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Abstract: We investigate cold dense matter in the context of Sakai and Sugimoto’s holo-

graphic model of QCD in the Wigner-Seitz approximation. In bulk, baryons are treated

as instantons on S3 × R1 in each Wigner-Seitz cell. In holographic QCD, Skyrmions are

instanton holonomies along the conformal direction. The high density phase is identified

with a crystal of holographic Skyrmions with restored chiral symmetry at about 4M3
KK/π

5.

As the average density goes up, it approaches to uniform distribution while the chiral con-

densate approaches to p-wave over a cell. The chiral symmetry is effectively restored in

long wavelength limit since the chiral order parameter is averaged to be zero over a cell.

The energy density in dense medium varies as n
5/3
B , which is the expected power for non-

relativistic fermion. This shows that the Pauli exclusion effect in boundary is encoded in

the Coulomb repulsion in the bulk.
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1. Introduction

The AdS/CFT approach [1] provides a powerful framework for discussing large Nc gauge

theories at strong coupling λ = g2Nc. The model suggested by Sakai and Sugimoto (SS) [2]

offers a specific holographic realization that includes Nf flavors and is chiral. For Nf ≪ Nc,

chiral QCD is obtained as a gravity dual to Nf D8-D8 branes embedded into a D4 back-

ground in 10 dimensions where supersymmetry is broken by the Kaluza-Klein (KK) mech-

anism. The SS model yields a holographic description of pions, vectors, axials and baryons

that is in good agreement with experiment [2 – 4]. The SS model at finite temperature has

been discussed in [5] and at finite baryon density in [6 – 8]. The finite baryon chemical

potential problem in D3/D7 model was discussed in [9] and Isospin chemical potential and

glueball decay also has been discussed in [10].

Cold and dense hadronic matter in QCD is difficult to track from first principles in

current lattice simulations owing to the sign problem. In large Nc QCD baryons are solitons

and a dense matter description using Skyrme’s chiral model [11] was originally suggested

by Skyrme and others [12]. At large Nc and high density matter consisting of solitons

crystallizes, as the ratio of potential to kinetic energy Γ = V/K ≈ N2
c is much larger than

1. QCD matter at large Nc was recently revisited in [14].

– 1 –
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The many-soliton problem can be simplified in the crystal limit by first considering all

solitons to be the same and second by reducing the crystal to a single cell with boundary

conditions much like the Wigner-Seitz approximation in the theory of solids. A natural

way to describe the crystal topology is through T 3 with periodic boundary conditions. In

so far, this problem can only be addressed numerically. A much simpler and analytically

tractable approximation consists of treating each Wigner-Seitz cell as S3 with no boundary

condition involved. The result is dense Skyrmion matter on S3 [13]. Interestingly enough,

the energetics of this phase is only few percent above the energetics of a more involved

numerical analysis based on T 3. Skyrmions on S3 restore chiral symmetry on the average

above a critical density. While Skyrmions on S3 are unstable against T 3, they still capture

the essentials of dense matter and chiral restoration in an analytically tractable framework.

Cold dense matter in holographic QCD is a crystal of instantons with Γ =
√
λ/vF ≫ 1

where vF ≈ 1/Nc is the Fermi velocity. (In contrast hot holographic QCD has Γ =
√
λ≫

1). When the wigner-Seitz cell is approximated by S3, the pertinent instanton is defined on

S3 ×R. In this paper, we investigate cold QCD matter using instantons on S3 ×R in bulk.

As a result the initial D4 background is deformed to accomodate for the S3 which is just

the back reaction of the flavour crystal structure on the pure gauge theory. Holographic

dense matter can be organized in 1/λ at large Nc. The deformation is only valid for large

S3 or low densities for otherwise the metric is no longer a solution to the supergravity

equations.

Below we show that the energy per unit cell ε of a D4 instanton on S3 ×R with fixed

radius R̃ is

ε = M0

[
nB +

a

λ
n

1/3
B +

b

λ
Zcn

2
B

]
(1.1)

with Zc ≤ R̃ ∼ λ0 a cutoff in the holographic direction. So effectively D4 instantons living

in S3× [0, Zc] carry larger energy density than D4 instantons living in R3×R (low density).

When Zc = R̃ ∼ 1/n
1/3
B , the n2

B softens to n
5/3
B reverting the situation (high density).

Indeed, we find that for Zc = R̃ the transition takes place for ncB = 4
π5M

3
KK ≈ 1.26n0 with

n0 the nuclear matter density(MKK = 500MeV). The resulting crystal is effectively four

dimensional. The validity of the metric deformation just noted suggests that the transition

occurs at sufficiently low baryonic densities just like in nuclear matter.

In section 2, we define this deformation and discuss the D8 brane embedding structure.

The instantons on S3 ×R in the flavour D8 brane is discussed in section 3. In section 4,5,6

we derive the equation of state of cold holographic matter using the small size instanton

expansion and in general. In section 7 we show how the holographic small instantons in

bulk transmute large size Skyrmions on the boundary. The comparison to other models of

nuclear matter is carried in section 8. Our conclusions are in section 9.

2. D8 brane action

We consider crystallized skyrmions at finite density in the Wigner Seitz approximation.

Spatial R3 is naturally converted to T 3 with periodic boundary conditions. As a result the

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
1

D4 background geometry is deformed. The baryons are then instantons on T 3 ×R. Most

solutions are only known numerically on the lattice. A simpler and analytically tractable

analysis that captures the essentials of dense matter is to substitute T 3 by S3 in bulk with

no boundary conditions altogether. As a result, the D4 background dual to the crystal is

modified with the boundary special space as S3. Specifically, the 10 dimensional space is

that of (R1 × S3) ×R1 × S4. The ensuing metric on D4 is therefore

ds2 =

(
U

R

)3/2 (
−dt2 + R2dΩ2

3 + f(U)dτ2
)

+

(
R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)
, (2.1)

dΩ3 ≡ dψ2 + sin2ψ dθ2 + sin2ψ sin2θ dφ2 , f(U) ≡ 1 − U3
KK

U3
, (2.2)

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4
ǫ4 , (2.3)

While this compactified metric is not an exact solution to the general relativity (GR)

equations for small size S3, it can be regarded as an approximate solution for large size S3.

Indeed, in this case, the GR equations are seen to be sourced by terms wich are down by the

size of S3. Here, (2.3) can be regarded as an approximation to the stable metric with T 3 for

a dense matter analysis. Clearly, the former is unstable against decay to the latter, which

will be reflected by the fact that the energy of dense matter on S3 is higher than that on T 3.

As indicated in the introduction, the Skyrmion analysis shows that the energy on S3 is only

few percent that of T 3. So we expect the current approximation to capture the essentials

of dense matter in holographic QCD. Specifically, the nature and strength of the attraction

and repulsion in dense matter. Indeed, this will be the case as we will detail below.

Now, consider Nf probe D8-branes in the Nc D4-branes background. With U(Nf )

gauge field AM on the D8-branes, the effective action consists of the DBI action and the

Chern-Simons action

SD8 = SDBI + SCS ,

SDBI = −T8

∫
d9x e−φ tr

√
−det(gMN + 2πα′FMN ) , (2.4)

SCS =
1

48π3

∫

D8
C3trF

3 . (2.5)

where T8 = 1/((2π)8l9s), the tension of the D8-brane, FMN = ∂MAN −∂NAM − i [AM , AN ]

(M,N = 0, 1, · · · , 8), and gMN is the induced metric on the D8-branes

ds2D8 =

(
U

R

)3/2

(−dt2 + R2dΩ2
3) + gσσdσ

2 +

(
R

U

)3/2

U2dΩ2
4 , (2.6)

gσσ ≡ Gττ∂στ∂στ +GUU∂σU∂σU , (2.7)

where GMN refer to the background metric (2.1) and the profile of the D8 brane is param-

eterized by U(σ) and τ(σ).

– 3 –
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The gauge field AM has nine components, A0, Ai = A1,2,3, Aσ(= A4), and Aα(α =

5, 6, 7, 8, the coordinates on the S4). We assume

A0 = A0(σ) ∈ U(1) , (2.8)

(Ai = Ai(x
i, σ), Aσ = Aσ(x

i, σ)) ∈ SU(Nf ) , (2.9)

Aα = 0 . (2.10)

Then the action becomes 5-dimensional:

SDBI = −8π2T8R
3

3gs
tr

∫
dtǫ3dσ U

[{(
U

R

)3/2

gσσ − (2πα′)2(∂σA0)
2

}{(
U

R

)3

+
1

2
(2πα′)2FijF

ij

}

+

(
U

R

)3

(2πα′)2FσiF
i
σ +

1

4
(2πα′)4(ǫijkFiσFjk)(ǫijkF

i
σF

jk)

]1/2

, (2.11)

SCS =
Nc

24π2
tr

∫
A ∧ F ∧ F , (2.12)

where ǫ3 is the volume form of S3 space and the indices i, j, k(∈ {ψ, θ, φ}) are raised by

the metric g̃ij defined by

g̃ij =

(
1

R2 ,
1

R2 sin2 ψ
,

1

R2 sin2 ψ sin2 θ

)
. (2.13)

3. Instanton in S3
× R1

Only A0 will be determined dynamically in the given instanton background Ai, Aσ . The

exact background instanton solution is unknown. Thus we start with an approximate

solution which is the SU(2) Yang-Mills instanton solution in the space with metric,

ds2 = dσ2 + R2dΩ3 . (3.1)

This metric is different from our metric in (2.6) and (2.11), where there are warping factors.

Furthermore our action is the nonlinear DBI action and not a Yang-Mills action. However

it can be shown that the Yang-Mills instanton in the space (3.1) is the leading order solution

of 1/λ expansion of the full metric and the DBI action as shown in [3]. So the solution can

be used in the leading order calculation.

We summarize here the (anti) self dual instanton solution obatained in [15]. Using the

ansatz,

A = f(σ)U−1dU , U ≡ cosψ + iτar̂
a(θ, φ) sinψ , (3.2)

we get the field strength, in terms of vielbein whose relation to the coordinate ψ, θ, φ, is

specified in [15],

F =
(∂σf)τa

R e0 ∧ ea +
1

2

[
2(f2 − f)τdǫ

d
bc

R2

]
eb ∧ ec , (3.3)
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where we used La = U−1∂aU = τa/R. If we require (anti) self-duality,

∂σf = ±2(f2 − f)

R , (3.4)

then f is determined as

f± ≡ 1

1 + e∓2(σ−σ0)/R , (3.5)

so the field strength of one (anti) instanton solution is

F± = (∂σf±)
τa
R

(
e0 ∧ ea ± 1

2
ǫabce

b ∧ ec
)
. (3.6)

4. D8 brane plus Instanton

Now that we have the background instanton configurations, the remaining dynamical vari-

ables are τ and A0. However it can be shown that ∂στ(σ) = 0 is always a solution of the

Euler-Lagrange equation regardless of the gauge field. For simplicity we will work with

this specific configuration so that the only dynamical variable is A0. Let us parameterize

A0 by Z defined as

U ≡ (U3
KK + UKKσ

2)1/3 ,

Z ≡ σ

UKK
, K ≡ 1 + Z2 . (4.1)

Then the field strength is expressed in terms of Z and the dimensionless radius R̂ ≡ R/UKK,

FZa =
1

UKK
f ′
τa

R̂
,

Fab =
1

U2
KK

f ′
ǫ c
ab τc

R̂
, (4.2)

where f ′ ≡ ∂Zf . The instanton configuration is

f± =
1

1 + e∓2(Z−Z0)/cR
. (4.3)

The DBI action reads

SDBI = −8π2T8R
3

3gs
tr

∫
dtǫ3dZK

1/3

[{(
4

9

)
U2

KKK
−1/3 − (2πα′)2(A′

0)
2

}{
K

(
UKK

R

)3

+
1

2
(2πα′)2F 2

ab

}

+ K

(
UKK

R

)3

(2πα′)2F 2
Za +

1

4
(2πα′)4(ǫabcFaZFbc)

2

]1/2

, (4.4)

– 5 –
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where A′
0 ≡ ∂ZA0. We are using the same vielbein coordinates as (3.3). Since the instanton

size (R) is of order O(λ−1/2) we define a new dimensionless parameter R̃, which is order

of (λ0), as

R̃ ≡
√
λR̂ =

√
λ

R
UKK

. (4.5)

Furthermore we rescale the coordinate and the instanton field strength for a systematic

1/λ expansion

xa → λ−1/2xa , Z → λ−1/2Z , t→ t ,

Fab → λFab , FaZ → λFaZ , A0 → A0 ,

K = (1 + Z2) →
(

1 +
1

λ
Z2

)
≡ Kλ, (4.6)

so all coordinates and gauge fields become of order of O(λ0) and we

By using the instanton solution (4.3) we get

SDBI = − Ncλ

39π5UKKM
−3
KK

tr

∫
dtǫ3dZK

1/3
λ

[{
1 +

37π2

4M2
KKU

2
KK

K
1/3
λ

f ′2

R̃2 − 1

λ

36π2

4M2
KK

K
1/3
λ (A′

0)
2

}

{
M2

KKU
2
KKK

4/3
λ +

37π2

4M2
KKU

2
KK

K
1/3
λ

f ′2

R̃2

} ]1/2

(4.7)

If we let UKK = M−1
KK for simplicity, then the DBI action yields

SDBI = −dNcλ

∫
dtǫ3dZ

√{
1 +K

1/3
λ F̃ 2 − 1

λ
K

1/3
λ (Ã′

0)
2

}{
K

3/4
λ +K

1/3
λ F̃ 2

}

= −dNcλ

∫
dtǫ3dZ

[
1 +

3Z2

8λ
+ F̃ 2 +

Z2

3λ
F̃ 2 − 1

2λ
(Ã′

0)
2 + O((1/λ)2)

]
, (4.8)

where

d ≡ 2M4
KK

39π5
, Ã0 ≡ 33π

2MKK
A0 , F̃ 2 ≡ 37π2

4
J ,

J ≡ f ′2

R̃2 =
sech4(Z/R̃)

4R̃4 ∼ 1

3R̃3 δ(Z) ,

∂ZK ≡ ∂Z
1

6R̃3

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
∼ 1

6R̃3 sgn(Z) (4.9)

The Chern-Simons action does not change by the recaling (4.6), and it is order of λ0.

With the instanton solution (4.3) the Chern-Simons action reduces to

SCS =
Nc

24π2
tr

∫
A ∧ F ∧ F =

Nc

8π2
tr

∫
dtǫ3dZA0

1

2

(
24M3

KK

f ′2

R̃2

)

= cNc

∫
dtǫ3dZÃ0F̃

2 , (4.10)

– 6 –
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where

c ≡ 4M4
KK

39π5
. (4.11)

It also can be written as

SCS = 3NcR̃
3
∫
dZA0∂ZK → Nc , for A0 = 1 , (4.12)

which confirms that the field configuration (4.2), and (4.3) describe the single (anti) self

dual instanton since SCS corresponds to Nc × the Pontryagin index when A0 = 1.

5. Equation of state in 1/λ

The equation of state of cold holographic matter is the energy following from the action

functional. The total action up to order of λ0 is

S ≡
∫
dtǫ3dZ(LDBI + LCS)

= −dNc

∫
dtǫ3dZ

[
λF̃ 2 +

Z2

3
F̃ 2 − 1

2
(Ã′

0)
2

]
+ cNc

∫
d4xdZÃ0F̃

2 . (5.1)

where A0 is an auxillary field with no time-dependence that can be eliminated by the

equation of motion or Gauss law,

Π′ = cNcF̃
2 , (5.2)

with

Π ≡ ∂L
∂Ã′

0

= dNcÃ
′

0 , (5.3)

The integral of the equation of motion with F̃ 2 in (4.9) is

Π(Z) = Π(∞)

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
,

Π(∞) =
M4

KK

54π3

Nc

R̃3 , (5.4)

where we have set Π(0) = 0.

The energy of one cell is

Ecell = −
∫
ǫ3dZ(LDBI + LCS)

= dNc

∫
ǫ3 dZ

[
λF̃ 2 +

Z2

3
F̃ 2 − 1

2

Π2

(dNc)2

]
−
∫
ǫ3 dZÃ0Π

′ ,

= dNc

∫
ǫ3 dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
−
∫
ǫ3 Ã0(Z)Π(Z)

∣∣∣
∞

−∞
. (5.5)

– 7 –
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Thus the energy density (ε) of the crystalline structure is

ε ≡ NEcell

V
≈ Ecell∫

ǫ3

= dNc

∫
dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
− Ã0(Z)Π(Z)

∣∣∣
∞

−∞
, (5.6)

where N is the total number of baryons(cells) and V is the total volume which is approxi-

mated by N
∫
ǫ3. Interestingly the second term in (5.6) is equal to µBnB since the density

and the baryon chemical potential is given by

nB =
1∫
ǫ3

=
1

2π2(UKKR̃)3
=

1

2π2(
√
λR)3

, µB ≡ NcA0(∞) . (5.7)

respectively and because

Ã0(Z)Π(Z)
∣∣∣
∞

−∞
= 2Ã0(∞)Π(∞) = NcA0(∞)

1

2π2(UKKR̃)3
= µBnB , (5.8)

Notice that R̃ is of order of (λ)0 from (4.5) so the baryon density is of order (Ncλ)0. Since

the action is finite and concentrated in a finite size, we can restrict the integral to the

region Z ≤ Zc and expand the action in 1/λ.

ε = dNc

∫ Zc

0
dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
(5.9)

= M0

[
nB +

a

λ
n

1/3
B +

b

λ
Zc n

2
B

]
, (5.10)

where

M0 ≡ 8π2κMKK , κ ≡ λNc

216π3
,

a ≡ (π2 − 6)M2
KK

36(2π2)2/3
, b ≡ 36π4

2M3
KK

, (5.11)

A few remarks are in order.

1. Zc is introduced as an arbitrary cut-off which is bigger than the instanton size. How-

ever in section 8, we will argue that Zc should be identified as baryon size by explicitly

contructing the Skyrmion out of the instanton Therefore it is not an arbitrary number.

2. Even in the case the instanton size is small, the baryon size on the boundary is not.

It is of order (Ncλ)0 and large in units of MKK . This point is important. While the

instanton size in bulk is of the order of the string length and thus small as 1/
√
λ in

units of MKK , its image on the boundary is a large Skyrmion.

3. The position of the instanton Z0 in the conformal direction is set to zero by parity.

– 8 –
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The various density contributions in (5.10) can be understood from the zero density

and finite instanton calculation discussed by Sakai and Sugimoyo to order Ncλ
0. For that,

we recall that the energy balance for a holographic instanton with flat R
3 directions reads

schematically as [3]

Nc

(
Aλρ2 + B

1

λρ2

)
(5.12)

leading to an instanton size in bulk of order ρ ∼ (B/A)1/4/
√
λ. The Coulomb repulsion B

is 104 times the gravitational attraction A resulting into a size that is of order ρ ∼ 10/
√
λ.

This parametrically huge repulsion results in a stiffer equation of state in holographic QCD.

The linear term in nB in (5.10) is just the topological winding of the U(Nf ) flavored in-

stanton in D8 on S4 due to the self duality of the instanton configuration. It is leading and

of order Ncλ. Geometry is unaffected by matter. A point-like instanton in bulk corresponds

to a very large Skyrmion on the boundary. The term of order n
1/3
B is of order Ncλ

0. It

corresponds to the attraction due to gravity in bulk at finite size. Indeed, the energy of this

term is of order λρ2 = R̃2
, as in (5.12) favoring smaller and smaller instanton. The energy

per volume for this term is of order 1/R̃. Since in matter the cell size is of the order of the

interparticle distance 1/n
1/3
B , the n

1/3
B follows. The term of order n2

B is also of order Ncλ
0.

It stems from the Coulomb repulsion in bulk which is of order 1/λρ2 = 1/R̃2
since the in-

stanton is static in 4-space (space-plus-conformal). This contribution is repulsive and favors

larger size instanton. The corresponding energy per cell is of order (Zc/R̃)(1/R̃5
), since

the warping in the conformal direction is subleading in 1/λ. The n2
B contribution follows.

For a Skyrmion with a size Zc ≪ R̃, (5.10) describes the low density regime. In this

regime the use of the S3 × R instanton is likely to give higher energy than a localized

but flat instanton at the pole of S3 say. Dilute holographic matter is made out of flat

R
3 instantons with (5.10) providing an upper bound on the energy per unit volume. This

phase breaks spontaneously chiral symmetry. In the point particle limit, the equation of

state at low density was discussed in [8]

ǫp ∼ Nc
27π4

4M2
KK

n2
B (5.13)

for low densities after re-scaling
√
λnB/λ

3/2 → nB [8]. The point-like and flat space

instanton contribution (5.13) at low density is lower in energy than (5.10) and therefore

favored. This will be made more explicit below. The n
1/3
B is absent in the point like limit

(finite size effect).

As the density is increased (or equivalently as R̃ approaches down to Zc), there is a

change in the equation of state (5.10). For Zc = R̃,

ε = M0

[
nB +

a

λ
n

1/3
B +

b′

λ
n

5/3
B

]
, (5.14)

with b changing to b′

b′ ≡ 36(2π2)5/3

23M2
KK

. (5.15)
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The softening of the equation of state at higher density from n2
B to n

5/3
B follows from a

transition from a dilute gas/liquid phase to a dense solid/crystal phase. This transition ef-

fectively restores chiral symmetry as we will show later. An estimate of the chiral transition

density follows by comparing the n2
B term from (5.13) to the leading n

5/3
B in (5.14)

ǫs ∼ Nc
27π7/3

24/3MKK
n

5/3
B (5.16)

By setting ǫp = ǫs, the critical transition density follows

ncB =
4M3

KK

π5
. (5.17)

6. Numbers

To give some estimates of the numbers emerging from the current discussion, we first recall

that in holographic QCD the mass of one baryon at next to leading order is not unique.

We refer to [3] for a more thorough discussion. In particular, the baryon mass to order

Ncλ
0 is

MB = M0

(
1 +

c

λ

)
, (6.1)

where c = 27π
√

2/15. Thus the interaction energy per unit volume for the dilute case is

EDilute
int ≡ ε− nBMB =

M0

λ

(
an

1/3
B − cnB + bZc n

2
B

)
, (6.2)

while for the denser case it is,

EDense
int ≡ ε− nBMB =

M0

λ

(
an

1/3
B − cnB + b′ n

5/3
B

)
. (6.3)

For numerical estimates, we use MKK = 500 MeV and M0 = 940 MeV for Nc = 3 [3]. Our

parameters are

λ ∼ 53.2 , a ∼ 0.095 fm−2 , b ∼ 2172 fm3 , b′ ∼ 2039 fm2 , c ∼ 31 .

The interaction energies are then

S3 : EDilute
int (GeV fm−3) = 0.00168n

1/3
B − 0.548nB + 192n2

B , (6.4)

S3 : EDense
int (GeV fm−3) = 0.00168n

1/3
B − 0.548nB + 36.0n

5/3
B , (6.5)

R3 : EDilute,P
int (GeV fm−3) = −0.548nB + 60.3n2

B (6.6)

where we used Zc = 5. Notice that due to the smallness of the coefficients of the first two

terms, the last term is dominant even in the relatively small baryon density if it is not

much smaller than 10−2fm−3.

The results on S3: EDilute
int and EDense

int are compared in figure 1 for Zc = 5 ( Zc =

5/MKK = 1 fm with restored dimensions). The results on S3 and R3 are compared in

figure 2. In R3 the instantons are point-like or Zc ∼ ∞ [8]. The crossing from R3 to S3

occurs at relatively small densities ncB ≈ 1.26n0 with n0 = 0.17 fm−1/3 the nuclear matter

density.

– 10 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
1

0 0.002 0.004 0.006 0.008 0.01

nB Hfm
-3L

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
in

t
HG

e
V

fm
-

3
L

Dense : ~ nB
5�3

Dilute : ~ nB
2
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7. Equation of state in general

The approximation of T 3 by S3 suggested at the beginning of the paper was justified in way

in the dilute limit or for small densities. Phenomenologically, we have found that the chiral

phase transition from R4 to S3×R occurs at few times nuclear matter density in holographic

QCD, which is reasonable. The small size instantons dominate dense matter. This means

that higher order corrections to both the DBI action and the starting D4 metric are impor-

tant. While we do not know how to assess them, we now suggest that they may conspire to

be small. Indeed, if we were not to expand the DBI plus CS actions, that is if we were to

include only these class of higher order corrections our numerical results change only mildly.

Consider, the total (DBI + CS) action is written as

S = −dNcλ

∫
d4xdZ

√
A− 1

λ
B(A′

0)
2 + c̃Nc

∫
d4xdZJA0 , (7.1)
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where

A ≡ K
4/3
λ +

3b

M2
KKU

4
KK

K
1/3
λ J +

3b

U2
KK

K
5/3
λ J +

9b2

M2
KKU

6
KK

K
2/3
λ J2 , (7.2)

B ≡ bK
5/3
λ +

3b2

M2
KKU

4
KK

K
2/3
λ J , J =

sech4(Z/R̃)

4R̃4 ,

b ≡ 36π2

4M2
KK

, c̃ ≡ 3

2π2U3
KK

, d =
2M4

KK

39π5
. (7.3)

The equation of motion is

Π̃′ = c̃NcJ , (7.4)

with

Π̃ ≡ ∂L
∂A′

0

=
dNcBA′

0√
A− 1

λB(A′
0)

2
. (7.5)

The integral of of motion is

Π̃(Z) = Π̃(∞)

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
,

Π̃(∞) ≡ c̃Nc

6R̃3 =
Nc

4π2(UKKR̃)3
=

√
bΠ(∞) . (7.6)

The energy per cell is

Ecell = −
∫
ǫ3dZ(LDBI + LCS)

= dNcλ

∫
ǫ3 dZ

√√√√ A

B +
eΠ2

λd2N2
c

−
∫
ǫ3 dZA0Π̃

′

= dNcλ

∫
ǫ3 dZ

√

A+
AΠ̃2

λN2
c d

2B
−
∫
ǫ3 A0(Z)Π̃(Z)

∣∣∣
∞

−∞
. (7.7)

The energy density (ε) of the crystalline structure is then

ε ≡ NEcell

V
≈ Ecell∫

ǫ3

= dNcλ

∫
dZ

√

A+
AΠ̃2

λN2
c d

2B
−A0(Z)Π̃(Z)

∣∣∣
∞

−∞
, (7.8)

where N is the total number of baryons (cells) and V is the total volume which is approx-

imated by N
∫
ǫ3. The second term in (5.6) is

A0(Z)Π̃(Z)
∣∣∣
∞

−∞
= 2A0(∞)Π̃(∞) = NcA0(∞)

1

2π2(UKKR̃)3
= µBnB , (7.9)
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Figure 3: The energy per unit volume.

where

nB =
1∫
ǫ3

=
1

2π2(UKKR̃)3
=

1

2π2(
√
λR)3

, µB ≡ NcA0(∞) . (7.10)

Since nB is fixed we may set µB = 0. Then the energy density is

ε = dNcλ

∫
dZ



√

A+
AΠ̃2

λN2
c d

2B
−K

2/3
λ


 , (7.11)

where we subtracted the vacuum value. Thus the interaction energy per unit volume is

Eint ≡ ε− nBMB . (7.12)

In figure 3 we show the equation of state for the expanded and unexpanded actions. As

expected the corrections are of order 1/λ for a finite and small size instanton. The un-

expanded energy is finite for any size of the instanton due to the gravitational warping

factors which are subleading in 1/λ after rescaling. The unexpanded results are similar to

the expanded ones in the range of densities explored as it should. For extremely small nB,

Eint ∼ 0.00251n
1/3
B , however for reasonably large density nB ∼ 1fm−3, Eint ∼ 33.9n

5/3
B .

This power is consistent and expected from the expansion in eq. (5.14).

All general expressions in this section are consistent with the results quoted above to

order O(λ0). Indeed, if for simplicity we set UKK = M−1
KK with MKK = 1, then A and B

reduce to

A = (1 + 3bJ)2 +
1

λ

2Z2

3
(1 + 3bJ)(2 + 3bJ) + O(λ−2) ,

B = b(1 + 3bJ) + O(λ−1) , (7.13)

For example, by considering 3bJ = F̃ 2 and Π̃ =
√
bΠ, we can readily show that (7.11)

reduces to (5.9)

ε = dNc

∫
dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
.
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Figure 4: Holographic Skyrmion on S3 on the boundary

8. Holographic Skyrmions from instantons

The S3 × R instanton used in bulk has a very simple Skyrmion picture on the boundary.

From (3.2) it follows that the gauge field at the boundary is A(∞, ~x) = U−1dU . Follow-

ing [3] we note that U(~x) is just the pion field at the boundary. When we have a cut-off in Z,

we replace A(∞, ~x) by A(Zc, ~x). U is the boundary Skyrmion field originating from the bulk

instanton. Thus U is just the holonomy of the bulk instanton along the conformal direction:

U(x;Zc) = P exp[i

∫ Zc

0
dZA

(instanton)
Z (Z)] (8.1)

When the density is large and Zc ∼ R, the instanton has a support covering the whole

three sphere, therefore the resulting Skyrmion should be

U(~x) ≃ σ(~x) + iτaΠ
a(~x) = eiτar̂

a(θ,φ)ψ , (8.2)

which is the identity map as (ψ, θ, φ) are the canonical angles for the unit S3. The local

Jacobian matrix for this map from S3 to S3 is Jai = ∂Πa/∂xi = 1ai/R, proportional to

the identity. The baryon density for this map is detJ/volS3 = 1/(2π2R3) in agreement

with bulk holography. The scalar field σ(~x) = cosψ measures the chiral condensate and

averages to zero on S3

< qq >S3

< qq >R3

=< σ(x) >S3=
2

π

∫ π

0
dψsin2ψ cosψ = 0 . (8.3)

The S3 × R instanton in (3.2) corresponds to a boundary Skyrmion on S3 with restored

chiral symmetry on the average. We should notice that the chiral condensation is p-wave

over a cell while the density in this case is approximately constant over a cell. But it is

certainly not a constant. In fact this is a result consistent with ref. [7] where it was argued

that there can not be an uniform distribution. In figure 4, we show schematically how a

Skyrmion of size Zc looks on S3 as a function of R. (a) corresponds to the dilute phase with

broken chiral symmetry, while (b) describes the dense phase with restored chiral symmetry.

In previous section, Zc was introduced as a cut-off of the action bigger than the instan-

ton size. Here we give interpretation of Zc as the size of the Skyrmion on the boundary.
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Note that the R4 BPS instanton used in bulk in [3] for the description of a single baryon,

yields a boundary Skyrmion as

U(~x) = Zc/ξc − i~τ · ~x/ξc (8.4)

with ξ2c = Z2
c + ~x2 + ρ2 and this is the analogue of the unit map (8.2) with tanψ = x/ξc.

Notice that while the size of the instanton is ρ, the size of the Skyrmion is
√
Z2
c + ρ2. If

ρ≪ Zc, Zc itself is the size of the Skyrmion, hence our interpretation above comes. Holog-

raphy transmutes a small size instanton ρ in bulk to a large size Skyrmion on the boundary.

At small densities with R̃ ≫ Zc, one can replace the spherical cell by a flat space and

the map (8.4) is relevant, while at high density R̃ ≤ Zc the map (8.2) is relevant. On S3

this is pictorially depicted in figure 4. Notice also that (a) has broken chiral symmetry

while (b) has restored chiral symmetry effectively (see eq. (8.3)). Again, in this case,

our S3 × R instanton in bulk describes the high density phase in holographic QCD with

restored chiral symmetry. At low densities the energy density is about n2
B as discussed

by many [6] in qualitative agreement with our figure here. The n2
B term is sourced by

Coulomb’s repulsion in both cases. The description on S3 carries larger energy density

than on R3 and is therefore unfavorable energitically. It is favorable at higher densities.

The transition occurs at about R = Zc, or ncB = 1/(2π2 Zc), resulting into an energy

density of n
5/3
B . The value of ncB was estimated above.

The determination of Zc or equivalently the critical size of R̃ depends on the energetics

of the SS model. It is worth pointing that the single baryon mass analysis on S3 as discussed

in [13] allows a considerable simplification of this issue when the Skyrme model is used.

We now note that this is justified in holographic QCD as small size instantons in bulk

with ρ = R̃/
√
λ map onto a large size Skyrmion on the boundary with Zc ≫ ρ. So the

small size instanton expansion in bulk maps onto the gradient expansion in 1/Zc on the

boundary. Limiting the SS model on the boundary to the Skyrme model with fπ and eS
fixed by holography yields the specifics of the Skyrmion on the boundary to order λ.

In figure 5 we show how the holgraphic Skyrmion mass on S3 to order λ changes with

R̃ the radius of S3 following [13]. The units of mass and length are respectively [3]

fπ

2
√

2eS
= (λNc)MKK

√
b/2π

54π5
(8.5)

√
2

eSfπ
= (1/MKK)

√
8b/π3 .

with b = 15.25 and L = R. We note that the mass M0 = 8π2κMKK corresponds to the

point 0.95 at R̃ = ∞ which matches the unit map result as expected. In figure 6 we

show the same curve to order 1/λ. Here the energetics is determined in bulk as the chiral

Lagrangian in the SS model is not known beyond the order λ. Specifically,

M0

λ

(
AR̃2

+
B

R̃2

)
(8.6)
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Figure 5: Holographic Skyrmion mass on S3: order λ

Figure 6: Holographic Skyrmion mass on S3: order λ0

with A = (π2 − 6)/36 ∼ 0.11 and B = (36π2)/4 ∼ 1799. The units of mass and lengths are

(B/A)1/4 ∼ 11.4

2
√

AB ∼ 27.8 (8.7)

The point 1.12 is the 1/λ corrected mass (6.1) in these units. Finally, it is interesting to

note that the holographic Skyrme model on S3 yields naively the following equation of state

ε = M0(nB + aS n
2/3
B + bS n

4/3
B ) , (8.8)

as first noted in the context of the canonical Skyrme model [16]. The n
2/3
B for the Skyrmion

stems from the universal current algebra (∇Π)2 term which is attractive and scales as 1/ρ2

as opposed to 1/ρ from the finite size instanton in bulk. The n
4/3
B for the Skyrmion stems

from the repulsive Coulomb contribution per unit 3-volume (1/ρ)/ρ3 from the Skyrme

term as opposed to the repulsive Coulomb contribution per unit 3-volume (1/ρ2)/ρ3 in the

instanton in bulk. We recall that Coulomb’s law in 1+D dimensions is 1/ρD−2.
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Figure 7: The energy per unit volume as a function of baryon density, for pure skyrmions, for the

calculations of Bethe and Johnson [16, 17] and of Friedman and Pandharipande [16, 18], and for

our instanton model based on Sakai-Sugimoto model for dilute and dense case.

At high density the naive scalings in (8.8) obtained at the boundary differs from (5.14)

obtained in bulk in two essential ways: i) aS and bS are of order N0
c λ

0 on the boundary

while their bulk contributions are of order N0
c /λ; ii) the scaling with nB appears to differ by

an extra (spatial) dimension, D = 3 on the boundary and D = 4 in bulk. These differences

can be understood by noting that the size of the holographic Skyrmion is Zc. This means

that the chiral gradients Li = U−1∂iU are nearly zero on the boundary with U ∼ 1, except

on an the shell |~x| ≈ Zc of thickness 1/
√
λ to ensure that the topological baryon charge is

finite.1 This renders aS and bS in (8.8) effectively of order 1/λ as noted in bulk.

9. Comparison with nuclear models

In figure 7 we compare the interaction energy (6.2) and (6.3) with other hadronic models

including Skyrme’s chiral model. Holographic matter is subtantially stiffer as explained

through the energy budget in (5.12). The reason can be traced back to the fact that for a

single baryon the repulsion already dwarfs the attraction in holographic QCD

At high densities ε in (6.3) is approximated as

ε ∼ Nc3
3(2π2)5/3

23πMKK
n

5/3
B ∼ 36n

5/3
B (GeV fm−3) forNc = 3 , (9.1)

and whatever Nf since the flavoured instanton in bulk is always 2 × 2. This behaviour is

different from that of free massless quarks in D = 3 (ε3) but similar to massive quarks in

D = 3 (ε′3). Specifically,

ε3 =
Nc

N
1/3
f

34/3π2/3

4
n

4/3
B ∼ 5.52n

4/3
B (GeV fm−3) forNc = 3, Nf = 2 , (9.2)

ε′3 =
Nc

N
2/3
f

33/5π4/3

10

1

m
n

5/3
B ∼ 1.68

1

m
n

5/3
B (GeV fm−3) forNc = 3, Nf = 2 . (9.3)

1We note that for U ∼ 1 the Skyrmion obeys the Faddeev-Bogomolnyi bound since the classical equations

of motion are fulfilled.

– 17 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
1

So at strong coupling

ε

ε′3
= N

2/3
f

(
96/55

21/3

)
m

MKK
∼ 88m

MKK
forNf = 2 , (9.4)

independently of λ and Nc. As chiral symmetry is restored in the high density phase,

the comparison to the the free massive quark phase in D = 3 suggests that the mass

m ∼ MKK/88 is a chirally symmetric screening mass. While the chiral transition restores

chiral symmetry it still confines baryons.

10. Conclusions

We have provided a holographic description of dense and cold hadronic matter using the

brane model put forward by Sakai and Sugimoto [3]. At large Nc the matter crystallizes and

can be treated in the Wigner-Seitz approximation on T 3. For simplicity, the Wigner-Seitz

cell was further approximated by S3 in space leading to a simple instanton configuration

on S3 ×R with R the conformal space. The resulting equation of state at next to leading

order in λ shows a free quark behavior at high density, although the overall coefficient is

cutoff sensitive and large resulting into a stiff euation of state.

At high densities the gauge gradients are of order
√
λ so the DBI action may not be

enough to fix the brane dynamics at order Ncλ
0 [3]. Also our simplification of T 3 by S3

while justified at low density, involves curvature corrections at high densities. However, we

believe that the essentials of dense matter in holographic QCD are already exposed on S3

with a small attraction leading n
1/3
B and a large Coulomb repulsion leading n

5/3
B , where 5/3

is the power of non-relativistic fermion. It is interesting to notice that the coulomb interac-

tion in the bulk counts the fermi statistics in the boundary. The repulsion is 104 times the

attraction resulting into a very stiff equation of state. Changing S3 to T 3 will not affect

the outcome quantitativaly we believe. Indeed, this is the case for dense Skyrmions [13].

The present work expands on the original ideas developed in [6]. Our calculations

with finite size instantons are closer to those presented in reference [7] where finite size

and homogeneous instantons were used through a variational estimate in R3 × R. Their

arguments yield nB instead of the n
1/3
B we have reported in the equation of state at next

to leading order with our S3 ×R instanton.

The inhomegeneous S3 × R description of the crystal suggests that at high density,

chiral symmetry is restored on the average. Indeed, since the dual of the instanton cell is the

Skyrmion cell with a pion field restricted to S3 in space. High density matter corresponds

to small size S3 where the pion field becomes just the unit map [13]. The corresponding

chiral condensate on S3 is seen to vanish as half of S3 carries positive chiral condensate,

while the other half carries negative chiral condensate so that on the average the chiral

condensate is zero. This restoration of chiral symmetry is due to the formation of the

crystal in the spatial direction in holographic QCD even though the D8-D8 configuration

is still attached. In other words, the left and right D8 branes cease to talk to each other

through the spatial directions not the conformal direction when they crystallize at large Nc.
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The present crystal analysis is classical in bulk. A quantum analysis including vi-

brational and rotational motion is needed. These corrections are subleading in 1/Nc and

should be estimated for a more thorough phenomenological discussion. Also, the inhomo-

geneous phase can be probed approximatly by a dilute gas of instantons on T 3 allowing

for a lower energetics than on S3. These issues and others will be discussed elsewhere.
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