
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008 

1719

PAPER

Efficient Storage and Querying of Horizontal Tables Using a PIVOT 

Operation in Commercial Relational DBMSs*

Sung-Hyun SHIN†, Nonmember, Yang-Sae MOON† †a), Member, Jinho KIM† †, 

and Sang-Wook KIM†, Nonmembers

SUMMARY In recent years, a horizontal table wwwith a large number 
of attributes is widely used in OLAP or e-business applications to analyze 
multidimensional data efficiently. For efficient storing and querying of hori-
zontal tables, recent works have tried to transform a horizontal table to a tra-
ditional vertical table. Existing works, however, have the drawback of not 
considering an optimized PIVOT operation provided (or to be provided) in 
recent commercial RDBMSs. In this paper we propose a formal approach 
that exploits the optimized PIVOT operation of commercial RDBMSs for 
storing and querying of horizontal tables. To achieve this goal, we first 
provide an overall framework that stores and queries a horizontal table us-
ing an equivalent vertical table. Under the proposed framework, we then 
formally define 1) a method that stores a horizontal table in an equivalent 
vertical table and 2) a PIVOT operation that converts a stored vertical ta-
ble to an equivalent horizontal view. Next, we propose a novel method 
that transforms a user-specified query on horizontal tables to an equivalent 
PIVOT-included query on vertical tables. In particular, by providing trans-
formation rules for all five elementary operations in relational algebra as 
theorems, we prove our method is theoretically applicable to commercial 
RDBMSs. Experimental results show that, compared with the earlier work, 
our method reduces storage space significantly and also improves average 
performance by several orders of magnitude. These results indicate that 
our method provides an excellent framework to maximize performance in 
handling horizontal tables by exploiting the optimized PIVOT operation in 
commercial RDBMSs.
key words: PIVOT, horizontal tables, relational algebra, query transfor-
mation, OLAP

1. Introduction

On-Line Analytical Processing (OLAP) provides a multidi-
mensional analysis method to extract a variety of useful in-
formation from a large amount of data stored in data ware-
houses [3], [6], [11]. To analyze these multidimensional data 
efficiently, we generally store or represent the original data 
as various forms of transformed data [13]. One of these rep-
resentation methods is a horizontal table [1]. To represent 

complex multidimensional data in a relatively simple for-

mat, a horizontal table forms a two-dimensional table whose 

columns correspond to values of dimension attributes [8], 

[13]. Figure 1 (a) shows an example of the horizontal table 

SalesH that manages •esales•f quantities for every electronic 

product and for every shop at the same time. As shown in 

the figure, we can easily recognize or summarize sales quan-

tities for each shop or for each product. Thus, we can say 

that a horizontal table provides an easy view to perform mul-

tidimensional data analysis efficiently. Like a PIVOT table 

provided in Microsoft Excel and a cross table used in rep-

resenting statistics data, a horizontal table has a horizontal 

form of schema structures consisting of a large number of 

columns (i.e., attributes) [1], [9], [15], [17], [18].

The traditional relational DBMSs (RDBMSs), how-

ever, cannot support a horizontal table efficiently. This is 

because the traditional RDBMSs have focused on handling 

a vertical table with a large number of tuples (rows) but a 

small number of attributes (columns). Figure 1 (b) shows an 

example of the vertical table SalesV. Thus, most RDBMSs 

have an explicit limitation on the number of attributes to be 

supported. For example, Microsoft SQL Server 2005 [5], 

[12] and Oracle 9i [14], which are representative commer-

cial RDBMSs, limit the maximum number of attributes in a 

table to 1,024. However, OLAP or e-business applications 

must support a horizontal table with thousands or tens of 

thousands of attributes [1]. Therefore, we need to maintain 

a horizontal table for multidimensional data analysis as an 

equivalent vertical table for commercial RDBMSs.

To solve the problem of storing horizontal tables in 

RDBMSs, Agrawal et al. [1] have proposed a novel method 

that uses a vertical table for a horizontal view. For this, they 

first convert a horizontal table to an equivalent vertical ta-

ble and store the vertical table in relational databases. They 

then transform a horizontal table-based query to an equiv-

(a) A horizontal table (SalesH) (b) A vertical table (SalesV)

Fig. 1 An example of horizontal and vertical tables.

Manuscript received March 16, 2007.

Manuscript revised November 26, 2007.
† The authors are with the College of Information and Commu-

nications, Hanyang University, Korea.
†† The authors are with the Department of Computer Science, 

Kangwon National University, Korea.
*This work was partially supported by the Ministry of Science 

and Technology (MOST)/Korea Science and Engineering Founda-
tion (KOSEF) through the Advanced Information Technology Re-
search Center (AITrc). Also, this work was partially supported by 
the MIC (Ministry of Information and Communication), Korea, un-
der the ITRC (Information Technology Research Center) support 

program supervised by the IITA (Institute of Information Technol-
ogy Advancement) under grant IITA-2007-C1090-0701-0040.

a) E-mail:ysmoon@kangwon.ac.kr
DOI:10.1093/ietisy/e91-d.6.1719

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers



1720 IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

alent vertical table-based query. More specifically, their 
method transforms a relational algebra operation on hori-
zontal tables to an equivalent operation on vertical tables. 
Through experiments, they have also shown that processing 
transformed queries on vertical tables is more efficient than 

processing the original queries on horizontal tables. In re-
cent years, however, a PIVOT operation [4], [5] is provided 

(or to be provided) in commercial RDBMSs to support a 
horizontal view of a stored vertical table [12], [14]. Here, 
PIVOT is the operation of converting the roles of rows and 
columns in a relation table, and it is used for transforming 
attribute values of a vertical table into attribute names of the 
corresponding horizontal table. Agrawal et al.'s approach 
did not consider this optimized PIVOT operation since their 
method was introduced before commercial RDBMSs pro-
vided a PIVOT operation as the internal feature. Also, they 
have not provided formal proofs for query transformation 
rules in relational algebra. In contrast, in this paper we 

propose an efficient method of storing tables and process-
ng queriesessby fully exploiting this optimized PIVOT oper-

ation. That is, the major difference between our work and 

Agrawal et al.'s work is whether to use a PIVOT opera-

tion or not. Using the PIVOT operation, however, causes 

many technical problems in query processing frameworks, 

query transformation rules, and implementation details, and 

our solution is quite different from Agrawal et al.'s. More-

over, by exploiting the recent PIVOT operation of commer-

cial RDBMSs, our solution can be widely and practically 

used in many e-business applications.

In this paper, we propose a formal approach that uses 

the optimized PIVOT operation of commercial RDBMSs for 

storing and querying of horizontal tables. To achieve this 

goal, we first provide an overall framework that stores and 

queries a horizontal table using an equivalent vertical table. 

Under the framework, we then formally define 1) a method 

that stores a horizontal table in an equivalent vertical table 

and 2) a PIVOT operation that transforms a stored vertical 

table to an equivalent horizontal view. Next, we propose a 

novel method that uses the PIVOT operation in transform-

ing an original horizontal table-based query to an equivalent 

vertical table-based query. That is, we propose a system-

atic way of transforming a user-specified query on horizon-

tal tables to an equivalent PIVOT-included query on verti-

cal tables. In particular, to achieve completeness of query 

transformation rules, we consider all of the five elementary 

operations in relational algebra [16] as theorems and for-

mally prove the theorems. That is, we propose transforma-

tion rules for projection (ƒÎ), selection (ƒÐ), set union (•¿), set 

difference (-), and the Cartesian product (•~), respectively, 

and prove correctness of the rules.

The proposed method is much more practical and gives 

better performance than the earlier work. First, our method 

is easy to implement compared with the earlier work by 

Agrawal et al. [1]. It is because we simply exploit the 

PIVOT operation in transforming queries while they have 

to rewrite the corresponding SQL statements line by line 

against the complex algebra operations. Thus, our method 

provides a practical implementation mechanism that enables 
normal users as well as experts to handle horizontal tables in 
commercial RDBMSs. Second, our method improves per-
formance compared with Agrawal et al.'s one. It is because 
we use the optimized PIVOT operation while they have to 
execute complex SQL statements step by step. That is, the 
recent commercial RDBMSs consider various optimization 
techniques to support a PIVOT operation as its internal fea-
ture [5], and we use this optimized PIVOT operation to im-

prove performance. Experimental results show that, com-
pared with the earlier work, our method reduces storage 
space significantly and also improves performance by sev-
eral orders of magnitude.

The rest of this paper is organized as follows. Section 2 
describes related work. Section 3 explains an overall frame-
work for storing and querying of horizontal tables. Section 4 
presents query transformation rules for all five elementary 
operations in relational algebra. Section 5 shows the results 
of performance evaluation. Section 6 summarizes and con-
cludes the paper.

2. Related Work

Several previous researches identified usefulness of horizon-
tal tables in OLAP or e-business applications [1], [2], [8], 
[17]. Gray et al. [8] and Witkowski et al. [17] presented a 
spreadsheet and a cross table to easily represent the mul-
tidimensional data for naive users. These spreadsheet and 
cross table have the similar concept with a horizontal table. 
However, they focused on efficiently storing and querying 
of a horizontal table itself, but they did not try to solve the 

problem of a horizontal table or to transform the table to an 
equivalent vertical table. Next, Agrawal et al. [1] insisted 
that horizontal tables were practically important in many e-
business applications since a lot of e-business data could be 
viewed as the form of horizontal tables. They then pointed 
out the problem of storing a horizontal table in the tradi-
tional table structure and proposed a novel method of rep-
resenting a horizontal table as an equivalent vertical table. 
Recently, Beckmann et al. [2] argued that the proper way to 
handle sparse data was not to use vertical tables, but rather 
to extend the RDBMS tuple storage format to allow the rep-
resentation of sparse attributes as interpreted fields. To use 
their approach in a commercial RDBMS, however, we have 
to modify major functions of its internal engine, which is not 
feasible in practice. Thus, we do not consider this storage 
format modification approach, but focus on Agrawal et al.'s 
vertical table approach.

Lakshmanan et al. [10] first proposed a transformation 
method that converts a horizontal table to an equivalent ver-
tical table. They presented four reorganization operations, 
unfold, fold, split, and unite, to efficiently store a horizontal 
table with a large number of attributes. Here, unfold and 

fold are the operations of transforming a horizontal table 
to a vertical table, and vice versa. Based on this concept, 
Agrawal et al. [1] proposed a novel and systematic method 
that stores and queries a horizontal table using an equiv-



SHIN et al.: EFFICIENT STORAGE AND QUERYING OF HORIZONTAL TABLES USING A PIVOT OPERATION 
1721

Table 1 Summary of notation.

alent vertical table. That is, to provide a horizontal view 

for users, they stored its equivalent vertical table internally. 

By storing a vertical table rather than a horizontal table, 

Agrawal et al. were able to overcome the limitation on the 

number of attributes in RDBMSs. Also, they maximized 

storage utilization and improved performance by not storing 

null values, which were a critical problem of horizontal ta-

bles. Agrawal et al.'s solution, however, has the drawback of 

not considering the PIVOT operation optimized in commer-

cial RDBMSs. The reason is their solution was introduced 

before commercial RDBMSs provided a PIVOT operation 

as their internal feature. Also, they have not provided formal 

proofs for query transformation rules in relational algebra.

In addition to the works above, many researchers have 

studied on a horizontal table. First, Witkowski et al. [17], 

[18] defined multidimensional data as a horizontal table 

in the form of a spreadsheet and proposed a manipulation 

method for the horizontal table. Through defining and ma-

nipulating the horizontal table, they tried to enable naive 

users to more easily use analysis functions of OLAP. Sec-

ond, Cunningham et al. [5] formally defined PIVOT and 

UNPIVOT in the form of relational algebra. Like unfold 

and fold, their PIVOT and UNPIVOT are the operations of 

transforming a horizontal table to a vertical table, and vice 

versa. They then presented SQL statements to implement 

the algebra operations and proposed query optimization 

techniques to use the PIVOT/UNPIVOT operations together 

with other elementary operations. Third, Chen et al. [4] 

provided GPIVOT as generalization of PIVOT/UNPIVOT, 

and proposed an incremental maintenance algorithm for the 

GPIVOT-based materialized views. All of the earlier so-

lutions, however, were introduced without considering the 

PIVOT operation optimized in commercial RDBMSs. Thus, 

our solution differs from the earlier ones in that we fully ex-

ploit the optimized PIVOT operation in order to maximize 

performance for storing and querying of horizontal tables.

3. The Proposed Framework with a PIVOT Operation

In this section we explain an overall framework that han-

dles a horizontal table using an equivalent vertical table. We 

first summarize in Table 1 the notation to be used through-

out the paper. According to the notation in Table 1, we 

then represent a horizontal table and a vertical table as in 

Fig. 2. As shown in the figure, the horizontal table H has 

the schema of (Oid, A1, A2,•c,An), and each tuple in H is 

(a) Representation of a horizontal table (b) Representation of a vertical table

Fig. 2 Representation of horizontal and vertical tables.

represented as (Oi, Mi,1, Mi,2,•c,M1,n). The vertical table 

V, which is transformed from the horizontal table H, has the 

schema of (Oid, A, M), and each tuple in V is represented as 

(Oi, Aj, Mi,j). Here, we note that Mi,j in H can be either null 
(=⊥) or not null while Mi,j in V cannot be null.

We now explain how we can store the horizontal table 
H in the equivalent vertical table V. As shown in Fig. 2, we 
map a tuple in the horizontal table H to several tuples in 
the vertical table V. That is, by changing roles of rows and 
columns, we can convert a horizontal table to an equivalent 
vertical table. Agrawal et al. [1] and Chen et al. [4] have 
already defined this converting procedure in the form of re-
lational algebra. In this paper we adopt Chen et al. [4]'s re-
lational algebra representation since it is more recent work. 
The following Eq. (1) shows a formula to store the horizon-
tal table H in the vertical table V without any information 
loss [4].

V=[∪nj=1πOid,‘Aj',Aj(σAj≠ ⊥H)] (1)

As shown in Eq. (1), for each tuple (Oi, Mi,1, Mi,2,•c, Mi,n) 

in the horizontal table H, we generate a tuple (Oi, Aj, Mi,j) 

(1•…j•…n) in the vertical table V if the value of the 

attribute Aj, is not null. According to Eq. (1), the vertical 

table does not store any null value while the horizontal table 

may store null values. Thus, storage space for a horizontal 

table with m rows and n columns is proportional to m•En, 

while that for an equivalent vertical table is proportional to 

((m•En)-(n•Em•Eƒ¿)). Here, ƒ¿ (0•…ƒ¿•…1) is a null density [1]. 

And accordingly, storage space for a vertical table becomes 

much smaller than that for a horizontal table as ƒ¿ increases. 

That is, converting a horizontal table to its equivalent verti-

cal table is a very efficient way of storing e-business tables 

that generally have a lot of null values [1], [10].



1722 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

Next, we explain the PIVOT operation that represents 
the vertical table V as the horizontal table H, i.e., provides 
the horizontal view H instead of the stored vertical table 
V. Commercial RDBMSs such as Microsoft SQL Server 
2005 [12] and Oracle 9i also provide (or are about to pro-
vide) this PIVOT operation for an easy and simple analysis. 
As an inverse operation of the storing procedure in Eq. (1), 
we formally define the PIVOT operation as the following 
Eq. (2) [4].

H=PIVOT[A1,…,An]A on M(V)

=[□nj =1πoid,M(σA=‘Aj'(V))] (2)

As shown in Eq. (2), PIVOT on V against [A1.•c,An] gen-

erates the equivalent horizontal view H. We explain the 

right-hand side of Eq. (2) in more detail as follows: we first 

make temporary results by extracting tuples (Oi, Aj, Mi ,j) 
from the vertical table V for every value Aj of the attribute 

A; we then integrate the results through the full outer join 

(□); and we finally provide the result as the horizontal 

view H for the vertical table V. In contrast, we note that 
the PIVOT operation in commercial RDBMSs may provide 
the best performance since the RDBMSs usually use various 
optimization techniques as their internal feature [5]. There-
fore, in order to efficiently handle the horizontal tables in 
commercial RDBMSs, we simply use the PIVOT operation 

(=PIVOT[A1,…,An]A on M](V)) itself rather than a quite complex rela-

tional algebra operation (=[□nj=1πOid,M(σA=‘Aj'(V))]) in 

Eq. (2).
Last, we explain an overall framework that processes a 

query on the horizontal table H using the equivalent vertical 
table V. Figure 3 shows the overall framework for trans-
forming a query between horizontal and vertical tables. As 
depicted in the figure, we transform a query Query on the 
horizontal table H to an equivalent query Query' on the ver-
tical table V. In the left side of the figure, we obtain Result 
that by evaluating the original query on the horizontal table 
H while, in the right side, we obtain Result' by evaluating 
the transformed query on the vertical table V. As shown 
in the figure, if we use the transformation rules to be pro-

Fig. 3 An overall framework for transforming a query between 

horizontal and vertical tables.

posed, Result of the left side will be the same as Result' 

of the right side. Through transforming a horizontal table-

based query to a vertical table-based query, therefore , we 

can obtain the same query result without storing the horizon-

tal table. In particular, we use the optimized PIVOT oper-

ation to maximize performance in transforming a query be-

tween horizontal and vertical tables. For this, we present the 

PIVOT-included query transformation rules for all five ele-

mentary operations in relational algebra, and formally prove 

the rules.

4. PIVOT-Included Query Transformation Rules

In this section we present the query transformation rules that 

convert a horizontal table-based query to an equivalent verti-

cal table-based query. In particular, we will enforce that the 

transformed query contains the PIVOT operation to maxi-

mize the performance. To guarantee completeness of query 

transformation rules, we deal with all of the five elemen-

tary operations in relational algebra [16]. We provide the 

rules for the projection (ƒÎ) in Sect. 4.1, the selection (ƒÐ) in 

Sect. 4.2, and the set operations (•¾, -, •~) in Sect. 4.3, respec-

tively.

4.1 Projection

We can transform a projection query on the horizontal view 

to an equivalent PIVOT-included query on the stored ver-

tical table. The following Theorem 1 presents this query 

transformation rule.

Theorem 1: The projection on the horizontal table H can 

be transformed to the equivalent PIVOT-included operation 

on the vertical table V as in Eq. (3): 

πOid, B1,…,Bk(H)

(=[□kj=1πOid,M(σA=‘Bj'(V))])

=PIVOT[B1,…,Bk]A 
on M(V) (3)

where Bj=Ai (1•…j•…i•…n).

Proof: We first prove that ƒÎOid , B1,•c,Bk(H) is identical to 

[□kj=1πOid,M(σA=‘Bj'(V))] using the mathematical induc-

tion. Then, Eq. (3) holds by the PIVOT definition in Eq. (2). 

For the more detailed proof, refer to Appendix. • 

According to Theorem 1, the projection that extracts 

the given attributes (B1,•c,Bk) from the horizontal table H 

is identical to the PIVOT operation against the attributes on 

the vertical table V. It is because, as we explained in Sect. 3, 

the attribute Aj and its value Mi,j in the horizontal table H is 

transformed to a tuple (Oi, Aj, Mi,j) in the vertical table V. 

Here, we note that Eq. (3) differs from Eq. (2) in that Eq. (3) 

is performed against the given attributes (B1, •c,Bk) while 

Eq. (2) against all of the attributes (A1,•c,An).

Example 1: Recall SalesH and SalesV in Fig. 1. Fig-

ure 4 shows an example of transforming a projection on 

the horizontal table SalesH to an equivalent PIVOT-included 



SHIN et al.: EFFICIENT STORAGE AND QUERYING OF HORIZONTAL TABLES USING A PIVOT OPERATION 

1723

Fig. 4 An example of transforming a projection query.

operation on the vertical table SalesV. In Fig. 4, the pro-

jection on SalesH, ƒÎShopID,TV,Camera (SalesH), is transformed 

to an equivalent PIVOT-included operation on SalesV, 

PIVOT[TV,Camera]Product on Sal
es (SalesV), based on Theorem 1. As de-

picted in the right part of Fig. 4, the selection on the vertical 

table V is internally performed first, and then columns and 

rows are changed by the PIVOT definition•õ. And accord-

ingly, the result from H will be identical to that from V. • 

4.2 Selection

We can transform a selection query on the horizontal view 

to an equivalent PIVOT-included selection and projection 

query on the stored vertical table. To derive the transfor-

mation rule, we first explain the notation used in [1], [4]. 

Each predicate on a selection query has the form of AiƒÆMi, 

and several predicates are concatenated by the logical AND 

operator (•È). Here, Ai is an attribute name of H, and Mi is a 

constant value that Ai has. And, ƒÆ is one of the comparison 

operators (=, •‚, <, •…, >, •†). Based on this predicate notation, 

we present a query transformation rule for the selection as 

follows.

Theorem 2: The selection on the horizontal table H can be 

transformed to the equivalent PIVOT-included selection and 

projection operation on the vertical table V as in Eq. (4): 

σ ∧k
i=1(AiθMi)(H)

(=[□nj=1πOid,M(σA=‘Aj'(

(∩ki=1πOid(σA=‘Ai'∧Mθ ‘Mi'(V)))□V))])

=PIVOT[A1,…,An]A o
n M

((∩ki=1πOid(σA=‘Ai'∧Mθ ‘Mi'(V)))□V) (4)

Proof: By using the mathematical induction, we first prove 

that σ ∧k
i=1(AiθMi)(H) is identical to the intermediate formula (

=[□nj
=1…□V]). Then, Eq. (4) holds by the PIVOT 

definition in Eq. (2). For the more detailed proot, refer to 

Appendix. • 

According to Theorem 2, the selection that extracts the 

tuples satisfying the given predicates from the horizontal ta-

ble H is identical to the following operations: 1) extract 

Oid's that satisfy the predicates from the vertical table V; 

2) perform the left outer join (• ) between the Oid's and 

Fig. 5 An example of transforming a selection query.

the original V; and 3) use the PIVOT operation to convert 

the vertical form into the equivalent horizontal form. Here, 

the reason why we use the left outer join for Oid's is to se-

lect all of the tuples that satisfy the selection predicates from 

the vertical table V. It means that we first select the tuples 

satisfying the predicates from the vertical table, and then 

convert the result into the horizontal form using the PIVOT 

operation.

Example 2: Recall SalesH and SalesV in Fig. 1. Fig-

ure 5 shows an example of transforming a selection on the 

horizontal table SalesH to an equivalent PIVOT-included 

operation on the vertical table SalesV. That is, the se-

lection on SalesH, ƒÐTv•…200 (SalesH), is transformed to an 

equivalent PIVOT-included selection and projection opera-

tion on SalesV, PIVOT[TV,Radio,Computer,Camera]Product on Sales (•c), based on 

Theorem 2. As shown in the lower part of Fig. 5, the 
transformed query is executed as follows. 1) The tuples 
that satisfy the given predicates are selected from SalesV, 
and their Oid's are extracted into a temporary result (=
πOid(σProduct=‘TV'∧Sales≦200 (SalesV))). Let the result be O. 

2) The left outer join between the result O and the original 

vertical table V is performed to include every tuple whose 

Oid is contained in O (=O •  SalesV). 3) Columns 

and rows are changed by the PIVOT definition (=

PIVOT[TV,Radio,Computer,Camera]Product on Sales (O •  SalesV)). And accord-

ingly, the result from H will be identical to that from V. • 

4.3 Set Operations

4.3.1 Set Union

To formally derive the transformation rule for the set union, 
let Hi denote a horizontal table and Vi be its equivalent ver-
tical table. In order to use the set union for two or more 
tables, the tables should have the same schema [16], thus we 

†Actually, the implementation details of the PIVOT operation 

may differ among RDBMSs. For easy understanding, however, we 
describe the intermediate results based on the PIVOT definition in 
Eq. (2).



1724 

IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

assume all of the horizontal tables Hi have the same schema 

structure. The following Theorem 3 presents a query trans-

formation rule for the set union.

Theorem 3: The set union among m horizontal tables Hi 

(1•…i•…m) can be transformed to the equivalent PIVOT-

included set union operation among m vertical tables Vi as 

in Eq. (5):

∪mi=1(Hi)

(=[□nj=1πOid,M(σA=‘Aj'(∪mi=1(Vi))])

=PIVOT[A1,…,An]A 
on M(∪mi=1(Vi)) (5)

Proof: The following Eq. (6) trivially holds according to 
Eq. (1) and the query optimization rules [7].

∪mi=1(Vi)

=∪mi
=1([∪nj=1πOid,‘Aj',Aj(σAj≠ ⊥Hi)])

=[∪nj
=1πOid,‘Aj',Aj(σAj≠ ⊥(∪mi=1(Hi))]) (6)

Then, Eq. (6) can be represented as Eq. (5) by the PIVOT 

definition in Eq. (2). This completes the proof. • 

According to Theorem 3, the set union among several hor-

izontal tables Hi is identical to the PIVOT operation on the 

result obtained by the set union among the corresponding 

vertical tables Vi.

4.3.2 Set Difference

Except that the order of tables should be preserved, a trans-

formation rule for the set difference is the same as that for 

the set union. The following Theorem 4 presents a query 

transformation rule for the set difference.

Theorem 4: The set difference among m horizontal tables 

Hi (1•…i•…m) can be transformed to the equivalent PIVOT-

included set difference operation among m vertical tables Vi 

as in Eq. (5). Here, -mi=1(Hi)=H1-H2-•c-Hm.

-mi
=1(Hi)

(=[□nj=1πOid,M(σA=‘Aj'(-mi=1(Vi))])

=PIVOT[A1,…,An]A 
on M(-mi=1(Vi)) (7)

Proof: We can easily prove the theorem by replacing the set 

union as the set difference in Theorem 3. Thus, we omit the 

details. • 

According to Theorem 4, the set difference among several 

horizontal tables Hi is identical to the PIVOT operation on 

the result obtained by the set difference among the cone-

sponding vertical tables.

4.3.3 The Cartesian Product

We can also transform the Cartesian product query among 

the horizontal tables to an equivalent PIVOT-included Carte-

sian product query among the vertical tables. Unlike the 

set union or the set difference, in case of the Cartesian 

product, each horizontal table Hi can have its own differ-

ent schema [16]. The following Theorem 5 presents a query 

transformation rule for the Cartesian product.

Theorem 5: The Cartesian product among m horizontal ta-

bles Hi (1•…i•…m) can be transformed to the equivalent 

PIVOT-included Cartesian product operation among m ver-

tical tables Vi as in Eq. (8). Here, •~m=1(Hi)=H1•~H2•~•c•~

Hm, Ai and Mi are the attributes of the vertical table Vi (i.e., 

Ai and Mi in Vi can be seen as A and M in V).

×mi=1(Hi)

(=[□nj=1π(Oid1,…,Oidm), (M1,…,Mm)

(σ(A1,…,Am)=(‘A1j',…,‘Amj')(×mi=1(Vi))])

=PIVOT[(A11,…,Am1),…,(A1n,…,Amn)](A1
,…,Am)on(M1,…,Mm)

(×mi=1(Vi)) (8)

Proof: We can easily prove the theorem by replacing 

1) the set difference as the Cartesian product, 2) Oid 

as (Oid1,•c,Oidm), 3) A as (A1,•c,Am), and 4) M as 

(M1,•c,Mm), respectively, in Theorem 3. Thus, we omit 

the details. • 

According to Theorem 5, the Cartesian product among sev-

eral horizontal tables is identical to applying the PIVOT 

operation to the result obtained by the Cartesian prod-

uct among the corresponding vertical tables. That is, 

the transformation rule is very similar to that of the 

set union or the set difference. However, the Carte-

sian product differs from the two operations in the fol-

lowing points. As the result of the Cartesian product 

among m vertical tables, the new identifier of the form 

(Oid1,•c,Oidm) rather than Oid is generated. Also, as the 

result of the PIVOT operation, the new tuples of the schema 

[(Oid1,•c,Oidm), (A11,•c,Am1),•c,(A1n,•c,Amn)] 

rather than (Oid, A1,•c,An) are generated. Likewise, the re-

sult of the Cartesian product among horizontal tables is the 

same as that of the PIVOT operation against new identifiers 

and new attributes after performing the Cartesian product 

among vertical tables.

5. Performance Evaluation

In this section we present the experimental results for the 

proposed query transformation rules. We describe the ex-

perimental data and environment and explain the results of 

storage space comparison in Sect. 5.1, and present the re-

sults of performance evaluation in Sect. 5.2.

5.1 Experimental Data and Environment

We have implemented throe methods: 1) the method of us-

ing horizontal tables (we call it H-Method), 2) the method by 

Agrawal et al. [1] (we call it ASX by taking authors' initials), 

and 3) the proposed method (we call it V-Method). These 

three experimental methods can be summarized as follows: 

● H. Method: We store a horizontal table itself directly



SHIN et al.: EFFICIENT STORAGE AND QUERYING OF HORIZONTAL TABLES USING A PIVOT OPERATION 

1725

in databases and process the given query on the stored 
horizontal table without any transformation.

● ASX: As the method by Agrawal et al., we transform a 
horizontal table to an equivalent vertical table and store 
it in databases. In this method, however, we do not use 
the PIVOT operation. That is, we convert each relation 
algebra operation to the equivalent SQL statements and 
to execute the statements step by step.

● V-Method: Like ASX, we transform a horizontal table 
to an equivalent vertical table and store it in databases. 
But, unlike ASX, we use the PIVOT operation provided 
in SQL Server 2005 DBMS.

We generate the following schemes for the horizontal 
table H and the vertical table V, respectively: 

H=(Oid integer, A1 float, A2 float,•c,An float)

V=(Oid integer, A char (4), M float)

As shown in the schemes above, we set the type of the tuple 

identifier Oid in H (or V) as the integer type, those of the 

attributes Ai and M in H as the float type, and that of the 

attribute A in V as the char type. To improve performance 

in processing the queries, we set clustering on the attribute 

Oid for each table.

The hardware platform for the experiment is a PC 

equipped with an Intel Pentium IV 1.70GHz CPU, 1GB 

RAM, and an 80GB hard disk. The software platform is 

Microsoft Windows XP operating system and SQL Server 

2005 DBMS. Like Agrawal et al.'s experiment [1], we have 

measured the elapsed time by varying the data set, the null 

density, and the selectivity value. We first generated data in 

horizontal format and then transformed it into its equivalent 

vertical format. We kept the size of a table (number of rows 

× number of columns in a row) constant by adjusting the 
number of rows as we varied the number of columns, and 

generated four horizontal tables, 200•~100K, 400•~ 50K, 

800•~25K, and 1000•~20K. We used 90% and 95% as the 

null density [1], and varied the selectivity according to the 

query types. Finally, we perform the TPC-H benchmark. 

We use two queries, Q1 and Q6, among 22 queries provided 

in TPC-H benchmark. We select these Q1 and Q6 queries 

since they are easily modeled with five elementary opera-

tions presented in our work (By the way, modeling other 

20 queries except Q1 and Q6 with elementary operations is 

very difficult since they include aggregations and complex 

joins).

The proposed V-Method significantly reduces the stor-

age space compared with H-Method: V-Method reduces the 

storage space to 1/5 of that for H-Method on the average when 

the null density is 90%; 1/10 on the average when the null den-

sity is 95%. This space reduction is due to that V-Method 

does not store any null value in the vertical table while H-

Method needs to store null values in the horizontal table [1]. 

That is, the null density makes a large effect on the stor-

age space of H-Method since null values are stored in H-

Method; in contrast, it does not make any effect on the stor-

age space of V-Method since null values are not stored in 

V-Method.

5.2 Performance Results

In this section we explain the performance evaluation re-
sults for 1) the projection, 2) the selection, and 3) the mixed 
operation of projection and selection. Among the five trans-
formation rules presented in Sect. 4, we focus on projection 
and selection, but exclude set operations. It is because se-
lection and projection are very often used in real query envi-
ronment while the set operations are hardly used. Also, the 

performance difference among three methods for set opera-
tions is similar to that for selection and projection. Thus, we 
focus on selection and projection only in the experiments.

5.2.1 Projection

Figure 6 shows the experimental results of three methods for 
the projection queries. Figure 6 (a) shows the case where the 
null density is 90%, and Fig. 6 (b) the case where the null 
density is 95%. For each table, we measure the elapsed time 
by varying the number of attributes to 5, 10, 20, and 40.

As shown in Fig. 6 (a), V-Method outperforms ASX as 
well as H-Method in all cases. The reason why V-Method 
outperforms H-Method is trivial. It is because the PIVOT 
operation used in V-Method selects only a few tuples from 
the vertical table while the projection used in H-Method 
have to retrieve all of the tuples from the horizontal table. V-
Method also outperforms ASX since it uses the PIVOT op-
eration optimized in Microsoft SQL Server 2005 [12]. That 
is, ASX needs to perform the outer join to combine the in-
termediate tuples selected from the vertical table while our 

(a) The null density=90%

(b) The null density=95%

Fig. 6 Performance comparison of H-Method, ASX, and V-Method for 
projection queries.



1726 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

V-Method simply exploits the optimized PIVOT operation 

to do it. As shown in the figure, as the number of attributes 

increases, performance is not changed in H-Method, but de-

graded in both V-Method and ASX. The reason is that H-

Method retrieves all of the tuples from the horizontal ta-

ble regardless of the number of attributes projected while 

V-Method and ASX retrieve more tuples from the vertical 

table as the number of attributes increases. In particular, if 

the ratio of •gthe number of all the attributes•h to •gthe num-

ber of attributes projected•h is large (i.e., in the case where 

the number of attributes is 40 in the table 200•~100K of 

Fig. 6 (a)), V-Method shows a little bit worse performance 

than H-Method. This degradation means that even if V-

Method uses the optimized PIVOT operation, its perfor-

mance may become worse than H-Method as the number of 

attributes projected rapidly increases. In summary of the re-

sults in Fig. 6 (a), our V-Method improves performance 4.0 

times over H-Method and 2.4 times over ASX on the aver-

age.

The performance difference between V-Method and H-

Method in Fig. 6 (b) (the case where the null density is 95%) 

is much larger than that in Fig. 6 (a) (the case where the null 

density is 90%). It is because the null density affects the 

number of tuples retrieved in V-Method. That is, as the null 

density increases, the number of tuples retrieved from the 

horizontal table is not changed, but that from the vertical 

table decreases. In summary of the results in Fig. 6 (b), our 

V-Method improves performance 8.0 times over H-Method 

and 3.6 times over ASX on the average.

5.2.2 Selection

Figure 7 shows the experimental results for the selection 

queries. Fig. 7 (a) shows the case where the null density is 

90%, and Fig. 7 (b) the case where the null density is 95%. 

For each table, we measure the elapsed time by varying the 

selectivity to 0.5%, 1%, 5%, and 10%.

As shown in Figs. 7 (a) and 7 (b), our V-Method outper-

forms both ASX and H-Method regardless of the null den-

sity. We note that H-Method shows the worst performance. 

This worst performance is due to that storage space for H-

Method is much larger than that for V-Method (or ASX). 

That is, we need to retrieve all of the tuples stored in the ta-

ble in order to confirm whether each tuple satisfies the given 

predicates or not, and thus, H-Method with the largest stor-

age space shows the worst performance. As shown in the 

figure, V-Method slightly outperforms ASX since it exploits 

the optimized PIVOT operation. In summary of the results 

for selection queries, our V-Method improves performance 

19.9 times over H-Method and 1.2 times over ASX on the 

average.

5.2.3 Mixed Operation

Figure 8 shows the experimental results for the mixed op-

eration queries. As shown in Fig. 8 (a), we first measure 

the elapsed time by changing the selectivity to 0.5%, 1%, 

(a) The null density=90%

(b) The null density=95%

Fig. 7 Performance comparison of H-Method, ASX, and V-Method for 

selection queries.

(a) Different selectivity (data set=200•~100K, 
n ull density=90%, # of columns=10)

(b) Different selectivity (data set=200•~100K, 
null density=95%, selectivity=5%)

Fig. 8 Performance comparison of H-Method, ASX, and V-Method for 

mixed queries.

5%, and 10%. Here, we use 200•~100K as the horizon-

tal table and 90% as the null density. We then perform the 

experiment by changing the number of attributes projected 

to 5, 10, 20, and 40 in Fig. 8 (b). In Fig. 8 (b), we use 95% 

as the null density and 5% as the selectivity. According to 

Figs. 8 (a) and 8 (b), our V-Method significantly improves 

performance over H-Method and ASX in all the experimen-

tal cases. In summary of the results for mixed queries, our 

V-Method improves performance 5.9 times over H-Method 

and 1.8 times over ASX on the average.

5.2.4 TPC-H Benchmark

Figure 9 shows the TPC-H benchmark results of three meth-

ods. We performed this TPC-H benchmark in order to eval-

uate three methods in a more objective manner and to con-

firm the superiority of our approach in a well known envi-

ronment. Figure 9 (a) shows the experimental results of Q1, 

the pricing summary report query, and Fig. 9 (b) those of Q6, 



SHIN et al.: EFFICIENT STORAGE AND QUERYING OF HORIZONTAL TABLES USING A PIVOT OPERATION 

1727

(a) The pricing susmary report query (Q1) (b) The forecasting revenue change query (Q6)

Fig. 9 Experiment results on the TPC-H benchmark.

the forecasting revenue change query. In this benchmark, we 
used the same data sets and null densities with the previous 
experiments. As shown in Fig. 9, our V-Method still out-

performs ASX and H-Method in all cases. In summary of 
the TPC-benchmark, V-Method improves performance 8.8 
times over H-Method and 3.0 times over ASX on the av-
erage. In conclusion, our V-Method significantly improves 
average performance over ASX as well as HHH-Method even 
in the TPC-H benchmark, which simulates a realistic query 
environment.

6. Connlusions

In OLAP or e-business applications, a horizontal table with 
a large number of attributes is widely used to analyze multi-
dimensional data efficiently. The traditional RDBMSs, how-
ever, cannot support a horizontal table efficiently since they 
have an explicit limitation on the number of attributes to 
be supported. To solve this problem, several solutions have 
been proposed to transform a horizontal table (a horizontal 
table-based query) to an equivalent vertical table (an equiv-
alent vertical table-based query). All of the earlier solu-
tions, however, have been introduced without considering 
a PIVOT operation optimized in commercial RDBMSs. In 
recent years, the optimized PIVOT operation [5], [12] has 
been considered an important operation to provide the hori-
zontal view of the stored vertical table. Therefore, we have 

proposed a formal approach that uses the best optimized 
PIVOT operation of commercial RDBMSs in storing and 

querying horizontal tables.
Contributions of the paper can be summarized as fol-

lows. First, we have provided an overall framework that 
stores and queries a horizontal table using an equivalent ver-
tical table. Second, we have formally defined 1) a method 
that stores a horizontal table in an equivalent vertical table 
and 2) a PIVOT operation that provides a horizontal view for 
the stored vertical table. Third, we have proposed a novel 
method that transforms the given queries on horizontal ta-
bles to the equivalent PIVOT-included queries on vertical 
tables. In particular, by providing transformation rules for 
all five elementary operations in relational algebra as theo-
rems, we have proven our method is theoretically applicable 
to commercial RDBMSs. Fourth, we have presented that 
our method reduces storage space significantly, by up to 1/10 
compared with the naive method. Fifth, through extensive 

experiments, we have shown our method improves average 

performance by several orders of magnitude compared with 
earlier ones.

These results indicate that our method provides an ex-
cellent framework to maximize performance in handling 
horizontal tables by exploiting the PIVOT operation opti-
mized in commercial RDBMSs. As future works, we will 
extend the transformation rules to supporting join or ag-

gregate operations and show superiority of the proposed 
method for these join or aggregate operations through ex-

periments.

References

[1] R. Agrawal, A. Somani, and Y. Xu, •gStorage and querying of e-

commerce data,•h Proc. 27th Int'l Conf. on Very Large Data Bases, 

pp. 149-158, Roma, Italy, Sept. 2001.

[2] J.L. Beckmann, A. Halverson, R. Krishnamurthy, and J.F. Naughton, 
“Extending 

RDBMSs to support sparse datasets using an interpreted 

attribute storage format,•h Proc. 22nd Int'l Conf. on Data Engineer-

ing, IEEE, p. 58, Atlanta, GA, April 2006.

[3] S. Chaudhuri and U. Dayal, •gAn overview of data warehousing and 

technology,•h ACM SIGMOD Record, vol.26, no.1, pp. 65-74, March 

1997.

[4] S. Chen and E.A. Rundensteiner, •gGPIVOT: Efficient incremental 

maintenance of complex ROLAP views,•h Proc. 21st Int'l Conf. on 

Data Engineering (ICDE), IEEE, pp. 552-563, Tokyo, Japan, April 

2005.

[5] C. Cunningham, G. Graefe, and C.A. Galindo-legaria, •gPIVOT and 

UNPIVOT: Optimization and execution strategies in an RDBMS,•h 

Proc. 30th Int'l Conf. on Very Large Data Bases, pp. 998-1009, 

Toronto, Canada, Aug. 2004.

[6] J.-P. Dittrich, D. Kossmann, and A. Kreutz, •gBridging the gap be-

tween OLAP and SQL,•h Proc. 31st Int'l Conf. on Very Large Data 

Bases, pp. 1031-1042, Trondheim, Norway, Aug. 2005.

[7] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 3rd 

ed., Addison-Wesley, 2000.

[8] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. 

Venkatrao, F. Pellow, and H. Pirahesh, •gData cube: A relational ag-

gregation operator generalizing group-by, cross-tab, and sub-totals,•h 

Data Mining and Knowledge Discovery, vol.1, no.1, pp. 29-53, 

March 1997.

[9] L.V.S. Lakshmanan, F. Sadri, and S.N. Subramanian, •gSchemaSQL 

-Alanguage for querying and restructuring multi-database sys-

terns,•h Proc. 22nd Int'l Conf. on Very Large Data Bases, pp. 239-

250, Bombay, India, Sept. 1996.

[10] L.V.S. Lakshmanan, F. Sadri, and S.N. Subramanian, •gOn efficiently 

implementing schemaSQL on an SQL database system,•h Proc. 25th 

Int'l Coof. on Very Large Data Bases, pp. 471-482, Edinburgh, Scot-

land, Sept. 1999.

[11] C. Li, B.C. Ooi, A.K.H. Tung, and S. Wang, •gDADA: A data cube 

for dominant relationship analysis,•h Proc. Int'l Conf. on Manage-

ment of Data, ACM SIGMOD, pp. 659-670, Chicago, Illinois, June 

2006.

[12] Microsoft SQL Server 2005, http://www.microsoft.com/sql/

[13] M. Mohania, S. Samtani, J. Roddick, and Y. Kambayashi, •gAd-

vances and research directions in data warehousing technology,•h 

Australian Journal of Information Systems, vol.7, no.1, pp. 41-59, 

Dec. 1999.

[14] Oracle 9i Database, http://www.oracle.com/database/

[15] S.S.B. Shi, E. Stokes, D. Byrne, C.F. Corn, D. Bachmann, and T. 

Jones, •gAn enterprise directory solution with DB2,•h IBM Syst. J., 

vol.39, no.2, pp. 360-383, 2000.

[16] J.D. Ullmann, Principles of Database and Knowledge-Base Systems, 

vol.I, Computer Science Press, 1988.



1728 
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.6 JUNE 2008

[17] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, 

A. Gupta, L. Sheng, and S. Subramanian, •gSpreadsheets in RDBMS 

for OLAP,•h Proc. Int'l Conf. on Management of Data, ACM SIG-

MOD, pp. 52-63, San Diego, California, June 2003.

[18] A. Witkowski, S. Bellamkonda, T. Bozkaya, N. Folkert, A. Gupta, L. 

Sheng, and S. Subramanian, •gBusiness modeling using SQL spread-

sheets,•h Proc. 29th Int'l Conf. on Very Large Data Bases
, pp. 1117-

1120, Berlin, Germany, Sept. 2003.

[19] Y. Zhao, P. Deshpande, and J. Naughton, •gAn array-based algorithm 

for simultaneous multidimensional aggregates,•h Proc. Int'l Conf . on 

Management of Data, ACM SIGMOD, pp. 159-170, Tucson , Ari-

zona, June 1997.

Appendix A: Proof of Theorem 1

Using the mathematical induction, we first show the follow-

ing Eq. (A•E1) holds for the number k of attributes projected: 

πOid ,B1,…,Bk(H)

=[□kj =1πOid,M(σA=‘Bj'(V))] (A・1)

Induction basis: If the number of attributes projected is one 

(let the attribute be B1), then Eq. (A•E2) trivially holds by 

the definitions of projection and selection. Thus, Eq. (A•E1) 

holds when k is one.

πOid
,B1(H)=[πOid,M(σA=‘B1'(V))] (A・2)

Induction hypothesis: Assume that Eq. (A•E1) holds when 

the number of attributes projected is k (let the attributes be 

B1,•c,Bk).

Induction step: Then, by Eqs. (A•E3)•`(A•E6), Eq. (A•E1) also 

holds when the number of attributes projected is k+1 (let the 

attributes be B1,•c,Bk, Bk+1). In the proving steps below, 

Eq. (A•E3) trivially holds by the definitions of the projection 

(ƒÎ) and the full outer join (• ). And, Eq. (A•E5) holds by 

Eq. (A•E2) in the induction basis and Eq. (A•E1) in the induc-

tion hypothesis. Also, Eq. (A•E6) holds by the definition of 

the full outer join.

πOid,B1,…,Bk,Bk+1(H)

=πOid,B1
,…,Bk,Bk(H)□ πOid,Bk+1(H) (A・3)

=[□kj
=1πOid,M(σA=‘Bj'(V))] (A・4)

□[πOid,M(σA=‘Bk+1'(V))] (A・5)

=[□k+1j =1πOid,M(σA=‘Bj'(V))] (A・6)

As a result, we have shown that Eq. (A•E1) holds by the math-

ematical induction. Next, Eq. (A•E7) holds by the PIVOT 

definition (Eq. (2) in Sect. 3), and this completes the proof. 

[□kj=1πOid,M(σA=‘Bj'(V))]

=PIVOT[B1,…,Bk]A o
n M(V) (A・7)

□

Appendix B: Proof of Theorem 2

Using the mathematical induction, we first show the fol-

lowing Eq. (A•E8) holds for the number k of selection predi-

cates: 

σ ∧k
i=1(AiθMi)(H)

=[□nj
=1πOid,M(σA=‘Aj'((∩ki=1πOid

(σA=‘Ai'∧Mθ ‘Mi'(V)))□V))] (A・8)

Induction basis: If the number of predicates is one (let the 

predicate be A1=M1), then Eq. (A•E9) holds by the defini-

tion of storing tables in Eq. (1). That is , if a value of the 

attribute A1 is M1 in the horizontal table H, a tuple satisfy-

ing the predicates •eA=A1 •È M=M1' should be contained 

in the vertical table V [1].

σA1θM1(H)

=[πOid(σA =‘A1'∧Mθ ‘M1'(V))]

□[□nj=1πOid,M(σA=‘Aj'(V))] (A・9)

Here, the distributive law among the outer joins holds (i.e., 

A• (B• C)=(A• B)• (A• C)) [16], and 

the order of projections and selections can be changed by 

the query optimization technique [7]. Thus, we can rewrite 

Eq. (A•E9) to Eq. (A•E10), and accordingly, Eq. (A•E8) holds 

when k is one.

σA1θM1(H)

=[□nj
=1πOid,M(σA=‘Aj'(

(πOid(σA=‘A1’ ∧Mθ ‘M1,(V)))□V))] (A・10)

Induction hypothesis: Assume that Eq. (A•E8) holds when 

the number of selection predicates is k (let the predicates be 

∧ki
=1(Ai=Mi)).

Induction step: Then, by Eqs. (A•E11)•`(A•E14), Eq. (A•E8) 

also holds when the number of predicates is k+1 (let the 

predicates be •Èk+1i=1(Ai=Mi)). In the proving steps below, 

Eqs. (A•E11) and (A•E12) hold by the definitions of the logi-

cal AND (•È) and the set union (•¿). And, Eq. (A•E13) holds 

by Eq. (A•E10) in the induction basis and Eq. (A•E8) in the in-

duction hypothesis. Also, Eq. (A•E14) holds by the definition 

of the set union, the associative law between the set union 

and the outer join in relation algebra [16], and the query 

optimization technique [7] on selection, projection, and set 

union operations.

σ ∧k+1
i=1(AiθMi)(H)

=σ(∧k
i=1(AiθMi))∧(Ak+1θMk+1)(H) (A・11)

=σ ∧k
i=1(AiθMi)(H)∩ σ(Ak+1θMk+1)(H) (A・12)

=[□nj
=1πOid,M(σA=‘Aj'(

(∩ki=1πOid(σA=‘Ai'∧Mθ ‘Mi'(V)))□V))]

∩[□nj=1πOid,M(σA=‘Aj'((

πOid(σA=‘Ak+1'∧Mθ ‘Mk+1'(V)))□V))] (A・13)

=[□nj
=1πOid,M(σA=‘Aj'((

∩k+1i=1πOid(σA=‘Ai'∧Mθ ‘Mi'(V)))□V))] (A・14)

As a result, we have shown that Eq. (A•E8) holds by the math-

ematical induction. Next, Eq. (A•E15) holds by the PIVOT 

definition (Eq. (2) in Sect. 3), and this completes the proof.

[□nj=1πOid,M(σA=‘Aj'(



SHIN et al.: EFFICIENT STORAGE AND QUERYING OF HORIZONTAL TABLES USING A PIVOT OPERATION 

1729

((∩ki=1πOid(σA=‘Ai'∧Mθ ‘Mi'(V)))□V))]

=PIVOT[A,…,An]A 
on M

((∩ki=1πOid(σA=‘Ai'∧Mθ‘Mi'(V)))□V) (A・15)

□

Sung-Hyun Shin received B.S. (2000) 
in Computer Science from Kwandong Univer-
sity and M.S. (2002) and Ph. D. (2007) degrees 
in Computer Science from Kangwon National 
University respectively. He is currently in a 

post-doctorial program at Hanyang University. 
His research interests include data warehousing 
and OLAP, XML database, Database applica-
tion, and Moving object database.

Yang-Sae Moon received B.S. (1991), M.S. 
(1993), and Ph. D. (2001) degrees in Computer 
Science from Korea Advanced Institute of Sci-
ence and Technology (KAIST). From 1993 to 
1997, he was a research engineer in Hyundai 
Syscomm, Inc., where he participated in devel-
oping 2G and 3G mobile communication sys-
tems. From 2002 to 2005, he was a technical di-
rector in Infravalley, Inc., where he participated 
in planning, designing, and developing CDMA 
and W-CDMA mobile network services and sys-

tems. He is currently an assistant professor at Kangwon National Univer-
sity. His research interests include data mining, knowledge discovery, stor-

age systems, access methods, mobile/wireless communication systems, and 

network comunication systems. He is a member of the IEEE and a member 

of the ACM.

Jinho Kim received B.S. (1982) in Elec-
trical Engineering from Kyungpook National 
University and M.S. (1985) and Ph. D. (1990) 
degrees in Computer Science from Korea Ad-
vanced Institute of Science and Technology 
(KAIST) respectively. From 1990, he joined at 
the Department of Computer Science, Kangwon 
National University. Now he is a professor at 
Kangwon National University. He was a visiting 
scholar at the University of Michgian in 1995 
to 1996 and at the Drexel Univeristy in 2003 

to 2004 respectively. His research interests include data warehousing and 

OLAP, data mining, main-memory database systems, XML databases, and 

information retrieval. He is a member of the IEEE and a member of the 

ACM.

Sang-Wook Kim received the B.S. degree 
in Computer Engineering from Seoul National 
University, Seoul, Korea at 1989, and earned the 
M.S. and Ph. D. degrees in Computer Science 
from Korea Advanced Institute of Science and 
Technology (KAIST), Daejeon, Korea at 1991 
and 1994, respectively. From 1994 to 1995, 
he worked with the Information and Electronics 
Research Center in Korea, as a Senior Engineer. 
From 1995 to 2003, he served as an Associate 
Professor of the Division of Computer, Infor-

mation, and Communications Engineering at Kangwon National Univer-
sity, Chunchoen, Kangwon, Korea. In 2003, he joined Hanyang University, 
Seoul, Korea, where he currently is a Professor at the School of Information 
and Communications. From 1999 to 2000, he worked with the IBM T.J. 
Watson Research Center, Yorktown Heights, New York, as a Post-Doc. He 
also visited the Computer Science Department of Stanford University as a 
Visiting Researcher in 1991. He is an author of over 80 papers in refereed 
international journals and conference proceedings. His research interests 
include storage systems, transaction management, main-memory DBMSs, 
embedded DBMSs, data mining, multimedia information retrieval, and ge-
ographic information systems. He is a member of the ACM and the IEEE.


