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a b s t r a c t

Two types of analytical solutions for waves propagating over an asymmetric trench are derived. One is a

long-wave solution and the other is a mild-slope solution, which is applicable to deeper water. The

water depth inside the trench varies in proportion to a power of the distance from the center of the

trench (which is the deepest water depth point and the origin of x-coordinate in this study). The mild-

slope equation is transformed into a second-order ordinary differential equation with variable

coefficients based on the longwave assumption [Hunt’s, 1979. Direct solution of wave dispersion

equation. Journal of Waterway, Port, Coast. and Ocean Engineering 105, 457–459] as approximate

solution for wave dispersion. The analytical solutions are then obtained by using the power series

technique. The analytical solutions are compared with the numerical solution of the hyperbolic mild-

slope equations. After obtaining the analytical solutions under various conditions, the results are

analyzed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Wave reflection due to a bathymetric change has been
rigorously investigated as one of the credible methods to protect
coastal areas from severe wave attacks. In general, practical tools
such as numerical, experimental or analytical methods are
frequently used to predict and analyze wave reflection. Among
those methods, we focus our interest on an analytical approach
which has the advantage of obtaining solutions quickly, simply
and accurately, although they are only available for idealized
situations. And it can be used to compare and verify the results
from other methods.

Lamb (1932, p. 262, Art. 176) first presented the long-wave
solution to the reflection or transmission of waves for a finite step
by using matching conditions for surface and normal mass flux at
the boundary. Takano (1960) developed the analytical solution for
arbitrarily varying water depths, which can be expressed as a
series of small steps by using the eigenfunction expansion
method. His approach, in fact, originated from Bremmer (1951)
who had described the wave solution using WKBJ (or Liouville-
Green) approximation in electromagnetic waves. The method
suggested by Takano (1960) was also used by Kirby and Dalrymple
(1983), Liu et al. (1992) and Cho and Lee (2000). Dean (1964)
obtained the long-wave solution by solving the continuity and the
ll rights reserved.

.

Euler equations in which the water depth or channel width was
assumed to vary linearly. He found that the governing equation
was transformed into the Bessel equation in the linear transition
of water depth or channel width and thus the solution was
expressed as a Bessel function. Dean’s (1964) solutions become
identical with those of Lamb (1932) when the slope changes
abruptly. Miles (1967) introduced the scattering matrix to
calculate the reflection and transmission coefficients using the
variational principle and applied his method to a continental
shelf. Later, Devillard et al. (1988) developed the theoretical
solution for the wave reflection and transmission over arbitrarily
varying topography using the transfer matrix, which renormalized
the scattering matrix. His approach was similar to Bremmer
(1951) or Takano (1960). He divided the domain into small steps
having constant water depth and applied the transfer matrix to
each step.

Lee and Ayer (1981) investigated the symmetric trench
problem using the transform method. And for similar geometry,
Miles (1982) calculated the diffraction of a long surface wave by a
deformation of the bottom through a conformal-mapping algo-
rithm proposed by Kreisel (1949). He applied his results to the
symmetric rectangular trench. In order to consider obliquely
incident waves, Miles (1982) used the variational method
developed by Mei and Black (1969).

For the case of an asymmetric rectangular trench, Lassiter
(1972) and Kirby and Dalrymple (1983) derived an analytical
solution by using the variational method and Takano’s (1960)
method, respectively. Bender and Dean (2003) studied the
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reflection and transmission of normally incident waves by the
trench and shoals with sloped transitions. They developed two
methods, the step method and the slope method, using the
linearized theory. The step method is an extension of the solution
of Takano (1960) and it can be applied to arbitrary water depths
assuming the sloped transition as a series of steps. The slope
method is an extension of Dean’s (1964) method that allows a
trench and shoals with a linear transition between changes in
depth but valid only within the long-wave region. Recently, Lin
and Liu (2005) and Chang and Liou (2007) conducted analytical
studies for the long-wave reflection by trapezoidal shape break-
waters by modifying Dean’s (1964) solution.

In this study, the analytical solutions propagating over the
trench having various shapes including linear and abrupt change
of depth are developed by using the power series. One is a long-
wave solution, which is valid only for shallow water, and the other
is a mild-slope solution, which is valid for both shallow and deep-
water depths. The series solution approach considered in this
study is frequently used in two-dimensional horizontal analytical
problems since Zhang and Zhu (1994) first proposed that
approach for the propagation of long waves around a conical
island and over a parabolic shoal. We apply the series solution to a
two-dimensional vertical problem to consider the wave reflection
and transmission by a trench. To develop the mild-slope solution,
Hunt’s (1979) approximate solution for the wave dispersion given
by Liu et al. (2004) is employed. Hunt’s approximate solution was
also used to develop an analytical solution for the submerged
truncated paraboloidal shoal by Lin and Liu (2007). In the
following section, the analytical solutions to the mild-slope
equation are derived and then compared with the numerical
solution based on the same governing equation. Finally, the
results obtained from analytical solutions applied to various
shapes of trench are investigated.
2. Analytical solutions

The flow domain of interest is divided into the constant flow
depth regions (I, IV) and the variable flow depth regions (II, III) to
consider the wave deformation in two-dimensional vertical
problems. For simplicity and convenience, the positive direction
in the horizontal and vertical coordinates is defined as the right
side from the trench center and upward from the still-water level,
respectively as shown, in Fig. 1. h0 is the water depth at the center
of a trench, h1 and h2 are the constant depths, a1 and a2 are the
distances from the center of a trench to the imaginary edge of a
trench extended to the water surface, respectively, b1 and b2 are
the distances from the center of a trench to the actual edges of a
trench, and a is an arbitrary positive integer. Fig. 1 is an example
for the case of a ¼ 1, 2, and N. As shown in Fig. 1, the side slope of
Fig. 1. Definition sketch of an asymm
a trench is linear for a ¼ 1, and parabolic for a ¼ 2, and it becomes
a vertical step for a ¼N.

Considering a homogeneous incompressible and inviscid fluid
with irrotational motion traveling over an asymmetric trench, the
(time-harmonic) mild-slope equation can become the governing
equation of interest.

d

dx
CCg

dZ
dx

� �
þ s2 Cg

C
Z ¼ 0 (1)

where Z is the complex amplitude of the water surface elevation, C

the phase velocity, Cg the group velocity, and s the wave angular
frequency.

To solve the boundary problem, appropriate boundary condi-
tions should be required. The continuity of surface elevation and
its derivative are used to conserve the mass and momentum at the
junction where each region meets and the radiation condition is
used at x ¼7N.

In the constant-water-depth regions (I and IV), the form of the
solution of Eq. (1) is

Z ¼ Aeikx þ Be�ikx (2)

where A and B are unknown complex variables to be determined
by boundary conditions, k is the wave number, and i is the pure
imaginary number ð

ffiffiffiffiffiffiffi
�1
p
Þ. If waves having unit amplitude are

propagating from the left side to the right side in the horizontal
coordinate, the water surface elevations in regions I and IV can be
expressed, respectively, as.

ZI ¼ eik1ðxþb1Þ þ Re�ik1ðxþb1Þ ðxp� b1Þ (3)

ZIV ¼ Teik2ðx�b2Þ ðx4b2Þ (4)

where subscripts I and IV are the upwave and downwave constant
water depth regions, respectively. R and T represent the reflection
and transmission coefficients, and k1 and k2 are the wave numbers
corresponding to h1 and h2, respectively.

In the variable-water-depth regions (II and III), the water
depths can be given by

h ¼

h0 1�
jxja1

aa1

1

� �
¼ h0 1� ð�1Þa1

xa1

aa1

1

� �
; ð�b1oxp0Þ

h0 1�
xa2

aa2

2

� �
; ð0oxpb2Þ

8>>><
>>>:

(5)

where a1 and a2 are the values of a on the left and right sides of
the trench, respectively.

In this study, two kinds of analytical solution in the variable
water depth are developed. One is the long-wave solution, which
is valid only in shallow water; the other is the mild-slope solution,
which can be applied to from shallow water to deep water.
etric trench (for a ¼ 1, 2, and N).
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2.1. Shallow-water model

For long waves, C ffi Cg ¼
ffiffiffiffiffiffi
gh

p
and s2

¼ gk2h; thus, Eq. (1) in
the trench becomes the well-known long-wave equation:

h
d2Z
dx2
þ

dh

dx

dZ
dx
þ
s2

g
Z ¼ 0 (6)

where g is the gravitational acceleration, and h is the water depth
inside the trench, which decreases gradually from the center to
the edge according to Eq. (5). The trench is assumed to be
infinitely long in the y-direction.

Substituting Eq. (5) into Eq. (6) results in the following
equations:

ðaa1

1 � ð�1Þa1 xa1 Þ
d2ZII

dx2
� a1ð�1Þa1 xa1�1 dZII

dx
þ n2

1ZII ¼ 0

ð�b1oxp0Þ (7)

ðaa2

2 � xa2 Þ
d2ZIII

dx2
� a2xa2�1 dZIII

dx
þ n2

2ZIII ¼ 0 ð0oxpb2Þ (8)

where ZII and ZIII are the water surface elevation inside the trench,
and

ni ¼

ffiffiffiffiffiffiffiffiffiffiffi
s2aai

i

gh0

s
ði ¼ 1;2Þ (9)

Since Eqs. (7) and (8) are the second-order ordinary differential
equations with variable coefficients, the solutions of Eqs. (7) and
(8) can be written in the form of power series as follows:

ZII ¼
X1
m¼0

bmxm ð�b1oxp0Þ (10)

ZIII ¼
X1
m¼0

gmxm ð0oxpb2Þ (11)

where bm and gm are unknown complex values. These values must
be complex because the free surfaces in the variable-depth
regions [i.e., Eqs. (10) and (11)] must satisfy the matching
conditions at the boundaries with the constant-depth regions
(i.e., at x ¼ �b1 and x ¼ b2) and the free surfaces at the constant-
depth regions are expressed as complex as shown in Eqs. (3) and
(4). These values are determined from recursion relations.
According to the Frobenius theory (Hildebrand, 1976), if the series
is expanded at ordinary or regular singular points, the series
solution converges for |x�x0|oX where x0 is ordinary or regular
singular point and X is the distance from x ¼ x0 to the nearest
singular point (x0 ¼ 0, X ¼ ai (i ¼ 1,2) in this case). Thus, the
solutions of Eqs. (7) and (8) always converge in the whole trench
region because the absolute value of bi is always less than that of
ai as shown in Fig. 1.

Substituting Eqs. (10) and (11) into Eqs. (7) and (8),
respectively, and collecting the terms of the same power of x

gives the following results:

For ai ¼ 1,

bm ¼
�ðm� 1Þ2bm�1 � n2

1bm�2

a1mðm� 1Þ
ðmX2Þ (12)

gm ¼
ðm� 1Þ2bm�1 � n2

2bm�2

a2mðm� 1Þ
ðmX2Þ (13)

For ai ¼ 2,

bm ¼
ðm� 2Þðm� 1Þ � n2

1 bm�2 ðmX2Þ (14)

a2

1mðm� 1Þ
gm ¼
ðm� 2Þðm� 1Þ � n2

2

a2
2mðm� 1Þ

gm�2 ðmX2Þ (15)

For aiX3

bm ¼ �
n2

1

aa1

1 mðm� 1Þ
bm�2 ð2pmoa1Þ (16)

bm ¼
ð�1Þa1 ðm� a1Þðm� 1Þbm�a1

� n2
1bm�2

aa1

1 mðm� 1Þ
ðmXa1Þ (17)

gm ¼ �
n2

2

aa2

2 mðm� 1Þ
gm�2 ð2pmoa2Þ (18)

gm ¼
ðm� a2Þðm� 1Þgm�a2

� n2
2gm�2

aa2

2 mðm� 1Þ
ðmXa2Þ (19)

where b0, b1, g0, and g1 are arbitrary complex constants. Since
the values of bi and gi (iX2) are determined by b0, b1, g0, and g1,
Eqs. (10) and (11) can be rearranged as follows:

ZII ¼ b0X1ðxÞ þ b1X2ðxÞ (20)

ZIII ¼ g0X3ðxÞ þ g1X4ðxÞ (21)

where X1(x) is obtained after choosing b0 ¼ 1 and b1 ¼ 0, and X2(x)
is computed when b0 ¼ 0 and b1 ¼ 1 from Eq. (10). X3(x) and
X4(x) can be obtained according to the same procedure. The
expression for X1(x) and X2(x) for the case of a1 ¼1 is given in
Appendix A.

Matching conditions at the junction (x ¼ �b1, 0, b2) give six
algebraic equations; thus the unknown coefficients can be
obtained using the matrix.

R

b0

b1

g0

g1

T

2
666666664

3
777777775
¼

a11 a12

a21 a22

a31 a32

a41 a42

a51 a52

a61 a62

2
6666666664

3
7777777775

1

ik1

" #
(22)

where

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

2
666666666664

3
777777777775

¼

�1 X1ð�b1Þ X2ð�b1Þ 0 0 0

ik1 X01ð�b1Þ X02ð�b1Þ 0 0 0

0 X1ð0Þ X2ð0Þ �X3ð0Þ �X4ð0Þ 0

0 X01ð0Þ X02ð0Þ �X03ð0Þ �X04ð0Þ 0

0 0 0 X3ðb2Þ X4ðb2Þ �1

0 0 0 X03ðb2Þ X04ðb2Þ �ik2

2
666666666664

3
777777777775

�1

(23)

Substituting these coefficients back into Eqs. (3), (4), (20), and
(21), the water surface elevation can be obtained for the whole
domain. Note that the matching conditions at x ¼ 0 give b0 ¼ g0

and b1 ¼ g1. Therefore, the reflection and transmission coefficients
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in Eq. (22) can be simplified as follows:

R ¼
�k1k2X2ð�b1ÞX3ðb2Þ � ik2X02ð�b1ÞX3ðb2Þ þ k1k2X1ð�b1ÞX4ðb2Þ

D

þ
ik2X01ð�b1ÞX4ðb2Þ � ik1X2ð�b1ÞX

0
3ðb2Þ þ X02ð�b1ÞX

0
3ðb2Þ

D

þ
ik1X1ð�b1ÞX

0
4ðb2Þ � X01ð�b1ÞX

0
4ðb2Þ

D
(24)

T ¼
2ik1½�X4ðb2ÞX

0
3ðb2Þ þ X3ðb2ÞX

0
4ðb2Þ�

D
(25)

where

D ¼ � k1k2X2ð�b1ÞX3ðb2Þ þ ik2X02ð�b1ÞX3ðb2Þ

þ k1k2X1ð�b1ÞX4ðb2Þ � ik2X01ð�b1ÞX4ðb2Þ

� ik1X2ð�b1ÞX
0
3ðb2Þ � X02ð�b1ÞX

0
3ðb2Þ

þ ik1X1ð�b1ÞX
0
4ðb2Þ þ X01ð�b1ÞX

0
4ðb2Þ (26)

2.2. Extension to deeper waters

For the analysis of deeper water, it is advantageous to rewrite
the mild-slope Eq. (1) in the following form:

CCg
d2Z
dx2
þ

dðCCgÞ

dx

dZ
dx
þ s2 Cg

C
Z ¼ 0 (27)

The coefficients in Eq. (27), expressed with the phase velocity and
the group velocity, involve the wave number that must be
obtained from the implicit linear dispersion relation. This makes
it difficult to solve Eq. (27) analytically. To make the coefficients in
Eq. (27) be explicit in forms, Hunt’s (1979) direct solution is
employed in this study. It involves an infinite series while taking
the following form:

ðkhÞ2 ¼ x2
þ

x
PðxÞ

(28)

PðxÞ ¼ 1þ
2

3
xþ

16

45
x2
þ

152

945
x3
þ

128

2025
x4
þ � � � (29)
Fig. 2. Comparison of normalized phase velocities for different orders of P(x) of

Hunt formula.
where

x ¼
s2h

g
(30)

While denoting PðxÞ ¼
PS

j¼0djx
j with d0 ¼ 1 and defining the

corresponding direct solution as Hunt’s (1979) sth order approx-
imate solution, the phase velocities for different Hunt’s (1979)
solution, normalized with respect to the phase velocity from
the linear theory, are plotted as a function of x in Fig. 2 As
shown in the figure, Hunt’s solution approaches the solution
of the linear dispersion equation as the order increases.
However, the increase of the order makes the analytical solution
much more complicated at the expense of a little improvement
of accuracy. In addition, the convergence of the analytic solution
can be judged analytically up to the fourth order, while a
numerical method such as Bairstow’s method (see Press et al.,
1992, p. 370) should be used for the higher order solutions.
Therefore, Hunt’s fourth order solution is used in this study, the
relative error of which is less than 1% for all values of x as shown
in Fig. 2.

The coefficients of Eq. (27) are expressed with P(x) and x as
follows when Hunt’s (1979) direct solution is used.

CCg ¼
g tanh kh

2k
1þ

2kh

sinh 2kh

� �
¼

g2

2s2

½PðxÞ þ 1�x
xPðxÞ þ 1

(31)

Cg

C
¼

1

2
1þ

2kh

sinh 2kh

� �
¼

PðxÞ þ 1

2PðxÞ
(32)

dðCCgÞ

dx
¼

dh

dx

d

dh

g tanh kh

2k
1þ

2kh

sinh 2kh

� �� �

þ
dh

dx

dk

dh

d

dk

g tanh kh

2k
1þ

2kh

sinh 2kh

� �� �

¼
3g½PðxÞ þ 1� � 2g½xPðxÞ þ 1�

2½PðxÞ þ 1�½xPðxÞ þ 1�

dh

dx
(33)

Substituting Eqs. (31)–(33) and Eq. (5) into Eq. (27) yields the
following approximate equation:

AðxÞ
d2Z
dx2
þ BðxÞxai�1 dZ

dx
þ CðxÞZ ¼ 0 (34)

The variable coefficients A(x), B(x), and C(x) are given in Appendix
B. The solution of Eq. (34) can be obtained by duplicating the
procedure from Eqs. (10) to (21).

The singular points, i.e., the roots for A(x) ¼ 0, are as follows:

For �b1oxp0

xa1 ¼ ð�1Þa1 aa1

1 (35)

xa1 ¼ ð�1Þa1 aa1

1 þ
1:63009� 1:10252i

�1

� �
(36)

xa1 ¼ ð�1Þa1 aa1

1 �
0:357769� 1:98923i

�1

� �
(37)

xa1 ¼ ð�1Þa1 aa1

1 þ
1:9903� 1:55755i

�1

� �
(38)

xa1 ¼ ð�1Þa1 aa1

1 �
0:717978� 2:10671i

�1

� �
(39)

For 0oxpb2

xa2 ¼ aa2

2 (40)

xa2 ¼ aa2 þ
1:63009� 1:10252i

(41)
2 �2
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xa2 ¼ aa2

2 �
0:357769� 1:98923i

�2
(42)

xa2 ¼ aa2

2 þ
1:9903� 1:55755i

�2
(43)

xa2 ¼ aa2

2 �
0:717978� 2:10671i

�2
(44)

where �i ¼ s2h0=gaai

i .
Since ei is positive because the lengths ai are positive, the

absolute values of x in Eqs. (35), (36), (38), (40), (41), and (43) are
all greater than or equal to ai. In Eqs. (37), (39), (42), and (44), x

varies depending on ei, having the minimum value of
x ¼ 0.94655ai at ei ¼ 0.69 in the case of ai ¼ 1. Because the power
series is used in the range of 0p|x|pbi, the convergence of the
series solution is guaranteed if bio0.94655ai. Since bi is defined as
bi ¼ ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi=h0

ai

p
, the series solution diverges only for very small

values of hi/h0. Since this case is very rare, the present analytical
solution converges in most practical situations.

In shallow water, the coefficients of Eq. (34) are reduced.

For �b1oxp0

AðxÞ ¼ 4ðaa1

1 � ð�1Þa1 xa1 Þ (45)

BðxÞ ¼ �ð�1Þa1 4a1 (46)

CðxÞ ¼ 4n2
1 (47)

For 0oxpb2

AðxÞ ¼ 4ðaa2

2 � xa2 Þ (48)

BðxÞ ¼ �4a2 (49)

CðxÞ ¼ 4n2
2 (50)

With these coefficients, Eq. (34) becomes identical to Eq. (7) or
Eq. (8).
Fig. 3. Comparison among analytical and numerical solutions for normalized

amplitudes for a symmetric trench with a1 ¼ a2 ¼ 2, h0 ¼ 6.4 m, h1 ¼ h2 ¼ 3.2 m,

b1 ¼ b2 ¼ 0.5L1, k1h1 ¼ 0.083, and k0h0 ¼ 0.118.

Fig. 5. Same as Fig. 3 except for k1h1 ¼ 1.336 and k0h0 ¼ 2.368.
3. Results and discussion

3.1. Comparison with numerical solutions

The long-wave solution and the mild-slope solution (hereafter
MSE-S and MSE-D, respectively) are compared with the numerical
solution based on the hyperbolic mild-slope equation developed
by Copeland (1985). Computations are conducted for the
following conditions: a1 ¼ a2 ¼ 2, h0 ¼ 6.4 m, h1 ¼ h2 ¼ 3.2 m,
b1 ¼ b2 ¼ 0.5 L1, and k1h1 varies from 0.084 to 1.336 to consider
a wide range of wave conditions. Figs. 3–5 show the comparisons
of dimensionless wave amplitude among the MSE-S, MSE-D, and
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the numerical model. When the longwave assumption is satisfied,
three analytical solutions are almost identical to the numerical
solution as shown in Fig. 3. However, as shown in Figs. 4 and 5,
moving from shallow water to deeper waters, the mild-slope
solution, MSE-D, still shows good agreement with the numerical
solution, while the long-wave solution, MSE-S, shows large
discrepancy with the numerical solution.

3.2. Miles’s formula for wave reflection

The MSE-D was compared with the results from the Miles
(1981) theory. Miles (1981) derived a theory for the wave
reflection from an obstacle with small and continuous height
variations by using the Fourier cosine transformation. The
expression for reflection coefficients can be written as (Miles,
1981)

RMiles ¼
2k2

2khþ sin 2 kh

Z 1
�1

dðxÞe2ikxdx

�����
����� (51)

where d(x) represents the bottom variation in the x-direction and
can be expressed in this study as follows:

For ai ¼ 1,

dðxÞ ¼

h1�h0

b1
x ð0pxob1Þ

ðh0�h2Þðx�b1Þþðh1�h0Þb2

b2
ðb1pxob1 þ b2Þ

8<
: (52)

For aiX2,

dðxÞ ¼
h0

xa1�2b1xa1�1

a
a1
1

� �
ð0pxob1Þ

h1a
a2
2
�h0fa

a2
2
�ðx�b1Þ

a2 g

a
a2
2

ðb1pxob1 þ b2Þ

8>><
>>: (53)

The comparison was conducted for a simple case of a1 ¼ a2 ¼ 2,
b1 ¼ b2 ¼ 0.5L0.167, h1 ¼ h2 ¼ 3.2 m, and h0 ¼ 3.2 m, where L0.167

represents the incident wave length when k1h1 ¼ 0.167 is
satisfied. In the case of a symmetric trench, Eqs. (24) and (51)
Fig. 6. Reflection coefficients of present and Miles solutions for different incident

wave periods for the case of a1 ¼ a2 ¼ 2, h1 ¼ h2 ¼ 3.2 m, and b1 ¼ b2 ¼ 0.5L0.167.
are expressed as follows:

R ¼
�k2

1X2ð�b1ÞX1ðb1Þ � ik1X02ð�b1ÞX1ðb1Þ þ k2
1X1ð�b1ÞX2ðb1Þ

D

þ
ik1X01ð�b1ÞX2ðb1Þ � ik1X2ð�b1ÞX

0
1ðb1Þ þ X02ð�b1ÞX

0
1ðb1Þ

D

þ
ik1X1ð�b1ÞX

0
2ðb1Þ � X01ð�b1ÞX

0
2ðb1Þ

D
(54)

RMiles ¼
2h0

a2
1

k1

2k1h1 þ sinh 2k1h1

�
b1

2ik1
ðe4ik1b1 þ 1Þ þ

1

4ik2
1

ðe4ik1b1 � 1Þ

�����
����� (55)

Fig. 6 shows the comparison of the reflection coefficients between
the Miles (1981) theory and the present solution changing the
incident wave period. Since the validity of the Miles (1981) theory
is restricted to small variation of the bottom, the discrepancy
between the two solutions increase as the central water depth in
the trench increases. However, they show good agreement in
relatively small height of the obstacle (i.e. h0 ¼ 3.5 m). As shown
in Fig. 6, the magnitudes of the reflection coefficients increase and
decrease periodically and their peak and span continuously
decrease when the ratio of the half-width of a trench to the
incident wave length increases. It is found that the peak and the
span of reflection coefficients increase as the central water depth
increases.
3.3. Effects of trench dimensions

In order to investigate the reflection of waves in detail, the
reflection coefficients are calculated for various trench configura-
tions. Fig. 7 shows the reflection coefficients calculated by
changing the half-width of trench for different central water
depths with the following geometrical and wave conditions:
a1 ¼ a2 ¼ 2, h1 ¼ h2 ¼ 3.2 m, and k1h1 ¼ 0.167 and 1.336. Also, the
central water depth varies from 6.4 to 12.8 m. In shallow water
(k1h1 ¼ 0.167), the observed phenomena in Fig. 7 are similar to
those of Fig. 6. The reflection coefficients increase and decrease
periodically as the half-width increases, while the peak and span
of reflection coefficients decrease. The peak and span of the
reflection coefficient increase as the central water depth increases.
In the intermediate-depth water (k1h1 ¼ 1.336), however, their
span and peak are opposite to them in shallow water, which
means that the peak increases while the span decreases as the
central water depth increases.

Fig. 8 shows the reflection coefficients calculated by changing
the central water depth for different half-widths of the trench in
the same condition as in Fig. 7. The half-width of the trench varies
from 0.25 to 1.0 L1. In the shallow water, the results are somewhat
contrast to Fig. 7. For instance, the peak and span of reflection
coefficients increase as the central water depth increases and the
peak of reflection coefficients decreases as the half-width of the
trench increases. In the intermediate-depth water, the periodicity
does not appear apparently within the computational range. And,
the reflection seldom occurs when the half-width of the trench
becomes equal to the incident wave length regardless of the
central water depth.

The trench used in this study has the ability to deform to
various shapes. For instance, when a2 ¼ 1, b1 ¼ 0, h1 ¼ 0.6 m, and
h2 ¼ 0.2 m, the trench becomes a constant-slope ramp used in
Booij’s (1983) test. When b1 ¼ 0 and a2-N is satisfied, the trench
becomes a step up and the reverse case is possible. And a1 ¼ a2-

N gives a rectangular trench. In addition, analytical solutions for
various shapes of trench can be obtained by adjusting the power
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Fig. 7. Reflection coefficients of analytical solution for different central water

depths for the case of a1 ¼ a2 ¼ 2, and h1 ¼ h2 ¼ 3.2 m: (a) k1h1 ¼ 0.167 and

(b) k1h1 ¼ 1.336.

Fig. 8. Reflection coefficients of analytical solution for different half-widths of

trench for the case of a1 ¼ a2 ¼ 2, and h1 ¼ h2 ¼ 3.2 m: (a) k1h1 ¼ 0.167 and

(b) k1h1 ¼1.336.
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of distance, the width of the trench, and the central water depth in
both upwave and downwave sides.
4. Concluding remarks

Two types of analytical solutions have been derived in this study.
One is the long-wave solution (MSE-S) and the other is a mild-slope
solution (MSE-D). For the long-wave solution, the relationship
s2
¼ gk2h based on the longwave assumption was used to make the

coefficients of the governing equation explicit. In order to obtain a
mild-slope solution, Hunt’s (1979) explicit dispersion relation was
used instead of the linear implicit dispersion relation. The
convergence of the long-wave solution was guaranteed for all
possible conditions. For instance, the analytical solution based on
the longwave assumption gives the convergent solution for any
given wave and geometric conditions, which satisfy the longwave
assumption. The mild-slope solution converges in most cases except
that the central water depth is much deeper in comparison to the
constant water depth outside the trench. Therefore, it can be
advocated that the present analytical solution is practical since the
case in which the solution diverges is unusual.
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The effects of the geometry of the trench on the reflection of
waves were examined in both shallow and intermediate-depth
waters. Similar phenomena to Bragg-reflection appeared. It is
observed that the reflection coefficients increase and decrease
periodically as one of the central water depth, the half-width of
trench, or the incident wave period changes at the same time
other parameters hold constant.

The analytical solutions developed in this study can be
utilized for verifying the numerical solutions in addition to
the analysis of the wave reflection and transmission. Since the
numerical solutions inherently involve approximations, it is
necessary to validate those models with the representative data.
Analytical solutions are a direct examination of the numerical
model scheme under idealized conditions. Also, they require
relatively less cost, time, and efforts than the numerical or
experimental methods.
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Appendix A. . Determination of X1(x) and X2(x)

The coefficients of Eq. (16) can be expressed as

bm ¼
�ðm� 1Þ2bm�1 � n2

1bm�2

a1mðm� 1Þ

¼ �
ðm� 1Þ2

a1mðm� 1Þ
bm�1 �

n2
1

a1mðm� 1Þ
bm�2 (A.1)

Again, Eq. (A.1) can be expressed as follows:

b0 ¼ e0b1 þ f 0b0 (A.2)

b1 ¼ e1b1 þ f 1b0 (A.3)

bm ¼ cmbm�1 þ dmbm�2 ¼ emb1 þ f mb0 ðmX2Þ (A.4)

where

e0 ¼ 0; f 0 ¼ 1; e1 ¼ 1; f 1 ¼ 0,

em ¼ cmem�1 þ dmem�2; f m ¼ cmf m�1 þ dmf m�2,

cm ¼ �
ðm� 1Þ2

a1mðm� 1Þ
; dm ¼ �

n2
1

a1mðm� 1Þ
(A.5)

Therefore,

Z1 ¼
X1
m¼0

bmxm ¼ b0 þ b1xþ b2x2 þ b3x3 þ � � �

¼ ðe0b1 þ f 0b0Þ þ ðe1b1 þ f 1b0Þxþ ðe2b1 þ f 2b0Þx
2

þ ðe3b1 þ f 3b0Þx
3 þ � � �

¼ ðe0 þ e1xþ e2x2 þ e3x3 þ � � �Þb1

þ ðf 0 þ f 1xþ f 2x2 þ f 3x3 þ � � �Þb0

¼ b0X1ðxÞ þ b1X2ðxÞ (A.6)

where

X1ðxÞ ¼ f 0 þ f 1xþ f 2x2 þ f 3x3 þ � � � (A.7)

X2ðxÞ ¼ e0 þ e1xþ e2x2 þ e3x3 þ � � � (A.8)
Appendix B. . Variable coefficients

The expressions for A(x), B(x), and C(x) in Eq. (34) are given as
follows. In the following equations, P(x) is given by Eq. (29) and is
written here again for readability:

PðxÞ ¼ 1þ
2

3
xþ

16

45
x2
þ

152

945
x3
þ

128

2025
x4
þ � � � (29)

For �b1oxp0

AðxÞ ¼ ½PðxÞ þ 1�2PðxÞ½aa1

1 � ð�1Þa1 xa1 � (B.1)

BðxÞ ¼ �ð�1Þa1a1½3PðxÞ þ 1� 2PðxÞx�PðxÞ (B.2)

CðxÞ ¼
saa1

1

gh0
½PðxÞxþ 1�½PðxÞ þ 1�2 (B.3)

where

x ¼
s2h

g
¼

s2h0

gaa1

1

ðaa1

1 � ð�1Þa1 xa1 Þ ¼ �1ða
a1

1 � ð�1Þa1 xa1 Þ (B.4)

For 0oxpb2

AðxÞ ¼ ½PðxÞ þ 1�2PðxÞ½aa2

2 � xa2 � (B.5)

BðxÞ ¼ �a2½3PðxÞ þ 1� 2PðxÞx�PðxÞ (B.6)

CðxÞ ¼
saa2

2

gh0
½PðxÞxþ 1�½PðxÞ þ 1�2 (B.7)

where

x ¼
s2h

g
¼

s2h0

gaa2

2

ðaa2

2 � xa2 Þ ¼ �2ða
a2

2 � xa2 Þ (B.8)
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