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We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on

metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation

process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a

fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the

quantum statistics during transfer with and without losses in the metal.
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The emerging field of plasmonics [1] is experiencing a
considerable increase in interest from researchers in many
areas of the physical sciences [2]. Plasmonic-based nano-
photonic devices, in particular, have begun to attract keen
interest from the quantum optics community for their use
in quantum-information processing [3–6]. In order to un-
lock the potential that plasmonics at the quantum level can
offer, a clear understanding of the interplay between single
photons and surface plasmon polaritons (SPPs) is of fun-
damental importance. Recent studies have focused on vari-
ous systems where SPPs and photons interact [4–6]. How-
ever, a major obstacle has been the low transfer efficiencies
found at the single-photon level [4,5], thus a complete
quantum description of an efficient transfer process is
highly desirable. With an extensive understanding of
photon-SPP coupling in the quantum regime, we can ex-
pect to open up an array of new applications in quantum-
information processing, based on linear and nonlinear
plasmonic effects facilitated by strong electromagnetic
field confinement [5,7].

In this Letter we provide the first quantum description of
the coupling between single photons and SPPs in a versa-
tile attenuated-reflection (ATR) setup previously used only
for classical SPP generation [8,9]. This is distinct from
earlier work, such as couplings at rough surfaces [10],
requiring an entirely different approach. The Hamiltonian
that we introduce is based on a fully quantized treatment of
both photon and SPP field modes and applies to a wide
range of ATR parameters. We find that remarkably high
quantum efficiencies can be reached for photon-to-SPP
transfer. We then establish the extent to which the excited
SPPs preserve the quantum statistics of the photons as they
travel on realistic metal surfaces. Our work provides sig-
nificant insights into the physics of photon-SPP coupling at
the quantum level. The methods developed are well suited
to other coupling geometries.

SPPs are highly confined, nonradiative electromagnetic
excitations associated with electron charge density waves
propagating along a dielectric-metal interface. In Fig. 1(a)

we show the ATR setup utilized for single-photon excita-
tion of SPPs. At various points we will introduce the metal
as silver only to illustrate our main results; the theory de-
veloped here fits a far more general setting. For SPP exci-
tations, due to the collective nature of the electron charge
density waves, a macroscopic picture of the resulting elec-
tromagnetic field is appropriate [10]. Upon quantization,
SPPs therefore correspond to bosonic modes. The quan-
tized vector potential in the continuum limit for SPPs
propagating along an air-metal interface at z ¼ 0 in the x̂
direction, as shown on the right-hand side of Fig. 1(a), is
given by [10,11] ÂSPPðr; tÞ /

R1
0 d!½N ð!ÞL��1=2 �

½�ðr; !Þe�i!tb̂ð!Þ þ H:c:�. The dispersion relation is
!2 ¼ c2k2ð�m þ 1Þ=�m with �m the permittivity of the
metal,N ð!Þ is a frequency dependent normalization [10],

and L is the profile width [11]. The b̂ð!Þ’s [b̂yð!Þ’s] corre-
spond to annihilation [creation] operators which obey com-

mutation relations ½b̂ð!Þ; b̂yð!0Þ�¼�ð!�!0Þ. The mode
functions are given by�ðr; !Þ ¼ ½ðix̂� kẑ=�Þe��z#ðzÞ þ
ðix̂þ kẑ=�0Þe�0z#ð�zÞ�eik�r, where the wave vector k ¼
kx̂, #ðzÞ is the Heaviside step function, and the decay of
the SPP into the metal (air) is parametrized by �2 ¼ k2 �
�m!

2=c2 (�2
0 ¼ k2 �!2=c2). For photons propagating in

air in the k̂0 direction [k̂0 ¼ ðsin�Þx̂þ ðcos�Þẑ, as shown
in the left-hand side of Fig. 1(a)], we have [11] ÂPðr; tÞ /R1
0 d!ð!AÞ�1=2½eik0ðk̂0�rÞe�i!tâð!Þ þ H:c:�. The disper-

sion relation is ! ¼ ck0, A is the beam cross section, and
½âð!Þ; âyð!0Þ� ¼ �ð!�!0Þ. Here, the SPPs and photons
are transverse magnetic modes. At the single-photon level
only small intensities of the photon field are involved and
any nonlinear terms in the photon-SPP coupling can be
sufficiently neglected [12]. We are thus led to the following
natural linear coupling Hamiltonian for the entire system
shown in Fig. 1(a):

Ĥ S¼
Z 1

0
d!@!âyð!Þâð!Þþ

Z 1

0
d!@!b̂yð!Þb̂ð!Þ

þ i@
Z 1

0
d!½gð!Þâyð!Þb̂ð!Þ�g�ð!Þb̂yð!Þâð!Þ�: (1)
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The first and second terms are the photon and SPP fields’
free energy, respectively. The last term, which we denote as

Ĥ int, describes interactions between the two fields, where
the coupling gð!Þ is a function of the system parameters
for a given ATR geometry. In Fig. 1(b) we show the
dispersion relations for SPPs and photons. As an example,
we choose �m ¼ 1�!2

p=!
2 þ ��rm, where !p ¼

1:402� 1016 rad=s is the plasma frequency for silver and
��rm ¼ 29!2=!2

p is a background correction term [13].

Neglecting Ohmic losses, over the ! range of the SPP
modes, k produces a curve which approaches the surface
plasma frequency!sp, where �m ¼ �1. On the other hand,

the x̂ component of k0 for photons in air incident at angle �
covers the shaded region of Fig. 1(b). Two ATR geometries
that can provide the necessary mode matching for coupling
photons to SPPs are shown in Fig. 1(c), denoted as (i) Otto
(O) [8] and (ii) Kretschmann-Raether (KR) [9]. Both con-
sist of a prism in layer I with permittivity �1. The O (KR)
geometry has air in layers II and IV (III and IV) with �2 ¼
�4 ¼ 1 (�3 ¼ �4 ¼ 1) and metal in layer III (II) with �3 ¼
�m (�2 ¼ �m). In both, SPPs are excited on the II/III inter-
face, with z ! z� d in �ðr; !Þ. For the KR geometry,
� $ �0. The thickness l is assumed to be far larger than the
decay of the SPP into the metal (air), i.e., l � ��1 (��1

0 ),

making the effects of layer IV negligible.
With the ATR setup introduced, we can now formulate

the photon-SPP coupling model of Eq. (1). For each ! in
both geometries the coupling can be described by a transfer
matrix T ð!Þ in the Heisenberg picture [14] as

âoutð!Þ
b̂outð!Þ

� �
¼ �ð!Þ �ð!Þ

���ð!Þ ��ð!Þ
� �

âinð!Þ
b̂inð!Þ

� �
: (2)

The transfer process is depicted in Fig. 1(d), where the
commutation relations of the quantum operators âð!Þ and
b̂ð!Þ define the structure of T ð!Þ, while its coefficients

[j�ð!Þj2 þ j�ð!Þj2 ¼ 1, 8 !] are determined from the
overlap of system mode functions. By solving Maxwell’s
equations across the first three layers shown in Fig. 1(c),
one finds the mode functions of the field in layers II
and III: c ðr; !Þ ¼ f½ð’1e

��2z þ ’2e
�2zÞx̂ þ ð’3e

��2z þ
’4e

�2zÞẑ�#ðzÞ#ðd � zÞ þ ð’5e
��3zx̂ þ ’6e

��3zẑÞ#ðz �
dÞgei�x. Here, the ’i’s are constants related by boundary

conditions at the interfaces, �i ¼ ð�2 � �i!
2=c2Þ1=2, and

the dispersion relation � ¼ ffiffiffiffiffi
�1

p ð!=cÞ sin�. The O (KR)

geometry has �2 ¼ 1 (�m) and �3 ¼ �m (1) with �m ¼ 1�
!2

p=ð!2 þ i!�Þ þ ��m, which now includes a damping

factor � for the metal and a complex correction term ��m
[13]. The complete mode functions for the three-layer (3L)

system are �ðr; !Þ ¼ r ~c ðr; !Þ#ð�zÞ þ 	c ðr; !Þ#ðzÞ
where r and 	 (jrj2 þ j	j2 ¼ 1) are obtained from
Fresnel’s relations at the boundaries. However, the
~c ðr; !Þ are not involved in the coupling due to mode
matching; they always have a real component of their
wave vector in ẑ. On the other hand, mode matching can
be satisfied between the two-layer (2L) mode functions
c ðr; !Þ and the SPP mode functions by fixing the angle �
correctly. For instance, by setting � ¼ k the dispersion

lines cross at � ¼ sin�1f�m=½�1ð1þ �mÞ�g1=2 in both ge-
ometries. In Fig. 1(b) we show this for a particular angle
� ¼ 85� (2L line). The inset shows that mode matching
over the entire range of ! can be achieved, for example,
using a prism with �1 ¼ 1:51 and silver with � ¼ 6:25�
1013 rad=s and ��m ¼ ��rm þ i��im, where ��im ¼ 0:22
[13]. This range is important for excitation with a photon
wave packet of finite width, as we show later, and is not
possible in other excitation schemes such as the grating-
type coupler.

In Fig. 1(d) the b̂in=outð!Þ operators are associated with

the in/out SPP mode functions �ðr; !Þ [b̂inð!Þ ¼ b̂ð!Þ]
and âin=outð!Þ with the in/out 3L mode functions

�ðr; !Þ. For negligible loss on entry into the prism me-
dium, we can assume the operator relation âinð!Þ ¼
âð!Þ. We then have ��ð!Þ ¼ �	f�ð!�!0Þ�ðk� �Þ�R
dz½N �1=2

1 ð!Þ�ðr; !Þ�� � ½N �1=2
2 ð!0Þc ðr; !0Þ�g [15].

Several factors permit the use of the mode overlap in the
value of ��ð!Þ. First, we assume that the SPP modes
experience negligible damping during the excitation pro-
cess, Imð�mÞ � 0, imposing damping effects subsequently
as the SPP propagates. Second, the SPP is assumed to exit
the prism region on a time scale such that mode-matching
conditions are broken almost immediately after excitation.
This can be achieved by adjusting the excitation point [16].
Third, as the SPP mode functions exist in the region z 2
ð�1;1Þ, d must be chosen such that their decay into the
prism is negligible, allowing it to be neglected from their
definitions. To check an acceptable range of d we define a
penetration factor P ¼ 2=�0d (2=�d) for the O (KR)
geometry and consider the SPP modes as good approxi-
mations for P 	 1, where j�ðr; !Þj2 at z ¼ 0 is less than
2% its maximum value. In Figs. 2(a) and 2(b) we use the

FIG. 1 (color online). Single-photon excitation of SPPs using
attenuated reflection. (a) A photon wave packet is injected into
the system at a specific angle �, with a prism mediating an
interaction between the photon and SPP modes. The minimum
prism size is diffraction-limited. (b) Dispersion relations for the
photon (shaded region) and SPP (curve). The prism enables
mode matching. (c) Two ATR excitation geometries: (i) Otto
and (ii) Kretschmann-Raether; see text for details. (d) Transfer
process for the photon and SPP mode operators.
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example of silver to showP over a range of! and d for the
two ATR geometries.

With the above considerations, we can now determine
the coupling gð!Þ. In order to connect ��ð!Þ and gð!Þ, we
set � ¼ cos� and � ¼ ei� sin� (� 2 ½0; 
=2�, � 2
½0; 2
�) for each ! and parameter set fd; �i; �g for a
given geometry. The corresponding Hamiltonian in the

Schrödinger picture is Ĥ int from Eq. (1) with gð!Þ ¼
ei�ð!Þ�ð!Þ [14]. In Figs. 2(c) and 2(d) we use silver to
plot a rescaled coupling, j~gð!Þj ¼ 2


 jgð!Þj, for the two

ATR geometries, such that j~gð!Þj ¼ 1 (0) corresponds to a
unit (zero) transfer probability of a photon to a SPP.
Figures 2(a) and 2(b) show that the optimal j~gð!Þj for
both geometries satisfy P & 1. In Figs. 2(e) and 2(f) we
plot these optimal values and the value of d at which they
occur. The optimal j~gð!Þj in both geometries rises for
increasing !, reaching an apex, then drops sharply as !
tends toward !sp. This behavior is due to a dominance of

the value for 	 in��ð!Þ at large!, which decreases rapidly
due to boundary conditions and the large � required for
mode matching. Such excellent coupling values have been
found classically [8,9], however, this is the first time a
rigorous quantum-mechanical treatment has been
achieved, making it possible for us to determine correctly
the quantum efficiency of single-photon excitation. The
coupling gð!Þ cannot be deduced from a classical model of
the system.

Thus far we have focused on single modes of the system.
However, it is important to consider the transfer of a
photon wave packet, such as in an experiment, to a SPP
wave-packet state. An n-photon wave-packet state is given

by jn�i ¼ ðn!Þ�1=2ðây�Þnj0i, where ây� ¼ R
d!�ð!Þâyð!Þ

with
R
d!j�ð!Þj2 ¼ 1 [11]. For simplicity we take a

Gaussian profile �ð!Þ for a wave packet produced at
time t0 ¼ 0 with bandwidth �! ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log2

p
and central

frequency !0. We allow ! 2 ð�1;1Þ as �! 
 !. For
wave-packet transfer with negligible deformation, each !
must have approximately the same gð!Þ and �. This is
satisfied given a small enough bandwidth with slowly
varying gð!Þ and �. For example, using silver with � ¼
10 nm, one finds that �� rises exponentially from 0.004�
at 1� 1015 rad=s to 14.61� at 5� 1015 rad=s, which can
be attributed to the dependence of � on ! [see inset of
Fig. 1(b)]. The couplings show a similar behavior, with
j�gð!Þj ¼ 0:01 for d optimizing jgð!0Þj at 1�
1015 rad=s, rising to j�gð!Þj ¼ 0:2 (0.04) at 5�
1015 rad=s for the O (KR) geometry. The large difference
is due to the sharper drop in jgð!Þj for O at high !.
Significant wave-packet deformation can be avoided by
operating at low !, although at the expense of the cou-
pling. In general, a narrow bandwidth will provide access
to larger couplings with negligible deformation.

Finally we turn our attention to damping in the metal as
the excited SPP propagates. For the coupling, the approxi-
mation Imð�mÞ � 0 was made for the excited SPP. How-
ever, as it travels, finite conductivity of the metal and

surface roughness result in heating and radiative losses,
respectively [1]; for a reasonably smooth surface, thermal
loss is the main source of damping. While a quantization of
the decayed SPP modes can be performed, a mathemati-
cally equivalent and simpler model is the method of ar-
rays shown in Fig. 3(a) [11]. Here we introduce a bath of
field modes, described by operators ĉið!Þ (i ¼ 1; ::; N)
separated by �x, interacting with the SPP wave
packet as it propagates. In the limit N ! 1 and �x ! 0,

the SPP operator becomes b̂Doutð!Þ¼eiKxb̂outð!Þþ
i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð!Þp R

x
0dx

0eiKðx�x0Þĉð!;x0Þ, with ĉið!Þ! ffiffiffiffiffiffiffi
�x

p
ĉð!;x0Þ

and �ij ! �x�ðx0 � x00Þ. The array coefficients are chosen
such that the bath modes induce a change in the SPP wave

vector k matching that of the complex �m, i.e., k ! K ¼
ð!=cÞ½�m=ð1þ �mÞ�1=2 ¼ kþ i�ð!Þ, where 2�ð!Þ is the
loss per unit length of propagation. We then set the rela-
tions hĉð!; x0Þi ¼ hĉyð!; x0Þi ¼ hĉyð!; x0Þĉð!; x00Þi ¼ 0
for the bath modes at room temperature and the frequencies
considered [11]. We assume that the excited SPP wave
packet with !0 has a narrow enough bandwidth such that
�ð!Þ � �ð!0Þ ¼ �0 and k � kð!0Þ þ ð!�!0Þv�1

G ð!0Þ,
with v�1

G ð!0Þ ¼ @kð!Þ
@! j!¼!0

. The flux of SPPs at point x

along the metal surface is then simply foutðtÞ ¼
hb̂Dy

out ðtÞb̂DoutðtÞi ¼ e�2�0xhb̂youtðtRÞb̂outðtRÞi, where tR ¼ t�
xv�1

G ð!0Þ. For an initial SPP wave packet with n ex-

citations, hb̂youtðtRÞb̂outðtRÞi ¼ nj~�ðtRÞj2. A detector with
efficiency � [11,17] operating for time period
[xv�1

G ð!0Þ � 1=�, xv�1
G ð!0Þ þ 1=�] would measure a

FIG. 2 (color online). Photon-SPP coupling: The left (right)
column corresponds to the O (KR) geometry. (a) and (b) depict
the penetration factor P . (c) and (d) show the behavior of the
coupling j~gð!Þj ¼ 2


 jgð!Þj. The optimal values of j~gð!Þj
(dashed line) are displayed in (e) and (f) along with the values
of d (solid line) at which they occur.
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mean SPP count of hmi ¼ �
R
dtfoutðtÞ ¼ �ne�2�0x. The

photon-to-SPP transfer process must, however, be incorpo-
rated for determining the expected mean SPP count hmei
from an incident n photon wave packet. The entire process
is analogous to an inefficient detection problem [17] and
we have hmei ¼ �j�ð!0Þj2ne�2�0x. In Figs. 3(b) and 3(c)
we show hmei=n for the ATR geometries, where � ¼ 0:65
is chosen as an example of nonideal signal extraction
using, e.g., a prism and photodetector. The detection of
many identical excitations from a set rate of single photons
would be required to determine hmei.

While the quantum observable hmei matches well the
behavior of its classical counterpart, the field intensity I
[1], it is not sufficient in an experiment to show that the
SPPs are quantum excitations. We now consider another
observable, the zero time delay second-order quantum

coherence function gð2Þð0Þ [11] at a fixed position, defined

as gð2Þð0Þ ¼ h: Î2ðtÞ :i=h: ÎðtÞ :i2. Here, Î is the intensity
of the quantized field operator, :: denotes normal order-
ing, and the expectation value is taken over the initial state

of the field. For a classical field 1 	 gð2Þð0Þ 	 1. On
the other hand, for an incident n photon wave packet

gð2Þð0Þ ¼ hmðm� 1Þi=hmi2, where hmi¼n
R
tþT
t dt0j~�ðt0Þj2

and hmðm� 1Þi ¼ nðn� 1Þ½RtþT
t dt0j~�ðt0Þj2�2, giving

gð2Þð0Þ ¼ 1� 1=n. This always lies in the classically for-

bidden region gð2Þð0Þ< 1. The value of gð2Þð0Þ for an
excited SPP wave packet at point x can be found by
recognizing that the photon-to-SPP transfer and SPP
propagation stages constitute an array of lossy beam split-

ters [17]. At a beam splitter with loss coefficient �1=2, the
quantum observables hmi ! �hmi and hmðm� 1Þi !
�2hmðm� 1Þi. Thus, the individual losses accumulated

cancel, leaving gð2Þð0Þ surprisingly unaffected. A
Hanbury-Brown–Twiss-type experiment [18] could be

used to measure gð2Þð0Þ.

We have provided the first quantum description of the
photon-to-SPP transfer process for ATR excitation.
Remarkably good quantum couplings over a wide range
of frequencies were found. We also examined the extent to
which the excited SPPs preserve quantum statistical prop-
erties. The techniques developed here provide key insights
into the formulation of quantum descriptions for the pho-
tonic excitation of SPPs. This work can therefore be seen
as an important starting point for future research into the
design of new quantum plasmonic devices for applications
based at the nanoscale, such as SPP-enhanced nonlinear
photon interactions and SPP-assisted photonic quantum
networking and processing.
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