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Abstract

We study the crystal base of the negative part of a quantum group. An explicit description of the crystal
for quantum finite Lie algebras of types An, Bn, Cn, Dn, and G2 is given in terms of Young tableaux.
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1. Introduction

The quantum group Uq(g) is a q-deformation of the universal enveloping algebra over a Lie
algebra g, and crystal bases reveal the structure of Uq(g)-modules in a very simplified form. As
these Uq(g)-modules are known to be q-deformations of modules over the original Lie algebras,
knowledge of these structures also affects the study of Lie algebras.

The crystal B(∞), which is the crystal base of the negative part U−
q (g) of a quantum group,

has received attention since the very birth of crystal base theory [5]. This is not only because it is
an essential part of the grand loop argument proving the existence of crystal bases, but because
it gives insight into the structure of the quantum group itself.
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Much effort has been made to give a description of the crystals B(∞) for various Kac–Moody
algebras. In the current work, we restrict ourselves to finite simple Lie algebras of types An, Bn,
Cn, Dn, and G2. We shall realize B(∞) as crystals consisting of marginally large semi-standard
tableaux, which are semi-standard tableaux of special form.

We use the definitions of semi-standard tableaux as given by Kashiwara and Nakashima [7].
For the G2 type, we shall take the Young tableau description of the highest weight crystal B(λ)

given in [4] as the definition of semi-standard tableaux. The trickiest part of the notion semi-
standard involves something called configuration, but the condition large ensures that no such
configuration can occur, and so we obtain a vast simplification. In the process of obtaining our
results, we describe new action of Kashiwara operators on the set of marginally large tableaux,
in a manner which is uniform over all types.

Our result for An type will be equivalent to that of the previous work [8], which had relied on
a description by Cliff [1], but it will be obtained through a completely different approach.

We remark that the current work has been used recently to create yet another description of
B(∞) based on Nakajima monomials [10,11]. While developing the standard module theory,
Nakajima discovered that the set of monomials appearing in the t-analogues of q-characters
χq,t (M(P )) of a standard module M(P) has a crystal structure. Motivated by this observation,
Kashiwara and Nakajima independently defined a crystal structure on the set of Nakajima mono-
mials and realized the crystals B(λ) [6,13]. The monomial set can be extended so that it contains
the crystal B(∞) in addition to B(λ) [9–11]. This extended Nakajima monomial description of
B(∞) is shown to be correct by relating it to our tableaux description. There is a natural corre-
spondence between the monomial description and our Young tableau description.

The current result can also be extended in the affine direction [12] by considering Young
walls. The Young wall combinatorial scheme consists of colored blocks of various shapes, and
can be viewed as an extension of the Young tableaux.

There is a work [14] that gives the connection between geometric and combinatorial descrip-
tions of B(λ). We expect to investigate such a connection between this work and geometric
descriptions of B(∞). For the An type, this was recently done in [15], based on the earlier
work [8], which contained results equivalent to the current work for the An type.

The paper is organized as follows. We start by introducing the notion of large semi-standard
tableaux. Then, an equivalence relation is given to a collection of large semi-standard tableaux,
and a crystal structure is given to the resulting set of equivalence classes. In Section 4, this new
crystal is shown to be isomorphic to B(∞). Our main result is given in the last section, where
a set of representatives for our new crystal, called marginally large semi-standard tableaux, is
explicitly presented. This gives a new description of B(∞).

2. Large semi-standard tableaux

Throughout this paper, we shall be dealing with finite Lie algebras g of types An, Bn, Cn,
Dn+1, and G2. Unless explicitly stated otherwise, all our discussions will hold true for each of
these types. Notice that the subscript for D-type is different from the others. This is to simplify
our later writing, and does not imply any restriction on the range of D-types we are considering.
For the G2 case, n = 2 should be assumed.

We shall assume knowledge of the basic theory of crystal bases, and related standard notation,
for example, as given in the books [2,3], will be used. The crystal base of U−

q (g), first introduced
in [5], will be denoted by B(∞). For each of the finite classical types, we shall use the definitions
of semi-standard tableaux as given by Kashiwara and Nakashima [7]. For the G2 type, even
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though there is a slight risk of confusion, we shall take the Young tableau description of highest
weight crystal B(λ) given in [4] as the definition of semi-standard tableaux. Since the first of
these two works is a rather well-known result, and since the second is very similar in spirit to the
first, we refer readers to the original papers and shall not repeat the complicated definitions here.
The set of alphabets to be used inside the boxes constituting the Young tableaux for each type
will be denoted commonly by J , and it will be equipped with an ordering ≺, as given in [4,7].
For example, in the Cn case, it would be

J = {1 ≺ 2 ≺ · · · ≺ n ≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄}.

Also, based on results of the same papers, we shall identify elements of the highest weight crystal
B(λ) with semi-standard tableaux of shape λ, which we collectively denote as T (λ).

For later use, we recall the Kashiwara operator action on these tableaux. We first read the
boxes in the tableau through the far eastern reading and write down the boxes in tensor product
form. That is, we read through each column from top to bottom starting from the rightmost
column, continuing to the left. The following diagram gives an example.

.

Then, we apply the tensor product rule to decide on which box to apply f̃i or ẽi to. After ap-
plication of the Kashiwara operator to one of the boxes, they are gathered back into the original
form.

In practice, the tensor product rule on multiple tensors can be applied through calculation of
the i-signature. This is done as follows.

(1) First, under each tensor component x, write down εi(x)-many 1s followed by ϕi(x)-many
0s.

(2) Then, from the long sequence of mixed 0s and 1s, successively cancel out every occurrence
of a (0,1) pair until we arrive at a sequence of 1s followed by 0s, reading from left to right.
This is called the i-signature of the whole tensor product form.

(3) To apply f̃i to the whole product, apply it to the single tensor component corresponding to
the leftmost 0 remaining in the i-signature. If no 0 remains, the result of f̃i action is set to
zero.

(4) Similarly, for ẽi , apply it to the component corresponding to the rightmost 1, or set it to zero
when no 1 remains.

We wish to restrict the set of dominant integral weights P + slightly for some of the classical
types.

• An case: P̂ + := P +;
• Bn case: P̂ + := {λ ∈ P + | λ(hn) is even};
• Cn case: P̂ + := P +;
• Dn+1 case: P̂ + := {λ ∈ P + | λ(hn) = λ(hn+1)};
• G2 case: P̂ + := P +.
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Fig. 1. Large (left) and non-large (right) tableaux.

Notice that for λ ∈ P̂ +, elements of B(λ) become the most usual tableaux, in the sense that they
do not involve any half-size boxes or other complications. It is also clear that given any λ ∈ P +,
we may always find a larger μ ∈ P̂ +, that is, one such that μ − λ ∈ P +.

We borrow the notion of large semi-standard tableaux from [1]. For the remainder of this
paper, the top row of a tableau shall always be counted as the first row.

Definition 2.1. A semi-standard tableau T of shape λ ∈ P̂ + is large if it consists of n non-empty
rows, and if for each 1 � i � n, the number of i-boxes in the ith row is strictly greater than
the number of all boxes in the (i + 1)th row. In particular the nth row of T contains at least
one n-box. For each finite type, denote by T (λ)L, the set of all large semi-standard tableaux of
shape λ.

Once again, we remind readers that we are giving this definition for each of the types An, Bn,
Cn, Dn+1, and G2. The n appearing in the definition is meant to be the same n used as subscripts
for the algebra types, with n = 2 for the G2 case.

In Fig. 1, for some of the finite types, we give examples of semi-standard tableaux. The ones
on the left are large, and the ones on the right are not large.

3. The new crystal T (∞)

Let us collect all large tableaux into one set (separately for each finite type).

T L =
⋃

λ∈P̂+
T (λ)L. (1)

We shall define an equivalence relation on this set.

Definition 3.1. Two tableaux T1, T2 ∈ T L are related, written T1 ∼ T2, if for each 1 � i � n and
j ∈ J such that j � i, the number of j -boxes appearing in the ith rows of T1 and T2 are equal.
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It is trivial to verify that the above gives an equivalence relation. We fix a notation

T (∞) := T L/ ∼ (2)

for the set of equivalence classes. As is customary, T̄ will denote the equivalence class containing
T ∈ T L. This section is devoted to providing T (∞) with a crystal structure.

Let us start with the Kashiwara operators.

Lemma 3.2. Fix i ∈ I .

(1) If tableau T is large, then f̃iT is never zero.
(2) Given any element of T (∞), it is always possible to choose its representative T ∈ T L in

such a way that f̃iT is large.
(3) If T1, T2 ∈ T L belong to the same equivalence class and f̃iT1 and f̃iT2 are both large, then

f̃iT1 and f̃iT2 belong to the same equivalence class.
(4) If tableau T is large, then ẽiT is either zero or large.
(5) If T1, T2 ∈ T L belong to the same equivalence class, then either ẽiT1 and ẽiT2 are both zero,

or ẽiT1 and ẽiT2 belong to the same equivalence class.

Proof. (1) It suffices to show that, after all canceling out, at least one 0 remains in the i-signature
for T . Consider the rightmost i-block in the ith row of T . The signature to be written under it in
the tensor form of T is 0. Notice that the condition large guarantees it to be the lowest block in
its column. Such careful consideration of both the conditions large and semi-standard for each
of the finite types will show that the signature 0 under that block will not be canceled out by
signatures from blocks contained in any of the columns sitting to its left.

(2) Given any T ∈ T L which is a representative for b ∈ T (∞) = T L/ ∼, let us create a
larger representative of b. First, construct a column consisting of i boxes, with k-box sitting in
the kth row (1 � k � i). Consider the rightmost i-box sitting in the ith row of T and insert the
constructed column to its left. It is clear that this new tableau T ′ is a (large) representative for b.

Now, during the proof of item (1) of this lemma, we saw that if we apply f̃i to T ′, it will act
on either the rightmost i-block in the ith row of T ′, or on one of the boxes sitting in columns
to its right. Due to the column we have inserted, neither case will affect the largeness of T ′, and
hence the result is obtained.

(3) The tableaux T1 and T2 (or any other large tableaux) will take the following form, where
we have shaded some of the blocks so that we may easily refer to them below.

We already know from the proof of item (1) of this lemma that f̃i will not act on any of the boxes
contained in the unshaded part. It will act on either the light shaded i-box or on the dark shaded
part. Notice that, for all finite types, j -boxes with j < i do not contribute to i-signatures, hence
except for the i-box, none of the light shaded part affects the i-signature for the two tableaux.
Also, by definition of the equivalence relation, the dark shaded parts will be identical for the two.
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Hence f̃i will act on two corresponding boxes contained in the two tableaux. This will result in
the two tableaux being related even after f̃i action.

(4) For any large tableau T , whose i-signature does not contain any 1, such as the highest
weight tableau uλ, we have ẽiT = 0. For the case when at least one 1 remains in the i-signature
for T , careful consideration of both the conditions large and semi-standard will show that the
rightmost 1 in the i-signature for T would have been written under a dark shaded block of the
diagram for proof of item (3). Hence ẽi will act on one of the dark shaded parts of the tableau T .
None of these cases would affect the largeness of T , and hence the result is obtained.

(5) This may be proved as in the proof for item (3) with f̃i changed to ẽi , together with the
proof of item (4). �

It is now clear that, given b ∈ T (∞) and i ∈ I , we may define

f̃ib = f̃iT ∈ T (∞), (3)

ẽib = ẽiT ∈ T (∞) ∪ {0} (4)

by choosing an appropriate representative T for b.

Lemma 3.3. If T1 ∈ T (λ1)
L and T2 ∈ T (λ2)

L are related to each other with wt(T1) = λ1 − ξ1
and wt(T2) = λ2 − ξ2, then ξ1 = ξ2.

Based on this trivial lemma, for T̄ ∈ T (∞) with T ∈ T (λ)L, we can define

wt(T̄ ) = wt(T ) − λ. (5)

To complete the description of the crystal structure, it only remains to define

εi(T̄ ) = εi(T ), (6)

ϕi(T̄ ) = εi(T̄ ) + wt(T̄ )(hi). (7)

These may be shown to be well-defined with the help of Lemma 3.2(5).

Theorem 3.4. The operators given by Eqs. (3) to (7), define a crystal structure on T (∞).

Proof. This is proved through a step by step checking of the definition for an abstract crystal.
Most parts of proving that T (∞) is a crystal are straightforward. We will concentrate on showing

f̃i (b) = b′ if and only if b = ẽi (b
′) for b, b′ ∈ T (∞), i ∈ I,

which is one of the conditions that should be satisfied by a crystal.
Let b = T and b′ = T ′ with T ∈ T (λ)L, T ′ ∈ T (λ′)L and f̃iT , ẽiT

′ ∈ T L. Assuming b =
ẽi (b

′), since T (λ′) is a crystal, we can see that

f̃i (b) = f̃i

(
ẽi (b

′)
) = f̃i

(
ẽi (T ′)

) = f̃i

(
ẽi (T ′)

) = f̃i

(
ẽi (T ′)

) = T ′ = b′,
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showing the if part. The only if part follows similarly from

ẽi (b
′) = ẽi

(
f̃i (b)

) = ẽi

(
f̃i (T )

) = ẽi

(
f̃i (T )

) = ẽi

(
f̃i (T )

) = T = b,

which is true when f̃i (b) = b′ is assumed. �
4. Crystal isomorphism

In this section, an isomorphism between crystal B(∞) and the crystal T (∞), constructed in
the previous section, will be given. We start by recalling the following theorem from [5].

Theorem 4.1. For weight λ ∈ P + and irreducible highest weight module V (λ), let πλ : U−
q (g) →

V (λ) be the U−
q (g)-linear homomorphism sending 1 to the highest weight vector vλ.

(1) We have πλ(L(∞)) = L(λ), hence πλ induces the surjective homomorphism

π̄λ : L(∞)/qL(∞) → L(λ)/qL(λ).

(2) The mapping π̄λ, which sends f̃ik · · · f̃i2 f̃i1u∞ to f̃ik · · · f̃i2 f̃i1uλ, gives a bijection between
{b ∈ B(∞); π̄λ(b) �= 0} and B(λ).

(3) f̃i ◦ π̄λ = π̄λ ◦ f̃i .
(4) If b ∈ B(∞) satisfies π̄λ(b) �= 0, then ẽi π̄λ(b) = π̄λ(ẽib).

We shall adopt the notation π̄λ introduced in this theorem. Let us prepare for the definition of
an explicit mapping from B(∞) to T (∞). Recall that we are identifying elements of the highest
weight crystal B(λ) with the semi-standard tableaux of T (λ).

Lemma 4.2.

(1) Given any b ∈ B(∞), there exists λ ∈ P̂ +, for which π̄λ(b) is large.
(2) Given any b ∈ B(∞), if both π̄λ(b) and π̄λ′(b) are large, then the two belong to the same

equivalence class. In particular, any large highest weight elements uλ and uλ′ are related.

Proof. (1) Simply put, depending on the distance of b (in terms of f̃i ) from the highest element
u∞ of B(∞), we can always choose λ large enough so that π̄λ(b) is still large.

Suppose that b ∈ B(∞)−ξ = {b ∈ B(∞) | wt(b) = −ξ} with ξ = ∑
i∈I niαi ∈ Q+. Fix λ =∑

i∈I λiΛi ∈ P̂ + such that each λi > ni . If we write b = f̃ik · · · f̃i2 f̃i1u∞, we have ni -many of
the indices i1, . . . , ik equal to i, for each i ∈ I . Since λi > ni , after applying f̃i1, f̃i2, . . . , f̃ik

to uλ, at least one column consisting of i-many boxes with a k-box sitting in the kth row for
1 � k � i, still remains in π̄λ(b). So the semi-standard tableau given by π̄λ(b) ∈ B(λ) is large.
This completes the proof.

(2) That any two large highest weight elements uλ and uλ′ are related follows from the defi-
nition of the equivalence relation. Starting from this point, we may use induction with the help
of Lemma 3.2(3) to obtain the result. �
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We are now ready to define the mapping

ψ : B(∞) → T (∞). (8)

Given any b ∈ B(∞), choose λ ∈ P̂ + for which π̄λ(b) is large, and set

ψ(b) = π̄λ(b). (9)

The above lemma shows that this is well defined. We thus arrive at one of our main results.

Theorem 4.3. The mapping (8) is an isomorphism between B(∞) and T (∞).

Proof. First, notice that in the definition of ψ , the case π̄λ(b) = 0 is never encountered, unless b

itself is zero. Hence items (3) and (4) of Theorem 4.1 show that ψ commutes with the Kashiwara
operators in the strict sense.

Since, in both of the crystals B(∞) and T (∞), the function εi counts the number of times ẽi

can be applied to an element before reaching zero, strict commuting between ψ and ẽi implies
that ψ preserves εi .

Next, for b ∈ B(∞) with ψ(b) ∈ T (∞), let b = f̃ik · · · f̃i2 f̃i1u∞ and suppose π̄λ(b) is large.
We can check that

wt
(
ψ(b)

) = wt
(
π̄λ(b)

) = wt
(
π̄λ(b)

) − λ = wt(f̃ik · · · f̃i2 f̃i1uλ) − λ

= −(αi1 + αi2 + · · · + αik ) = wt(b),

showing preservation of weight by ψ . This, together with preservation of εi by ψ , implies preser-
vation of ϕi by ψ . Thus, so far, we have shown that ψ is a strict crystal morphism.

Now, item (2) of Theorem 4.1 shows that ψ is surjective. With any elements b and b′ of
B(∞) of different weights, their images under the map ψ are different because wt(ψ(b)) = wt(b)

and wt(ψ(b′)) = wt(b′), as was shown above. The images under ψ of two elements having
the same weight are also different since we know |B(∞)−ξ | = |T (λ)λ−ξ | for all sufficiently
large λ (see Corollary 4.4.5 of [5]). We have thus shown the mapping ψ to be injective and hence
bijective. �
Remark 4.4. For all of the symmetrizable Kac–Moody algebras, Kashiwara [5] has shown the
existence of an injective strict crystal morphism

φ : B(∞) → B(∞) ⊗ Bik ⊗ Bik−1 ⊗ · · · ⊗ Bi1,

where Bi = {bi(k) | k ∈ Z} are certain abstract crystal and where S = i1, i2, . . . , ik is any se-
quence of numbers in I . This is usually referred to as the Kashiwara embedding.

In the work [1], for each of the finite classical types, Cliff fixes an explicit choice of se-
quence S, and describes φ(b) for each b ∈ B(∞). This description is given in terms of number
of boxes appearing in a large π̄λ(b), where the mapping π̄λ is the one given in Theorem 4.1.
By carefully collecting these image points, an explicit combinatorial description for B(∞) was
obtained.
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Note that Cliff’s description of B(∞) involves large tableaux, whereas our result on B(∞) of
this section is given in terms of large tableaux. This difference was crucial in further develop-
ments [10–12] of this work.

5. An explicit description of B(∞)

To achieve our final goal of giving an explicit description of B(∞) in terms of tableaux,
it suffices to describe an explicit set of representatives for T (∞) = T L/ ∼ and translate the
various operators on T (∞) to that on the representative set.

Definition 5.1. A tableau T ∈ T L is marginally large, if for 1 � i � n, the number of i-boxes in
the ith row of T is greater than the number of all boxes in the (i + 1)th row by exactly one. In
particular, the nth row of T should contain one n-box.

It is clear that the set of marginally large tableaux forms a set of representatives for T (∞) ∼=
B(∞). In passing, we remark that the difference of numbers considered above does not have to
be one to obtain a representative set. It suffices to fix it to some positive number for each row.

We shall now describe this representative set more explicitly for each finite type. For each
case, we shall present a set of alphabets to be used inside the boxes forming the tableaux, together
with an ordering on the set. Next, a set of conditions that should be satisfied by the tableaux is
presented. The set of all tableaux subject to the given conditions will be the set of representatives
for T (∞) ∼= B(∞).

These descriptions were obtained by considering all conditions defining semi-standard
tableaux together with the condition marginally large. The trickiest part of the notion semi-
standard involves something called configuration, but the condition large ensures that no such
configuration can occur, and we obtain a vast simplification. The final description we give below
are thus much simpler than the definition of semi-standard tableaux.

After giving out the explicit representative sets, we shall describe the action of the Kashiwara
operators on these sets, in a manner which is applicable commonly to all cases. The definition
for operators wt, εi , and ϕi remain unchanged from those given by Eqs. (5)–(7).

Sections 5.1 to 5.6 can be seen as the main contribution of this paper.

5.1. An case

Alphabet:

J = {1 ≺ 2 ≺ · · · ≺ n ≺ n + 1}.

Conditions:

(1) Tableau consists of n rows.
(2) For 1 � i � n, the ith row of the leftmost column is an i-box.
(3) Box indices weakly increase (w.r.t. ≺) as we go to the right.
(4) For 1 � i � n, the number of i-boxes in the ith row is larger than the total number of boxes

appearing in the (i + 1)th row by exactly one.



J. Hong, H. Lee / Journal of Algebra 320 (2008) 3680–3693 3689
Example 5.2. The set of representatives for T (∞), in the A2 case, consists of all tableaux of the
following form. The unshaded part must exist, whereas the shaded part is optional with variable
size.

T = .

The element corresponding to the highest weight element u∞ is

T∞ = .

5.2. Bn case

Alphabet:

J = {1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄}.

Conditions:

(1) Tableau consists of n rows.
(2) For 1 � i � n, the ith row of the leftmost column is an i-box.
(3) Box indices weakly increase (w.r.t. ≺) as we go to the right.
(4) For 1 � i � n, the number of i-boxes in the ith row is larger than the total number of boxes

appearing in the (i + 1)th row by exactly one.
(5) All entries in the ith row are less than or equal to ī (w.r.t. ≺).
(6) Index 0 appears as an entry at most once in each row.

Example 5.3. The set of representatives for T (∞), in the B3 case, consists of all tableaux of the
following form. The unshaded part must exist, whereas the shaded part is optional with variable
size.

T = .

The element corresponding to highest weight element u∞ is

T∞ = .

5.3. Cn case

Alphabet:

J = {1 ≺ 2 ≺ · · · ≺ n ≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄}.
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Conditions:

(1) Tableau consists of n rows.
(2) For 1 � i � n, the ith row of the leftmost column is an i-box.
(3) Box indices weakly increase (w.r.t. ≺) as we go to the right.
(4) For 1 � i � n, the number of i-boxes in the ith row is larger than the total number of boxes

appearing in the (i + 1)th row by exactly one.
(5) All entries in the ith row are less than or equal to ī (w.r.t. ≺).

Example 5.4. The set of representatives for T (∞), in the C3 case, consists of all tableaux of the
following form. The unshaded part must exist, whereas the shaded part is optional with variable
size.

T =

The element corresponding to highest weight element u∞ is

T∞ = .

5.4. Dn+1 case

Alphabet:

J = {1 ≺ 2 ≺ · · · ≺ n ≺ n + 1
n + 1

≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄}.

Conditions:

(1) Tableau consists of n rows.
(2) For 1 � i � n, the ith row of the leftmost column is an i-box.
(3) Box indices weakly increase (w.r.t. ≺) as we go to the right.
(4) For 1 � i � n, the number of i-boxes in the ith row is larger than the total number of boxes

appearing in the (i + 1)th row by exactly one.
(5) All entries in the ith row are less than or equal to ī (w.r.t. ≺).
(6) n + 1 and n + 1 do not appear in the same row.

Example 5.5. The set of representatives for T (∞), in the D4 case, consists of all tableaux of the
following form. The unshaded part must exist, whereas the shaded part is optional with variable
size. Either one of 4 or 4̄ may take the place of each of the letters x, y, and z.

T = .
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The element corresponding to highest weight element u∞ is

T∞ = .

5.5. G2 case

Alphabet:

J = {1 ≺ 2 ≺ 3 ≺ 0 ≺ 3̄ ≺ 2̄ ≺ 1̄}.
Conditions:

(1) Tableau consists of 2 rows.
(2) For 1 � i � 2, the ith row of the leftmost column is an i-box.
(3) Box indices weakly increase (w.r.t. ≺) as we go to the right.
(4) For 1 � i � 2, the number of i-boxes in the ith row is larger than the total number of boxes

appearing in the (i + 1)th row by exactly one.
(5) Only 2 and 3 appear as indices in the second row.
(6) Index 0 appears as an entry at most once in the first row.

Example 5.6. The set of representatives for T (∞), in the G2 case, consists of all tableaux of the
following form. The unshaded part must exist, whereas the shaded part is optional with variable
size.

T = .

The element corresponding to highest weight element u∞ is

T∞ = .

5.6. Kashiwara operators

To apply f̃i to one of the representatives, we go through the following procedure.

(1) Apply f̃i to the tableau as usual. That is, write it in tensor product form, apply tensor product
rule, and assemble back into original tableau form.

(2) If the result is a large tableau, we are done. It is automatically marginally large.
(3) If the result is not large, then f̃i must have been applied to the rightmost i-box in the ith

row. Insert one column consisting of i rows to the left of the box f̃i acted upon. The added
column should have a k-box at the kth row for 1 � k � i.

To apply ẽi to one of the representatives, we go through the following procedure.

(1) Apply ẽi to the tableau as usual.
(2) If the result is zero or a marginally large tableau, we are done.
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Fig. 2. Crystal T (∞) for type B3.

Fig. 3. Crystal T (∞) for type G2.

(3) Otherwise, the result is large but not marginally large. The ẽi operator has acted on the box
sitting to the right of the rightmost i-box in the ith row. Remove the column containing the
changed box. It will be of i rows and have a k-box at the kth row for 1 � k � i.

Example 5.7. In Figs. 2 and 3, we illustrate the top part of crystal T (∞) for finite types B3
and G2. The dark shaded blocks are the ones f̃i has acted upon, and the light shadings show
columns inserted to preserve largeness.
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5.7. Comparison with a previous An result

Our result on An-type can be found in an earlier work [8]. There, the approach was very
different, relying on a work of Cliff [1], and the final result was written in a slightly different
form.

The only difference with the current result is that, there, infinitely many copies of our left-
most column were added to the left of each representative. This has the advantage of having the
Kashiwara operators look slightly more natural. We do not insert or remove columns to remain
marginally large, but push or pull infinite rows instead.

In the current work, we chose not to add these infinitely many columns, so as to keep our
representatives within the frames of Young tableaux. The choice between these two presentations
seems to be a matter of taste.
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