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We propose a generalized Bell inequality for two three-dimensional systems with three settings in each local
measurement. It is shown that this inequality is maximally violated if local measurements are configured to be
mutually unbiased and a composite state is maximally entangled. This feature is similar to Clauser-Horne-
Shimony-Holt inequality for two qubits but is in contrast with the two types of inequalities, Collins-Gisin-
Linden-Massar-Popescu and Son-Lee-Kim, for high-dimensional systems. The generalization to aribitrary
prime-dimensional systems is discussed.
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I. INTRODUCTION

Nonlocality is a profound notion in quantum mechanics.
Quantitative predictions by quantum mechanics are incom-
patible with constraints, which local realism implies on a
correlation of measurements between two separate systems.
These constraints are called Bell inequalities �1�. A typical
Bell inequality for bipartite two-dimensional systems �two
qubits� was derived by Clauser, Horne, Shimony, and Holt
�CHSH� �2�, allowing more flexibility in local measurement
configurations than the original Bell inequality �1�. Quantum
mechanics maximally violates the CHSH inequality when
the two qubits are in a maximally entangled state and each
qubit is measured by two mutually unbiased bases �3,4�. We
observe that nonlocality for maximally entangled qubits is
most strongly manifested by mutually unbiased bases, simi-
larly to the complementarity principle.

Since the discovery by Bell �1�, investigation of nonlocal-
ity for more general systems has been regarded as one of the
most important challenges in quantum mechanics and quan-
tum information science �5–19�. The studies include nonlo-
cality without inequalities for three or more qubits, presented
by Greenberger, Horne, and Zeilinger �7�. In distinction with
the bipartite qubit case, the contradiction between local real-
ism and quantum mechanics can now be revealed by perfect
correlations. Mermin immediately derived statistical in-
equalities for arbitrarily many qubits and showed that the
degree of their violations exponentially increases with an
increasing number of parties �8,9�. The nonlocality for mul-
tipartite systems plays an important role in quantum informa-
tion processing, for instance, one way quantum computation
with cluster states �20�.

Generalization to higher-dimensional systems �qudits� has
also been investigated �10–18�. Nonlocality of two qudits
was shown to be more robust against isotropic noises than
that of two qubits by numerical analysis �10� and by analyti-
cally deriving Collins-Gisin-Linden-Massar-Popescu
�CGLMP� inequality �13�. Son et al. recently derived in-
equalities and showed their violations for arbitrary many qu-
dits, including two qudits �18�. Such inequalities for two
qudits can be applied to a bipartite division of many qubits,
for instance, a division of 2n qubits into two parties, each
having n qubits, which is equivalent to a 2n�2n system. We

may ask when such Bell inequalities for qudits are maxi-
mally violated: Are they maximally violated when a maxi-
mally entangled state and mutually unbiased measurements
are employed, as in the CHSH inequality for two qubits? It
was shown that the CGLMP inequality is maximally violated
by a partially entangled state, not by any maximally en-
tangled states, for two three-dimensional systems �qutrits�
and further by mutually biased measurements �21�. On the
other hand, the inequality of Son et al. is maximally violated
by a maximally entangled state, but still with mutually bi-
ased measurements. These features are “counterintuitive” in
the sense that there exists no nonlocality for either entangle-
ment or unbiased measurements. They are also in contrast
with the CHSH inequality, which is maximally violated for a
maximally entangled state and mutually unbiased measure-
ments.

The generalized Bell inequalities mentioned above were
derived by assuming that each observer is allowed to choose
one of two possible settings in the local measurement. How-
ever, one may extend the number of measurement settings, as
done for qubits in Refs. �22–24�. We conjecture that the
counterintuitive features of the generalized Bell inequalities
would be due to deficiency in the number of measurement
settings, as �d+1� mutually unbiased bases are possible for a
prime or power-of-prime d-dimensional system.

In this paper, we propose a Bell inequality for two qutrits
that is maximally violated when a maximally entangled state
and mutually unbiased measurements are employed. For this
purpose we allow each observer to choose one of three mea-
surement settings. In addition, generalization of our Bell in-
equality to prime-dimensional qudits is discussed.

II. THREE-SETTING BELL INEQUALITY
FOR TWO QUTRITS

A. CHSH inequality for two qubits

Before presenting Bell inequality for two qutrits, we
briefly discuss the CHSH inequality for two qubits �2� as
they have in common certain properties. Suppose two par-
ties, Alice and Bob, are separated in a long distance and
observe two qubits distributed to them. Alice and Bob each
have two sets of measuring apparatus. They each choose
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independently one of the two sets in their possession and
perform a measurement with that set. We call the two vari-
ables, whose values are determined by the measurements us-
ing Alice’s �Bob’s� two sets of apparatus, A0 and A1 �B0 and
B1�, respectively. We assign two possible values of �1 to the
outcome of the measurement on each variable. The CHSH
inequality is a constraint on correlations between Alice’s and
Bob’s measurement outcomes if local realistic description is
assumed. The Bell function for CHSH inequality is given as
�25�

B��� = A0����B0��� + B1���� + A1����B0��� − B1���� ,

�1�

where � is a collection of local hidden variables and the
variables Ai��� and Bj��� take �1 depending on the hidden
variables �, respectively. According to the local hidden vari-
able theory, the statistical average of the Bell function must
satisfy the following inequality �2,3,25�:

− 2 � �B� � 2, �2�

where the statistical average �B�=�d�����B��� with a prob-
ability density distribution ����.

Taking a quantum-mechanical description, the statistical
average of the Bell function is replaced by a quantum aver-
age of the corresponding operator �2,3,25�. The Bell opera-
tor, the counterpart to the classical Bell function of Eq. �1�, is
given as

B̂ = Â0 � �B̂0 + B̂1� + Â1 � �B̂0 − B̂1� , �3�

where Âi and B̂j are operators corresponding to the variables
Ai and Bj, respectively. As measurement outcomes are as-

sumed to be �1, each of the operators Âi and B̂j has eigen-
values �1.

A quantum expectation of the Bell operator B̂ can be
shown to violate the CHSH inequality �2�. Let the operators
be

Â0 = �̂x, Â1 = �̂y, B̂0 = �̂x, B̂1 = �̂y , �4�

where �̂x,y are Pauli operators. Further, let the two qubits be
in a maximally entangled state,

��� =
1
	2

��00� + �− 1�1/4�11�� , �5�

where 
�j���
�0� , �1�� is a standard basis whose elements are
eigenvectors of Pauli operator �̂z. A straightforward alge-

braic calculation shows that the quantum expectation ���B̂���
is 2	2 and violates the constraint of the CHSH inequality
�2�. This implies that any local hidden variable theories can-
not simulate the quantum-mechanical correlation.

For the two-qubit nonlocality, we would remark that �a�
each observer randomly chooses one of two possible settings
in measuring his or her qubit, �b� each measurement pro-
duces one of two possible outcomes �1, and �c� a quantum
expectation can maximally violate the constraint, imposed by
a local realistic description, and reaches the quantum maxi-
mum 2	2 if two conditions of a quantum state being maxi-

mally entangled and two local operators being mutually un-
biased are satisfied �3,4�.

B. Derivation of the three-setting Bell inequality
for two qutrits

Now we derive a three-setting Bell inequality for two
qutrits. Our derivation is motivated by the fact that Bell in-
equalities for high-dimensional systems, suggested in litera-
ture, are maximally violated only when local operators are
mutually biased and/or a quantum state is partially en-
tangled, contrary to the CHSH inequality for two qubits
�13,14,18,25�. Alice and Bob now have three sets of measur-
ing apparatus each, from which they each choose one and
perform a measurement. The three variables whose values
are determined by the measurements using Alice’s �Bob’s�
three sets are referred to as A0, A1, and A2 �B0, B1, and B2�,
respectively. We assign three possible values of 1, 	, and 	2,
where 	=exp�i2
 /3� is a primitive third root of unity, to the
outcome of the measurement on each variable. As discussed
for the CHSH inequality, the local realistic description im-
plies that the values of the variables are predetermined by the
local hidden variables �: Ai=Ai��� and Bj =Bj���, and a sta-
tistical average of their correlations is given as

�AiBj� = d�����Ai���Bj��� , �6�

where ���� is the probability density distribution over �:
�����0 and �d�����=1.

To derive a constraint for the classical correlations, con-
sider the following Bell function:

B��� =
1

2�
n=1

2

�
i=0

2

�
j=0

2

	nijAi
n���Bj

n��� , �7�

where Ai
n �Bj

n� is the nth power of Ai �Bj�. This Bell function
has notable features: First, it contains higher-order correla-
tions, while the CHSH inequality involves only the first-
order correlations. In fact the second power of a dichotomic
variable in the CHSH inequality is meaningless as it is just
unity. On the other hand, the variables contained in Eq. �7�
are trichotomic variables and thus their second powers have
their own significance. Second, B��� has Bob’s �or Alice’s�
variables in the form of Fourier transformation. In this per-
spective one may look at the CHSH inequality in the similar
form and in this sense the Bell function in Eq. �7� generalizes
CHSH to qutrits.

We find classical upper and lower bounds for the statisti-
cal average of the Bell function in Eq. �7�. Note first that
every statistical average of B��� satisfies

min
�

B��� � d�����B��� � max
�

B��� , �8�

where min� B��� �max�B���� means a minimum �maximum�
of B over �. This is clear due to the fact that ���� is a
probability density distribution: �����0 and �d�����=1.
The classical upper and lower bounds are thus determined by
finding the maximum and minimum of the Bell function
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B��� over �. By definition, each variable takes an element in

1=	0 ,	 ,	2� so that Ai���=	ai��� and Bj���=	bj��� for
some integer-valued functions ai��� and bj��� with respect to
�. Then Eq. �7� can be rewritten as

B��� =
1

2�
n=1

2

�
i=0

2

�
j=0

2

�	n�ai���+bj���+ij��

=
3

2
��

i=0

2

�
j=0

2

��ai��� + bj��� + ij� − 3� , �9�

where ��a�=1 if a�0 mod 3 and ��a�=0 otherwise. Here,
we used the identity �n=0

2 	an=3��a�. Determining the upper
and lower bounds of the Bell function B��� reduces to find-
ing the bounds of =�i,j��ai+bj + ij� over arbitrary integers
ai and bj modulo 3.

Meanwhile, we present two useful facts resulting from a
number theory �see Ref. �26��. First, for a given prime inte-
ger d, Zd= 
0,1 , . . . ,d−1� is a complete set of residues
modulo d so that aZd�
0a ,1a , . . . , �d−1�a�=Zd for an arbi-
trary integer a�0. For instance, let d=3 and a=2. Then
aZ3= 
0a ,1a ,2a�= 
0,2 ,1�=Z3. Second, for a ,b ,c�Zd, ab
�ac mod d if and only if b�c mod d.

Returning to the problem of finding the bounds of , con-
sider a matrix with elements consisting of the arguments of
the delta function in ,

�a0 + b0 a0 + b1 a0 + b2

a1 + b0 a1 + b1 + 1 a1 + b2 + 2

a2 + b0 a2 + b1 + 2 a2 + b2 + 1
� . �10�

The maximum of , max, is decided by counting the number
of matrix elements that can simultaneously be congruent to
zero modulo 3. Suppose that two different elements in the ith
row are both congruent to zero modulo 3: For j�k,

ai + bj + ij = ai + bk + ik = 0 mod 3. �11�

This is followed by

�bj − bk� + i�j − k� = 0 mod 3. �12�

Then, the two elements in the l��i�th row, al+bj + lj and al
+bk+ lk, cannot simultaneously be congruent to zero modulo
3. That is,

�al + bj + lj� − �al + bk + lk� = �bj − bk� + l�j − k� � 0,

�13�

which results from Eq. �12� by noting i�j−k�
� l�j−k�mod 3 for i� l mod 3. Similar conditions are also
derived for columns. Under the conditions, consider a case in
which all the elements at the first row are zero and then one
element at the second or third row can be zero, resulting in
=5. Consider another case in which the first two elements
at the first row are zero and then one of the first two elements
at the second or third row can be zero as well as the last
element at the second or third row, resulting in =6. All
other cases are equivalent to the two cases discussed. We
thus obtain max=6, for instance, when 
a0=0, a1=0, a2=1,
b0=0, b1=0, b2=1�. The minimum of , min=0, is easily
obtained by noting �0 and =0 when 
a0=0, a1=0, a2

=1, b0=1, b1=1, b2=2�. The two bounds max and min im-
ply that the Bell function satisfies the following inequality:

−
9

2
� B��� �

9

2
. �14�

From both inequalities �8� and �14�, therefore, every statisti-
cal average of B��� satisfies

−
9

2
� �B� �

9

2
. �15�

C. Quantum violation of the three-setting Bell inequality
for two qutrits

We now show that a quantum expectation violates the
Bell inequality �15�. The Bell operator corresponding to the
classical Bell function in Eq. �7� is given as

B̂ =
1

2�
n=1

2

�
i=0

2

�
j=0

2

	nijÂi
n

� B̂j
n. �16�

Here, each operator Âi �B̂j� represents a measurement for Ai
�Bj� on Alice’s �Bob’s� qutrit. An orthogonal measurement of
M � 
Ai ,Bj� is described by a complete set of orthonormal
basis vectors 
�k�M�. Distinguishing the measurement out-
comes is indicated by a set of eigenvalues. Let the set of
eigenvalues be 
1,	 ,	2�, as the trichotomic variable M
takes an element in the set by definition. The measurement

operator is then represented by M̂ =�k=0
2 	k�k�MM�k�. In this

representation each trichotomic operator M̂ � 
Âi , B̂j� is uni-

tary, satisfying M̂3=1, where 1 is the identity operator

�15,16,18�. We note that the unitary operator M̂ and its sec-

ond power M̂2 have the same measurement basis just with
different orderings of eigenvalues so that the introduction of
higher powers does not alter the number of measurement
settings in this work.

To see the quantum-mechanical violation, consider the
following unitary operators:

Â0 = f̂10, Â1 = 	2 f̂11, Â2 = f̂12,

B̂0 = f̂10, B̂1 = f̂12, B̂2 = 	2 f̂11, �17�

where 
 f̂ i j � X̂iẐj� forms an orthogonal basis on the Hilbert-

Schmidt space of operators such that Tr f̂ i j
† f̂ kl=3�ik� jl and

each f̂ i j is a trichotomic operator with eigenvalues 1, 	, and
	2. �It is known that every pair of operators in


 f̂01, f̂10, f̂11, f̂12� is mutually unbiased �27,28�.� The operators

X̂ and Ẑ are three-dimensional Pauli operators �29� such that

X̂�k� = �k + 1�, Ẑ�k� = 	k�k�, X̂3 = 1, Ẑ3 = 1 ,

where 
�k�� is a standard orthonormal basis consisting of

eigenstates of Ẑ. Consider further a maximally entangled
state of qutrits,
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��� = 1 � P̂��0� , �18�

where ��0�=�k�kk� /	3 and a phase shifter P̂=�k	
−k/3�k��k�.

By using the unitary operators in Eqs. �17� and the maxi-
mally entangled state in Eq. �18�, the quantum expectation of

the Bell operator B̂ is given as

���B̂��� = ��0��1 � P̂†�B̂�1 � P̂���0� + c.c.

= ��0��	3

2
	1/12�

i=0

2

f̂1i � f̂1,−i���0� + c.c.

= 3	3 cos� 


18
� � 5.117, �19�

where c.c. stands for the complex conjugate and the sub-

scripts i and j in f̂ i j are congruent to positive residues
modulo 3. In Eq. �19� we sequentially used two facts: �a� The

phase shifter P̂ transforms Bob’s operators according to

P̂†B̂iP̂ =
	1/12

	3
�
j=0

2

	�i−j+1�j f̂1j . �20�

�b� The maximally entangled state ��0� is a common eigen-

state of three composite operators, that is, f̂1i � f̂1,−i��0�
= ��0� for all i=0,1 ,2, implying the perfect correlations for
these composite variables. Then, the quantum expectation in
Eq. �19�, 3	3 cos�
 /18��5.117 clearly exceeds the classical
upper bound 9 /2=4.5 of Bell inequality �15�. This shows the
nonlocality for two qutrits with three settings of local mea-
surements by each observer.

D. Maximal violation of the three-setting Bell inequality

We investigate if the quantum expectation in Eq. �19� is
maximal over all possible states. For this purpose it is nec-
essary to optimize the quantum Bell function over all pos-
sible operators for each entangled state. By employing the
steepest descent method �see Ref. �30� for the detailed meth-
odology�, we numerically find a set of such optimal unitary

operators �Âi and B̂j� under local unitary transformations of
SU�3�. A pure state can, in general, be written, by Schmidt
decomposition, as

���� = c0�00� + c1�11� + c2�22� , �21�

where ci are non-negative real numbers, satisfying �ici
2=1.

In Fig. 1, composite states of two qutrits are denoted by
points on the triangle, defined by the plane of �ici

2=1 in the
three-dimensional vector space with the axes being Schmidt
coefficients ci

2. The vertices represent product states of
Schmidt rank 1, the points on the edges two-dimensional
�2D� entangled states of rank 2, and the interior points three-
dimensional �3D� entangled states of rank 3. Figure 1 pre-
sents the maximum of the quantum Bell function for a given
quantum state ����, which we numerically obtain over all
possible operators. It clearly shows that the quantum Bell
function reaches its maximum value given in Eq. �19� over
all possible quantum states if the state is 3D maximally en-
tangled with c0

2=c1
2=c2

2=1 /3.

More explicitly, we consider quantum states on two routes
r1 and r2, shown in Fig. 1, from the product state �00� to the
3D maximally entangled state ��00�+ �11�+ �22�� /	3. These
routes are chosen due to the threefold rotational and reflec-
tional symmetries of the quantum-state triangle under SU�3�
transformations. Figure 2 presents the maximum of the quan-
tum Bell function BQ with respect to the degree of entangle-
ment E for quantum states on the routes �a� r1 and �b� r2,
where E=−Tr �̂ log3 �̂ with �̂ a marginal density operator.
The route r1 includes 3D entangled states, as in Eq. �21�,
with c2=c1 and c0�c1. It is clearly seen in Fig. 2�a� that, as
the degree of entanglement E is increased, BQ monotonically
increases and reaches its maximum in Eq. �19� for the 3D
maximally entangled state. The route r2 includes 2D en-
tangled states with c2=0 and then 3D entangled states with
c0=c1 and c1�c2. From Fig. 2�b�, as increasing E, BQ in-
creases to the local maximum when the quantum state is 2D
maximally entangled, decreases slightly, and increases again
to the global maximum in Eq. �19� when the state is 3D
maximally entangled. Thus, it is evident that our quantum
Bell function reaches its maximum in Eq. �19� only if a quan-
tum state is 3D maximally entangled as in Eq. �18�. It is
worth noting that a partially entangled state results in the
local maximum in our quantum Bell function, whereas the
CGLMP quantum Bell function admits the global maximum
for a partially entangled state �21�. In a sense our Bell in-
equality is free of the problem that the CGLMP Bell function
has.

We remark that our Bell inequality is maximally violated
by quantum mechanics if a composite state is maximally
entangled and the local measurements are mutually unbiased

FIG. 1. �Color online� Maximum of the quantum Bell function
for each quantum state in the form of Eq. �21�, which we numeri-
cally obtain over all possible operators. Quantum states are denoted
by points on the triangle, defined by the plane of �ici

2=1, with ci
2

being the Schmidt coefficients. The vertices represent product states
of Schmidt rank 1, the points on the edges 2D entangled states of
rank 2, and the interior points 3D entangled states of rank 3. It is
evident that the quantum Bell function reaches its maximum over
all possible quantum states if the state is 3D maximally entangled
with c0

2=c1
2=c2

2=1 /3.
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as in Eqs. �17� and �18�. Two measurements are said to be
mutually unbiased if precise knowledge in one of them im-
plies that all possible outcomes in the other are equally prob-
able �31,32�. Consider a nondegenerate and orthogonal mea-
surement M represented by a basis 
�k�M�. Suppose a
quantum system in d-dimensional Hilbert space is prepared
in such a state that the outcome in the measurement M can
be predicted with certainty, for instance, the system’s state is
�i�M. Let N be another nondegenerate and orthogonal mea-
surement represented by a basis 
�j�N�. The measurement N is
mutually unbiased to M if outcomes of measurement N are
equally probable for each �i�M.

pj�i � �N�j�i�M�2 =
1

d
, ∀ j = 1,2, . . . ,d . �22�

The two measurement bases 
�i�M� and 
�j�N� are then said to

be mutually unbiased. The eigenstates of Âi �B̂j� in Eq. �17�
are easily determined by noting that the eigenstates 
�k�i� of

f̂1i are given as

�k�i =
1
	3

�
l=0

2

	−il2−kl�l� . �23�

It was shown that two bases 
�k�i� and 
�l� j� are mutually

unbiased if i� j �27�. The unitary operators Âi and B̂j have

the same bases as their corresponding f̂’s in Eq. �17� with
different orderings of eigenvalues so that arbitrary two local

measurements represented by 
Âi� or 
B̂j� are mutually unbi-
ased.

We wish to remark here on the previous work by Buhr-
man and Massar �33�, in which the authors introduced a Bell
function and determined its quantum upper bound allowed
for the general case of d-dimensional systems and d mea-
surement settings when local measurements on quantum en-
tangled states are made. The quantum upper bound they de-
termined is “non-tight” in the sense that their Bell function
cannot take on a value greater than that, but it has not been
proven that this upper bound can actually be attained. Apply-
ing their result to our Bell operator of Eq. �16�, the quantum
upper bound is 3	3�5.196. On the other hand, we have
proven in Sec. II D that 3	3cos 


18 �5.117 is the maximum
value actually attainable, as given by Eq. �19�.

III. BELL INEQUALITY FOR QUDITS

We generalize the Bell inequality for qutrits to
d-dimensional systems, namely, qudits, with d a prime inte-
ger. A measurement on a qudit produces one of d possible
outcomes. For a generalized Bell inequality for qudits, two
observers are each allowed to choose one of the d variables.
Consider a classical Bell function for qudits,

B��� =
1

d − 1�
n=1

d−1

�
i=0

d−1

�
j=0

d−1

	nijAi
n���Bj

n��� , �24�

where 	 is now a primitive dth root of unity, i.e., 	
=exp�i2
 /d�, and Ai���=	ai��� and Bj���=	bj���, with ai���
and bj��� integer-valued functions of hidden variables �.
Equation �24� is reduced to the CHSH Bell function in Eq.
�1� if d=2 and to the two-qutrit function in Eq. �9� if d=3.
Similarly to the two-qutrit case, the Bell function in Eq. �24�
can be rewritten as

B��� =
d

d − 1
��

i=0

d−1

�
j=0

d−1

��ai��� + bj��� + ij� − d� , �25�

where ��a�=1 if a=0 mod d and ��a�=0 otherwise. As done
in the two-qutrit case, we find classical upper and lower
bounds by considering =�i,j��ai+bj + ij�. Using the similar
arguments as given from Eq. �10� to Eq. �14�, one obtains
max=3d−3 and min=0. Then, the statistical average of the
Bell function satisfies the following inequality:

−
d2

d − 1
� �B� �

d�2d − 3�
d − 1

. �26�

The quantum Bell operator, corresponding to the classical
Bell function, is given as

B̂ =
1

d − 1�
n=1

d−1

�
i=0

d−1

�
j=0

d−1

	nijÂi
n

� B̂j
n, �27�

where Âi and B̂j are local unitary operators with eigenvalues,

1,	 ,	2 , . . . ,	d−1�. To show the nonlocality, let the local
operators be

Âj = 	 j�j+1� f̂1,j, B̂j = 	��d + 1�/2�2�j2+2j� f̂1,��d + 1�2/2�j , �28�

where f̂ i,j = X̂iẐj and X̂ and Ẑ are now d-dimensional Pauli

operators �29�. It is notable that Âi and B̂j represent mutually
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FIG. 2. �Color online� Maximum of the quantum Bell function
BQ with respect to the degree of entanglement E for quantum states
on the routes �a� r1 and �b� r2, shown in Fig. 1, from the product
state �00� to the 3D maximally entangled state ��00�+ �11�
+ �22�� /	3. The route r1 includes 3D entangled states, as in Eq.
�21�, with c2=c1 and c1�c0. The route r2 includes 2D entangled
states with c2=0 and then 3D entangled states with c0=c1 and c1

�c2. The global maximum is achieved for the 3D maximally en-
tangled state in both cases.
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unbiased measurements. Let further the two qudits be in a
maximally entangled state,

��� = 1 � P̂
1
	d

�
k=0

d−1

�kk� , �29�

where P̂=�k	
−�k�k��k�. Here �k is defined by

�k

dk
=�

d − 1

8
+

�d + 1�2

4dk
�
j=1

k

j2, for d = 8m + 1

d + 3

8
− gd +

�d + 1�2

4dk
�
j=1

k

j2, for d = 8m + 3

d + 3

8
+

�d + 1�2

4dk
�
j=1

k

j2, for d = 8m + 5

d − 1

8
− gd +

�d + 1�2

4dk
�
j=1

k

j2, for d = 8m + 7,

�
�30�

where gd=0 for d=8m+1 or 8m+5, and gd=1 /4d for d
=8m+3 or 8m+7 for an integer m. From the mutually unbi-
ased local measurements of Eq. �28� and the maximally en-
tangled state in Eq. �29�, the quantum expectation of the Bell
operator is given as

���B̂��� =
1

d�d − 1��n=1

d−1

�
i,j,p=0

d−1

	��i,j,p,n,gd�, �31�

where ��i , j , p ,n ,gd�=−3ngd+nij+ n�n−1�
2 i+ inp+ 3

8n�d−1�
+ 3

d � d+1
2 �2C�j , p ,n� and C�j , p ,n�=�k=1

n �j+ p+k�2. For d=5,
the quantum expectation is 25�1+	5� /8�10.113. This is
clearly larger than the classical upper bound, 35 /4=8.75. For

d=17, the quantum expectation ���B̂����40.484 exceeds
527 /16=32.9375 of the classical upper bound, while no vio-
lations are found for d=7,11,13 if local unitary operators
are employed as in Eq. �28�.

Our Bell inequalities show relatively small degrees of vio-
lations. Ratios of quantum to classical maxima are given for
d=3,5 ,17 as

���B̂���
�B�

� �1.137 for d = 3

1.156 for d = 5

1.229 for d = 17.
�

These ratios are smaller than 1.414 and 1.436, those of
CHSH inequality for qubits and CGLMP inequality for

qutrits, respectively. However, it is interesting to observe that
the ratios increase with respect to the dimension once the
nonlocality appears.

Let us now examine the robustness of our Bell inequality
against the white noise. For this purpose, we consider the
state

� = p������ +
�1 − p�

d2 1 � 1 . �32�

This state represents a mixture of the pure state of Eq. �29�
and the fully mixed state, where p is the relative weight of
the pure state ��� with respect to the fully mixed state. We
compute the lower bound pmin of the p value above which
our Bell inequality is violated. Our calculation shows that
pmin=0.88, 0.8653, and 0.814 for d=3, 5, and 17, respec-
tively. One thus sees that our Bell inequality is more robust
against the white noise as the dimension d is increased, the
tendency also observed in the CGLMP inequality.

IV. SUMMARY

We proposed a Bell inequality for two qutrits. This Bell
inequality is maximally violated by quantum mechanics for
mutually unbiased measurements and a maximally entangled
state, whereas other Bell inequalities for high-dimensional
systems such as CGLMP and that of Son et al. do not satisfy
those conditions. This feature is consistent with the CHSH
inequality of two qubits. Note that our Bell inequality con-
sists of three settings of local measurements while CHSH,
CGLMP, and the inequality of Son et al. have two settings.

The Bell inequality for qutrits was generalized to prime-
dimensional qudits. We investigated the generalized Bell in-
equalities for two qudits with the dimensions up to 17, find-
ing the nonlocality for the dimensions 5 and 17. Further
studies on the generalized Bell inequalities are encouraged to
clarify if there are violations for higher-dimensional systems
and if the degree of nonlocality persistently increases with
respect to the dimension once the nonlocality appears.
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