserving ∗-automorphism, de-
noted by α1 ∗ α2, of the free product M1 ∗M2 such that α1 ∗ α2|M1 = α1 and
α1 ∗ α2|M2 = α2.

Proof. We define a mapping α of the algebraic free product M1 ∗a M2 into
M1 ∗a M2 by

α(I) = I and α(x1x2 · · ·xn) = αi1(x1)αi2(x2) · · ·αin(xn),

where x1x2 · · ·xn is a monomial in the algebraic free product M1 ∗a M2 such
that xj ∈ Mij , i1 6= i2 6= · · · 6= in and ij ∈ {1, 2}. Extend linearly to
the algebraic free product M1 ∗a M2. Since α1 and α2 are trace preserving
automorphisms, the mapping α is also trace preserving on M1∗aM2 and maps
M1 ∗a M2 onto α1(M1) ∗a α2(M2) (= M1 ∗a M2).

Moreover, we have that for any monomial x1x2 · · ·xn in M1 ∗a M2,
α((x1x2 · · ·xn)∗) = α(x∗n · · ·x∗2x∗1)

= αin(x∗n) · · ·αi2(x
∗
2)αi1(x

∗
1)

= αin(xn)∗ · · ·αi2(x2)∗αi1(x1)∗

= (αi1(x1)αi2(x2) · · ·αin(xn))∗

= α(x1x2 · · ·xn)∗.
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It is a routine calculation to see that α(xy) = α(x)α(y) for x and y inM1∗aM2

and that α is one-to-one. Thus α is a trace preserving ∗-automorphism ofM1∗a

M2. Because the algebraic free product M1 ∗aM2 is dense in L2(M1 ∗M2, τ)
where τ = τ1 ∗ τ2, α extends to a unitary operator u on the Hilbert space
L2(M1 ∗M2, τ) and u∗ is the extension of α−1 (on M1 ∗a M2).

For any x in M1∗M2, let α1∗α2(x) be uxu∗. Then α1∗α2 is an ultraweakly
continuous ∗-isomorphism of the free product M1 ∗M2 onto u(M1 ∗M2)u∗.
Let ξ be the unit vector corresponding to I in M1 ∗M2. Since τ is the vector
state induced by ξ and u(ξ) = ξ, we see that α1 ∗α2 preserves the trace τ . For
any x1 in M1, we want to show that α1 ∗ α2(x1) = α1(x1). For any element x
in M1 ∗a M2 (⊆ L2(M1 ∗M2, τ)), we know that α−1(x) and so x1α

−1(x) lie
in M1 ∗a M2. Using the property that α is an automorphism, we have that

α1 ∗ α2(x1)(x) = ux1u
∗(x) = ux1(α−1(x))

= u(x1α
−1(x)) = α(x1α

−1(x))

= α(x1)(x) = α1(x1)(x).

Similarly, we have that α1 ∗α2|M2 = α2. We know that M1 ∗M2 is generated
by M1 and M2 as a von Neumann algebra, so that an ultraweakly continuous
automorphism of M1 ∗M2 is determined by its restrictions on M1 and M2.
Hence the uniqueness of α1 ∗ α2 follows. �

If either α1 or α2 is not an identity automorphism, then we can see that
α1 ∗ α2 is an outer automorphism on M1 ∗ M2. More precisely, there is an
embedding of the direct product Aut(M1) × Aut(M2) into Out(M1 ∗ M2)
induced by the free product of automorphisms defined in Proposition 3.3 (see
[7] for more details). To discuss the freeness in a free product of von Neumann
algebra, we consider the given questions in the beginning of this section: for
any abelian von Neumann subalgebra A of a free product II1-factor M, is there
a projection P ( 6= 0, I) in M such that A and P are free? Here free means
that the von Neumann subalgebra generated by A and P is ∗-isomorphic to
the free product of A and the algebra generated by P and I. It is proved by
Voiculescu that L(Fn) (n = 2, 3, . . . ,∞) doesn’t have Cartan subalgebras. We
need a lemma which was proved in [7] to prove Theorem 3.5.

Lemma 3.4 ([7]). Suppose that M1 and M2 are finite von Neumann algebras
with faithful normal traces τ1 and τ2, respectively. If A is a non-atomic abelian
von Neumann subalgebra of M1 and w is a unitary operator of the free product
M1 ∗M2 such that wAw∗ is contained in M1, then w is in M1.

The following theorem shows that the above question about freeness in a
free product is related to the existence of Cartan subalgebras in free product
II1-factors.

Theorem 3.5. If for any abelian von Neumann subalgebra A in a free product
II1-factor M there is a projection P ( 6= 0, I) in M such that A and P are free,
then M does not have any Cartan subalgebra.
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Proof. Let A be a maximal abelian von Neumann subalgebra of M. By the
assumption, there is a non-trivial projection P (6= 0, I) in M such that A
and P are free. By Lemma 3.4, we know that the normalizer of A in the von
Neumann subalgebra generated by A and P is contained in A. Thus A can
not be a Cartan subalgebra of the von Neumann algebra generated by A and
P . Since any Cartan subalgebra of a von Neumann algebra is also Cartan in
any subalgebra containing it, A can not be a Cartan subalgebra of M. This
completes the proof. �

A von Neumann algebra M is solid if for any diffuse von Neumann subal-
gebra A in M, the relative commutant A′ ∩M is injective. Ozawa [9] proved
that the hyperbolic group von Neumann algebra is solid, which is related to
the primality of the free group factor. In particular, the free group factor is
solid. Thus, we can ask the similar question for free product II1-factors: For
any non-atomic injective subalgebra B of a free product II1-factor M, is the
relative commutant of B in M always injective? This is weaker than the solid-
ity of a von Neumann algebra. Here we would like to answer this question in
the negative. A counterexample is directly obtained from Theorem 5.2 in [5].
For the convenience of a reader, we will give the example.

Suppose that the groupG is the direct product of an i.c.c. (infinite conjugacy
classes) amenable countable discrete group H with a countable discrete group
G1. Then L(H) is the hyperfinite II1-factor and we denote it by R2 which is
generated by two unitary generators U2, V2 with the relation U2V2 = e2πiθ′V2U2.
Let M1 = R1 ∗L(G) where R1 is generated by unitary generators U1, V1 with
U1V1 = e2πiθV1U1. If we choose θ′ such that 2θ′ = θ, then the mapping α
given by α(U1) = U2 and α(V1) = V 2

2 determines an isomorphism of R1 into
R2. Let N = M2(C)⊗M1 and let R be the subalgebra of N consisting of all
elements

(
x 0
0 α(x)

)
for x ∈ R1. We denote by M the free product of N and N1

where N1 is any type II1-factor. By Corollary 3.2 in [7], R′ ∩M is contained
in N , so that R′ ∩M = R′ ∩ N . The relative commutant of R in M is not
injective if G1 is not amenable. Hence we obtain that M has a non-atomic
injective subalgebra R with a non-injective relative commutant R′ ∩M if G1

is not amenable.
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