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Abstract

Background: LncRNAs are long regulatory non-coding RNAs, some of which are arguably predicted to have
coding potential. Despite coding potential classifiers that utilize ribosome profiling data successfully detected
actively translated regions, they are less sensitive to lncRNAs. Furthermore, lncRNA annotation can be susceptible to
false positives obtained from 3′ untranslated region (UTR) fragments of mRNAs.

Results: To lower these limitations in lncRNA annotation, we present a novel tool TERIUS that provides a two-step
filtration process to distinguish between bona fide and false lncRNAs. The first step successfully separates lncRNAs
from protein-coding genes showing enhanced sensitivity compared to other methods. To eliminate 3’UTR
fragments, the second step takes advantage of the 3’UTR-specific association with regulator of nonsense
transcripts 1 (UPF1), leading to refined lncRNA annotation. Importantly, TERIUS enabled the detection of
misclassified transcripts in published lncRNA annotations.

Conclusions: TERIUS is a robust method for lncRNA annotation, which provides an additional filtration step for 3’UTR
fragments. TERIUS was able to successfully re-classify GENCODE and miTranscriptome lncRNA annotations. We believe
that TERIUS can benefit construction of extensive and accurate non-coding transcriptome maps in many genomes.

Keywords: LncRNA, LncRNA annotation, RNA binding protein association

Background
Long non-coding RNAs (lncRNAs) are a group of regu-
latory non-coding RNAs (ncRNAs) that are involved in
diverse biological processes [1]. Despite developments in
research, lncRNA is still poorly defined and therefore
suffers from erroneous annotation [2–4]. For one, the
coding potential of lncRNA has long been debated,
regardless of the fact that its name harbors the term
“non-coding.” Several studies have reported unexplained
associations between ribosomes and varying proportions

of lncRNAs across different species and cell lines [5–7].
Meanwhile, other work has led to different conclusions,
including that lncRNAs are deprived of functional open
reading frames (ORFs) [8, 9] or that some lncRNAs are
actively translated [6, 10, 11]. Other research reports
that some lncRNAs are capable of coding short func-
tional peptides in mice [12, 13], and that lncRNAs may
be bifunctional, with coding and non-coding isoforms
reacting to cell conditions [14, 15]. Unfortunately, the
extent to which these ribosome-associated lncRNAs are
translated remains unknown.
To resolve this question, pioneers in the lncRNA field

developed several algorithms to identify translated tran-
scripts by sensing their intrinsic characters, such as the
ORF length [16–18], sequence similarity to known
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proteins [19], conservation [16, 20], and codon usage or
kmer bias [16–18, 21]. More recently, following the foot-
steps of Ingolia et al. and Guttman et al. [9, 22], several
studies have explored coding potential prediction within
the context of in vivo translation using ribosome profil-
ing data. Ingolia and his colleagues defined translation
efficiency (TE) as the approximation of effective ribo-
some engagement to RNAs, and Guttman and his group
conceived a program, the ribosome release score (RRS),
focused on ribosome disengagement at the start of
3’UTR region. The translated ORF classifier (TOC) de-
veloped by Chew et al. also employed a similar feature
[8]. Bazzini et al. devised the ORFscore that predicts the
coding potential of ORFs by quantifying the biased dis-
tribution of ribosome reads toward the first frame by
testing observed ribosome read distributions under the
null hypothesis of Chi-squared test [23]. Subsequently,
Calveilo et al. devised a more sophisticated program,
RiboTaper, coupling ribosome periodicity with Fourier
transformation strengthened by a multitaper approach
[24]. Rather than imposing a hypothetical uniform distri-
bution like in the ORFscore, RiboTaper compares the
spectra derived from ribosome protected fragment se-
quencing (Ribo-seq) to those from high-throughput
RNA sequencing (RNA-seq) to ensure capture of signifi-
cant peaks of frequency representing periodicity. Despite
that current strategies can be effective for the detection
of conserved, highly expressed, classic protein-coding
genes, they may not be appropriate for the identification
of young, less productive genes with short ORFs that are
the center of the ongoing debate.
Other than the ambiguity regarding the translated

lncRNA subpopulation, the non-coding group also suf-
fers from debatable annotations. As novel transcripts are
assembled based on RNA-seq signals, where only the
coding potential is assessed before they are annotated as
lncRNAs, the integrity of lncRNA annotation is barely
protected from the non-coding fragments of other genes.
Above all, the 3’UTR region of protein-coding genes is the
leading candidate for such fragments as it tends to show
weak, long, and fragmented RNA-seq signals that stretch
downstream. Nonetheless, no appropriate solution has
been suggested for the detection of false annotations.
Although the use of cap analysis of gene expression
(CAGE) and polyadenylation tags for the determination of
transcript boundaries has been quite effective [5, 25], the
required data are not available for most model organisms
and cell types.
To address these problems, we introduce the Translation-

dependent Ensemble classifier with RIbosome and UPF1 as-
sociation Score (TERIUS) that is robust and can successfully
refine lncRNA annotations using a two-step paradigm. The
first step, involves calculation of the ribosome periodicity
score (RPS) and is responsible for separating coding

transcripts. The second step, involves calculation of the UPF1
association score (UAS) that detects invalid lncRNAs.

Methods
Processing of high-throughput sequence data
All Ribo-seq and RNA-seq sequence data used in this
study were downloaded from the NCBI gene expression
omnibus (GEO) dataset [26] and aligned to reference ge-
nomes (hg19 for human and mm9 for mouse) using
TopHat version 2.0.6 [27] with alignment options -g 1
–b2-N 0 –b2-L 20, intron options -i 61 -I 265006 for
the human sequence, and -i 52 -I 240764 for the mouse
sequence (Additional file 1: Table S1).
Crosslinking immunoprecipitation sequencing (CLIP-

seq) BED files were downloaded from the GEO dataset,
converted to BAM files using BEDtools version 2.17.0
[28], and then modified with an in-house Python script
to add reads according to BED signal intensity. Three
mouse CLIP-seq replicates were merged and the mean
values were obtained. All gene expression or association
levels were calculated using an in-house Python script.
CAGE-seq and poly(A)-position profiling by sequen-

cing (3P–seq) BED files were downloaded from the
FANTOM 5 project [29] and from NCBI GEO datasets
(Additional file 1: Table S1).

Training and test datasets
To define the training and test gene annotations for
TERIUS, the RefSeq protein-coding gene annotation
(version 2013.09.09 for human and 2014.11.23 for
mouse) [30], GENCODE annotation version v19 [2] for
ncRNA genes, and Vertebrate Genome Annotation
(VEGA) lncRNA annotation (version 54 for human and
version 68 for mouse) [31] were downloaded. Annota-
tions based on mm10 genome assembly were converted
to the mm9 assembly using the liftOver tool [32]. Col-
lected annotations were then subjected to downstream
processes for RPS followed by UAS.
For the RPS, the protein-coding gene isoforms with

the longest coding sequence (CDS) were selected. To
generate positive (non-coding) data, classical non-coding
RNAs (rRNA, snoRNA, snRNA, miRNA, and so on)
were collected from GENCODE v19 annotations.
Among collected ncRNA annotation, those with protein-
coding potential was filtered out using CPC [19] and
CPAT [18]. Default cutoffs and logistic model provided
by each program were used. Remaining ncRNAs were
again searched against UniProt database [33] to elimin-
ate any genes with reported protein-coding entries. Then
for each coding and non-coding gene, Ribo-seq signals
for the sub-codon positions were counted and those that
lacked signal in any of the three positions were
discarded, leaving 7710 mRNAs and 92 ncRNAs. To
account for the size imbalance between ncRNAs and
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protein-coding genes, the same number of protein-
coding genes as ncRNAs (92) were randomly sampled to
generate 50 replicate training cohorts with the same
training set of ncRNAs.
For the UAS, classical non-coding RNAs were down-

loaded from ENSEMBL versions 75 and 67 for mouse
genome [34]. LncRNA annotations from VEGA data-
base were compared with RefSeq protein-coding tran-
scripts and ENSEMBL ncRNAs to remove lncRNAs
that overlap exons of any other genes in the same
strand. Filtered lncRNA transcripts were selected for
the longest isoform to generate positive set. For nega-
tive set, the isoforms of protein-coding genes with
3’UTR regions that did not overlap with the CDS of
any other isoforms were selected. If more than one iso-
form remained, the one with the longest 3’UTR region
was selected. Both the lncRNA and 3’UTR region of the
mRNA were required to be expressed more than or
equal to RNA-seq RPM of 0.3. To control the length
and size difference between the 3’UTR set and the
lncRNA set, the 3’UTR region was randomly fragmen-
ted into the same length as the lncRNAs in a pairwise
manner. The process was then repeated 10 times to
generate replicates with lncRNAs and length- and
number-matched 3’UTR fragments. The resulting data-
set consisted of 1334 3’UTR fragments and 1334
lncRNAs from the human genome and 290 3’UTR frag-
ments and 290 lncRNAs from the mouse genome.
To assess the overall performance of TERIUS, lncRNA

annotations from the miTranscriptome, BIGTranscrip-
tome, and GENCODE versions 19 and M1 were down-
loaded and the longest isoforms were selected [2–4].
Genes without strand information in miTranscriptome
were excluded from downstream analysis.

Prediction of the most-likely reading frame
To select the most-likely reading frame (MLRF) of tran-
scripts, Ribo-seq reads with the same 5′-end positions
were collapsed and counted by the sub-codon position
in the 0-frame relative to the 5’end of transcript. To
compare the obtained signals to the ones observed from
the CDS regions of protein-coding genes, a weighted
form of relative entropy (WRE) was designed as follows:

WREðf Þ ¼
X

i¼0;1;2

obsf ðiÞRIBOCDSðiÞlogRIBOCDSðiÞ
RNACDSðiÞ

where obsf(i) indicates the signal observed from the in-
put transcript from sub-codon position i of frame f, and
RIBOCDS(i) and RNACDS(i) (i.e., the signal in the corre-
sponding sequence data (Ribo-seq and RNA-seq respect-
ively) obtained from the sub-codon position i over CDS
of all protein-coding genes). The WRE was calculated
for all three frames and the one with the highest value
was regarded as the MLRF in downstream analysis
(Fig. 1).

MLRF ¼ argmax
f ∈ 0;1;2f g

WRE fð Þ

Ribosome periodicity score (RPS)
The first step of TERIUS considers trinucleotide period-
icity of ribosomal occupancy, a well-characterized signal
of active translation. Relative entropy was applied to
measure the periodicity by means of uneven ribosome
signal intensity that favors the first sub-codon position
over others. Instead of searching for all possible ORFs in
the transcripts, TERIUS defines a “MLRF” by calculating

Fig. 1 Two-step schematic flow of TERIUS. In RPS, ribosome reads are mapped to transcripts and converted to sub-codon position signals. Then
the signals are shifted to find the most-likely coding frame and adjusted before weighted relative entropy was calculated for ncRNA (gold) and
mRNA (purple) sets. Resulting distribution was estimated to generate a model (x axis: WRE, y axis: density). Transcripts predicted as coding are
classified as mRNA while ncRNA and low ribosome transcripts (LRT) are passed on to the second step, where they are further classified as bona
fide lncRNAs or 3’UTR fragments depending on their association to UPF1. UAS classification is also based on density model. X axis represents
UPF1 CLIP-seq RPM divided by RNA-seq RPM in log scale and y axis is density. The bar colored in yellow and purple in the left represents the
fraction of transcripts without UPF1 association
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ribosome signals over sub-codon positions for three pos-
sible frames. As this approach is prone to generate false
signal enrichment in the first sub-codon position,
additional normalization should be carried out before
calculating the WRE value after the MLRF was decided.
For all input transcripts, counted Ribo-seq reads were
randomly re-distributed to three positions, and the bias
of the Ribo-seq reads was measured as the random con-
trols (Additional file 2: Figure S1a). Then, the observed
signal was divided by the random control signal as
shown below:

norm ið Þ ¼ obs ið Þ
rand ið Þ =

X

i

obs ið Þ
rand ið Þ

where norm(i) and rand(i), each stands for normalized
signal and randomly generated signal for each sub-
codon position i. Normalized signals of RNA-seq
showed uniform distribution, which indicates that the
normalization was successful. Therefore, the normalized
signals were used to calculate the WRE for ncRNAs and
mRNAs and their density was estimated to build a rep-
resentative model (Fig. 1; Additional file 2: Figure S1a).
Finally, the translation status of the transcripts was in-
ferred in the form of posterior probability (RPS) as
follows:

RPS ¼ P ncjθð Þ ¼ P θjncð ÞP ncð Þ
P θjncð ÞP ncð Þ þ P θjPCGð ÞP PCGð Þ

where θ refers to the WRE value of a transcript and nc
stands for ncRNA and PCG stands for protein-coding
genes. The prior probability of the ncRNA and protein-
coding genes was set to 0.5 equally, and the likelihood
was calculated from the estimated density model (Fig. 1).

UPF1 association score (UAS)
The second step of TERIUS utilizes another RNA-
binding protein, UPF1 that discriminates between non-
coding 3’UTR fragments and lncRNAs due to the
translation-dependent translocation of UPF1 to the
3’UTR [35, 36]. To simulate the biological and physical
properties of the 3’UTR fragments in assembled tran-
scriptomes, all 3’UTR regions of the protein-coding
genes were randomly fragmented. Following random
fragmentation, the intensity of the UPF1 association was
investigated by means of CLIP-seq RPM normalized by
expression levels represented by RNA-seq RPM. Because
of the major difference between the number of UPF1-
present and -absent transcripts in the 3’UTR fragment
population and the lncRNA population, this ratio was
also considered as a part of the density model (Fig. 1;
Additional file 2: Figure S1b). Thus, the posterior prob-
ability (UAS) was calculated as shown below:

UAS ¼ P lncjθð Þ¼ P θjlncð ÞP lncð Þ
P θjlncð ÞP lncð Þ þ P θjUTRð ÞP UTRð Þ

where lnc and UTR represent lncRNA and 3’UTR frag-
ments respectively. As mentioned above, when there was
no UPF1 association detected for a given transcript, the
frequency of such transcripts in the lncRNA pool was
used instead of the likelihood. The prior probability of
the lncRNA and 3’UTR was set to 0.5.

Model building and cross-validation
Once the WRE was calculated for the ncRNA and
mRNA sets, their distribution was evaluated using the
kernel density estimation function in R. The estimation
function was trained by 5 × 2 nested cross-validation and
the mean distribution of 50 replicate training datasets
was used as a final model for RPS. Similarly, density distri-
butions of UAS from lncRNA and mRNA were estimated
and validated using a 5 × 2 nested cross-validation and the
mean distribution of 10 replicate sets was used. Validation
of the model was achieved using the outer fold of the
nested cross-validation. Hyperparameters such as kernel
function, bandwidth, and bandwidth adjustment were op-
timized for both classifiers using inner fold and are ex-
plained in Additional file (Additional file 1: Table S2).

Benchmarking of alternative methods
RPS was mostly compared with ORFscore and RiboTaper
as they share a key characteristic, which is trinucleotide
periodicity. Performances of RPS and RiboTaper through-
out this paper is based on default cutoff (0.5 for RPS and
0.05 for RiboTaper). For ORFscore, a heuristic cutoff was
applied as the authors of ORFscore recommended. Scores
were calculated for all RefSeq protein-coding genes using
R code provided by the author [37] and the 15th percent-
ile score was applied as in the original paper.
RiboTaper was downloaded from the website provided

by the authors [24]. For RiboTaper, annotations files
were created without CCDS (consensus CDS) and
Appris tag. As RiboTaper requires selection of read
lengths and P-site offsets for ribosome protected reads,
those with lengths 23, 26, 29, 31, and 32 nt were used
and all offsets were set to 12 nt.

Results
Current issues with lncRNA annotation
We first sought to ascertain the existence of a ribosome-
associated lncRNA subpopulation. Consistent with pre-
vious reports, the analysis of ribosome profiling data re-
vealed that a small portion of manually curated VEGA
lncRNAs were associated with ribosomes in both
humans and mice (Additional file 2: Figure S2a).
Next, the extent to which lncRNAs could potentially

be 3’UTR fragments was assessed in GENCODE version
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19 and version M1. Surprisingly, several thousands of
lncRNAs were located within 100 kb downstream of the
3’UTR of GENCODE mRNAs in the same strand
(Additional file 2: Figure S2b-c). A lncRNA AC006547.8
even overlaps 10 bp of the end of TRMT2A 3’UTR.
Among those that were located near 3’UTR ends, more
than half of the transcripts did not have CAGE tag evidence
of transcription start site (Additional file 2: Figure S2c). It is
therefore highly likely that the 3’UTR fragment could be a
main source of non-coding contaminant in lncRNA anno-
tations, especially as previous classifiers are only designed
to detect the ability of a transcript to be translated and can-
not discriminate between lncRNAs and parts of the coding
transcripts, including 3’UTR regions. (Additional file 2:
Figure S2d).

Development of TERIUS classifier
To address two separate issues discussed above, we de-
signed a program with two-step paradigm that resolves
each issue per step. TERIUS consists of RPS, which de-
tects actively translated transcripts, and UAS, which sep-
arates possible 3’UTR fragments from lncRNAs (Fig. 1).
Protein coding potential is assessed per input transcripts
using ribosome profiling data. After RPS step, the tran-
scripts that are either predicted to be non-coding by
RPS or that are associated insufficiently with ribosome
are considered to be non-coding and passed on to UAS
step. UAS computes UPF1 association based on UPF1
CLIP-seq data and RNA-seq data and predicts 3’UTR
fragments and lncRNAs. The classification is based on
the density model of each RPS and UAS scores that are
developed using training dataset (Fig. 1).

Performance of RPS classifier
With the established density models (Fig. 1; Additional file 2:
Figure S1b), we proceeded to investigate the performance of
RPS and UAS in more detail. RPS showed robust perform-
ance in terms of AUC in both train and test sessions (Fig. 2a).
To examine the accuracy of RPS and its strategy to define
MLRF, the difference between the annotated CDS frame and
the RPS-predicted frame was scrutinized for RefSeq protein-
coding genes. The results showed that RPS correctly pre-
dicted reading frames for 92.1% of the protein-coding genes
(Fig. 2b). For the remaining 5.6% and 2.3% of protein-coding
genes, RPS defined other frames that were shifted 1 nt or
2 nt from the annotated CDSs due to low ribosome signals
(Additional file 2: Figure S3a). Apart from low ribosome sig-
nals, it was already widely known that CDSs with short
length tend to pass through cutoffs and are undetected dur-
ing coding potential assessment. Therefore, among the
RefSeq protein-coding genes that were analyzed, 218 genes
with CDSs shorter than 100 aa were selected and separately
analyzed. The results showed that RPS predicted the correct
coding frames for 89.5% of the genes harboring short CDSs

(Fig. 2b). To serve as a negative control and demonstrate that
coding frame prediction power is truly based on ribosome
signal periodicity, a similar analysis was carried out with
RNA-seq reads. As expected, the coding frames RPS

Fig. 2 Performance of the RPS classifier (a) Training and test ROC curves
of the RPS. (b) Accuracy of the most-likely reading frame (MLRF). The
difference between the CDS frame and MLRF for all human mRNAs
(top) and those harboring a short CDS are shown separately (middle).
The prediction using RNA-seq is shown at the bottom (random). (c)
Benchmarking ORFscore. AUC values are 0.88 for both RPS and ORFscore.
Dots and arrows indicate the cutoff used to assess performance
throughout the paper. (d) Percent of mRNAs predicted as coding by
the RPS and RiboTaper. The mRNAs were binned according to Ribo-seq
RPM. (e) 2D plot of the RPS versus the ORFscore (left) and RiboTaper
(right). Dotted grey lines are the RPS cutoff (0.5), RiboTaper cutoff (0.05),
and 15th percentile of the ORFscore, calculated using all RefSeq protein-
coding genes. 11 outliers (ORFscore > 1000) are excluded from the plot.
NP written at the top-left corner indicates genes plotted in the quadrant
are classified as ncRNA (N) by RPS and as protein-coding (P) by other
methods, as plotted along the x-axis
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predicted using RNA-seq reads were randomly distributed
throughout all three possible frames (Fig. 2b).
Next, to compare our results with previously published

methods, all protein-coding and ncRNAs with ribosome
signals in all sub-codon positions were subjected to
ORFscore and RiboTaper, which are also built on the
concept of ribosome read periodicity (Fig. 2c). ORFscore
showed similar results as RPS with the same AUC values
(0.88). Notably, RiboTaper failed to give results for
51.7% of the protein-coding genes (3982 out of 7710)
and 85.9% of the ncRNAs (79 out of 92). As RiboTaper
provided insufficient number of negative data (13
ncRNAs), RiboTaper was excluded in the ROC analysis.
To further examine this low sensitivity issue, RefSeq
protein-coding genes with at least one Ribo-seq read
(Ribo-seq RPM>0) were divided into bins according to
their RIBO-RPM (Fig. 2d). Results revealed that the
RiboTaper missed more than half of the protein-coding
genes with relatively low ribosome reads (RIBO-RPM ≤
20) due to its rigorous filtering process upon annotation
and sequence data.

Validation of RPS classifier
Along with protein-coding gene classification, lncRNA
classification was taken into account. To gather genes
that were previously annotated as lncRNA but were re-
cently found to have protein-coding evidence, genes with
a symbol as ‘evidence at protein level’ were downloaded
from Swiss-prot and GENCODE annotations. Resulting
set had 124,764 human transcripts. To ensure correct
comparison, we separated 1445 human genes with a sin-
gle isoform and compared the performance of RPS to
others in a pairwise manner (Fig. 2e). Out of 1445 genes,
NCBP2-AS2, TDPX2 and TM4SF2 were not annotated
as protein-coding in RefSeq. RPS and ORFscore each pre-
dicted three and two genes as protein-coding, but RiboTa-
per predicted all three genes as non-coding (Fig. 2e, purple
dots). Although the additional contribution of RPS may
seem small compared to ORFscore and RiboTaper, analysis
of GENCODE ncRNA transcripts processed by each pro-
gram suggests that those three methods address quite dif-
ferent sets of transcripts (Additional file 2: Figure S3b).
Only 8 out of 92 human ncRNA were processed by all
three methods (8.7%). Therefore, RPS still captures consid-
erable population of ncRNAs that other methods cannot.

Integrity of UAS classifier
While RPS relies on previously reported ribosome peri-
odicity, the concept of using RNA-binding protein other
than the ribosome is completely novel in terms of the
assessment of biological coding potential. To identify
those RNA-binding proteins that differentially associate
with coding transcripts, recently published eCLIP data-
set from the ENCODE project website [38] was used in

BED format and low-quality peaks (P > 10− 5) were filtered
out to profile the overall association of proteins to various
gene types in GENCODE annotation. The result yielded
clusters of proteins preferentially associated with 5’UTRs,
CDSs, 3’UTRs, lncRNAs, miscRNAs, snoRNAs, and in-
trons (Additional file 2: Figure S4a-f). Among them, a
total of 14 RNA-binding proteins appeared to preferen-
tially interact with the 3’UTR of protein-coding genes in
K562 and HepG2 cell lines, including UPF1 and TIA1
(Fig. 3a) that are well-known for their characteristic pref-
erence for 3’UTR binding from previous studies [35, 36,
39]. Moreover, UPF1 is known to be the most highly
enriched in mRNA 3’UTRs and is depleted in lncRNAs
[35]. These findings were corroborated as UPF1 consist-
ently demonstrated 3’UTR-enrichment and lncRNA-
depletion in the annotation sets used in this study
(Additional file 2: Figure S4g). Mouse embryonic stem cell
(mESC) CLIP-seq data showed an increased proportion of
introns, which may originate from noise. In lncRNA
genes, both the HeLa and mESC profiles showed slightly
more UPF1 abundance than eCLIP profiles although this
was restricted to a small number of lncRNAs (Additional
file 2: Figure S4 h), some of which were reported to inter-
act with UPF1 in a previous study [35]. Interestingly, UPF1
was reported to show translation-dependent translocation
from the CDS to the 3’UTR in two studies [35, 36]. Analyz-
ing the UPF1 CLIP-seq data confirmed that UPF1 indeed
showed translation-dependent localization to the 3’UTR in
HeLa and mESC cell lines (Fig. 3b), forgoing the conclusion
that UPF1 is a valid RNA binding protein candidate that can
separate mRNA 3’UTRs from ncRNAs.
Following model development, the overall performance of

UAS was measured using ROC analysis. UAS revealed
unbiased results with an AUC of 0.83 for both the training
and the test set, while the AUC in the mouse model was 0.78
for training ROC and 0.79 for test ROC (Fig. 3c; Additional
file 2: Figure S5a). As there is no currently available program
to benchmark, we could not compare our UAS with others.
Instead, to verify that UAS can indeed detect 3’UTR frag-
ments, we applied UAS classifier to the lncRNA annotation
from GENCODE version 19. UAS predicted 423 out of 3057
transcripts (13.84%) as 3’UTR fragments. An example of one
of the lncRNA transcripts with the lowest posterior probabil-
ity RP11-226 L15.5 (ENST00000562313.1) is located 878 bp
downstream of the PIGM 3’UTR without CAGE tag (Fig.
3d). CLIP-seq and RNA-seq signals continuously covers the
whole PIGM gene and the lncRNA RP11-226 L15.5, implying
that the lncRNA might be 3’UTR fragment of PIGM gene.
Similar examples were observed in GENCODE version M1
lncRNA (Additional file 2: Figure S5b).

TERIUS enhances lncRNA annotation
As both RPS and UAS had proven to be fully capable of
classifying lncRNA, the robustness of the ensemble form
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of the two algorithms was assessed. Using TERIUS, we
reclassified lncRNAs originally defined by GENCODE
v19, the miTranscriptome, and the BIGTranscriptome,
the latter serving as the gold standard to estimate the ac-
curacy of TERIUS. Of the miTranscriptome annotations,
77,014 with strand information were used for the down-
stream analysis. Comparing the results for these four
lncRNA sets revealed that TERIUS identified 86.6% of
the BIGTranscriptome lncRNAs correctly, indicative of
powerful detection of bona fide lncRNAs (Fig. 4). On
the contrary, only 64.2% of the miTranscriptome
lncRNAs were classified as lncRNAs, indicating that the
miTranscriptome contained a larger population of false
lncRNAs than the BIGTranscriptome. Strikingly, RPS
predicted 18.6% of miTranscriptome genes as protein-
coding while the corresponding proportion in the BIG-
Transcriptome was only 0.6%. UAS classification results
also highlights the difference between BIGTranscrip-
tome and miTranscriptome, where 12.8% and 17.2% of
lncRNAs, respectively, were predicted as 3’UTR frag-
ments. The relatively higher portion of mRNA and lower
portion of 3’UTR fragments of miTranscriptome may be
the consequence of a previously reported tendency of
the miTranscriptome, where nearby transcripts are often
mistakenly fused into one gene model [4]. To ensure
that UAS can detect fragmented transcripts, lncRNAs
annotated in GENCODE vM1 was tested with UAS (Fig.
4). UAS discovered 25.1% of GENCODE vM1 lncRNAs
as 3’UTR fragments, suggesting that a proportion of the

non-coding contaminants in the miTranscriptome did
not result from spurious classification of UAS. From in-
spection of miTranscriptome lncRNAs that are classified
as 3’UTR fragments, those lncRNA without CAGE tag
support or exon junction support were considered aber-
rant (Additional file 2: Figure S6). Furthermore, both
RPS and UAS predicted that the ratio of protein-coding
and 3’UTR fragments in the GENOCDE v19 annotation

Fig. 4 TERIUS can refine current lncRNA annotations. Re-classification
results of miTranscriptome, BIGTranscriptome and GENCODE v19
lncRNAs and UAS classification of GENCODE vM1 lncRNAs are shown.
PCG stands for protein-coding genes

Fig. 3 Utilizing RBPs showing translation-dependent association. (a) Association profiles of proteins that bind preferentially to 3’UTR of protein-
coding genes in K562 (left) or HepG2 (right) cell line. (b) Translation-dependent localization of UPF1 to 3’UTR. Data are shown for untreated and
puromycin (puro) or cycloheximide (CHX) treated HeLa cell (left) and mouse embryonic stem cell (mESC). (c) Train and test ROC curve of UAS.
Dot and arrow indicate the cutoff point (0.5) used in this study. (d) Example of 3’UTR fragment annotated as lncRNA in GENCODE version 19. Data
tracks below are CLIP-seq, RNA-seq and CAGE signal
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was compatible to that of the BIGTranscriptome, thus
proving that TERIUS can enhance miTranscriptome
lncRNA annotation.

Discussion
Assembly and annotation of lncRNAs has become the
general practice for discovery of novel key regulatory
RNAs in various species. To understand lncRNA func-
tion, high-quality annotation and accurate coding poten-
tial assessment are crucial. TERIUS can benefit those
studies attempting to widen the lncRNA reservoir by fa-
cilitating the process of lncRNA classification. TERIUS
efficiently predicts non-coding transcripts including ones
that are either missed out or predicted incorrectly by
existing methods. TERIUS can also support lncRNAs
that lack CAGE tags due to their low expression. The
greatest strength of UAS score is that data of any other
protein that shows similar affinity profile as that of UPF1
can be directly applied to UAS. In the Results section, pro-
teins such as TIA1 are suggested as one of the possible al-
ternatives. Nevertheless, there is an ever-growing need for
more precise and specific definition of lncRNAs in order
to better characterize and understand their biological
properties. Even though the success of TERIUS suggests
UAS as new criteria for lncRNA annotation, further re-
search is required to expand annotation methods to allow
for extensive identification of lncRNAs.

Conclusions
In this study, we propose TERIUS as a robust and novel
tool to eliminate false lncRNA annotations. We demon-
strated that TERIUS can efficiently identify protein-
coding transcripts and detect possible 3’UTR fragments
within several public lncRNA annotations.

Availability and requirements
TERIUS is publicly available with a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 international li-
cense from //big.hanyang.ac.kr/TERIUS and is also included
within the article [Additional file 3]. TERIUS is implemented
in Python, runs on Linux CentOS 6.5 version. TERIUS re-
quires Python (version 2.6.9), R (version 2.15.1) and Samtools
(version 0.1.19-44,428 cd). TERIUS also requires Numpy
(version 1.9.2) and Rpy (version 1.0.3) Python packages.

Additional files

Additional file 1: Table S1. Accession numbers of NCBI GEO data sets
used in this study. Table S2. Hyperparameters (kernel, bandwidth,
adjustment) of kernel density estimation (PDF 225 kb)

Additional file 2: Figure S1. Building RPS and UAS model. (a)
Correcting noise in sub-codon position signals. Raw, random and normalized
signals of protein-coding genes are colored in purple, and those of ncRNAs
are colored in gold. (b) Estimated association density model of lncRNA (gold)
and 3’UTR fragments (purple) using mouse data. Figure S2. LncRNAs can be

protein-coding or fragments of 3’UTR. (a) Proportion of human protein-coding
genes (left) and VEGA lncRNAs (right) associated with Ribo-seq reads (top).
Shown in the bottom are same results of mouse genes. (b) Distance between
lncRNA start and 3’UTR end of protein-coding genes within 100 kb upstream
of lncRNAs (left: human, right: mouse). Frequency of lncRNAs located within
100 kb downstream of 3’UTR are colored in red. (c) Percent of GENCODE v19
lncRNAs (top) located 100 kb downstream of 3’UTR of sense protein-coding
gene (purple). Among them, those with CAGE tag supporting their 5’end is
shown in blue. Below are the corresponding results of GENCODE vM1
lncRNAs. (d) Classification of 3’UTR regions using ORFscore and RiboTaper.
The number on the top of each bars and the portion colored in yellow
indicate the number of 3’UTR regions predicted as coding by each method.
Figure S3. Performance of RPS compared to ORFscore and RiboTaper. (a)
Ribosome read signals of RefSeq protein-coding genes, binned according to the
difference between its CDS frame and its predicted frame. (b) Venn diagram
depicting GENCODE v19 ncRNA subsets detected by RPS, ORFscore and
RiboTaper. Figure S4. Association profiles of RBPs with eCLIP dataset and UPF1
CLIP-seq. Proteins that mostly bind to 5’UTR (a), CDS (b), lncRNA (c), miscRNA (d),
snoRNA (e) and intron (f) are shown for eCLIP data of K562 and HepG2 cell lines.
snoRNA and miscRNA-dominant proteins are shown for K562 cell lines only. (g)
Detailed association profile of UPF1 to various genes in HeLa (left) and mESC
(right) cell lines. Flanking 5 and Flanking 3 refers to the region 3 kb outside 5’UTR
or 3’UTR. (h) Top 5 lncRNAs with UPF1 association in HeLa (left) and mESC (right)
cell lines. LncRNAs with previously reported UPF1 association are colored in red.
Figure S5. Development of UAS with mESC data. (a) Train and test ROC curves
of mouse UAS model. Dot and arrow indicate the cutoff point (0.5) used in this
study. (b) Example of false GENCODE vM1 lncRNA detected by UAS. Data tracks
below are CLIP-seq and RNA-seq. No CAGE signal was visible within the region.
Figure S6. Example of false lncRNA annotation in miTranscriptome detected by
TERIUS. Example of miTranscriptome lncRNAs (magenta) that are possible 3’UTR
fragments. 3’UTR end of RefSeq mRNA MEMO1 is shown in purple. There were
no CAGE-seq tag visible in the region. (PDF 2195 kb)

Additional file 3: TERIUS source code. (GZ 19356 kb)
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