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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concern-
ing the stability of group homomorphisms. Hyers [2] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki [3] for addi-
tive mappings and by Th. M. Rassias [4] for linear mappings by considering an unbounded
Cauchy difference. The work of Th. M. Rassias [4] has provided a lot of influence in the devel-
opment of what we call generalized Hyers-Ulam stability of functional equations. A generaliza-
tion of the Th. M. Rassias theorem was obtained by Găvruţa [5] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Th. M. Rassias’ approach.

J. M. Rassias [6] proved a similar stability theorem in which he replaced the factor
‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q /= 1 (see also [7, 8] for a number of other new
results). The papers of J. M. Rassias [6–8] introduced the Ulam- Găvruţa-Rassias stability of
functional equations. See also [9–11].

The functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)
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is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be aquadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [12] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [13] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. In [14], Czerwik proved
the generalized Hyers-Ulam stability of the quadratic functional equation.

J. M. Rassias [15] introduced and solved the stability problem of Ulam for the Euler-
Lagrange-type quadratic functional equation

f
(
rx + sy

)
+ f
(
sx − ry

)
=
(
r2 + s2

)[
f(x) + f

(
y
)]
, (1.2)

motivated from the following pertinent algebraic equation

|ax + by|2 + |bx − ay|2 =
(
a2 + b2

)(
|x|2 + |y|2

)
. (1.3)

The solution of the functional equation (1.2) is called a Euler-Lagrange-type quadratic mapping.
J. M. Rassias [16, 17] introduced and investigated the relative functional equations. In
addition, J. M. Rassias [18] generalized the algebraic equation (1.3) to the following equation

mn|ax + by|2 + |nbx −may|2 =
(
ma2 + nb2

)(
n|x|2 +m|y|2

)
, (1.4)

and introduced and investigated the general pertinent Euler-Lagrange quadratic mappings.
Analogous quadratic mappings were introduced and investigated in [19, 20].

These Euler-Lagrange mappings are named Euler-Lagrange-Rassias mappings and the
corresponding Euler-Lagrange equations are called Euler-Lagrange-Rassias equations. Before
1992, these mappings and equations were not known at all in functional equations and
inequalities. However, a completely different kind of Euler-Lagrange partial differential
equations are known in calculus of variations. Therefore, we think that J. M. Rassias’
introduction of Euler-Lagrange mappings and equations in functional equations and
inequalities provides an interesting cornerstone in analysis. Already some mathematicians
have employed these Euler-Lagrange mappings.

Recently, Jun and Kim [21] solved the stability problem of Ulam for another Euler-
Lagrange-Rassias-type quadratic functional equation. Jun and Kim [22] introduced and
investigated the following quadratic functional equation of Euler-Lagrange-Rassias type:

n∑

i=1

riQ

⎛

⎝
n∑

j=1

rj
(
xi − xj

)
⎞

⎠ +

(
n∑

i=1

ri

)

Q

(
n∑

i=1

rixi

)

=

(
n∑

i=1

ri

)2 n∑

i=1

riQ(xi), (1.5)

whose solution is said to be a generalized quadratic mapping of Euler-Lagrange-Rassias type.
During the last two decades a number of papers and research monographs have

been published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [9, 23–26]).

Katsaras [27] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms on
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a vector space from various points of view [28–30]. In particular, Bag and Samanta [31],
following Cheng and Mordeson [32], gave an idea of fuzzy norm in such a manner that
the corresponding fuzzy metric is of Kramosil and Michálek type [33]. They established a
decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some
properties of fuzzy normed spaces [34].

We use the definition of fuzzy normed spaces given in [31] and [35–38] to investigate a
fuzzy version of the generalized Hyers-Ulam stability for the quadratic functional equations

2f
(
x + y

2

)
+ 2f
(
x − y

2

)
= f(x) + f

(
y
)
, (1.6)

f
(
ax + ay

)
+ f
(
ax − ay

)
= 2a2f(x) + 2a2f

(
y
)

(1.7)

in the fuzzy normed vector space setting.

Definition 1.1 (see [31, 35–38]). Let X be a real vector space. A function N : X × R → [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1)N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0;
(N3)N(cx, t) = N(x, t/|c|) if c /= 0;
(N4)N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5)N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x /= 0, N(x, ·) is continuous on R.
The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given

in [35–38].

Definition 1.2 (see [31, 35–38]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N-
limn→∞xn = x.

Definition 1.3 (see [31, 35–38]). Let (X,N) be a fuzzy normed vector space. A sequence {xn}
in X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all
n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y
is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X →
Y is said to be continuous on X (see [34]).

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic
functional equations (1.6) and (1.7) in fuzzy Banach spaces.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space. Let a be a nonzero real number with a/= (±1/2).
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2. Fuzzy Stability of Quadratic Functional Equations

We prove the fuzzy stability of the quadratic functional equation (1.6).

Theorem 2.1. Let f : X → Y be an even mapping with f(0) = 0. Suppose that ϕ is a mapping from
X to a fuzzy normed space (Z,N

′
) such that

N

(
2f
(
x + y

2

)
+ 2f
(
x − y

2

)
− f(x) − f

(
y
)
, t + s

)
≥ min

{
N

′(
ϕ(x), t

)
,N

′(
ϕ
(
y
)
, s
)}

(2.1)

for all x, y ∈ X \ {0} and all positive real numbers t, s. If ϕ(3x) = αϕ(x) for some positive real
number α with α < 9, then there is a unique quadratic mapping Q : X → Y such that Q(x) = N-
lim
n→∞

f(3nx)/9n and

N
(
Q(x) − f(x), t

) ≥ M

(
x,

(9 − α)t
18

)
, (2.2)

where

M(x, t) := min
{
N

′
(
ϕ(x),

3
2
t

)
,N

′
(
ϕ(2x),

3
2
t

)
,N

′
(
ϕ(3x),

3
2
t

)
,N

′
(
ϕ(0),

3
2
t

)}
. (2.3)

Proof. Putting y = 3x and s = t in (2.1), we get

N
(
2f(2x) + 2f(−x) − f(x) − f(3x), 2t

) ≥ min
{
N

′(
ϕ(x), t

)
,N

′(
ϕ(3x), t

)}
(2.4)

for all x ∈ X and all t > 0. Replacing x by 2x, y by 0, and s by t in (2.1), we obtain

N
(
4f(x) − f(2x), 2t

) ≥ min
{
N

′(
ϕ(2x), t

)
,N

′(
ϕ(0), t

)}
. (2.5)

Thus

N
(
9f(x) − f(3x), 6t

) ≥ min
{
N

′(
ϕ(x), t

)
,N

′(
ϕ(2x), t

)
,N

′(
ϕ(3x), t

)
,N

′(
ϕ(0), t

)}
, (2.6)

and so

N

(
f(x) − f(3x)

9
, t

)
≥ min

{
N

′
(
ϕ(x),

3
2
t

)
,N

′
(
ϕ(2x),

3
2
t

)
N

′
(
ϕ(3x),

3
2
t

)
,N

′
(
ϕ(0),

3
2
t

)}
.

(2.7)

Then by the assumption,

M(3x, t) = M

(
x,

t

α

)
. (2.8)
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Replacing x by 3nx in (2.7) and applying (2.8), we get

N

(
f(3nx)

9n
− f
(
3n+1x

)

9n+1
,
αnt

9n

)

= N

(

f(3nx) − f
(
3n+1x

)

9
, αnt

)

≥ M(3nx, αnt)

= M(x, t).

(2.9)

Thus for each n > m we have

N

(
f(3mx)

9m
− f(3nx)

9n
,
n−1∑

k=m

αkt

9k

)

= N

(
n−1∑

k=m

(
f
(
3kx
)

9k
− f
(
3k+1x

)

9k+1

)

,
n−1∑

k=m

αkt

9k

)

≥ min

{
n−1⋃

k=m

{

N

(
f
(
3kx
)

9k
− f
(
3k+1x

)

9k+1
,
αkt

9k

)}}

≥ M(x, t).

(2.10)

Let ε > 0 and δ > 0 be given. Since limt→∞M(x, t) = 1, there is some t0 > 0 such that
M(x, t0) > 1 − ε. Since

∑∞
k=0α

kt0/9k < ∞, there is some n0 ∈ N such that
∑n−1

k=mα
kt0/9k < δ for

n > m ≥ n0. It follows that

N

(
f(3mx)

9m
− f(3nx)

9n
, δ

)
≥ N

(
f(3mx)

9m
− f(3nx)

9n
,
n−1∑

k=m

αkt

9k

)

≥ M(x, t0)

≥ 1 − ε

(2.11)

for all t ≥ t0. This shows that the sequence {f(3nx)/9n} is Cauchy in (Y,N). Since (Y,N) is
complete, {f(3nx)/9n} converges to someQ(x) ∈ Y . Thus we can define a mappingQ : X →
Y by Q(x) := N − limt→∞f(3nx)/9n. Moreover, if we put m = 0 in (2.10), then we observe
that

N

(
f(3nx)

9n
− f(x),

n−1∑

k=0

αkt

9k

)

≥ M(x, t). (2.12)

Thus

N

(
f(3nx)

9n
− f(x), t

)
≥ M

(

x,
t

∑n−1
k=0 (α/9)

k

)

. (2.13)
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Next we show that Q is quadratic. Let x, y ∈ X. Then we have

N

(
2Q
(
x + y

2

)
+ 2Q

(
x − y

2

)
−Q(x) −Q

(
y
)
, t

)

≥ min

{

N

(

2Q
(
x + y

2

)
− 2f

(
3n
(
x + y

)
/2
)

9n
,
t

5

)

,

N

(

2Q
(
x − y

2

)
− 2f

(
3n
(
x − y

)
/2
)

9n
,
t

5

)

,

N

(
f(3nx)

9n
−Q(x),

t

5

)
,N

(
f
(
3ny
)

9n
−Q
(
y
)
,
t

5

)

,

N

(
2f
(
3n
(
x + y

)
/2
)

9n
+
2f
(
3n
(
x − y

)
/2
)

9n
− f(3nx)

9n
− f
(
3ny
)

9n
,
t

5

)}

.

(2.14)

The first four terms on the right-hand side of the above inequality tend to 1 as n → ∞ and
the fifth term, by (2.1), is greater than or equal to

min
{
N

′
(
ϕ(3nx),

9nt
10

)
,N

′
(
ϕ
(
3ny
)
,
9nt
10

)}
=min

{
N

′
(
ϕ(x),

(
9
α

)n t

10

)
,

(
ϕ
(
y
)
,

(
9
α

)n t

10

)}
,

(2.15)

which tends to 1 as n → ∞. Hence

N

(
2Q
(
x + y

2

)
+ 2Q

(
x − y

2

)
−Q(x) −Q

(
y
)
, t

)
= 1 (2.16)

for all x, y ∈ X and all t > 0. This means that Q satisfies the Jensen quadratic functional
equation and so it is quadratic.

Next, we approximate the difference between f and Q in a fuzzy sense. For every
x ∈ X and t > 0, by (2.13), for large enough n, we have

N
(
Q(x) − f(x), t

) ≥ min

{

N

(

Q(x) − f
(
3ny
)

9n
,
t

2

)

,N

(
f
(
3ny
)

9n
− f(x),

t

2

)}

≥ M

(

x,
t

2
∑∞

k=0 (α/9)
k

)

= M

(
x,

(9 − α)t
18

)
.

(2.17)
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The uniqueness assertion can be proved by a standard fashion; cf. [36]: Let Q′ be another
quadratic mapping fromX into Y , which satisfies the required inequality. Then for each x ∈ X
and t > 0,

N
(
Q(x) −Q

′
(x), t

)
≥ min

{
N

(
Q(x) − f(x),

t

2

)
,N

(
Q

′
(x) − f(x),

t

2

)}

≥ M

(
x,

(9 − α)t
36

)
.

(2.18)

Since Q and Q
′
are quadratic,

N
(
Q(x) −Q

′
(x), t

)
= N
(
Q(3nx) −Q

′
(3nx), 9nt

)

≥ M

(
x,

(9/α)n(9 − α)t
36

)
.

(2.19)

for all x ∈ X, all t > 0 and all n ∈ N.
Since 0 < α < 9, limn→∞(9/α)

n = ∞. Hence the right-hand side of the above inequality
tends to 1 as n → ∞. It follows that Q(x) = Q

′
(x) for all x ∈ X.

Theorem 2.2. Let f : X → Y be an even mapping with f(0) = 0. Suppose that ϕ is a mapping from
X to a fuzzy normed space (Z,N

′
) satisfying (2.1). If ϕ(3x) = αϕ(x) for some real number αwith α >

9, then there is a unique quadratic mapping Q : X → Y such that Q(x) = N-limn→∞9nf(x/3n)
and

N
(
Q(x) − f(x), t

) ≥ M

(
x,

(α − 9)t
2α

)
, (2.20)

where

M(x, t) := min
{
N

′
(
ϕ

(
x

3

)
,
t

6

)
,N

′
(
ϕ

(
2x
3

)
,
t

6

)
,N

′
(
ϕ(x),

t

6

)
,N

′
(
ϕ(0),

t

6

)}
. (2.21)

Proof. It follows from (2.7) that

N

(
f(x) − 9f

(
x

3

)
, t

)
≥min

{
N

′
(
ϕ

(
x

3

)
,
t

6

)
,N

′
(
ϕ

(
2x
3

)
,
t

6

)
,N

′
(
ϕ(x),

t

6

)
,N

′
(
ϕ(0),

t

6

)}
.

(2.22)

Then by the assumption,

M

(
x

3
, t

)
= M(x, αt). (2.23)
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Replacing x by x/3n in (2.22) and applying (2.23), we get

N

(
9nf
(

x

3n

)
− 9n+1f

(
x

3n+1

)
,
9nt
αn

)
= N

(
f

(
x

3n

)
− 9f
(

x

3n+1

)
,
t

αn

)

≥ M

(
x

3n
,
t

αn

)

= M(x, t).

(2.24)

Thus for each n > m we have

N

(

9mf
(

x

3m

)
− 9nf

(
x

3n

)
,
n−1∑

k=m

9kt
αk

)

= N

(
n−1∑

k=m

(
9kf
(

x

3k

)
− 9k+1f

(
x

3k+1

))
,
n−1∑

k=m

9kt
αk

)

≥ min

{
n−1⋃

k=m

{

N

(

9kf
(

x

3k

)
− 9k+1f

(
x

3k+1

)
,
9kt
αk

)}}

≥ M(x, t).

(2.25)

Let ε > 0 and δ > 0 be given. Since limt→∞M(x, t) = 1, there is some t0 > 0 such that
M(x, t0) > 1 − ε. Since

∑∞
k=09

kt0/α
k < ∞, there is some n0 ∈ N such that

∑n−1
k=m9

kt0/α
k < δ for

n > m ≥ n0. It follows that

N

(
9mf
(

x

3m

)
− 9nf

(
x

3n

)
, δ

)
≥ N

(

9mf
(

x

3m

)
− 9nf

(
x

3n

)
,
n−1∑

k=m

9kt
αk

)

≥ M(x, t0)

≥ 1 − ε

(2.26)

for all t ≥ t0. This shows that the sequence {9nf(x/3n)} is Cauchy in (Y,N). Since (Y,N)
is complete, {9nf(x/3n)} converges to some Q(x) ∈ Y . Thus we can define a mapping
Q : X → Y by Q(x) := N-limt→∞9nf(x/3n). Moreover, if we put m = 0 in (2.8), then we
observe that

N

(

9nf
(

x

3n

)
− f(x),

n−1∑

k=0

9kt
αk

)

≥ M(x, t). (2.27)

Thus

N

(
9nf
(

x

3n

)
− f(x), t

)
≥ M

(

x,
t

∑n−1
k=0 (9/α)

k

)

. (2.28)

The rest of the proof is similar to the proof of Theorem 2.1.
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Theorem 2.3. Let f : X → Y be a mapping with f(0) = 0. Suppose that ϕ is a mapping from X
to a fuzzy normed space (Z,N

′
) satisfying (2.1). If ϕ(2x) = αϕ(x) for some positive real number

α with α < 4, then there is a unique quadratic mapping Q : X → Y such that Q(x) = N-
limn→∞f(2nx)/4n and

N
(
Q(x) − f(x), t

) ≥ M

(
x,

(4 − α)t
8

)
(2.29)

whereM(x, t) := min{N ′
(ϕ(2x), 2t),N

′
(ϕ(0), 2t)}.

Proof. Letting y = 0 and replacing x by 2x and s by t in (2.1), we obtain

N
(
4f(x) − f(2x), 2t

) ≥ min
{
N

′(
ϕ(2x), t

)
,N

′(
ϕ(0), t

)}
. (2.30)

Thus

N

(
f(x) − f(2x)

4
, t

)
≥ min

{
N

′(
ϕ(2x), 2t

)
,N

′(
ϕ(0), 2t

)}
. (2.31)

Then by the assumption,

M(2x, t) = M

(
x,

t

α

)
. (2.32)

Replacing x by 2nx in (2.31) and applying (2.32), we get

N

(
f(2nx)

4n
− f
(
2n+1x

)

4n+1
,
αnt

4n

)

= N

(

f(2nx) − f
(
4n+1x

)

4
, αnt

)

≥ M(2nx, αnt)

= M(x, t).

(2.33)

Thus for each n > m we have

N

(
f(2mx)

4m
− f(2nx)

4n
,
n−1∑

k=m

αkt

4k

)

= N

(
n−1∑

k=m

(
f
(
2kx
)

4k
− f
(
2k+1x

)

4k+1

)

,
n−1∑

k=m

αkt

4k

)

≥ min

{
n−1⋃

k=m

{

N

(
f
(
2kx
)

4k
− f
(
2k+1x

)

4k+1
,
αkt

4k

)}}

≥ M(x, t).

(2.34)
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Let ε > 0 and δ > 0 be given. Since limt→∞M(x, t) = 1, there is some t0 > 0 such that
M(x, t0) > 1 − ε. Since

∑∞
k=0α

kt0/4k < ∞, there is some n0 ∈ N such that
∑n−1

k=mα
kt0/4k < δ for

n > m ≥ n0. It follows that

N

(
f(2mx)

4m
− f(2nx)

4n
, δ

)
≥ N

(
f(2mx)

4m
− f(2nx)

4n
,
n−1∑

k=m

αkt

4k

)

≥ M(x, t0)

≥ 1 − ε

(2.35)

for all t ≥ t0. This shows that the sequence {f(2nx)/4n} is Cauchy in (Y,N). Since (Y,N) is
complete, {f(2nx)/4n} converges to someQ(x) ∈ Y . Thus we can define a mappingQ : X →
Y by Q(x) := N-limt→∞f(2nx)/4n. Moreover, if we put m = 0 in (2.34), then we observe that

N

(
f(2nx)

4n
− f(x),

n−1∑

k=0

αkt

4k

)

≥ M(x, t). (2.36)

Thus

N

(
f(2nx)

4n
− f(x), t

)
≥ M

(

x,
t

∑n−1
k=0 (α/4)

k

)

. (2.37)

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4. Let f : X → Y be a mapping with f(0) = 0. Suppose that ϕ is a mapping from X to
a fuzzy normed space (Z,N

′
) satisfying (2.1). If ϕ(2x) = αϕ(x) for some real number α with α > 4,

then there is a unique quadratic mapping Q : X → Y such that Q(x) = N-limn→∞4nf(x/2n) and

N
(
Q(x) − f(x), t

) ≥ M

(
x,

(α − 4)t
2α

)
, (2.38)

whereM(x, t) := min{N ′
(ϕ(x), t/2),N

′
(ϕ(0), t/2)}.

Proof. It follows from (2.31) that

N
(
f(x) − 4f

(x
2

)
, t
)
≥ min

{
N

′
(
ϕ(x),

t

2

)
,N

′
(
ϕ(0),

t

2

)}
. (2.39)

Then by the assumption,

M
(x
2
, t
)
= M(x, αt). (2.40)
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Replacing x by x/2n in (2.39) and applying (2.40), we get

N

(
4nf
( x

2n
)
− 4n+1f

(
x

2n+1

)
,
4nt
αn

)
= N

(
f
( x

2n
)
− 4f
(

x

2n+1

)
,
t

αn

)

≥ M

(
x

2n
,
t

αn

)

= M(x, t).

(2.41)

Thus for each n > m we have

N

(

4mf
( x

2m
)
− 4nf

( x

2n
)
,
n−1∑

k=m

4kt
αk

)

= N

(
n−1∑

k=m

(
4kf
(

x

2k

)
− 4k+1f

(
x

2k+1

))
,
n−1∑

k=m

4kt
αk

)

≥ min

{
n−1⋃

k=m

{

N

(

4kf
(

x

2k

)
− 4k+1f

(
x

2k+1

)
,
4kt
αk

)}}

≥ M(x, t).

(2.42)

Let ε > 0 and δ > 0 be given. Since limt→∞M(x, t) = 1, there is some t0 > 0 such that
M(x, t0) > 1 − ε. Since

∑∞
k=04

kt0/α
k < ∞, there is some n0 ∈ N such that

∑n−1
k=m4

kt0/α
k < δ for

n > m ≥ n0. It follows that

N
(
4mf
( x

2m
)
− 4nf

( x

2n
)
, δ
)
≥ N

(

4mf
( x

2m
)
− 4nf

( x

2n
)
,
n−1∑

k=m

4kt
αk

)

≥ M(x, t0)

≥ 1 − ε

(2.43)

for all t ≥ t0. This shows that the sequence {4nf(x/2n)} is Cauchy in (Y,N). Since (Y,N) is
complete, {4nf(x/2n)} converges to someQ(x) ∈ Y . Thus we can define a mappingQ : X →
Y by Q(x) := N-limt→∞4nf(x/2n). Moreover, if we put m = 0 in (2.42), then we observe that

N

(

4nf
( x

2n
)
− f(x),

n−1∑

k=0

4kt
αk

)

≥ M(x, t). (2.44)

Thus

N
(
4nf
( x

2n
)
− f(x), t

)
≥ M

(

x,
t

∑n−1
k=0 (4/α)

k

)

. (2.45)

The rest of the proof is similar to the proof of Theorem 2.1.
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Now we prove the fuzzy stability of the quadratic functional equation (1.7) for the
case a/= (±1/2).

Theorem 2.5. Let |2a| > 1 and f : X → Y a mapping with f(0) = 0. Suppose that ϕ is a mapping
from X to a fuzzy normed space (Z,N

′
) such that

N
(
f
(
ax + ay

)
+ f
(
ax − ay

) − 2a2f(x) − 2a2f
(
y
)
, t + s

)
≥ min

{
N

′(
ϕ(x), t

)
,N

′(
ϕ
(
y
)
, s
)}

(2.46)

for all x, y ∈ X \ {0} and all positive real numbers t, s. If ϕ(2ax) = αϕ(x) for some positive real
number α with 0 < α < 4a2, then there is a unique quadratic mapping Q : X → Y such that
Q(x) = N-limn→∞f((2a)

nx)/(2a)2n and

N
(
Q(x) − f(x), t

) ≥ N
′
(

ϕ(x),

(
4a2 − α

)
t

4

)

(2.47)

for all x ∈ X and all t > 0.

Proof. Putting y = x and s = t in (2.46), we get

N
(
f(2ax) − 4a2f(x), 2t

)
≥ N

′(
ϕ(x), t

)
(2.48)

for all x ∈ X and all t > 0. Thus

N

(
f(x) − f(2ax)

4a2
,

t

2a2

)
≥ N

′(
ϕ(x), t

)
(2.49)

and so

N

(
f(x) − f(2ax)

4a2
, t

)
≥ N

′(
ϕ(x), 2a2t

)
. (2.50)

Replacing x by (2a)nx in (2.50), we get

N

⎛

⎜
⎝

f
(
(2a)nx

)

(2a)2n
−
f
(
(2a)n+1x

)

(2a)2n+2
,

αnt

(2a)2n

⎞

⎟
⎠ = N

⎛

⎜
⎝f
(
(2a)nx

) −
f
(
(2a)n+1x

)

4a2
, αnt

⎞

⎟
⎠

≥ N
′(
ϕ(x), 2a2t

)
.

(2.51)
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Thus for each n > m we have

N

(
f
(
(2a)mx

)

(2a)2m
− f
(
(2a)nx

)

(2a)2n
,
n−1∑

k=m

αkt

(2a)2k

)

= N

⎛

⎜
⎝

n−1∑

k=m

⎛

⎜
⎝

f
(
(2a)kx

)

(2a)2k
−
f
(
(2a)k+1x

)

(2a)2k+2

⎞

⎟
⎠,

n−1∑

k=m

αkt

(2a)2k

⎞

⎟
⎠

≥ min

⎧
⎪⎨

⎪⎩

n−1⋃

k=m

⎧
⎪⎨

⎪⎩
N

⎛

⎜
⎝

f
(
(2a)kx

)

(2a)2k
−
f
(
(2a)k+1x

)

(2a)2k+2
,

αkt

(2a)2k

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

≥ N
′(
ϕ(x), 2a2t

)
.

(2.52)

Let ε > 0 and δ > 0 be given. Since limt→∞N
′
(ϕ(x), 2a2t) = 1, there is some t0 > 0

such that N
′
(ϕ(x), 2a2t0) > 1 − ε. Since

∑∞
k=0α

kt0/(2a)
2k < ∞, there is some n0 ∈ N such that

∑n−1
k=mα

kt0/(2a)
2k < δ for n > m ≥ n0. It follows that

N

(
f
(
(2a)mx

)

(2a)2m
− f
(
(2a)nx

)

(2a)2n
, δ

)

≥ N

(
f
(
(2a)mx

)

(2a)2m
− f
(
(2a)nx

)

(2a)2n
,
n−1∑

k=m

αkt

(2a)2k

)

≥ N
′(
ϕ(x), 2a2t0

)

≥ 1 − ε

(2.53)

for all t ≥ t0. This shows that the sequence {f((2a)nx)/(2a)2n} is Cauchy in (Y,N). Since
(Y,N) is complete, {f((2a)nx)/(2a)2n} converges to some Q(x) ∈ Y . Thus we can define a
mapping Q : X → Y by Q(x) := N-limt→∞f((2a)

nx)/(2a)2n. Moreover, if we put m = 0 in
(2.52), then we observe that

N

(
f
(
(2a)nx

)

(2a)2n
− f(x),

n−1∑

k=0

αkt

(2a)2k

)

≥ N
′(
ϕ(x), 2a2t

)
. (2.54)

Thus

N

(
f
(
(2a)nx

)

(2a)2n
− f(x), t

)

≥ N
′

⎛

⎝ϕ(x),
2a2t

∑n−1
k=0 (α/(2a)

2)
k

⎞

⎠. (2.55)

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.6. Let |2a| < 1 and f : X → Y a mapping with f(0) = 0. Suppose that ϕ is a mapping
from X to a fuzzy normed space (Z,N

′
) satisfying (2.46). If ϕ(2ax) = αϕ(x) for some real number
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α with α > 4a2, then there is a unique quadratic mapping Q : X → Y such that Q(x) = N-
limn→∞(2a)

2nf(x/(2a)n) and

N
(
Q(x) − f(x), t

) ≥ M

(

x,

(
α − 4a2)t

4

)

(2.56)

for all x ∈ X and all t > 0.

Proof. It follows from (2.50) that

N
(
f(x) − (2a)2f

( x

2a

)
, 2t
)
≥ N

′(
ϕ
( x

2a

)
, t
)

(2.57)

for all x ∈ X and all t > 0. Thus

N
(
f(x) − 4a2f

( x

2a

)
, t
)
≥ N

′
(
ϕ
( x

2a

)
,
t

2

)
= N

′(
ϕ(x),

α

2
t
)
. (2.58)

Replacing x by x/(2a)n in (2.58), we get

N

(

(2a)2nf
(

x

(2a)n

)
− (2a)2n+2f

(
x

(2a)n+1

)

,
(2a)2nt
αn

)

= N

(

f

(
x

(2a)n

)
− 4a2f

(
x

(2a)n+1

)

, αnt

)

≥ N
′(
ϕ(x),

α

2
t
)
.

(2.59)

Thus for each n > m we have

N

(

(2a)2mf
(

x

(2a)m

)
− (2a)2nf

(
x

(2a)n

)
,
n−1∑

k=m

(2a)2kt
αk

)

= N

(
n−1∑

k=m

(

(2a)2kf

(
x

(2a)k

)

− (2a)2k+2f

(
x

(2a)k+1

))

,
n−1∑

k=m

(2a)2kt
αk

)

≥ min

{
n−1⋃

k=m

{

N

(

(2a)2kf

(
x

(2a)k

)

− (2a)2k+2f

(
x

(2a)k+1

)

,
(2a)2kt
αk

)}}

≥ N
′(
ϕ(x),

α

2
t
)
.

(2.60)
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Let ε > 0 and δ > 0 be given. Since limt→∞N
′
(ϕ(x), (α/2)t) = 1, there is some t0 > 0 such

that N
′
(ϕ(x), (α/2)t0) > 1 − ε. Since

∑∞
k=0(2a)

2kt0/α
k < ∞, there is some n0 ∈ N such that

∑n−1
k=m(2a)

2kt0/α
k < δ for n > m ≥ n0. It follows that

N

(
(2a)2mf

(
x

(2a)m

)
− (2a)2nf

(
x

(2a)n

)
, δ

)

≥ N

(

(2a)2mf
(

x

(2a)m

)
− (2a)2nf

(
x

(2a)n

)
,
n−1∑

k=m

(2a)2kt
αk

)

≥ N
′(
ϕ(x),

α

2
t0
)

≥ 1 − ε

(2.61)

for all t ≥ t0. This shows that the sequence {(2a)2nf(x/(2a)n)} is Cauchy in (Y,N). Since
(Y,N) is complete, {(2a)2nf(x/(2a)n)} converges to some Q(x) ∈ Y . Thus we can define a
mapping Q : X → Y by Q(x) := N-limt→∞(2a)

2nf(x/(2a)n). Moreover, if we put m = 0 in
(2.60), then we observe that

N

(

(2a)2nf
(

x

(2a)n

)
− f(x),

n−1∑

k=0

(2a)2kt
αk

)

≥ N
′(
ϕ(x),

α

2
t
)
. (2.62)

Thus

N

(
(2a)2nf

(
x

(2a)n

)
− f(x), t

)
≥ N

′

⎛

⎝ϕ(x),
αt

2
∑n−1

k=0 ((2a)
2/α)

k

⎞

⎠. (2.63)

The rest of the proof is similar to the proof of Theorem 2.1.
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