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A New Phase at a Finite Quark Density from AdS/CFT
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We explore the phases of the /' = 2 super Yang-Mills theory at a finite quark density by intro-
ducing a quark chemical potential in a D3-D7 setup. We formulate the thermodynamics of brane
embeddings and we find that the density versus chemical potential equation of state has a rich
structure. This yields two distinct first-order phase transitions in a small window of the quark den-
sity. In other words, there is a new first-order phase transition in the region of deconfined quarks.
In this new phase, the chemical potential is a decreasing function of the density. We suggest that
this might be relevant to the difference in the sSQGP-wQGP phases of QCD.

PACS numbers: 11.10.Wx, 11.15 Tk, 11.25 Sq, 12.38 Mh
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I. INTRODUCTION

There has been much hope that one might be able
to use AdS/CFT [1] to describe the real systems after
a certain number of deformations. For example, it has
been suggested that the fireball in the Relativistic Heavy
Ton Collider(RHIC) be viewed as a strongly interacting
system [2,3] and be studied using dual gravity models
There have been many attempts to construct models
phenomenologically closer to QCD [9].

More recently, there has been renewed interest in
N = 2 super Yang-Mills (SYM) systems with quenched
fundamental quark flavors studied by using a holographic
description with probe D7-branes in the AdS5 black-hole
background [10-15]. The key observation is that we have
confinement of quarks even in the absence of gluon con-
finement or the area law [10]. The phases of this theory
are characterized by brane embeddings: whether the D7-
brane touches the black-hole horizon (black-hole embed-
ding) or not (Minkowski embedding). Different types of
embedding lead to different meson spectra.

In this letter, we explore the phases of this theory at
finite quark density by introducing a quark chemical po-
tential along the lines of that in [16,17]. We will first
establish a clear formulation of the thermodynamics of
brane embeddings. We find that we need to renormalize
the finite chemical potential due to the divergence of the
thermodynamic potentials. We will also find that apart
from the type of first-order phase transition described in
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[10,11] at zero chemical potential, there is another class
of first order phase transition within the black-hole em-
bedding category: It is indicated in Figure 1 as a hopping
between two black-hole embeddings.

Since black-hole embeddings correspond to a decon-
fined phase, we cautiously suggest that this new type
of first-order phase transitions might be relevant to the
difference between sQGP-wQGP in RHIC experiments.
In particular, we find that the chemical potential in this
new phase is a decreasing function of the density.

We emphasize that, depending on whether we con-
trol the system by using the chemical potential (grand
canonical ensemble) or by using the density (canonical
ensemble), the phase diagram is different. In this letter,
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Fig. 1. Brane embedding and phase transitions. Solid
lines: Minkowski embedding (red) to black-hole embedding
(blue). Dashed lines: Hopping from a black-hole embedding
to another one.
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we present an analysis of and the results for a system
based on the canonical ensemble. The details, including
a description of the other process based on the grand
canonical ensemble, will be reported in a detailed publi-
cation [18].

The Euclidean AdS black hole metric is given by

2
% (f(U)at* + dz?)

o dU? 2
+R (f(U)U2 +dﬂ5> ; (1)
where f(U) = 1—(Up/U)*. The Hawking temperature of
this geometry is given by T = Uy /7 R* = Up/(V/2Ana'),
where A = g% ,,N.. We introduce a dimensionless co-
ordinate ¢ defined by d¢2/¢%2 = dU?/(U?f) so that the
bulk geometry is

2 2
UR(f) (f(&)dt* + dz®) + ?—sté, with  (2)

dsg = dE° + £2d03 = dp® + p*dQ + dy® + y>dy?,

ds? =

ds® =

where we have defined ¢2 = y? + p® and p is the radius
of the 3-sphere. The black hole’s horizon is located at
& = 1. The induced metric on the D7-brane is

dshy = L (fat* +dz?)
D7 — R2

R? oy
e (1 +y")dp® + p*dQ3) (3)

where y' = 0,y(p). It is interesting to notice that the
bulk metric in Eq. (1) and the induced metric in Eq. (3)
have the same Hawking temperature. This means that
the bulk and the brane are in equilibrium. The Euclidean
DBI action of the D7-brane in the presence of the gauge
field strength F; is

S:Nfu'r/ dtd3$dpd93 V det(G + 271'0('F)

— BV / e (4)
with
3/2 w?
£ = mp'? [T+ y) = (Ffme)?, (5)
+

where 77 = Ny N2T*g3 5, /32, we(§) = 1£E* and myp =
%\[\T (the Chern-Simons term vanishes in the present
case).

II. CONSERVED CHARGE AND
EQUATIONS OF MOTION

Since £ does not depend on Aq explicitly, its conjugate
momentum is a conserved quantity:

oL
0o — ant = _Qa (6)

IT4
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in terms of which we can write

Fpe = mrQuw_v/(1+y?)/\Jwr (Q* +wip),  (7)

where Q = ’?—jQ. Since we have a constraint, Eq. (6),
to obtain a Lagrangian for y, we should not substitute
F,; into the original Lagrangian, Eq. (5). The correct
procedure is to perform a Legendre transformation

H=L—T4,A (8)

and then impose the conservation equation, Eq. (6),
to eliminate the electric field completely. The resulting
“Hamiltonian” is given by

H="T(y p)Vv1+y?,
2

T(y.p) = (Q2 + w? po). (9)

W4

We can take this Hamiltonian as our effective Lagrangian
for y and T may be regarded as the effective tension of
the D7-brane. The resulting equation of motion is

y" dlogT , OlogT _
1+y? ap 7 oy

0. (10)

One can check that both the original and the effective
Lagrangian give the same equation of motion for y.

IIT. CHEMICAL POTENTIAL IN GRAVITY
DUAL

In [16,17], the quark chemical potential was introduced
as the value of Ag on the D7-brane world volume. Here,
we define the chemical potential in a gauge-invariant
fashion:

= / dp Fyy = pan;O Ap. (11)

Pmin

For the last equality, we need to gauge fix A, = 0 and
set Aolp,.;,, = 0, which agrees with [16,17].

Notice that u = [ F,; is the work to bring a unit
charge from the UV region (p = oo) to the IR region
against an electric field F,;. This definition in Eq. (11)
agrees with our intuition of the chemical potential as
work done to add a quark to the system.

For the Minkowski embedding, p,,;n = 0. For the
black hole embedding, p,,;n» = cosf where 6 is the angu-
lar coordinate on the y-p plane. !

L After this paper was uploaded, the authors of [19] pointed out
that in the deconfinig phase, there might be no Minkowski em-
bedding.
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IV. THERMODYNAMIC POTENTIALS

A generic grand potential (density) is defined by
e~ FVsQ1) = Tre—FVs(H—uN) Here, we identify the DBI
action, which is a functional of Ay, as the grand potential
Sppr = BV3Q. Then, integrating the Legendre transfor-
mation, Eq. (8),

/dp’H = /dp[,—/deAoAf). (12)

Using the fact that I14, = —(Q is a constant (in p evolu-
tion), one can rewrite the above as

F(Q) = Q) + p@Q- (13)

It is remarkable that the Legendre transformation in the
bulk classical field theory is reinterpreted as the Legen-
dre transformation between the canonical and the grand
canonical ensembles in the boundary thermodynamics.

The chemical potential enters the Hamiltonian density
of the gauge theory at the boundary as a coupling to the
baryon number density:

Aty = —p(0'). (14)

Therefore, (), which has been originally defined as a first
integral of the DBI action, should be identified as the
number density of quarks/baryons. Notice that the ef-
fective tension of the brane increases as we increase the
quark density, which should have been expected. More
precisely, after considering various scale factors, we have

Q = (W) (15)

V. RENORMALIZATION OF CHEMICAL
POTENTIAL

The Helmholtz free energy F' and the grand potential
are in fact divergent quantities because they contain a
divergent p integral. Therefore, we need to regularize
them. We choose to subtract Fy(Q), the value of F, for
the D7-brane configuration that touches the black hole
on the equatorial plane (y = 0). This is like a Pauli-
Villars regularization in the brane setup. We call this
brane the reference brane, so the renormalized free en-
ergy, which we will calculate, is defined by

Fr(Q) = F(Q) — Fo(Q)- (16)

This has a far reaching effect on the chemical potential.
To see this, notice

Fr(Q)=(p) = Qo) + (1 —p10) @ :
= Qr(ur)+1rQ, (17)
where we have used the fact that Fo(Q) = Q(uo) + po@.

Notice that pg is the chemical potential at the reference-
brane configuration. The point is that when we deal with
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Fig. 2. Free energy vs. L for fixed Q. The second phase
transition is indicated by a small kink near U’.

renormalized quantities such as Fg and g, we also have
to use the renormalized chemical potential, although u
itself is a finite quantity from the beginning. In all nu-
merical analysis, we need to use pg for the chemical po-
tential. From now on, we delete the subindex R unless
it is confusing.

V1. THE PHASE STRUCTURE OF D3-D7

In this article, we study a system based on the canoni-
cal ensemble, where the number density () is continuous
while the chemical potential is allowed to jump. Let us
expand y and Ay in the form of y(p) = L + i +O( -4,

Ao(p) = p+ 2+0( 1). We have L = 2o

fan’ where m, is a quark mass and ¢ = (1))
[14,15]. One can interpret L as the quark mass at fixed
temperature or as an inverse temperature at fixed quark

mass. We also find that ¢ = —1 mTQ The standard

AdS/CFT dictionary establishes that we have two pairs
of conjugate variables, namely (¢, L) and (Q, ).

To analyse the phase transition, we plot the free en-
ergy F/T* as a function of L for a given @ (Figure 2)
and track the least free energy configuration. In Fig-
ure 2, we start from P’ on the Minkowski branch. As
L decreases, the free energy decreases until we intersect
the black-hole branch at P. For smaller values of L, the
black-hole configurations have lower free energy. At P,
therefore, the D7-brane jumps from a Minkowski embed-
ding to touch the black-hole horizon. This is the same
type of first-order phase transition first found in [10] for
zero chemical potential. Decreasing L further decreases
the latitude () of the intersection of the brane with the
horizon smoothly. For large ), the story ends here.

For very small ), however, as we decrease L further,
initially the latitude of the intersection of the brane-
black hole goes down smoothly. However, at a critical
latitude 67, the embedding suddenly jumps to a smaller
latitude 62, as indicated schematically in Figure 1 (the

and

c=c
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Fig. 3. Free energy vs. L for fixed @) around the second
phase transition point.
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Fig. 4. Phase diagram in the T-Q plane.

kink near U’ in Figure 2). An embedding with touching
latitudes between these two values has higher free energy,
as seen in Figure 3 and, hence, is never realized. This
phenomenon happens only at a finite density within a
small density window,

log Q1. = —6.812 < logQ < —4.726 = log Q2. (18)

The full phase diagram, therefore, looks as in Figure 4.
Notice that the horizontal axis is log Q.

The chemical potential jumps across the phase bound-
ary. For (Q > ()24, there is no kink, hence, the second
phase transition disappears as we can see in Figure 5.
Furthermore, we have a second-order phase transition at
Q = Q2«. The slopes of the phase boundary lines are
discontinuous at ) = (1., where three lines meet.

VII. EQUATIONS OF STATE

The relations between the variables (¢, L) (equivalently
(c,my)) and (Q, ) can be considered as the diagram of
equation of state, which is much like the P-V diagram of
Van der Waals in a liquid-gas phase transition. We may
determine these by using the thermodynamic relations
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Fig. 5. T—Q phase diagram around the new phase bound-
ary.
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Fig. 6. p-Q relation: We plot u/T vs. Q/T?.

Numerical analysis shows that the relationship between
wand @ given by @ = —%Ef) is not monotonic; further,
1 is not a single-valued function of Q.

In Figures 6 and 7, we show the relation between ¢
and L for a representative value of () and the relation
between Q and p for a representative value of L. The
equations of state represented in these diagrams show
that we have a much richer structure than that in a Van
der Waals P-V diagram.

We track the phase diagram from M’ in Figure 6 at
a fixed value of L, which may be thought of an inverse
temperature (or quark mass). The first phase transi-
tion takes place at a certain critical value of ) at point
P’. Here, the brane embedding jumps from a Minkowski
embedding to a black-hole embedding, which results in a
jump of the chemical potential from P’ to R’ on the dia-
gram. If we increase ) further, we have a second phase
transition, which is realized as a jump from S’ to U’. We
have also indicated Maxwell’s construction, which allows
us to determine the location of the phase transition (i.e.,
equality of the areas of the shaded regions on either side
of a particular jump). For larger values of L, however,
we have only a single phase transition.

The point to be noted is that in a small window be-
tween R’ and S’, the chemical potential is a decreasing
function of the density (in the deconfined phase). This
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Fig. 7. ¢-L relation: Here, we interpret L as the quark
mass.

window seems to be thermodynamically unstable. The
instability arises because we did not include the bound
states explicitly. In terms of quarks and gluons only, such
bound states should appear here as an instability be-
cause the degree of freedom is changed by the formation
of bound states. However, this does not mean that the
new phase does not exist. Within the deconfined phase
(black-hole embeddings), there are regions that allows a
bound state, while the majority of the high-temperature
regions do not allow such bound states. Therefore, our
proposal is that it is natural to identify the region with
bound states as the sQGP.

Referring to the é-L equation of state in Figure 7, the
two phase transitions are as labelled. In this case, how-
ever, the chiral condensate decreases uniformly as a func-
tion of L (excepting of course, for the jumps). For large
quark mass L, it seems to vanish, as expected.

VIII. DISCUSSION

Although characterized by a nonstandard behavior of
the chemical potential, the nature of the second phase
is not very clear from the gauge theory point of view.
However, since both phases belong to the black-hole em-
bedding corresponding to deconfined quarks, it might
be relevant to the famous difference between sQGP and
wQGP discussed within RHIC physics [2]. In fact, if we
take the temperature and the Q of the relevant region
to be 200 MeV and 5 x 1073, respectively and choose
NfNC\f)\/16 ~ O(1), then the density @ ~ 1 fm™,
which is in the RHIC ball park.

An immediate question is the universality of this sec-
ond phase. Since most of the properties of the branes for
small @) are determined in the neighborhood of the hori-
zon, we might expect this phenomenon persist in (per-
haps more realistic) models so long as we have a black
hole.

One can also look at a process that corresponds to a
horizontal Maxwell’s construction in the p-@) diagram.
This is a process where the chemical potential is used
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as a control parameter. Such a process is more typical
in the literature [20]. Some other related questions are
about the effect of the density and the temperature on
the meson spectrum and on the heavy quark potentials.
A limitation of this model is the absence of a gluon con-
finement. We can also ask whether what we found in this
research is a universal feature of black-hole embeddings.
These issues are currently under investigation [18].
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