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Multiple Bases of Human Intelligence Revealed by Cortical
Thickness and Neural Activation
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We hypothesized thatindividual differences in intelligence (Spearman’s g) are supported by multiple brain regions, and in particular that
fluid ( gF) and crystallized ( gC) components of intelligence are related to brain function and structure with a distinct profile of associa-
tion across brain regions. In 225 healthy young adults scanned with structural and functional magnetic resonance imaging sequences,
regions of interest (ROIs) were defined on the basis of a correlation between gand either brain structure or brain function. In these ROIs,
gC was more strongly related to structure (cortical thickness) than function, whereas gF was more strongly related to function (blood
oxygenation level-dependent signal during reasoning) than structure. We further validated this finding by generating a neurometric
prediction model of intelligence quotient (IQ) that explained 50% of variance in IQ in an independent sample. The data compel a nuanced
view of the neurobiology of intelligence, providing the most persuasive evidence to date for theories emphasizing multiple distributed

brain regions differing in function.
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Introduction

People’s performance on a given task tends to covary positively
with their performance on a wide variety of measures. Spearman
(1904) proposed that this positive manifold was attributable to a
single underlying cause, general mental ability ( ¢), an interpre-
tation that has proven to be much more difficult to establish than
the correlations themselves (Chabris, 2006). To test Spearman’s
hypothesis, Duncan et al. (2000) used positron emission tomog-
raphy to image 13 subjects performing relatively difficult, high-g
tasks and relatively easy, low-g tasks. Spearman’s unitary view of
the mechanisms of g was taken to predict a single locus of activa-
tion, whereas the competing, nonunitary view of Thurstone
(1940) was taken to predict distributed activation. Across three
difficult tasks, compared with a control task, only lateral prefron-
tal cortex (PFC) was activated in all three comparisons. Despite
the conceptual elegance of this finding, subsequent studies assess-
ing individual differences in intelligence have implicated a much
wider network of regions, using several techniques (Gray and
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Thompson, 2004), including functional imaging in tandem with
mediation analyses (Gray et al., 2003) and the method of corre-
lated vectors (Lee et al., 2006), studies of lesion patients (Tranel et
al., 2008), and multivariate molecular genetic measures (Kovas
and Plomin, 2006). A critical but unasked question is whether
different regions contribute to g as functionally distinct units,
each making some unique contribution, or whether the regions
are all part of a single functionally unified (but spatially distrib-
uted) network.

One way to test for separable neural contributions to g is to
investigate differences at a lower level in the ability hierarchy.
Cattell (1943) distinguished between general crystallized ( gC)
and fluid ( gF) intelligence when assessing the neural basis of
intelligence. gC, sometimes described as verbal ability, is more
dependent on accumulated knowledge in long-term storage, in-
cluding semantic memory. gF refers to reasoning ability, and is
known to depend on working memory (Engle et al., 1999). Al-
though ¢C and gF are typically correlated and can be considered
subfactors of g (Jensen, 1998), they are conceptually and empir-
ically separable. For instance, gC continues to increase over the
lifespan, but gF peaks in early adulthood and then declines (Craik
and Bialystok, 2006). Furthermore, at the neural level, lesion
studies demonstrated that patients with anterior temporal dam-
ages perform poorly on tests of semantic knowledge, whereas
prefrontal patients typically show profound deficits in solving
diverse reasoning tasks (Duncan et al., 1996; Waltz et al., 1999).

To show that multiple brain areas contribute in distinct ways
to individual differences in g, we tested the more specific hypoth-



10324 - J. Neurosci., October 8, 2008 - 28(41):10323-10329

esis that g can be fractionated into separable biological substrates
for ¢gC and gF. Although this could be tested in many ways, we
focused on differences in brain structure and function, because
both have been correlated with cognitive abilities: vocabulary
learning induces changes in gray matter density (Lee et al., 2007),
and reasoning ability covaries with activation level (Lee et al.,
2006). Our results revealed that in g-related regions, gC and gF
relate differentially to gray matter thickness and functional brain
activity. Thus, an additional goal was to probe the robustness of
our findings by generating and validating a neurometric intelli-
gence quotient (IQ) model of g, i.e., to predict g prospectively
from brain structure and function. By investigating neural corre-
lates of intelligence at both the structural and functional level, our
work goes beyond extant neuroimaging studies of human intel-
ligence, which have sought to correlate g, gC, or gF with either
structural (Gong et al., 2005; Shaw et al., 2006) or functional
(Gray et al., 2003; Lee et al., 2006) measures, but not both.

Materials and Methods

Participants. Protocols were approved by the relevant institutional review
boards (Seoul National University, Catholic University of Korea), and
written informed consent was obtained from participants. We adminis-
tered two reliable and valid intelligence tests, the Wechsler Adult Intelli-
gence Scale-Revised (WAIS) and the Raven’s Advanced Progressive Ma-
trices Set II (RPM), to assess psychometric IQ and fluid reasoning ability,
respectively (Carroll, 1993), in 408 healthy young adults. A subset of
participants were selected for the imaging experiments (1 = 225) to
provide an approximately even distribution within a broad range of
WAIS full-scale 1Q (FSIQ) (81 = IQ = 150): 122 male/103 female; IQ
(mean = SD) = 119 = 15; RPM score = 28.1 = 6.0 (for further infor-
mation about subjects, see supplemental Methods and supplemental Ta-
ble 1, available at www.jneurosci.org as supplemental material). They
were sampled within a narrow age range of young adults (20.9 * 2.9
years), to avoid developmental or aging periods in which the brain
changes radically (Sowell et al., 2003; Shaw et al., 2006).

Magnetic resonance imaging acquisition and analysis. One hundred
sixty-four and one hundred nine subjects were scanned for anatomical
and functional magnetic resonance imaging (MRI) data, respectively,
and forty-eight of these subjects contributed both structural and func-
tional samples. Details of the imaging acquisition and the functional
MRI tasks can be found in supplemental Methods (available at www.
jneurosci.org as supplemental material). From the high-resolution, T1-
weighted brain scans, triangular mesh models of white and gray matter
surfaces were automatically reconstructed in native space by the CLASP
(constrained Laplacian-based automated segmentation with proximi-
ties) algorithm. Cortical thickness was measured at each of 81,920 points
throughout the cerebral cortex, by calculating the euclidean distance
between linked vertices on the inner and outer cortical surface meshes.
The statistical parameters for cortical activation were acquired using
the statistical parametric mapping software (SPM2). Further analysis
methods can be found in supplemental Methods (available at www.
jneurosci.org as supplemental material).

Neurometric IQ model. We used a two-stage approach to developing a
model for estimating IQ scores from brain images. We first specified a
prediction model, and then tested it in a statistically independent sample
to avoid conceptual circularity. To specify a prediction model, we used
structural images from 116 participants with high-resolution structural
MR images, from which we estimated brain volume and the thickness of
cortical gray matter. We used functional data from 61 different partici-
pants with functional MR images acquired as they performed reasoning
and control tasks. Brain volume (gray matter + white matter) was a
potential predictor a priori. Regions of interest (ROIs) were defined en-
tirely on the basis of the dataset for model specification (see Fig. 4A;
supplemental Fig. 5, available at www.jneurosci.org as supplemental ma-
terial). To reduce redundancy (collinearity), we averaged ROIs into a
single predictor if they were significantly correlated with each other ( p <
0.001):s; = (ATC + OTC + MTC)/3,s, = LPC, and f = (ACC + LPFC
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+ RPFC + LPPC + RPPC)/5, where ATC is anterior temporal cortex,
OTC is opercular temporal cortex, MTC is medial temporal cortex, LPC
is lateral parietal cortex, ACC is anterior cingulate cortex, LPFC is left
prefrontal cortex, RPFC is right prefrontal cortex, LPPC is left posterior
parietal cortex, and RPPC is right posterior parietal cortex. During the
model specification stage, we did not have datasets with both structural
and functional images, and so we were forced to obtain the constants
from two separate stepwise regressions: IQ on volume (vol), s, s,, and
vol X sex (structural sample), and IQ on f (functional sample). All
predictor-by-sex interaction terms except vol X sex did not explain vari-
ance in IQ. Sex was coded female = 0, male = 1; and f was standardized.

The regression equation from the structural sample (structural IQ
model; R = 0.64) was given as follows: IQ = 25 + 0.000045vol + 23s, —
19s, — 0.0000044vol X sex. The regression equation from the functional
sample (functional IQ model; R = 0.55) was given as follows: IQ = 118 +
9.2f. Finally, the neurometric IQ model combining the two equations
above was written in general form (with free parameters « and five 8
parameters) as follows: IQ = a + B, X vol + B, X's; + B3 X5, + B, X
vol X sex + B5 X f.

To test the model, we acquired IQ, structural, and functional data
from 48 independent participants from the same population (see Fig.
4 B). This sample for test equaled the samples for model specification in
both FSIQ and RPM scores (all p values > 0.65, one-way ANOVA).
Values were extracted from the ROIs and averaged into s,, s,, and f. We
estimated IQ in two ways, first by fitting the model using regression in the
test sample (to fix the o and B parameters in the equation above) and
using the strict model (no free parameters, in the next equation, below).
The strict model, using constants derived from the modeling datasets,
was written as follows: IQ = 25 + 0.000045vol + 23s, — 19s, —
0.0000044vol X sex + 9.2f.

Results

Intelligence-related regions: structural versus

functional correlates

We first tested for associations of ¢ with brain structure and func-
tion. As expected, brain volume correlated with IQ (r = 0.35; p <
0.001). The thickness of the gray matter of the cerebral cortex was
determined using an advanced, automated surface extraction
technique (Kim et al., 2005) in a large sample (n = 164). Across
brain regions, there were substantial fluctuations in the correla-
tion between cortical gray matter thickness and WAIS FSIQ ( p <
0.05) (Fig. 1A). The correlation map with FSIQ revealed a strik-
ing asymmetry in favor of the left hemisphere (Fig. 1C,D). All
positive correlates ( p < 0.001), including the ATC, OTC, and
inferior temporal cortex (ITC), converged on the temporal lobe,
primarily on the left side and its adjacent areas, whereas a nega-
tive correlation was found only in the lateral parietal cortex ( p <
0.001). Given our intentionally narrow age range, it is not sur-
prising that age was not associated with the cortical thickness
throughout the cerebrum ( p < 0.001).

Using the same statistical criteria, we investigated the relation-
ship between intellectual ability and neural activity of the cortical
network during a fluid reasoning task (n = 109; see Materials and
Methods). There were widely distributed positive correlations
throughout the entire brain and no significant negative correlates
(Fig. 1B). In contrast to the structural correlates, the functional
correlates had no clear lateralization (Fig. 1E,F). With RPM
score as a covariate, the overall patterns of both the structural and
the functional maps were generally similar to those derived from
WAISIQ (supplemental Fig. 1, supplemental Table 2, available at
www.jneurosci.org as supplemental material). In a comparison
between the structural maps, RPM scores tended to be correlated
more strongly with cortical thickness in the lateral and medial
prefrontal regions than were WAIS scores (p < 0.05). These
results suggest that the prefrontal cortex’s structure and function
both may support gF rather than gC.
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Figure 1.  Structural and functional correlates of intelligence and their contrasting laterality. 4, Correlations between cortical

gray matter thickness and WAIS FSIQ. The color bar indicates the statistical significance of the correlations (left, negative corre-
lation; right, positive correlation). Lines point to ROls with high statistical significance ( p << 0.001 uncorrected): ATC, OTC, ITC,
MTC, and LPC. B, Correlations between cortical activation level during reasoning tasks and WAIS FSIQ. The color bar indicates the
statistical significance of the correlations. Lines point to ROIs with high statistical significance ( p << 0.001 uncorrected): ACC, PFC,
and PPC. €, D, Hemispheric (C) and lobar (D) area sizes of the structural correlates manifesting left dominance. E, F, Hemispheric
(E) and lobar (F) volume sizes of the functional correlates demonstrating bilateral symmetry. The sizes of the cortical areas (C, D)
and the activation clusters (E, F) were defined using the correlations of statistical significance ( p << 0.001 uncorrected). L, Left;
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Cortical thickness and functional
activation selectively explaining gC

and gF

We hypothesized that the structural and
functional correlates reflect different com-
ponents of g. Specifically, the left lateral-
ization suggests that the structural corre-
lates may be more strongly associated with
verbal information processing, namely gC.
We tested for a difference between struc-
tural and functional neural correlates of
intelligence in their relation to hierarchical
components of intelligence, which com-
prised superordinate (g) and subordi-
nates ( ¢gC and gF), derived by factor anal-
ysis of the RPM and the WAIS subtest
scores (see Materials and Methods). g ex-
hibited the highest association with both
structural and functional correlates of in-
telligence (Fig. 2). Gray matter thickness
within the target ROIs was more strongly
associated with ¢C than gF (Fig. 2A;
supplemental Fig. 3, available at www.
jneurosci.org as supplemental material).
In contrast, neural activity within each
node of the frontoparietal network (the
functional ROIs) better reflected gF than
¢C (Fig. 2C; supplemental Fig. 4, available
at www.jneurosci.org as supplemental ma-
terial). Further, multiple linear regression

R, right; Fro, frontal; Tem, temporal; Ins, insular; Par, parietal; Occ, occipital lobes.
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Figure2. General, crystallized, and fluid intelligence selectively explained by structural and
functional ROIs. 4, C, The radar graphs show simple correlations of the cortical thickness (4) or
peak ¢ score (€) of each ROl with the major components of intelligence: g (gray line), gC (orange
line), and gf (blue line). B, D, The bar graphs display the multiple correlations of all structural (B)
or functional (D) ROI values with the intelligence components. Each bar or line indicates the
amount of explained variance (R?) of individual performance in the intelligence component
scores. g, Principal component of all WAIS subtests and RPM; gC, principal component of WAIS
Verbal Comprehension subtests; gF, principal component of WAIS Perceptual Organization
subtests and RPM.

analysis demonstrated that the overall ex-

planatory power of the structural corre-

lates for gC (R*> = 37%) was greater than
for gF (R* = 22%), whereas the functional correlates showed a
pattern opposite to the structural one ( gC, R* = 20% vs gF, R> =
31%) (Fig. 2 B, D). This differential association of two psycholog-
ical functions ( gF and gC) with different brain areas strongly
supports our hypothesis. The association between cortical thick-
ness and semantic knowledge was further demonstrated by
higher correlations for WAIS subtest scores based on verbal
rather than nonverbal (performance) tests (supplemental Table
3, available at www.jneurosci.org as supplemental material).

Intellectual category’s impact on cortical thickness
differences among IQ levels

The correlational coefficients and intelligence factors, however,
are too simple figures abstracted from a given dataset. They can
scarcely give a close-up view on the practical relation between
psychometric intelligence test scores (IQ) and the cortical gray
matter thickness (in millimeters). To resolve this uncertainty, we
divided the sample into three groups of virtually equal numbers
(i.e., superior IQ, high IQ, and average IQ groups) based on their
conventional scales on four domains of intelligence tests, WAIS
verbal IQ (VIQ), performance IQ (PIQ), FSIQ, and RPM scores
(supplemental Table 4, available at www.jneurosci.org as supple-
mental material), and determined differences in the cortical
thickness between the IQ groups (Fig. 3). Regardless of the intel-
lectual criteria, the most significant cortical differences occurred
in the left temporal cortex (LTC) across the cerebrum. In regard
to test score, VIQ differences had the strongest association with
cortical thickness, particularly in the LTC. This indicates that
cortical thickness in the temporal cortex primarily reflects verbal
rather than fluid ability. Notably, the relation between cortical
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Intellectual domain effects on cortical thickness changes as a function of 1Q level. 4, Cortical thickness differences between adjoining levels of 1Q as affected by intelligence criteria and

brain lobes. The superior, high, and average IQ groups were evenly divided according to four intelligence criteria, FSIQ, VIQ, PIQ, and RPM scores. The cortical thickness of each lobe is represented by
the averaged value of all ROIs within the lobe. Sup., Superior; Avg., average. *p << 0.05; **p << 0.01; ***p << 0.001, two-tailed t test. B, C, Cortical thickness deviations from the thickness of the
average Q group used as zero reference. VIQ groups are better described by a linear or quadratic function, whereas PIQ groups are better described by alogarithmic one. The brain maps show absolute

thickness changes at each cortical point, based on VIQ and PIQ levels.

thickness and VIQ was close to linear between the groups and
even increased sharply in the superior IQ range for the LTC.
However, differences in PIQ and RPM were less in the superior
IQ range compared with the average range. These findings sug-
gest a possible biological basis for Spearman’s “law of diminish-
ing returns,” which predicts that acquired knowledge and educa-
tionally relevant information associated with gC become more
salient than purer measures of g among subjects of higher intel-
ligence (Jensen, 1998).

Neurometric IQ model: predicting psychometric IQ from
neurobiological measures

We validated our findings by testing a neurometric model of
intelligence that we developed prospectively. Specifically, we pos-
tulated that combining structural and functional neural corre-
lates of intelligence would allow us to formulate a model capable
of accurately predicting psychometric intelligence in an indepen-

dent sample (i.e., prospective prediction, rather than fitting a
model post hoc to a dataset). The model combining structural
and functional measures predicted IQ strongly in the test sample
(R =0.71; p < 0.001) (Fig. 4). Moreover, functional predictors
contributed above structural, and vice versa, reiterating our find-
ing of a differential association of psychological function with
brain regions. As a stringent validation of the model, we com-
puted an IQ estimate for each test-sample participant. Even using
not free parameters, but fixed parameters (o and 3 values derived
from the model pools), estimated IQ predicted 1Q strongly (r =
0.67; p < 0.001) (Fig. 4B), not differing statistically from the
benchmark level of predictability (IQ from RPM, difference be-
tween dependent correlations, Z = 1.06; p = 0.29). Thus, within
this population, MR-derived brain images can be used to predict
intelligence to an impressive degree. More critically for the
present purposes, both structure and function made distinct con-
tributions to the model.
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within g (Cattell, 1943). Of course, struc-
ture influences function, and vice versa,
which is likely why both subfactors of g
were related to both structure and func-
tion despite stronger associations with one

| free parameter i modality.

In our study, gC was associated with
greater cortical thickness in regions of the
temporal lobe and surrounding areas that
may be involved in processing semantic
information (McClelland and Rogers,

1Q estimated

2003). Semantic information about an ob-
ject may be stored close to the brain re-
gions dedicated to that type of informa-
tion. Specifically, sound and image of an
object recruit opercular and inferior tem-
poral cortices, respectively (Martin et al.,
1995; Kellenbach et al., 2001). Temporal

Figure 4.

the model (regression) in the datasets for model specification.

Discussion

To our knowledge, the present study describes the first simulta-
neous investigation of structural and functional correlates of in-
telligence in a large sample. We found strong support for the
hypothesis that spatially distributed and functionally distinct
brain regions contribute to intelligence, which is strong evidence
against a single-locus or single-network account of the neural
bases of intelligence. Cortical gray matter thickness covaried
more strongly with gC, whereas functional activity during a fluid
reasoning task covaried more strongly with gF. By combining two
brain imaging modalities into a single study, our finding builds
on previous work showing neural correlates of intelligence in a
single modality (Duncan et al., 2000; Frangou et al., 2004; Gong et
al., 2005; Gray et al., 2003; Haier et al., 2004; Lee et al., 2006). It is
also the first demonstration of a prediction of intelligence from
brain structure and function alone (cf. Deary et al., 2007). More-
over, by building and validating a neurometric model that accu-
rately predicts IQ scores in an independent sample, we have es-
tablished the robustness of our finding, as well as a new
benchmark for neural models of intelligence.

One difference between our structural and functional find-
ings, aside from the differentiable relations to ¢C and gF, was that
that the structural correlates were predominantly localized in the
left hemisphere, whereas the functional correlates were symmet-
rically distributed. This contrast is consistent with findings from
studies of commissurotomy patients showing that the left hemi-
sphere is specialized for verbal expression and numerical compu-
tation (Gazzaniga and Sperry, 1967) but neither hemisphere is
specialized for fluid reasoning skills assessed by the RPM (Zaidel
et al,, 1981). With the contrasting laterality, our finding that gC
and gF relate differentially to brain structure and function further
supports a neural basis for the crystallized—fluid distinction

1Q measured

Prediction of psychometric IQ from neurobiological measures. 4, Specification of a neurometric IQ model. To specify
potential predictors, we correlated 1Q with cortical thickness (top) or activation level (bottom) at each voxel, and thresholded
((p <0.001) to define ROIs. We reduced redundancy by averaging ROIs that covaried ( p << 0.001), leaving brain volume and
three ROI-based candidate predictor variables. Interaction terms allowed sex to moderate the relation between the MR-based
variables and 1Q. To specify a model, we screened potential predictors by regressing IQ on them simultaneously, retaining five as
the model. B, Test of the model. We estimated IQ using the model in an independent sample. Estimated 1Q correlated with
measured 1Q, indicating successful prediction. For the strict model (fixed parameters), parameter values were obtained by fitting

pole is thought to be responsible for inte-
grating diverse semantic information from
distinct brain regions. Studies of patients
with semantic dementia implicate the an-
terior temporal lobe in semantic working
memory as well as memory storage
(Hodges et al., 1992; Mummery et al.,
1999; Gainotti, 2006). In monkeys, struc-
tural reorganization of cortical neurons,
including synapse formation and axonal
dendritic growth, tracks with consolida-
tion of semantic-like memory traces in
temporal cortex (Tokuyama et al., 2000;
Chklovskii et al., 2004).

Human opercular temporal cortex or planum temporale is
demonstrated to be anatomically and functionally lateralized on
the left hemisphere (Geschwind and Levitsky, 1968; Devlin et al.,
2003). Because the region contains primary and associative audi-
tory cortex and the posterior part constitutes Wernicke’s area,
these asymmetries are often cited as the anatomical basis of the
left hemisphere dominance for language. In our results, whereas
the anterior temporal cortex was associated with all the verbal
subtest scores, the opercular temporal cortex was correlated only
with the two verbal scores on Information and Comprehension
subtests (p < 0.01) (supplemental Table 3, available at www.
jneurosci.org as supplemental material). The two tests, measur-
ing fund of factual information and common sense, are strongly
influenced by culture and education. Thus, the opercular tempo-
ral cortex might be more specialized for storing and retrieving
verbal knowledge on the culture, compared with the anterior
temporal cortex possibly having general functions such as seman-
tic integration and working memory.

In summary, individual differences in ¢gC may depend on de-
clarative knowledge stored in the temporal lobe and association
areas that are the product of task-relevant neural connections and
that manifest as structural differences across individuals. How-
ever, previous neuroimaging studies investigating structural cor-
relates of intelligence did not tend to implicate temporal regions.
This discrepancy may arise from technical limitations of voxel-
based morphometry (Bookstein, 2001; Mehta et al., 2003) or un-
reliability in their normalization procedures [in particular, the
temporal lobe’s discrepancy between the Montreal Neurological
Institute template and the Talairach brain extends to ~10 mm
(Westbury et al., 1999; Brett et al., 2002)].

gF was associated with increased brain activity in a frontopa-
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rietal network involved in working memory and executive con-
trol of behavior. This finding is consistent with previous research
demonstrating the role of this network in supporting g (Gray et
al., 2003; Lee et al., 2006). In contrast, neuroanatomical work has
not reached a consensus about the substrate of g (Frangou et al.,
2004; Gong et al,, 2005), and it is notable that few anatomical
studies have strongly implicated specific areas in g (Jung and
Haier, 2007). A first possible reason is that the structural corre-
lates of intelligence change with age (Shaw et al., 2006). In par-
ticular, the frontal and parietal regions decline in gray matter
density more rapidly than the temporal region (Sowell et al.,
2003). Studies of brain structure might be more susceptible to
subject demographics (age mean and variation). For cross-
sectional studies, it may be crucial to select subjects reaching a
period of developmental stability or to stratify by age. Second, the
type of intelligence measure might affect the structural findings
more severely than expected. Although a short form of WAIS is
highly correlated with the full version, the short version increases
measurement error (Brooks and Weaver, 2005). Shaw et al.
(2006) show relatively strong correlations in the prefrontal re-
gions in the young adult map comparable with our WAIS map.
They used a short form consisting of only four subtests, one of
which is matrix reasoning. Intriguingly, our RPM (matrix rea-
soning) map showed stronger correlation in prefrontal region
than our WAIS map, and seemed more similar to their map.

By more clearly defining a neural basis for the distinction
between ¢gC and gF, and establishing a new benchmark for pre-
diction of intelligence based on brain images, our findings
present a new challenge for other hierarchical models of g (John-
son and Bouchard, 2005) that strive for both theoretical strength
and mechanistic plausibility. Neurometric models based on these
alternative conceptualizations of g need not only to generate sim-
ilarly differentiable relations between their components and
brain structure and function, but also must yield comparable or
greater predictive power.

Our neurometric model of IQ contributes to a literature
showing that brain images can be used to predict complex behav-
iors and traits (Haynes and Rees, 2006; Knutson et al., 2007).
Although our model still does not approach the predictive power
of psychometric tests, its high accuracy suggests that neurometric
assessments of intelligence may soon become a useful comple-
ment to psychometric test. For example, brain images might be
used to improve intelligence estimates for individuals whose psy-
chometric scores systematically underestimate their IQ. We hope
that future research will build on our neurometric model of in-
telligence, both refining it so that it generalizes to other popula-
tions and expanding it to enhance its accuracy.
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