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We present results of a detailed study of the three-body B̄0 → Σc(2455)0 p̄π+ decay. A significant
enhancement of signal events is observed in the p̄π+ invariant mass distribution near 1.5 GeV/c2

that is consistent with the presence of an intermediate baryonic resonance N̄0, where N̄0 is the
N̄(1440)0 P11 or N̄(1535)0 S11 state, or an admixture of the two states. We measure the product B(B̄0 →
Σc(2455)0 N̄0) × B(N̄0 → p̄π+) = (0.80 ± 0.15(stat.) ± 0.14(syst.) ± 0.21) × 10−4, where the last error
is due to the uncertainty in B(Λ+

c → pK −π+). The significance of the signal is 6.1 standard deviations.
This analysis is based on a data sample of 357 fb−1, accumulated at the Υ (4S) resonance with the Belle
detector at the KEKB asymmetric-energy e+e− collider.

© 2008 Elsevier B.V. All rights reserved.
Various charmed baryonic B decays into four-, three- and two-
body final states have been reported [1–7], and the measured
branching fractions show clearly that the branching fraction in-
creases with the multiplicity of the final state [3,8]. To understand
this hierarchy, it is interesting to study decays of B̄0 → Λ+

c p̄π+π−
into three- and two-body final states. The branching fractions are
predicted from CKM matrix elements [9], while the form factors of
the decay vertices depend on the decay mechanism. Experimen-
tal studies provide stringent constraints on the theoretical models
[10–12].

In this report, we perform a detailed study of the intermediate
three-body decay B̄0 → Σc(2455)0 p̄π+ observed in the previous
analysis of B̄0 → Λ+

c p̄π+π− [1], using a data sample of 388 × 106

B B̄ events, corresponding to 357 fb−1 accumulated at the Υ (4S)

resonance with the Belle detector at the KEKB asymmetric-energy
e+e− collider [13].

The Belle detector is a large-solid-angle spectrometer based on
a 1.5 Tesla superconducting solenoid magnet. It consists of a sili-
con vertex detector (SVD) (a three-layer SVD for the first sample of
(152.0 ± 1.2) × 106 B B̄ events and a four-layer SVD for the latter
(235.8 ± 3.6) × 106 B B̄ events), a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters (ACC),
a barrel-like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) comprised of CsI
(Tl) crystals located inside the superconducting solenoid coil. An
iron flux return located outside the coil is instrumented to detect
K 0

L mesons and to identify muons (KLM). The detector is described
in detail elsewhere [14]. We simulate the detector response and
estimate the efficiency for signal reconstruction by Monte Carlo
simulation (MC). We use the EvtGen program [15] for signal event
generation and a GEANT-based [16] detector simulation program to
model the Belle detector response for the signal.

We first describe briefly the previous analysis of B̄0 →
Λ+

c p̄π+π− [1], We select B̄0 → Λ+
c p̄π+π− events by reconstruct-

ing Λ+
c → pK −π+ decays, using charged tracks reconstructed by

the SVD and CDC, and hadron identification information (such
as protons, kaons and pions) provided from the CDC dE/dx, TOF
and ACC (PID) [17], and ECL and KLM information to veto elec-
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Fig. 1. The mass distributions of (a) Λ+
c π+ and (b) Λ+

c π− in B̄0 → Λ+
c p̄π+π− . The

points with error bars show the mass distribution for the events in the B signal
box, and the shaded histogram indicates that for the background. The solid and
dashed curves represent the signal and the background, respectively, obtained from
a simultaneous binned likelihood fit.

tron and μ tracks. Charge-conjugate modes are implicitly included
throughout this Letter unless noted otherwise. After the event se-
lection, we fit the �E distribution for the B candidate events with
5.27 GeV/c2 < Mbc < 5.29 GeV/c2, with a double Gaussian fixed to
the signal MC shape (σcore = 7 MeV/c2, σtail = 16 MeV/c2) plus a
linear background. The variable �E = E B − Ebeam is the difference
between the reconstructed B meson energy (E B ) and the beam
energy (Ebeam) evaluated in the center-of-mass system (CMS),

while Mbc =
√

E2
beam − P 2

B is the beam-energy-constrained B me-

son mass and P B is the momentum of the B meson also evaluated
in the CMS. We obtain a B signal of 1400 ± 49 events for B̄0 →
Λ+

c p̄π+π− . Fig. 1 shows the Λ+
c π+ and Λ+

c π− mass distribu-
tions for the events in the B signal region |�E| < 0.03 GeV (±4σ )
and 5.27 GeV/c2 < Mbc < 5.29 GeV/c2 (±4σ ). We focus our dis-
cussion on the Σc(2455)++ and Σc(2455)0 resonances clearly
observed in Fig. 1; (182 ± 15) events for B̄0 → Σc(2455)++ p̄π−
and (122 ± 14) events for B̄0 → Σc(2455)0 p̄π+ , corresponding to
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Fig. 2. (a) Dalitz plot and (b) M2(p̄π−) distribution for B̄0 → Σ++
c p̄π− . (c) Dalitz plot and (d) M2(p̄π+) distribution for B̄0 → Σ0

c p̄π+ . Points with error bars indicate the
data, and histograms are the decays simulated according to three-body phase space.
branching fractions of (2.1 ± 0.2(stat.) ± 0.3(syst.) ± 0.5) × 10−4

and (1.4 ± 0.2(stat.) ± 0.2(syst.) ± 0.4) × 10−4, respectively. Here-
after, we denote Σc(2455) as Σc .

Fig. 2 shows (a) the Dalitz plot and (b) the M2(p̄π−) distri-
bution for the B̄0 → Σ++

c p̄π− events, and (c) the Dalitz plot and
(d) the M2(p̄π+) distribution for the B̄0 → Σ0

c p̄π+ events. Here
we require the Σc candidates satisfy the invariant mass require-
ment 2.447 GeV/c2 < M(Λ+

c π±) < 2.461 GeV/c2 (±2σ ). We find
that the M2(p̄π−) distribution for B̄0 → Σ++

c p̄π− is consistent
with three-body phase space, while the M2(p̄π+) distribution for
B̄0 → Σ0

c p̄π+ has a significant peak. In what follows, we present
a detailed study of the B̄0 → Σ0

c p̄π+ decay.
Fig. 3 shows the �E distribution for the B̄0 → Σ0

c p̄π+ events,
which are selected from the B̄0 → Λ+

c p̄π+π− sample with the
additional requirement that the Λ+

c π− mass be consistent with
the Σ0

c . The curves show fits to the data with a double Gaus-
sian function with shape parameters fixed to the values from sig-
nal MC and a linear background. We obtain a B signal yield of
(102 ± 11) events and a background of (17 ± 3) events. The sig-
nal reduction of 16% is consistent with the MC estimation of the
effect due to the Σ0

c mass requirement. We estimate a non-Σ0
c

background of (8 ± 4) events from a fit to the �E distribution in
the Σc mass sideband 2.435 GeV/c2 < M(Λ+

c π−) < 2.442 GeV/c2

and 2.466 GeV/c2 < M(Λ+
c π−) < 2.473 GeV/c2. This can be com-

pared with (2.5 ± 0.5) events estimated from MC simulation of
B̄0 → Λ+

c p̄π+π− decay with four-body phase space normalized
to the total of 1400 events [1]. Here the error is due to the statis-
tics of the simulation. We do not take into account the non-Σ0

c
background in the analysis that follows.

Fig. 4 shows (a) the p̄π+ mass, (b) cos θp and (c) Σ0
c π+ mass

distributions for the selected B̄0 → Σ0
c p̄π+ events. Here, cos θp

is the cosine of the angle between the p̄ momentum and the di-
rection opposite to the B momentum in the p̄π+ rest frame. The
shaded histograms indicate the distributions for the background
discussed above. The background shapes are obtained by fits to the
data in the sideband region |�E| < 0.1 GeV and 5.26 GeV/c2 <

Mbc < 5.29 GeV/c2 outside the B signal region, and the yield is
fixed to 17 events. Here, the M(p̄π+) distribution is parameterized
by the function Pbkg(M) = c

√
tmintmax(1 + c1tmin)(1 + c2tmax) with
Fig. 3. �E distribution for the B̄0 → Λ+
c p̄π+π− events in the Mbc signal region

with 2.447 GeV/c2 < M(Λ+
c π±) < 2.461 GeV/c2. The curves indicate the fit with a

double Gaussian for the signal and a linear background.

tmin = (M2 − M2
min) and tmax = (M2

max − M2). Mmin and Mmax are
the minimum and maximum masses. The variable c is a normal-
ization constant, and c1 and c2 are shape parameters. The cos θp

distribution is modeled by a second-order Chebyshev polynomial.
We find a significant structure in the p̄π+ mass distribution,

and a forward peak in the cos θp distribution, and a low mass
Σ0

c π+ enhancement, denoted as X+
Σ0π+ . The p̄π+ mass structure

has a mass near 1.5 GeV/c2 and a width of about 0.3 GeV. We
denote it as N̄0, and investigate its characteristics in detail. In or-
der to describe the p̄π+ mass structure, which is not explained
by a simple phase space non-resonant B̄0 → Σ0

c p̄π+ decay, we
consider an intermediate two-body decay B̄0 → Σ0

c N̄0 with a res-
onant state N̄0 → p̄π+ . However, we still cannot reproduce the
forward cos θp peak and the Σ0

c π+ low mass structure with these
two modes only. Therefore, we introduce one additional mode
B̄0 → X+

Σ0
c π+ p̄ to account for the observed features. As the low

mass Σ0
c π+ structure is close to threshold, it produces a forward

peak in the cos θp distribution. In the low Σ0
c π+ mass region,

we search for known Σ0
c π+ resonant states [18] in finer mass

bins, but find no signals. So far, there is no good candidate to
interpret this broad structure as a resonance. Therefore we as-
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Fig. 4. Data distributions for (a) M(p̄π+), (b) cos θp and (c) M(Σ0
c π+). The shaded

histograms indicate the normalized background.

sume that there is a threshold mass enhancement with a mass of
2800 MeV/c2 and a width of 350 MeV obtained from a fit to the
Σ0

c π+ mass distribution using a relativistic Breit–Wigner (S-wave)
function.

Fig. 5 compares binned Probability Density Functions (PDF) of
the MC simulated events for the three assumed decay modes. The
histograms show the PDFs for (a) the M(p̄π+), (b) cos θp and
(c) the M(Σ0

c π+) distributions. The solid histograms show the dis-
tributions of the mode B̄0 → Σ0

c N̄0, assuming a P -wave relativistic
Breit–Wigner amplitude with a mass of 1530 MeV/c2 and a width
of 340 MeV.

To determine the N0 mass, width and the yields of the three
modes, we perform a maximum likelihood fit to the observed
M(p̄π+) and cos θp distributions shown in Fig. 4. These two dis-
tributions are sufficient to fully describe the three-body decay
B̄0 → Σ0

c p̄π+ . To model the observed distribution, we construct
a function F (M(p̄π+), cos θp) from the sum of PDFs of the three
decay modes and the background.

F = ν1 P B̄0→Σ0
c N̄0 + ν2 P B̄0→(Σ0

c π+)X p̄ + ν3 P B̄0→Σ0
c p̄π+ + ν4 Pbkg,

where Pi denotes a product of the normalized PDFs, Q i(M(p̄π+))

(20 bins) and Ri(cos θp) (16 bins), and νi stands for the yield
of the ith mode. We plot Q (M(p̄π+)) and R(cos θp) distribu-
tions from the detector MC simulation for B̄0 → X+

Σ0
c π+ p̄ and

B̄0 → Σ0
c p̄π+ modes, as shown in Figs. 5(a) and (b), respectively.

For the B̄0 → Σ0
c N̄0 mode, we use the MC simulated R(cos θp) dis-
Fig. 5. Binned probability distributions of (a) M(p̄π+), (b) cos θp and (c) M(Σ0
c π+),

where we compare MC simulated distributions for B̄0 → Σ0
c N̄0 (solid lines), B̄0 →

Σ0
c p̄π+ (dashed lines), and B̄0 → X+

Σ0
c π+ p̄ (dotted lines). We make a simultaneous

fit to the distributions in (a) and (b).

tribution and a Breit–Wigner for Q (M(p̄π+)) with the N̄0 mass
and width (mR , Γ ) as free parameters. A small systematic error
due to the use of the Q (M(p̄π+)) distribution without the MC
detector simulation is discussed later. We use a P -wave (S-wave)
relativistic Breit–Wigner shape.

BWP
(
m2) = p2

(m2 − m2
R)2 + m2

RΓ 2(m)

[
B(p)

B(p0)

]2

,

BWS
(
m2) = mRΓ (m)

[(m2 − mR
2)2 + mR

2Γ 2(m)] ,

Γ (m) =
(

p

p0

)2L+1(mR

m

)
Γ0

[
B(p)

B(p0)

]2

.

Here m is the mass of the p̄π+ system, and mR is the nominal
N̄0 mass, and Γ (m) is the width. The variable p is the momen-
tum of a daughter particle in the N̄0 rest frame, and p0 is that for
the nominal N̄0 mass. B(p) = 1/

√
1 + (Rp)2 is the Blatt–Weisskopf

form factor [19]. The value R , called the centrifugal barrier pene-
tration factor, is set to 3 (GeV/c)−1 for a P -wave, and is zero for
an S-wave. L indicates the orbital angular momentum. For the S-
wave Breit–Wigner amplitude [20] we use Γ (m) with m = mR and
L = 0 to parameterize the smooth shape near the mass threshold.
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Table 1
Summary of the simultaneous fits to the M(p̄π+) and cos θp̄ distributions with
the three decay modes B̄0 → Σ0

c N̄0, B̄0 → Σ0
c p̄π+ and B̄0 → X+

Σ0
c π+ p̄. (a)—(d)

represent fits with various assumed contributions. Here, we show the fit results
with the P -wave assumption, as we find no significant difference from the S-wave
assumption.

Decay mode (a) (b) (c) (d) Signif.

B̄0 → Σ0
c N̄0 free free free 0 7.0

B̄0 → X+
Σ0

c π+ p̄ free free 0 free 4.6

B̄0 → Σ0
c p̄π+ free 0 free free 0.8

χ2/ndf 31.7/31 32.4/32 52.8/32 88.4/34

We define an extended unbinned likelihood with coarse bins,
and carry out a maximum likelihood fit.

L = e−(ν1+ν2+ν3+ν4)

N!
∏

F (mR ,Γ, ν1, ν2, ν3, ν4).

We fit the N̄0 mass and width (mR ,Γ ) and the yields ν1, ν2 and
ν3 as free parameters, while the background yield ν4 is fixed to 17
events. Table 1 summarizes the fit results with various model as-
sumptions. We calculate the statistical significance from the quan-
tity −2 ln(L0/Lmax), where Lmax is the maximum likelihood re-
turned from the fit, and L0 is the likelihood with the signal yield
fixed to zero, and taking into account the reduction of the degrees
of freedom. We obtain a significance of 7.0σ for the B̄0 → Σ0

c N̄0

contribution. The signal in the mode B̄0 → X+
Σ0

c π+ p̄ has a sta-

tistical significance of 4.6σ , while that for B̄0 → Σ0
c p̄π+ is not

significant (0.8σ ). Here, we calculate the goodness-of-fit from the
likelihood ratio λ [18],

χ2 ≈ −2 ln λ = 2
36∑
j=1

[
F j(mR ,Γ, ν1, ν2, ν3, ν4) − F j

+ F j ln

(
F j

F j(mR ,Γ, ν1, ν2, ν3, ν4)

)]
,

where F j and F j are the observed and the fitted yields, respec-
tively, in the jth bin: j = 1,20 for 20 bins in Q (M(p̄π+)) and
j = 21,36 for 16 bins in R(cos θp).

The small contribution (ν3 = −11 ± 10) can be understood from
Fig. 5. The mode B̄0 → Σ0

c p̄π+ has a broad p̄π+ mass distribution
similar to B̄0 → X+

Σ0
c π+ p̄, while it does not reproduce the forward

cos θp̄ peak. On the other hand, the B̄0 → Σ0
c N̄0 mode can re-

produce the p̄π+ mass bump structure and the uniform cos θp̄
distribution. Hence, we fix ν3 = 0 in the subsequent fit and the
uncertainty of this contribution is taken into account in the sys-
tematic error.

Fig. 6 shows the results of a fit to (a) the M(p̄π+) and (b)
cos θp̄ distributions under the P -wave assumption. The data are the
points with error bars. The curves are the contributions from B̄0 →
Σ0

c N̄0 (dashed), B̄0 → X+
Σ0

c π+ p̄ (dotted), the background (shaded)

and their sum (solid). We obtain yields of (70±11) and (32±9) for
the modes B̄0 → Σ0

c N̄0 and B̄0 → X+
Σ0

c π+ p̄, respectively. Fig. 6(c)

shows that the M(Σ0
c π+) distribution is consistently represented

by the fitted parameters even though the M(Σ0
c π+) distribution is

not included in the fit.
Table 2 compares the fit results for the N̄0 yield, mass and

width with P -wave and S-wave assumptions. The fitted yields
are found to be comparable with each other, while the mass and
width show a systematic difference. We estimate systematic errors
by varying the fitted yields by ±σ for the background (±3) and
B̄0 → Σ0

c p̄π+ (±11), and by taking into account the uncertainty
in modeling the low mass X+

Σ0π+ structure as discussed in the fol-
lowing.
Fig. 6. Simultaneous fit to (a) M(p̄π+) and (b) cos θp distributions with a P -wave
Breit–Wigner. The points with error bars are the data, and the curves are the
contributions from B̄0 → Σ0

c N̄0 (dashed), B̄0 → X+
Σ0

c π+ p̄ (dotted), the background

(shaded) and their sum (solid). (c) M(Σ0
c π+) distribution, where the curves repre-

sent their contributions obtained by the fit to (a) and (b).

Table 2
The fitted N̄0 mass and width with relativistic S-wave and P -wave Breit–Wigners.
The first errors are statistical and the second are systematic including the uncer-
tainties in the yields of B̄0 → Σ0

c p̄π+ and the background, and the assumption of
a low mass X+

Σ0π+ structure.

Item Yield Mass Γ χ2/ndf

Events MeV/c2 MeV
S-wave 71 ± 11 ± 10 1473 ± 31 ± 2 315 ± 72 ± 53 32.9/32
P -wave 70 ± 11 ± 10 1516 ± 29 ± 14 365 ± 97 ± 90 32.4/32
Σ0

c π+ sys. ±5 ±8 ±50

The simulated R(cos θp) distribution for B̄0 → Σ0
c N̄0 is almost

flat, as the generated cos θp distribution is uniform for P - and S-
waves. However, the R(cos θp) distribution is slightly affected by
the assumed BW parameters due to efficiency changes in cos θp .
We study the systematics of the fitted N̄0 mass and width due to
the assumption on R(cos θp), by changing the mass and the width
in EvtGen in ranges between 1400 MeV/c2 and 1620 MeV/c2, and
between 200 MeV and 450 MeV, respectively. We find variations
of ±1 MeV/c2 in the fitted mass and ±5 MeV/c2 in the width.
We also study the systematic errors due to the parameterization
of the (Σ0

c π+) low mass structure. Instead of assuming a model
with a single Breit–Wigner X+

0 + , we consider a combination of

Σ π
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Table 3
Results of the fits using the parameters of known N(p̄π+) resonances [18].

States Mass
MeV/c2

Γ

MeV
Σ0

c N̄0

events
(Σ0

c π+)X p̄
events

χ2/ndf

N(1440) P11 1440 300 65 ± 10 39 ± 9 37.6/34
N(1520) D13 1520 115 46 ± 9 53 ± 10 53.5/34
N(1535) S11 1535 150 58 ± 10 43 ± 10 40.1/34
N(1650) S11 1655 165 44 ± 10 55 ± 11 74.2/34

known states Λ∗
c → Σc(2455)0π+: Λ+

c (2625) (Γtotal < 1.9 MeV)
[18], Λ+

c (2765) → Λ+
c π+π− (Γ ∼ 50 MeV/c2), Λ+

c (2880) (Γ =
5.8 ± 1.3 MeV), and Λ+

c (2940) (Γ = 13+28
−9 MeV). Here we use the

partial widths for Σ0
c π+ decay of the last three states given by

Ref. [21]. We make a fit to the N̄0 mass, width and the yield
of B̄0 → Σ0

c N̄0 with the individual Λ∗+
c yields floated and with

the background fixed as mentioned previously. We obtain N(p̄π+)

mass and width values in good agreement with those obtained by
the fit with the B̄0 → X+

Σ0
c π+ p̄ model.

The branching fraction product B(B̄0 → Σ0
c N̄0)B(N̄0 → p̄π+)

is calculated as Ns/(NB B̄εCFBΛ+
c →pK −π+ ) assuming NB+ B− =

NB0 B̄0 . For Ns we use the P -wave yield in Table 2 as it gives
a better confidence level than an S-wave fit. We use NB B̄ =
(387.7 ± 4.8) × 106 for the integrated luminosity of 357 fb−1, and
the signal efficiency ε = (5.18 ± 0.13)% from the MC simulation
of B̄0 → Σ0

c N̄0. We apply a correction factor CF = (86.7 ± 7.9)%,
which takes into account the systematic difference in particle
identification (PID) between data and MC simulation. Correction
factors for proton, kaon and pion tracks are determined from
a comparison of data and MC simulation for large samples of
D∗+ → D0(Kπ)π+ and Λ → pπ− decays. The overall PID cor-
rection factor is then calculated as a linear sum over the six tracks
for the selected B signal events. We assign an error of 7.2% due
to track reconstruction efficiency for the six charged tracks in the
final state. The systematic error on the branching fraction aris-
ing from a quadratic sum of the uncertainties on NB B̄ , the signal
efficiency ε , and particle identification CF and track reconstruc-
tion, is found to be 12%. Including the systematic error in the
B̄0 → Σ0

c N̄0 yield, we arrive at the total systematic uncertainty
in the branching fraction of 17.6 %. Thus, we obtain the branch-
ing fraction product of B(B̄0 → Σc(2455)0 N̄0)B(N̄0 → p̄π+) =
(0.80 ± 0.15(stat.) ± 0.14(syst.) ± 0.21) × 10−4, and a significance
of 6.1 standard deviations including systematics. The last error is
due to an uncertainty in B(Λ+

c → pK −π+) = (5.0 ± 1.3)% [18].
Next, we investigate goodness-of-fits with the masses and

widths fixed to representative values for N(p̄π+) states [18], and
by floating the yields for B̄0 → Σ0

c N̄0 and B̄0 → X+
Σ0

c π+ p̄. The fit

results are summarized in Table 3. Here L2I,2S stands for a reso-
nance of isospin I and spin S with an orbital angular momentum
of L = S, P and D for L = 0, 1 and 2, respectively. We exclude Δ

states such as Δ(1600)P33 and Δ(1620)S31, as we have no signif-
icant structure in the p̄π− mass distribution in B̄0 → Σ++

c p̄π−
decay. The fits favor N(1440)P11 and N(1535)S11, while they dis-
favor N(1520)D13 and N(1650)S11. In the decay B̄0 → Σ0

c N̄0 (as-
suming S(Σ0

c ) = 1
2 ), one expects a uniform cos θp distribution for

the N(1440)P11 state, N(1535)S11 state and N(1650)S11 state, and
a (1 + 3 cos2 θ) distribution for the N(1520)D13 state. As shown
in Fig. 6(b), the distribution has a peak only in the forward direc-
tion, which is well reproduced by the mode B̄0 → X+

Σ0
c π+ p̄. The

remaining uniform distribution is due to B̄0 → Σ0
c N̄0. Thus, the

observed cos θp̄ distribution is consistent with both, N̄(1440)P11

and N̄(1535)S11 states, with a preference for the former due to
the width of the state.

Finally, we try to perform a fit with an incoherent sum of the
two Breit–Wigners, as we find that the fit results favor N(1440)P11
Fig. 7. Simultaneous fit to the M(p̄π+) and cos θp̄ distributions with the N(1440)P11

and N(1535)S11 Breit–Wigners. The histograms indicate the contributions from the
P11 (solid) and S11 (dashed) states, B̄0 → X+

Σ0
c π+ p̄ (dotted), and the background

(shaded).

and N(1535)S11, and both give a distribution uniform in cos θp .
Fig. 7 shows the result of a fit to (a) the M(p̄π+) and (b) cos θp̄
distributions, where the N masses and widths are fixed to the
values in Ref. [18], and the individual yields are floated. The his-
tograms show the contributions from N(1440) (solid), N(1535)

(dashed) states, B̄0 → X+
Σ0

c π+ p̄ (dotted), and the background

(shaded). The yields are (37±12) for the N(1440) and (30±11) for
the N(1535), while the B̄0 → X+

Σ0
c π+ p̄ yield is (35 ± 9). We obtain

the goodness of fit χ2/ndf = 30.3/33, which indicates a slight pref-
erence (by 2.7σ ) for a mixed state of N(1440) and N(1535) [18].

In summary, we study the three-body decay B̄0 →
Σc(2455)0 p̄π+ with the same data set used for the analysis of
the four-body decay B̄0 → Λ+

c p̄π+π− [1]. We observe a broad
p̄π+ mass structure near 1.5 GeV/c2, and a uniform cos θp̄ dis-
tribution with a sharp forward peak. To explain these structures,
we find that contributions from an intermediate two-body decay
B̄0 → Σ0

c N̄0, non-resonant three-body decay B̄0 → Σ0
c p̄π+ and a

low mass structure near threshold B̄0 → X+
Σ0

c π+ p̄ are needed. We

perform a simultaneous fit to the M(p̄π+) and cos θp̄ distributions
with those three modes, and determine the yield and the relativis-
tic Breit–Wigner parameters of the N̄0 state for B̄0 → Σ0

c N̄0. We
obtain the branching fraction product of B(B̄0 → Σc(2455)0 N̄0)×
B(N̄0 → p̄π+) = (0.80 ± 0.15(stat.) ± 0.14(syst.) ± 0.21) × 10−4



Belle Collaboration / Physics Letters B 669 (2008) 287–293 293
with a signal significance of 6.1 standard deviations includ-
ing systematics. The fitted mass and width are consistent with
N̄(1440)P11 and N̄(1535)S11; both states also produce a uniform
helicity distribution that is in good agreement with the data. The
structure is also consistent with an interpretation in terms of an
admixture of these two states.
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