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We study the transport coefficients of Quark-Gluon-Plasma in finite temperature and fi-
nite baryon density. We consider AdS/QCD of charged AdS black hole background with
bulk-filling branes identifying the U(1) charge as the baryon number. Using Reissner-
Nordström-AdS background, Green functions are explicitly obtained. We calculate the dif-
fusion constant, the shear viscosity and the thermal conductivity, and plot their density and
temperature dependences. Hydrodynamic relations between those are shown to hold exactly.
The diffusion constant and the shear viscosity are decreasing as a function of density for fixed
total energy. For fixed temperature, the fluid becomes less diffusible and more viscous for
larger baryon density.

§1. Introduction

After the discovery of consistency on the ratio of the viscosity to the entropy
density (η/s)1) in AdS/CFT correspondence2)–4) and RHIC (Relativistic Heavy Ion
Collider) experiment, much attention has been drawn to the calculational scheme
provided by string theory. Even some attempt has been made to map the entire
process of RHIC experiment in terms of the gravity dual.5) The way to include a
chemical potential in the theory was figured out in the context of D4D8D8 setup.6),7)

Phases of these theories were discussed in D3/D7 setup and new phases were reported
where instability due to the strong attraction is a feature.8)–10)

Although QCD and N = 4 SYM are different, it is expected that some of the
properties are shared by the two theories. It is an interesting question to ask how
much one can learn by studying the various versions of AdS/CFT correspondence.
The relevance is based on the universality of low energy physics. In this respect, the
hydrodynamic limit is interesting since such limit can be shared by many theories in
spite of the differences in UV limit.

The calculation scheme of transport coefficients is to use Kubo formula, which
gives a relation to the low energy limit of Wightman Green functions. In AdS/CFT
correspondence, one calculates the retarded Green function which is related to the
Wightman function by fluctuation-dissipation theorem. Such scheme has been de-
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veloped in a series of papers.11)–15)

For charged case, the calculations are more involved and corresponding works
have been done partially by various groups.16)–19) For generic STU black hole,20),21)

the hydrodynamic calculation was performed for tensor type perturbations in the
paper 16). In the paper 17), apart from the tensor type perturbations in generic
STU black hole, vector type perturbations for (1, 0, 0) charged case in STU black
hole have been analyzed. From the tensor type perturbations, the ratio (η/s) was
found to be 1/(4π) analytically in these works.16),17) In the paper 18), Reissner-
Nordström-Anti-deSitter (RN-AdS) background was considered and it was shown
numerically that the ratio (η/s) was 1/(4π) with very good accuracy by using the
vector type perturbations. Later, it was also proven that the ratio was universal in
more general setup.19)

In this paper, we perform hydrodynamic calculation analytically for RN-AdS
black hole, which corresponds to the (1, 1, 1) charged STU black hole. We emphasize
that RN-AdS black hole and STU black hole with (1, 0, 0) charge could have different
properties due to their different phase diagrams.22) In the metric perturbations, both
of the vector and tensor type perturbations are considered. Master equations for the
decoupled modes are worked out, so that we can obtain Green functions explicitly.
From the vector type perturbations, vector modes of Maxwell field (as well as the
vector modes of metric) have diffusion pole, contrary to the chargeless case. The
diffusion constant is calculated explicitly. In the tensor type perturbations, the
ratio (η/s) = 1/(4π) is also confirmed to be exactly same as the previous result in
the papers 16)–18). We observe that the diffusion constant and the shear viscosity
decrease as we increase the charge with fixed total system energy (or equivalently
the black hole mass), while the shear viscosity increases for fixed temperature. The
thermal conductivity is also calculated from the tensor type perturbations.

The charge in RN-AdS black hole is usually regarded as R-charge of SUSY.26)

We here consider another interpretation in the following way: One can introduce
quarks and mesons by considering the bulk-filling branes in AdS5 space. The overall
U(1) of the flavor branes is identified as the baryon charge. The U(1) charge in this
model minimally couples to the bulk gravity since the bulk and the world volume
of brane are identified. RN-AdS metric can be considered as the consequence of the
back reaction of the AdS black hole to the charge. Therefore the U(1) charge in
RN-AdS can be identical to the baryon charge. As a result, we can calculate the
transport coefficients in the presence of the baryon density. (See also 27).) The
density dependence of the transport coefficients can be plotted in this paper.

One can give an explanation of hydrodynamic mode in meson physics. In our
interpretation, the Maxwell fields are the fluctuations of bulk-filling branes, therefore
they should be interpreted as master fields of the mesons. Then hydrodynamic modes
are lowest lying massless meson spectrum. In terms of brane embedding picture, this
massless-ness is due to the touching of the brane on the black hole horizon. Near
the horizon, the tension of the brane is zero due to the metric factor and it can
lead to the massless fluctuation. Then the massless spectrum cannot go far from the
horizon in radial direction. In this picture, hydrodynamic nature is closely related
to the near horizon behavior of the branes.
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Density Dependence of Transport Coefficients 835

This paper is organized as follows: In §2, we introduce RN-AdS black hole and
review correlation function calculation at finite temperature in AdS/CFT correspon-
dence. In §3, a formulation on the metric and the gauge perturbations in RN-AdS
background is given. We then calculate the correlators in hydrodynamic regime and
obtain the diffusion pole in §4. In §5, the shear viscosity is calculated via Kubo
formula. We also show that the result is consistent with the hydrodynamic relation
of diffusion constant and the viscosity. The thermal conductivity is also calculated
in this section. Conclusions and discussions are given in §6. Three appendices are
given to provide the details of the calculations.

§2. Basic setup

2.1. Minkowskian correlators in AdS/CFT correspondence

Before introducing RN-AdS black hole, we briefly summarize Minkowskian corre-
lators in AdS/CFT correspondence. We follow the prescription proposed in 11). Let
us consider fluctuations of fields which satisfy equations of motion at the linearized
order. We work on the five-dimensional background,

ds2 = gμνdxμdxν + guu(du)2, (2.1)

where xμ and u are the four-dimensional and the radial coordinates, respectively.
We refer the boundary as u = 0 and the horizon as u = 1. A solution of the equation
of motion may be given,

φ(u, x) =
∫

d4k

(2π)4
eikxfk(u)φ0(k), (2.2)

where fk(u) is normalized such that fk(0) = 1 at the boundary. An on-shell action
might be reduced to surface terms by using the equation of motion,

S[φ0] =
∫

d4k

(2π)4
φ0(−k)G(k, u)φ0(k)

∣∣∣∣u=1

u=0

. (2.3)

Here, the function G(k, u) can be written in terms of f±k(u) and ∂uf±k(u), for
example, for a scalar field,

G(k, u) = K
√−gguuf−k(u)∂ufk(u),

with some constant K. The direct generalization of AdS/CFT correspondence, or
Gubser-Klebanov-Polyakov/Witten relation,3),4) to Minkowski spacetime gives the
relation, 〈

ei
R

φ0O
〉

= eiS[φ0],

where the operator O is defined in the boundary field theory. From this relation, one
may obtain a Green function by taking second derivative of the action with respect
to the boundary value of the field,

G(k) = −G(k, u)
∣∣∣∣u=1

u=0

− G(−k, u)
∣∣∣∣u=1

u=0

.
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However, this quantity is real and cannot be a retarded Green function. This can
be seen as follows. The imaginary part of G(k, u) is proportional to a conserved
flux. Then, its contributions at the boundary u = 0 and at the horizon u = 1 cancel
completely. Even if one neglects the contribution from the horizon, G(k) is still real.
The reality condition of the equation of motion implies G(−k, u) = G∗(k, u), and the
imaginary part of G(k) vanishes again. Therefore we should impose the “retarded”
condition to the Green function.

Son and Starinets proposed that the retarded (advanced) Green function is given
by

GR(k) = 2G(k, u)
∣∣∣∣
u=0

, (2.4)

with incoming (outgoing) boundary condition at the horizon. Generally, the con-
tribution at the horizon is oscillating and averaged out to zero. In order to avoid
this, we have to consider incoming or outgoing boundary condition. Taking away
the contribution at the horizon, we obtain G(k, u) with a non-zero imaginary part.
Physics at the horizon affects the Green function only through the boundary condi-
tion. In general, there are several fields in the model. We write the Green function as
Gij(k), where indices i and j distinguish these fields. The surface terms are always
associated with equations of motion. We choose the former index to indicate the
field whose equation of motion is associated with the Green function.

In this paper, we work in RN-AdS background and consider its perturbations so
that essential ingredients are perturbed metric field and U(1) gauge field. Here we
define the precise form of the retarded Green function which we discuss later:

Gμν ρσ(k) = −i

∫
d4x e−ikxθ(t)〈[Tμν(x), Tρσ(0)]〉,

Gμν ρ(k) = −i

∫
d4x e−ikxθ(t)〈[Tμν(x), Jρ(0)]〉,

Gμ ν(k) = −i

∫
d4x e−ikxθ(t)〈[Jμ(x), Jν(0)]〉, (2.5)

where the operators Tμν(x) and Jμ(x) are energy-momentum tensor and U(1) current
which couple to the metric and the gauge fields, respectively.

2.2. Reissner-Nordström-AdS background

In this paper, we consider Nc D3-branes and Nf D7-branes, and treat the D3-
branes as a gravitational background. The D7-branes are wrapping on S3 of S5, and
we neglect this S3 dependence. We do not consider the perpendicular fluctuations
of D7-branes, and the effective action then becomes that for five-dimensional gauge
theory. If the D7-branes touch the D3-branes, the D7-branes fill the AdS5 completely.
The induced metric on the D7-brane is identical to the AdS bulk metric. This model
corresponds to N = 4 SYM with massless quarks. If we introduce the baryon
charge at the boundary theory, its chemical potential is identified as the tail of the
U(1) gauge potential on the flavor brane.6),7) (See also 8)–10), 28), 29) for later
development.) We consider the phenomenological model taking only AdS5 part and
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Density Dependence of Transport Coefficients 837

neglecting S5 part. Then there is no way to distinguish the bulk field and the brane
field. The baryon charge and the R-charge have the same description in terms of
the U(1) gauge field living in the AdS5 space. A charged black hole (RN-AdS black
hole) is then induced by its back reaction. This corresponds to the N = 4 SYM in
finite temperature with finite baryon density. It is the case that we consider in this
paper.

We now describe the gravity side of this system which is given by ten-dimensional
Einstein gravity and the effective action of D7-branes. Due to the effect of D3-branes,
the gravitational background becomes AdS spacetime. Since we treat the system
classically, we can reduce it to five dimensions. The baryon current corresponds to
U(1) gauge field∗) on D7-branes. The effective action of this gauge field is given by
Dirac-Born-Infeld action∗∗)

SD7 = − 1
4e2

∫
d5x

√−g Tr
(FmnFmn

)
, (2.6)

where the gauge coupling constant e is given by

l

e2
=

NcNf

(2π)2
, (2.7)

with l the radius of the AdS spacetime. We pick up an overall U(1) part of this gauge
field to consider the baryon current at the boundary. Together with the gravitation
part, we arrive at the following action which is our starting point:

S[gmn,Am] =
1

2κ2

∫
d5x

√−g
(
R − 2Λ

)
− 1

4e2

∫
d5x

√−gFmnFmn, (2.8)

where we denote the gravitation constant and the cosmological constant as κ2 =
8πG5 and Λ, respectively. The U(1) gauge field strength is given by Fmn(x) =
∂mAn(x)− ∂nAm(x). The gravitation constant is related to the gauge theory quan-
tities by

l3

κ2
=

N2
c

4π2
. (2.9)

Suppose we have baryon charge Q. Due to this charge, the AdS background should
be modified to RN-AdS.∗∗∗),27) This should be identified to the source of U(1) charge
on the brane hence on the bulk. Then we can relate it to the parameter in RN black
hole solution by considering the full solution to the equation of motion,

Rmn − 1
2
gmnR + gmnΛ = κ2Tmn, (2.10)

where energy-momentum tensor Tmn(x) is given by

Tmn =
1
e2

(
FmkFnlg

kl − 1
4
gmnFklFkl

)
. (2.11)

∗) This gauge field decouples and does not appear in QCD side.
∗∗) The indices m and n run through five-dimensional spacetime while μ and ν would be reserved

for four-dimensional Minkowski spacetime. Their spatial coordinates are labeled by i and j.
∗∗∗) RN-AdS black hole corresponds to (1, 1, 1) charged case in STU black hole which is a solution

of SUGRA.
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An equation of motion for the gauge field Am(x) gives Maxwell equation,

∇mFmn =
1√−g

∂m

(√−ggmkgnl
(
∂kAl − ∂lAk

))
= 0. (2.12)

Here we assumed that there is no electromagnetic source outside the black hole. One
can confirm that the following metric and gauge potential satisfy the equations of
motion (2.10) and (2.12),

ds2 =
r2

l2

(
− f(r)(dt)2 +

3∑
i=1

(dxi)2
)

+
l2

r2f(r)
(dr)2, (2.13a)

At = −Q

r2
+ μ, (2.13b)

with

f(r) = 1 − ml2

r4
+

q2l2

r6
, Λ = − 6

l2
,

if and only if q is related to the Q by

e2 =
2Q2

3q2
κ2. (2.14)

It should be noted that a ratio of the gauge coupling constant e2 to the gravitation
constant κ2 is

e2

κ2
=

Nc

Nf
l−2. (2.15)

Since the gauge potential At(x) must vanish at the horizon, the charge Q and the
chemical potential μ are related. The parameters m and q are the mass and charge
of AdS space, respectively. This is nothing but Reissner-Nordström-Anti-deSitter
(RN-AdS) background in which we are interested throughout this paper.

The horizons of RN-AdS black hole are located at the zero for f(r),∗)

f(r) = 1 − ml2

r4
+

q2l2

r6
=

1
r6

(
r2 − r2

+

)(
r2 − r2

−
)(

r2 − r2
0

)
, (2.16)

where their explicit forms of the horizon radiuses are given by

r2
+ =

(
m

3q2

(
1 + 2 cos

(
θ

3
+

4
3
π

)))−1

, (2.17a)

r2
− =

(
m

3q2

(
1 + 2 cos

(
θ

3

)))−1

, (2.17b)

r2
0 =

(
m

3q2

(
1 + 2 cos

(
θ

3
+

2
3
π

)))−1

, (2.17c)

∗) In order to define the horizon, the charge q must satisfy a relation q4 ≤ 4m3l2/27.
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Density Dependence of Transport Coefficients 839

with

θ = arctan

(
3
√

3q2
√

4m3l2 − 27q4

2m3l2 − 27q4

)
,

and satisfy a relation r2
+ + r2− = −r2

0. The positions expressed by r+ and r− cor-
respond to the outer and the inner horizon, respectively. It will be useful to notice
that the charge q can be expressed in terms of θ and m by

q4 =
4m3l2

27
sin2

(
θ

2

)
.

The outer horizon takes a value in√
m

3
l ≤ r2

+ ≤ √
ml,

where the upper bound and the lower bound correspond to the case for q = 0 and
the extremal case, respectively.

We shall give various thermodynamic quantities of RN-AdS black hole.26),27)

The temperature is defined from the conical singularity free condition around the
horizon r+,

T =
r2
+f ′(r+)
4πl2

=
r+

πl2

(
1 − 1

2
q2l2

r6
+

)
≡ 1

2πb

(
1 − a

2

)
, (> 0) (2.18)

where we defined the parameters a and b by

a ≡ q2l2

r6
+

, b ≡ l2

2r+
. (2.19)

In the limit q → 0, these parameters go to

a → 0, b → l3/2

2m1/4
,

and the temperature becomes

T → T0 =
m1/4

πl3/2
. (2.20)

The entropy density s, the energy density ε, the pressure p, the chemical potential
μ and the density of physical charge ρ can be also computed as

s =
2πr3

+

κ2l3
=

πl3

4κ2b3
, (2.21)

ε =
3m

2κ2l3
=

3l3

32κ2b4

(
1 + a

)
, (2.22)

p =
ε

3
, (2.23)

μ =
Q

r2
+

, (2.24)

ρ =
2Q

e2l3
. (2.25)
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§3. Perturbations in RN-AdS background

In RN-AdS background, we study small perturbations of the metric gmn(x) and
the gauge field Am(x),

gmn ≡ g
(0)
mn + hmn,

Am ≡ A
(0)
m + Am,

(3.1)

where the background metric g
(0)
mn(x) and the background gauge field A

(0)
m (x) are

given in (2.13a) and (2.13b), respectively. In the metric perturbation, one can define
a inverse metric as

gmn = g(0)mn − hmn + O(h2),

and raise and lower indices by using the background metric g
(0)
mn(x) and g(0)mn(x).

Now we shall consider a linearized theory of the symmetric tensor field hmn(x)
and the vector field Am(x) propagating in RN-AdS background. In the first order of
hmn(x) and Am(x), the Einstein equation (2.10) can be written as

R(1)
mn − 1

2
g(0)
mnR(1) − 1

2
hmnR(0) + hmnΛ = κ2T (1)

mn. (3.2)

In the expression above, the scalar curvature R(0)(x) is constructed by using the
background metric g

(0)
mn(x) and the following tensors are newly defined:

R(1)
mn =

1
2

(
∇k∇mhn

k + ∇k∇nhm
k −∇k∇khmn −∇m∇nh

)
,

R(1) = g(0)klR
(1)
kl − hklR

(0)
kl

= ∇k∇lh
kl −∇k∇kh − hklR

(0)
kl ,

T (1)
mn =

1
e2

(
− F

(0)
mkF

(0)
nl hkl +

1
2
g(0)
mnF

(0)
kp F (0)

l
phkl − 1

4
hmnF

(0)
kl F (0)kl

+F
(0)
mkFn

k + F
(0)
nk Fm

k − 1
2
g(0)
mnF

(0)
kl F kl

)
,

where the Ricci tensor R
(0)
mn(x), the covariant derivative and the field strength F

(0)
mn(x)

are defined through the background metric g
(0)
mn(x) and the gauge field A

(0)
m (x). We

denote a trace part of the metric and a field strength for the perturbative parts as
h(x) ≡ hmng(0)mn(x) and Fmn(x) ≡ ∂mAn(x)−∂nAm(x), respectively. On the other
hand, the Maxwell equation (2.12) becomes

0 = ∇m

(
Fmn − F (0)m

kh
nk + F (0)n

kh
mk +

1
2
F (0)mnh

)
=

1√
−g(0)

∂m

{√
−g(0)

(
g(0)mkg(0)nl(∂kAl − ∂lAk)

−F (0)m
kh

nk + F (0)n
kh

mk +
1
2
F (0)mnh

)}
. (3.3)
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Density Dependence of Transport Coefficients 841

The above equations of motion (3.2) and (3.3) can be derived from the following
action:

S[hmn, Am] =− 1
4κ2

∫
d5x

√
−g(0)

{
∇mhmn∇nh −∇mhnk∇nhm

k

+
1
2
∇mhkl∇mhkl − 1

2
∇mh∇mh

+
(

1
2
R(0) − Λ − κ2

4e2
F

(0)
kl F (0)kl

)(1
2
h2 − hmnhmn

)
+

κ2

e2
F (0)

mnF
(0)
kl hmkhnl

}

− 1
4e2

∫
d5x

√
−g(0)

{
FmnFmn

−2
(

F
(0)
mkFn

khmn + F
(0)
nk Fm

khmn − 1
2
F (0)

mnFmnh

)}
.

(3.4)

By using the equations of motion, an on-shell action is reduced to surface term

S[hcl
mn, Acl

m] = − 1
8κ2

∫
d5x∂m

{√
−g(0)

(
hmn∇nh + h∇nhmn − 2hnk∇nhm

k

+hkl∇mhkl − h∇mh

)}

− 1
2e2

∫
d5x∂m

{√
−g(0)An

(
Fmn

−F (0)m
kh

nk + F (0)n
kh

mk +
1
2
F (0)mnh

)}
.

(3.5)

We shall work in the hrm(x) = 0 and Ar(x) = 0 gauges and use the Fourier
decomposition

hμν(t, z, r) =
∫

d4k

(2π)4
e−iωt+ikzhμν(k, r),

Aμ(t, z, r) =
∫

d4k

(2π)4
e−iωt+ikzAμ(k, r),

where we choose the momenta which are along the z-direction. In this case, one can
categorize the metric perturbations to the following three types by using the spin
under the O(2) rotation in (x, y)-plane:12)
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• vector type: hxt 	= 0, hxz 	= 0, (others) = 0(
equivalently, hyt 	= 0, hyz 	= 0, (others) = 0

)
• tensor type: hxy 	= 0, hxx = −hyy 	= 0, (others) = 0

• scalar type: htz 	= 0, htt 	= 0, hxx = hyy 	= 0, and hzz 	= 0, (others) = 0

We consider the first two types in this paper. The scalar type perturbation would
be studied elsewhere.

3.1. Vector type perturbation

In this subsection, we study the vector type perturbation in RN-AdS back-
ground. From explicit calculation, one can show that only x-component of the gauge
field Ax(x) could participate in the linealized perturbative equations of motion. Thus
independent variables are

hxt(x) 	= 0, hxz(x) 	= 0, Ax(x) 	= 0, (others) = 0.

We start by introducing new field valiables, hx
t (r) = g(0)xxhxt(r) = (l2/r2)hxt(r) and

hx
z (r) = g(0)xxhxz(r) = (l2/r2)hxz(r). Nontrivial equations in the Einstein equation

(3.2) appear from (t, x), (r, x) and (x, z) components, respectively:

0 = hx
t
′′ +

5
r
hx

t
′ − l4

r4f

(
ωkhx

z + k2hx
t

)
+

6q2l2

Qr5
A′

x, (3.6a)

0 = kfhx
z
′ + ωhx

t
′ +

6q2l2ω

Qr5
Ax, (3.6b)

0 = hx
z
′′ +

(r5f)′

r5f
hx

z
′ +

l4

r4f2

(
ωkhx

t + ω2hx
z

)
, (3.6c)

where the prime implies the derivative with respect to r. In the set of equations,
the equations (3.6a) and (3.6b) imply (3.6c). On the other hand, in the Maxwell
equation (3.3), the x-component gives a nontrivial contribution,

0 = A′′
x +

(r3f)′

r3f
A′

x +
l4

r4f2

(
ω2 − k2f

)
Ax +

2Q

r3f
hx

t
′. (3.7)

Taking the limit in which the charge q goes to zero, the metric and the gauge per-
turbations are completely decoupled.

We now look for solutions of our set of equations. First of all, from the equations
(3.6a) and (3.6b), we can obtain a second order differential equation for hx

t
′(r) and

Ax(r),

0 = hx
t
′′′ +

(r9f)′

r9f
hx

t
′′ +

1
r4f

(
5(r3f)′ +

l4

f

(
ω2 − k2f

))
hx

t
′

+
6q2l2

Q

(
A′′

x

r5
+

(r−1f)′

r4f
A′

x +
l4ω2

r9f2
Ax

)
. (3.8)
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Density Dependence of Transport Coefficients 843

Together with the equation of motion (3.7), we treat hx
t
′(r) and Ax(r) as independent

variables. Having the solutions for these, one can get one for hx
z
′(r) by using the

equation (3.6b). In order to solve these equations, we find it is useful to introduce
linear combinations of the variables

Φ± ≡ −8b4

l8
r5hx

t
′ +
(
− 3al4

4Qb2
+

C±
Q

r2

)
Ax, (3.9)

with constants
C± = (1 + a) ±

√
(1 + a)2 + 3ab2k2,

so that we can obtain second order ordinary differential equations in terms of these
new variables. In fact, the equations of motion (3.7) and (3.8) could be rearranged
as

0 = Φ±′′ +
(r−1f)′

r−1f
Φ±′ +

l4

r4f2

(
ω2 − k2f

)
Φ± − l8C±

4b4r6f
Φ±. (3.10)

In the chargeless limit, the two equations of motion (3.10) for Φ+(r) and Φ−(r) give
decoupled ones for Ax(r) and hx

t
′(r), respectively.

We will consider these equations of motion in low frequency limit so-called hy-
drodynamic regime. In the hydrodynamic regime we could obtain the diffusion pole
and the thermal conductivity from retarded Green functions.

3.2. Tensor type perturbation

Next we shall focus on the tensor type perturbation. By considering the spin or
by calculating directly, the metric perturbation is decoupled from the gauge pertur-
bation. Thus independent variables are

hxy(x) 	= 0, hxx(x) = −hyy(x), (others) = 0.

A nontrivial equation of motion in (3.2) is coming from (x, y) component. As we did
in the vector type perturbation, it might be convenient to introduce new variable
hx

y(r) = g(0)xxhxy(r) = (l2/r2)hxy(r). We then get the following equation of motion:

0 = hx
y
′′ +

(r5f)′

r5f
hx

y
′ +

l4

r4f2

(
ω2 − k2f

)
hx

y . (3.11)

An another equation of motion for hxx(r) = −hyy(r) is as the same form of (3.11).
We use this equation of motion to study the shear viscosity in the hydrodynamic
approximation.

Equations (3.10) and (3.11) can be rewritten as Schrödinger-like equations through
suitable field redefinitions. Their potentials were derived first by Kodama and
Ishibashi.30)

§4. Diffusion pole in hydrodynamic regime

In the hydrodynamic regime, it is standard to introduce new dimensionless co-
ordinate u = r2

+/r2 which is normalized by the outer horizon. In this coordinate
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844 X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka

system, the horizon and the boundary are located at u = 1 and u = 0, respectively.

Defining the new variable B(u) ≡ Ax(u)
μ

=
l4

4Qb2
Ax(u) where μ is the chemical

potential given by (2.24), our basic equations (3.6a)–(3.6c) and (3.7) are rewritten
in this new coordinate system:

0 = hx
t
′′ − 1

u
hx

t
′ − b2

uf

(
ωkhx

z + k2hx
t

)
− 3auB′, (4.1a)

0 = kfhx
z
′ + ωhx

t
′ − 3aωuB, (4.1b)

0 = hx
z
′′ +

(u−1f)′

u−1f
hx

z
′ +

b2

uf2

(
ω2hx

z + ωkhx
t

)
, (4.1c)

0 = B′′ +
f ′

f
B′ +

b2

uf2

(
ω2 − k2f

)
B − 1

f
hx

t
′, (4.1d)

with
f(u) = (1 − u)(1 + u − au2).

Here the prime now means the derivative with respect to u. Equation (3.10) may be
also written down as

0 = Φ±′′ +
(u2f)′

u2f
Φ±′ +

b2

uf2

(
ω2 − k2f

)
Φ± − C±

f
Φ±, (4.2a)

for
Φ± =

1
u

hx
t
′ − 3aB +

C±
u

B. (4.2b)

Getting the solution for Φ±(u), one can access solutions for hx
t
′(u) and B(u),

hx
t
′ = uΦ− +

3a

C+ − C−
u2
(
Φ+ − Φ−

)
− C−

C+ − C−
u
(
Φ+ − Φ−

)
, (4.3a)

B =
1

C+ − C−
u
(
Φ+ − Φ−

)
. (4.3b)

The constants C± could be expanded in this regime,

C+ = 2(1 + a) +
3ab2

2(1 + a)
k2 + O(k4),

C− = − 3ab2

2(1 + a)
k2 + O(k4).

(4.4)

First, let us consider the equation for Φ−(u). Following the usual way to solve
differential equations, we impose a solution as Φ−(u) = (1 − u)νF−(u) where F−(u)
is a regular function at the horizon u = 1. Substituting this form into the equation of
motion, one can fix the parameter ν as ν = ±iω/(4πT ) where T is the temperature
defined by Eq. (2.18). We here choose

ν = −i
ω

4πT
,
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Density Dependence of Transport Coefficients 845

as the incoming wave condition.
Now we are in the position to solve the equation of motion in the hydrodynamic

regime. We start by introducing the following series expansion with respect to small
ω and k:

F−(u) = F0(u) + ωF1(u) + k2G1(u) + O(ω2, ωk2), (4.5)

where F0(u), F1(u) and G1(u) are determined by imposing suitable boundary con-
ditions. In order to do the perturbative analysis, it might be convenient to rewrite
the equation (4.2a) for Φ−(u) as,

0 =
(

u2(1 − u)(1 + u − au2)F−′
)′

+iω
2b

2 − a
u2
(
1 + u − au2

)
F ′
− + iω

b

2 − a
u
(
2 + 3u − 4au2

)
F−

+ω2 b2

(2 − a)2
u

1 + u − au2

×
(

(2 − a)2 + (1 − a)(3 − a)u + (1 − 4a + a2)u2 − a(2 − a)u3 + a2u4

)
F−

−k2b2u

(
1 − 3a

2(1 + a)
u

)
F−. (4.6)

The solution can be then obtained recursively.∗) The result is as follows:

F0(u) = C, (const) (4.7a)

F1(u) = iCb

{
1 + 2a − 2a2

2
√

1 + 4a
(
2 − a

)( log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+1 − 1
u

+
1

2
(
2 − a

) log
(

1 + u − au2

2 − a

)}
, (4.7b)

G1(u) =
Cb2

2(1 + a)

(
− 1 +

1
u

)
. (4.7c)

All of the solutions should be regular at the horizon u = 1 and the functions F1(u)
and G1(u) should be vanished there. The constant of integration C will be estimated
later.

Next, we shall study the equation for Φ+(u). It might be useful to introduce
new variable Φ̃+(u),

Φ+ ≡
(
− 3a

2(1 + a)
+

1
u

)
Φ̃+. (4.8)

∗) The derivation of the solutions is given in Appendix A.
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846 X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka

In terms of new variable, the equation of motion (4.2a) for Φ+(u) becomes

0 = Φ̃′′
+ +

((
1 − 3a

2(1 + a)
u
)2

f

)′

(
1 − 3a

2(1 + a)
u
)2

f
Φ̃′

+ +
b2

uf2

(
ω2 − k2f

(
1 +

3a

2(1 + a)
u
))

Φ̃+. (4.9)

Assuming again Φ̃+(u) = (1 − u)νF̃ (u) where F̃ (u) is a regular function at u = 1,
the singularity might be extracted. The equation of motion (4.9) becomes

0 =
((

1 − u
)(

1 + u − au2
)(

1 − 3a

2(1 + a)
u
)2

F̃ ′
)′

+2iω
b

2 − a

(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2

F̃ ′

+iω
b

2 − a

((
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2
)′

F̃

+
ω2b2

(2 − a)2

(
1 − 3a

2(1 + a)
u

)2

u(1 + u − au2)

×
(

(2 − a)2 + (1 − a)(3 − a)u + (1 − 4a + a2)u2 − a(2 − a)u3 + au4

)
F̃

−k2b2

u

(
1 +

3a

2(1 + a)
u

)(
1 − 3a

2(1 + a)
u

)2

F̃ , (4.10)

where we used the incoming wave condition ν = −iω/(4πT ) as same as before.
We impose a perturbative solution as

F̃ (u) = F̃0(u) + ωF̃1(u) + k2G̃1(u) + O(ω2, ωk2), (4.11)

and then we obtain the following result:∗)

F̃0(u) = C̃, (const) (4.12a)

F̃1(u) ≡ C̃H̃(u)

= i
C̃b

2 − a

{
27a2

1 + 4a

(
1 − u

2 + 2a − 3au

)

+
1 − 10a − 2a2

2(1 + 4a)3/2

(
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+
1
2

log

(
1 + u − au2

2 − a

)}
, (4.12b)

∗) The detail is given in Appendix B.
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Density Dependence of Transport Coefficients 847

G̃1(u) ≡ C̃J̃(u)

= C̃b2

{
− 9a2(14 + 31a + 8a2)

2(1 + a)(1 + 4a)(2 − a)2

(
1 − u

2 + 2a − 3au

)

+
(1 + a)

(
3a(2 − a)(5 + 2a) − 2(1 + a)(1 − 10a − 2a2) log(3a)

)
(2 − a)3(1 + 4a)3/2

×
(

log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

−4(1 + a)2

(2 − a)3
log u log

(
1 − u

)

−
(1 + a)

(
9a(2 − a) + 2(1 + a)(1 + 4a) log(3a)

)
(2 − a)3(1 + 4a)

log
(

1 + u − au2

2 − a

)
− 54a2(1 + a)

(2 − a)2(1 + 4a)

(
u log u

2 + 2a − 3au

)

−4(1 + a)2

(2 − a)3

(
Li2(u) − π2

6

)

+
2(1 + a)2

(1 + 4a)3/2(2 − a)3

×
((

1 − 10a − 2a2 + (1 + 4a)3/2
)

×
(

log u log
(

1 − 2au

1 −√
1 + 4a

)
+ log(3a) log

⎛⎜⎜⎝1 − 2au

1 −√
1 + 4a

1 − 2a

1 −√
1 + 4a

⎞⎟⎟⎠
+Li2

(
2au

1 −√
1 + 4a

)
− Li2

(
2a

1 −√
1 + 4a

))
−
(
1 − 10a − 2a2 − (1 + 4a)3/2

)

×
(

log u log
(

1 − 2au

1 +
√

1 + 4a

)
+ log(3a) log

⎛⎜⎜⎝1 − 2au

1 +
√

1 + 4a

1 − 2a

1 +
√

1 + 4a

⎞⎟⎟⎠
+Li2

(
2au

1 +
√

1 + 4a

)
− Li2

(
2a

1 +
√

1 + 4a

)))}
, (4.12c)
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848 X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka

where Li2(u) is the polylogalithm.∗) It should be mentioned that the defined func-
tions H̃(u) and J̃(u) in F̃1(u) and G̃1(u) are finite at the boundary u = 0.

Let us consider the integration constants C and C̃. These could be estimated in
terms of boundary values of the fields

lim
u→0

hx
t (u) = (hx

t )0, lim
u→0

hx
z (u) = (hx

z )0, lim
u→0

B(u) = (B)0.

Taking a derivative of Φ±(u) and using the equation of motion (4.1a), we can get
relations

u2Φ′
± − C±uB′ =

b2

f

(
ωkhx

z + k2hx
t

)
− C±B.

We evaluate the equations above at the boundary,

lim
u→0

(
u2Φ′

± − C±uB′
)

= b2
(
ωk(hx

z )0 + k2(hx
t )0
)
− C±(B)0, (4.13)

so that we may fix the constants C and C̃ from ∓ parts, respectively,

C =
b
(
ωk(hx

z)
0 + k2(hx

t )0
)

+
3ab

2(1 + a)
k2(B)0

iω − b

2(1 + a)
k2

, (4.14a)

C̃ =
−b2

(
ωk(hx

z )0 + k2(hx
t )0
)

+
(
2(1 + a) +

3ab2

2(1 + a)
k2
)
(B)0

1 + ωH̃(0) + k2J̃(0)
, (4.14b)

where we used the obtained solutions Φ±(u) and the relation (4.3b) for B′(u). It
should be noted that the boundary value of uB′(u) is vanished. In the equation
(4.14a), one can see the existence of the hydrodynamic pole in the complex ω-plane.

Now we proceed to calculate the Minkowskian correlators. For the vector type
perturbation, the on-shell action (3.5) becomes

S[hx
t , hx

z , B] =
l3

32κ2b4

∫
d4k

(2π)4

{
1
u

hx
t (−k, u)hx

t
′(k, u) − 1

u2
hx

t (−k, u)hx
t (k, u)

−f(u)
u

hx
z (−k, u)hx

z
′(k, u) +

f(u)
u2

hx
z (−k, u)hx

z(k, u)

−3af(u)B(−k, u)
(
B′(k, u) − 1

f(u)
hx

t (k, u)
)}∣∣∣∣∣

u=1

u=0

.

(4.15)

∗) The polylogalithm appears from

“
Li2(u)

”′
= − log(1 − u)

u
.

Some values are given as, Li2(−1) = −π2/12, Li2(0) = 0 and Li2(1) = π2/6.
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Density Dependence of Transport Coefficients 849

Using the obtained solutions, we can lead the following relations between the radial
derivative of the fields and their boundary values near the boundary u = ε:

hx
t
′(ε) = −b2

(
ωk(hx

z)
0 + k2(hx

t )0
)

+
ε

iω − b

2(1 + a)
k2

{
b
(
ωk(hx

z)
0 + k2(hx

t )0
)

+ 3iaω(B)0

+O(ω2k, ωk2)

}
+ O(ε2), (4.16a)

hx
z
′(ε) = b2

(
ω2(hx

z )0 + ωk(hx
t )0
)

− ε

iω − b

2(1 + a)
k2

{
b
(
ω2(hx

z )0 + ωk(hx
t )0
)

+
3ab

2(1 + a)
ωk(B)0

+O(ω2k, ωk2)

}
+ O(ε2), (4.16b)

B′(ε) = − 1

iω − b

2(1 + a)
k2

{
b

2(1 + a)

(
ωk(hx

z)
0 + k2(hx

t )0
)

+ i
3a

2(1 + a)
ω(B)0

−i

(
iω − b

2(1 + a)
k2

)
(2 − a)2b
4(1 + a)2

ω(B)0 + O(ω2k2, k4)

}
+
(
b2k2(B)0 + O(ωk2)

)
log ε + O(ε). (4.16c)

By using the relation (2.4) and the definition (2.5), we can read off the correlators
in the hydrodynamic approximation,

Gxt xt(ω, k) =
l3

16κ2b3

(
k2

iω − Dk2

)
, (4.17a)

Gxt xz(ω, k) = Gxz xt(ω, k) = − l3

16κ2b3

(
ωk

iω − Dk2

)
, (4.17b)

Gxz xz(ω, k) =
l3

16κ2b3

(
ω2

iω − Dk2

)
, (4.17c)

Gxt x(ω, k) = Gx xt(ω, k) = − 2Q

e2l3

(
iω

iω − Dk2

)
, (4.17d)

Gxz x(ω, k) = Gx xz(ω, k) =
Qb

(1 + a)e2l3

(
ωk

iω − Dk2

)
, (4.17e)
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Fig. 1. D vs q and m (l = 1). Fig. 2. D vs q and T (l = 1).

Gx x(ω, k) =
3al

4(1 + a)b2e2

(
iω

iω − Dk2

)
− (2 − a)2l

8(1 + a)2be2
iω, (4.17f)

where we subtracted the contact terms. In the final expression above we rescaled

the gauge field (B)0 to the original one (Ax)0 =
4Qb2

l4
(B)0 and raised and lowered

the indices by using the flat Minkowski metric ημν = diag(−, +, +, +) in the four-
dimensional boundary theory. Taking the limit in which the charge q goes to zero, the
results coincide with the known ones in 12). In this limit, the correlators (4.17d) and
(4.17e) vanish, while the correlator (4.17f) has no diffusion pole and the subleading
term reproduces the consistent result. The same interesting structure was found in
the single (1, 0, 0) R-charged black hole.17) The constant D is the diffusion constant

D =
b

2(1 + a)
=

1
4

(
m5/3

3q2

(
1 + 2 cos

(θ

3
+

4
3
π
)))− 3

2

, (4.18)

with

θ = arctan

(
3
√

3q2
√

4m3l2 − 27q4

2m3l2 − 27q4

)
.

All of the correlators in the vector type perturbation exhibit a diffusion pole. The
behavior of the diffusion constant is drawn as a function of the charge q and the
mass m in Fig. 1 and as a function of the charge q and the temperature T in Fig. 2.
In the chargeless limit, the diffusion constant becomes

D → D0 =
1

4πT0
,

where the temperature T0 is given in (2.20).
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Density Dependence of Transport Coefficients 851

§5. Shear viscosity in hydrodynamic regime

In this section, we solve the equation of motion (3.11) in the hydrodynamic
regime and obtain the shear viscosity. We could also see the hydrodynamic relation
and the formulation of the thermal conductivity.

After changing the coordinate r to u = r2
+/r2, Eq. (3.11) can be rewritten as

0 = hx
y
′′ +

(u−1f)′

u−1f
hx

y
′ +

b2

uf2

(
ω2 − k2f

)
hx

y , (5.1)

with
f(u) = (1 − u)(1 + u − au2),

where the prime means the derivative with respect to u. Removing the singularity
around u = 1, the equation becomes

0 =
(1

u

(
1 − u

)(
1 + u − au2

)
F ′
)′

+iω
2b(

2 − a
) 1

u

(
1 − u

)(
1 + u − au2

)
F ′ − iω

b(
2 − a

) 1
u2

(
1 + au2

)
F

+ω2 b2(
2 − a

)2
u2
(
1 + u − au2

)
×
((

a − 2
)2 +

(
a − 3

)(
a − 1

)
u +

(
a2 − 4a + 1

)
u2 + a

(
a − 2

)
u3 + a2u4

)
F

−k2 b2

u2
F, (5.2)

where we imposed the incoming wave condition

hx
y(u) = (1 − u)−iω/(4πT )F (u). (5.3)

Perturbative solutions for F (u),

F (u) = F0(u) + ωF1(u) + k2G1(u) + O(ω2, ωk2), (5.4)

can be obtained as∗)

F0(u) = C, (const) (5.5a)
F1(u) ≡ CH(u)

= i
Cb

2
(
2 − a

){− 3√
1 + 4a

(
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+ log

(
1 + u − au2

2 − a

)}
, (5.5b)

∗) The detail is given in Appendix C.
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G1(u) ≡ CJ(u)

= − Cb2

√
1 + 4a

{
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
}

. (5.5c)

Since the function hx
y(u) goes to (hx

y)0 at the boundary u = 0, the constant C can
be fixed as

C =
(hx

y)0

1 + ωH(0) + k2J(0)
. (5.6)

Taking the limit q → 0, the solution recovers the result in 12). The solution of hx
x(u)

is the same form as hx
y(u).

Let us evaluate the Minkowskian correlators. The relevant part of the metric
perturbation in the on-shell action (3.5) becomes

S[hx
y , hx

x, hx
y ] = − l3

32κ2b4

∫
d4k

(2π)4

{
f(u)

u
hx

y(−k, u)hx
y
′(k, u)

−f(u)
u2

hx
y(−k, u)hx

y(k, u)

+
f(u)

u
hx

x(−k, u)hx
x
′(k, u)

−f(u)
u2

hx
x(−k, u)hx

x(k, u)

}∣∣∣∣∣
u=1

u=0

. (5.7)

Near the boundary u = ε, using the perturbative solution for hx
y(u), we can obtain

hx
y
′(ε) = εb

(
iω + bk2

)
(hx

y)0 − b2k2(hx
y)0 + O(ω2, ωk2). (5.8)

The same relation for hx
x(u) might be satisfied. Therefore we can read off the corre-

lation functions from the on-shell action (5.7),

Gxy xy(ω, k) = Gxx xx(ω, k) = Gyy yy(ω, k)

= − l3

16κ2b3

(
iω + bk2

)
, (5.9)

where we subtract contact terms.
The result above can be used to estimate the shear viscosity η via Kubo formula,

η = − lim
ω→0

Im(G(ω, 0))
ω

=
l3

16κ2b3
. (5.10)

Therefore we can confirm the following relation16)–18) between the shear viscosity η
and the entropy density s which is given in Eq. (2.21):

η

s
=

1
4π

. (5.11)
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Fig. 3. η vs q and m (κ = l = 1). Fig. 4. η vs q and T (κ = l = 1).

The behavior of the shear viscosity is drawn as a function of the charge q and the
mass m in Fig. 3 and as a function of the charge q and the temperature T in Fig. 4.

In hydrodynamics, the following relation is held:

D =
η

ε + p
, (5.12)

where ε and p are the energy density and the pressure defined in (2.22) and (2.23),
respectively. Using the obtained diffusion constant (4.18), the shear viscosity could
be calculated. We can confirm the result coincides with (5.10) which was obtained
from Kubo formula.

The thermal conductivity κT can be also computed from the Green function by
using Kubo formula,17)

κT = −(ε + p)2

ρ2T
lim
ω→0

Im(G(ω, 0))
ω

, (5.13)

where the density of physical charge ρ is given by (2.25). Here we can use the
retarded Green function Gx x(ω, 0) given by (4.17f) as G(ω, 0). Thus we obtain

κT = 2π2

(
e2l2

κ2

)
ηT

μ2
= 2π2 Nc

Nf

ηT

μ2
. (5.14)

The behavior of the thermal conductivity κT is drawn as a function of the charge q
and the mass in Fig. 5 and as a function of the charge q and the temperature T in
Fig. 6.

§6. Conclusions and discussions

In this paper we considered holographic QCD in the presence of the baryon
density by introducing the bulk-filling branes. We used RN-AdS black hole geometry
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Fig. 5. κT vs q and m (κ = l = 1). Fig. 6. κT vs q and T (κ = l = 1).

as the gravity dual of such system. The vector and tensor type perturbations have
been worked out and the Green functions were explicitly calculated. We have seen
the diffusion pole structure in vector type perturbation. It is worth mentioning that
the correlator for Maxwell fields in the vector mode Gx x(ω, k) has the diffusion
pole unlike the charge free case. The transport coefficients have been calculated
in holographic hydrodynamics and their temperature and density dependence was
demonstrated.

The diffusion constant decreases as charge increases for fixed temperature. Phys-
ically, this implies that the fluid is less diffusible for large baryon density. By calcu-
lating the shear viscosity analytically, we showed that the shear viscosity η and the
entropy density s satisfy the universal ratio (η/s) = 1/(4π) which has been originally
suggested in 1). For fixed temperature, the fluid becomes thicker as the charge in-
creases. We have also seen that the diffusion constant and the shear viscosity satisfy
the suitable relation for hydrodynamics. The calculation of the thermal conductivity
shows that it satisfies (an analogue of) the Wiedemann-Franz low.

It is very interesting to study the pole structure of scalar type as well as vector
type of gravitational perturbations. Also it is important to carry out higher order
calculations. Such result will be useful to get the higher order transport coefficients
in the presence of the conserved current. We will report on these issues in the
forthcoming publications.

In our interpretation, the fluctuations of bulk-filling branes are regarded as mas-
ter fields of the mesons. Near the horizon, the tension of the brane is zero due to the
metric factor and it can lead to the long range fluctuation. This becomes the hy-
drodynamic mode. One important question is about the meaning of hydrodynamic
mode in terms of meson physics.

Further question in this direction is how we can understand the dispersion re-
lations of vector modes of Maxwell fields in terms of the particle spectrum with
dissipation. This vector mode cannot propagate in neutral medium while it can in
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charged medium. In addition, the tensor mode does not propagate in the medium.
It is interesting to consider their interpretations in terms of meson physics. More
thought on these points is to be pursued in the future.
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Appendix A
Perturbative Solutions for Φ−

From the equation of motion (4.6), one can read off one for F0(u),

0 =
(
u2
(
1 − u

)(
1 + u − au2

)
F ′

0

)′
. (A.1)

A general solution is given by

F0(u) = C0 + D0

{
− 1

u
+

1 + 2a − 2a2

2
√

1 + 4a
(
2 − a

) log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
− 1

2 − a
log
(
1 − u

)
+

1
2
(
2 − a

) log
(
1 + u − au2

)}
. (A.2)

Constants of integration C0 and D0 should be determined to be a regular function
at the horizon. So we here choose D0 = 0 and get

F0(u) = C0 = C. (const) (A.3)

By using this solution, one can get an equation for F1(u) from (4.6),

0 =
(
u2
(
1 − u

)(
1 + u − au2

)
F ′

1

)′
+ i

Cb

2 − a
u
(
2 + 3u − 4au2

)
. (A.4)

A general solution is

F1(u) = C1 + D1

(
1 + 2a − 2a2

2
√

1 + 4a
(
2 − a

) log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
−1

u
+

1
2
(
2 − a

) log
(
1 + u − au2

))

+
1

2 − a

(
iCb − D1

)
log
(
1 − u

)
. (A.5)
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Again, removing the singularity at the horizon, the constant D1 should be

D1 = iCb.

We also impose a boundary condition F1(u = 1) = 0, so as to fix the constant C1,

C1 = −iCb

{
1 + 2a − 2a2

2
√

1 + 4a
(
2 − a

) log

⎛⎜⎜⎝1 − 1 − 2a√
1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠− 1 +
1

2
(
2 − a

) log
(
2 − a

)}
.

Therefore the final form is

F1(u) = iCb

{
1 + 2a − 2a2

2
√

1 + 4a
(
2 − a

)( log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+1 − 1
u

+
1

2
(
2 − a

) log

(
1 + u − au2

2 − a

)}
. (A.6)

A differential equation for G1(u) is

0 =
(
u2
(
1 − u

)(
1 + u − au2

)
G′

1

)′ − Cb2u

(
1 − 3a

2(1 + a)
u

)
. (A.7)

A general solution is

G1(u) = C̃1 − D̃1

u

+

(
1 + 2a − 2a2

)(
Cb2 + 2D̃1(1 + a)

)
4
√

1 + 4a
(
1 + a

)(
2 − a

) log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
−Cb2 + 2D̃1(1 + a)

2
(
1 + a

)(
2 − a

) ( log
(
1 − u

)
− 1

2
log
(
1 + u − au2

))
, (A.8)

and the constant D̃1 might be fixed as

D̃1 = − Cb2

2(1 + a)
.

From the condition G1(u = 1) = 0, we can fix the constant C̃1 as

C̃1 = − Cb2

2(1 + a)
.

So we obtain the final form,

G1(u) =
Cb2

2(1 + a)

(
− 1 +

1
u

)
. (A.9)
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Appendix B
Perturbative Solutions for Φ+

From the equation (4.10), we have a differential equation for F̃0(u),

0 =

((
1 − u

)(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2

F̃ ′
0

)′
. (B.1)

A general solution is given by

F̃0(u) = C0 − D0

2(2 − a)3

{
18a(2 − a)

(1 + 4a)(2 + 2a − 3au)

−1 − 10a − 2a2

(1 + 4a)3/2
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
+2 log

(
1 − u

)
− log

(
1 + u − au2

)}
. (B.2)

Since the function F̃0 should be regular at the horizon, we choose D0 = 0 and get

F̃0(u) = C0 = C̃. (const) (B.3)

Substituting the solution to the equation (4.10), we get an equation for F̃1(u),

0 =

((
1 − u

)(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2

F̃ ′
1

+i
C̃b

2 − a

(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2
)′

. (B.4)

A general solution is given as

F̃1(u) = C1 +
2(1 + a)2

(2 − a)3
D1

{
− 18a(2 − a)

(1 + 4a)(2 + 2a − 3au)

+
(1 − 10a − 2a2)

(1 + 4a)3/2
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
+ log

(
1 + u − au2

)}

+
iC̃(2 − a)2b − 4D1(1 + a)2

(2 − a)3
log
(
1 − u

)
. (B.5)
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The constant of integration D1 should be

D1 = iC̃
(2 − a)2b
4(1 + a)2

,

so that the singularity at the horizon would be removed. In addition, we require the
condition F̃1(u = 1) = 0 to fix the constant C1,

C1 = i
C̃b

2 − a

{
9a

1 + 4a
− 1 − 10a − 2a2

2(1 + 4a)3/2
log

⎛⎜⎜⎝1 − 1 − 2a√
1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠− 1
2

log
(
2 − a

)}
.

Then we get the final form of the solution

F̃1(u) = i
C̃b

2 − a

{
27a2

1 + 4a

(
1 − u

2 + 2a − 3au

)

+
1 − 10a − 2a2

2(1 + 4a)3/2

(
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+
1
2

log

(
1 + u − au2

2 − a

)}
. (B.6)

Similarly we have a differential equation for G̃1(u),

0 =

((
1 − u

)(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2

G̃′
1

)′

−C̃b2

u

(
1 +

3a

2(1 + a)
u
)(

1 − 3a

2(1 + a)
u
)2

. (B.7)

A general solution of this equation can be obtained,

G̃1(u) = C̃1

−
9a
(
D̃1 + 4C̃(1 + a)2b2 log(3a)

)
(2 − a)2(1 + 4a)

(
1

2 + 2a − 3au

)

+
C̃(2 − a)(1 + 4a)(14 + 15a + 42a2 + 14a3)b2 + 6D̃1(1 + a)(1 − 10a − 2a2)

12(2 − a)3(1 + a)(1 + 4a)3/2

× log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
−

C̃b2
(
(2 − a)(14 + 31a + 8a2) + 24(1 + a)3 log(3a)

)
+ 6D̃1(1 + a)

6(2 − a)3(1 + a)
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× log
(
1 − u

)
− 4C̃(1 + a)2b2

(2 − a)3
log u log

(
1 − u

)
+

C̃(2 − a)(14 − 21a − 84a2 − 76a3)b2 + 6D̃1(1 + a)(1 + 4a)
12(2 − a)3(1 + a)(1 + 4a)

× log
(
1 + u − au2

)
− 54C̃a2(1 + a)b2

(2 − a)2(1 + 4a)

(
u log u

2 + 2a − 3au

)

− 4C̃(1 + a)2b2

(2 − a)3
Li2(u)

+
2C̃(1 + a)2b2

(2 − a)3(1 + 4a)3/2

×
{(

1 − 10a − 2a2 + (1 + 4a)3/2
)

×
(

log(3au) log
(

1 − 2au

1 −√
1 + 4a

)
+ Li2

(
2au

1 −√
1 + 4a

))
−
(
1 − 10a − 2a2 − (1 + 4a)3/2

)
×
(

log(3au) log
(

1 − 2au

1 +
√

1 + 4a

)
+ Li2

(
2au

1 +
√

1 + 4a

))}
.

(B.8)

The constant of integration D̃1 might be fixed to remove the singularity u = 1,

D̃1 = − C̃b2

6(1 + a)

(
(2 − a)(14 + 31a + 8a2) + 24(1 + a)3 log(3a)

)
.

Another constant of integration C̃1 is used to satisfy the condition G̃1(u = 1) = 0.
The final expression of the solution is

G̃1(u) = C̃b2

{
− 9a2(14 + 31a + 8a2)

2(1 + a)(1 + 4a)(2 − a)2

(
1 − u

2 + 2a − 3au

)

+
(1 + a)

(
3a(2 − a)(5 + 2a) − 2(1 + a)(1 − 10a − 2a2) log(3a)

)
(2 − a)3(1 + 4a)3/2

×
(

log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)
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−4(1 + a)2

(2 − a)3
log u log

(
1 − u

)

−
(1 + a)

(
9a(2 − a) + 2(1 + a)(1 + 4a) log(3a)

)
(2 − a)3(1 + 4a)

log
(

1 + u − au2

2 − a

)
− 54a2(1 + a)

(2 − a)2(1 + 4a)

(
u log u

2 + 2a − 3au

)

−4(1 + a)2

(2 − a)3

(
Li2(u) − π2

6

)

+
2(1 + a)2

(1 + 4a)3/2(2 − a)3

×
((

1 − 10a − 2a2 + (1 + 4a)3/2
)

×
(

log u log
(

1 − 2au

1 −√
1 + 4a

)

+ log(3a) log

⎛⎜⎜⎝1 − 2au

1 −√
1 + 4a

1 − 2a

1 −√
1 + 4a

⎞⎟⎟⎠
+Li2

(
2au

1 −√
1 + 4a

)
− Li2

(
2a

1 −√
1 + 4a

))
−
(
1 − 10a − 2a2 − (1 + 4a)3/2

)
×
(

log u log
(

1 − 2au

1 +
√

1 + 4a

)

+ log(3a) log

⎛⎜⎜⎝1 − 2au

1 +
√

1 + 4a

1 − 2a

1 +
√

1 + 4a

⎞⎟⎟⎠
+Li2

(
2au

1 +
√

1 + 4a

)
− Li2

(
2a

1 +
√

1 + 4a

)))}
. (B.9)

Appendix C
Perturbative Solutions for hxy

From the equation of motion (5.2), one can get an equation for F0(u),

(1
u

(
1 − u

)(
1 + u − au2

)
F ′

0

)′
= 0. (C.1)
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A general solution is given by

F0(u) = C0 +
D0

2 − a

{
− 3

2
√

1 + 4a
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
− log

(
1 − u

)
+

1
2

log
(
1 + u − au2

)}
. (C.2)

Constants of integration C0 and D0 should be determined to be a regular function
at the horizon. So we here choose D0 = 0 and get

F0(u) = C0 = C. (const) (C.3)

By using this solution, one can get an equation for F1(u),(1
u

(
1 − u

)(
1 + u − au2

)
F ′

1

)′
= i

Cb

2 − a

1
u2

(
1 + au2

)
. (C.4)

A general solution is

F1(u) = C1 − 1

2
(
2 − a

)2(iCb +
(
2 − a

)
D1

)

×
{

3√
1 + 4a

log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠− log
(
1 + u − au2

)}

+
1(

2 − a
)2(iCb

(
1 − a

)− (2 − a
)
D1

)
log
(
1 − u

)
. (C.5)

Removing the singularity at the horizon, the constant D1 should be

D1 = iC
1 − a

2 − a
b.

We also impose a boundary condition F1(u = 1) = 0, so as to fix the constant C1,

C1 = i
Cb

2
(
2 − a

){ 3√
1 + 4a

log

⎛⎜⎜⎝1 − 1 − 2a√
1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠− log
(
2 − a

)}
.

Therefore the final form is

F1(u) = i
Cb

2
(
2 − a

){− 3√
1 + 4a

(
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
)

+ log

(
1 + u − au2

2 − a

)}
. (C.6)
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A differential equation for G1(u) is( 1
u

(
1 − u

)(
1 + u − au2

)
G′

1

)′
=

Cb2

u2
. (C.7)

The equation gives us the solution

G1(u) = C̃1 −
C
(
1 − 2a

)
b2 + 3D̃1

2
√

1 + 4a
(
2 − a

) log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 +
1 − 2au√

1 + 4a

⎞⎟⎟⎠
+

Cb2 − D̃1

2
(
2 − a

) (2 log
(
1 − u

)
− log

(
1 + u − au2

))
, (C.8)

and the constant D̃1 might be fixed as

D̃1 = Cb2.

We can also fix the constant C̃1 as

C̃1 =
Cb2

√
1 + 4a

log

⎛⎜⎜⎝1 − 1 − 2a√
1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠ .

Then we obtain the result,

G1(u) = − Cb2

√
1 + 4a

{
log

⎛⎜⎜⎝1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a

⎞⎟⎟⎠− log

⎛⎜⎜⎝1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a

⎞⎟⎟⎠
}

. (C.9)
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