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We have searched for neutrinoless τ lepton decays into � and V 0, where � stands for an electron or
muon, and V 0 for a vector meson (φ, ω, K ∗0, K̄ ∗0 or ρ0), using 543 fb−1 of data collected with the
Belle detector at the KEKB asymmetric-energy e+e− collider. No excess of signal events over the ex-
pected background has been observed, and we set upper limits on the branching fractions in the range
(5.9–18)×10−8 at the 90% confidence level. These upper limits are significantly more restrictive than our
previous results for the �φ, �K ∗0, �K̄ ∗0 and �ρ0 modes.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the Standard Model (SM), lepton-flavor-violating (LFV) decays
of charged leptons are forbidden; even if neutrino mixing is taken
into account, they are highly suppressed. However, LFV is expected
to appear in many extensions of the SM. Some such models predict
branching fractions for τ LFV decays in the range 10−8–10−7 [1–3],
which can be reached at the present B-factories. An observation of
LFV would provide unambiguous evidence for new physics beyond
the SM.

A search for LFV τ− decays into neutrinoless final states with
one charged lepton �− (e− or μ−) and a vector meson was first
performed by the CLEO Collaboration in the �−φ, �−K ∗0, �− K̄ ∗0

and �−ρ0 final states in 1998; this search set upper limits in the
range (2.0–7.5) × 10−6 [4]. Later, Belle obtained upper limits in
the range (2.0–7.7) × 10−7 using 158 fb−1 of data. In this Letter,
we report an improved search for LFV τ− decays1 into a charged
lepton and a neutral vector meson (V 0), where V 0 includes ω in
addition to the φ, K ∗0, K̄ ∗0 and ρ0. The analysis is based on a data
sample of 543 fb−1, corresponding to 4.99 × 108 τ -pairs collected
with the Belle detector [5] at the KEKB asymmetric-energy e+e−
collider [6] taken at the Υ (4S) resonance and 60 MeV below it.
These results supersede our previous published results [7].

The Belle detector is a large-solid-angle magnetic spectrome-
ter that consists of a silicon vertex detector, a 50-layer central
drift chamber, an array of aerogel threshold Cherenkov counters,
a barrel-like arrangement of time-of-flight scintillation counters,
and an electromagnetic calorimeter comprised of CsI(Tl) crystals
located inside a superconducting solenoid coil that provides a 1.5 T
magnetic field. An iron flux-return located outside the coil is in-
strumented to detect K 0

L mesons and to identify muons. The de-
tector is described in detail elsewhere [5]. Two inner detector con-
figurations were used. A 2.0 cm radius beam-pipe and a 3-layer
silicon vertex detector were used for the first sample of 158 fb−1,
while a 1.5 cm radius beam-pipe, a 4-layer silicon detector and a

* Corresponding author.
E-mail address: kenji@hepl.phys.nagoya-u.ac.jp (K. Inami).

1 Throughout this Letter, the inclusion of the charge-conjugate decay modes is
implied unless otherwise stated.
small-cell inner drift chamber were used to record the remaining
385 fb−1 [8].

2. Event selection

We search for events, in which one τ decays to a charged lep-
ton and two charged hadrons (3-prong decay) while the other τ
decays into one charged particle (1-prong decay) and missing neu-
tral particle(s). We reconstruct φ candidates from K +K − , ω from
π+π−π0, K ∗0 from K +π− , K̄ ∗0 from K −π+ and ρ0 from π+π− .

The selection criteria described below are optimized from stud-
ies of Monte Carlo (MC) simulated events and the experimental
data distributions. The background estimation is based on MC sim-
ulations of the reaction e+e− → τ+τ− as well as qq̄ continuum
and two-photon processes. The τ+τ− sample corresponding to
1524 fb−1 is generated using the KKMC code [9]. The MC sam-
ples of qq̄ and two-photon processes are produced using EvtGen
[10] and AAFH [11], respectively, in amounts corresponding to the
luminosity of the experiment. The signal MC events are generated
by KKMC assuming a phase-space distribution for τ decay. The de-
tector response is simulated by a GEANT3 [12] based program.

The transverse momentum for each charged track is required to
be larger than 0.06 GeV/c in the barrel region (−0.6235 < cos θ <

0.8332, where θ is the polar angle relative to the direction oppo-
site to that of the incident e+ beam in the laboratory frame) and
0.1 GeV/c in the endcap region (−0.8660 < cos θ < −0.6235 and
0.8332 < cos θ < 0.9563). The energies of photon candidates are
required to be larger than 0.1 GeV in both regions.

To select the signal topology, we require four charged tracks in
an event with zero net charge, and the total energy of charged
tracks and photons in the center-of-mass (CM) frame to be less
than 11 GeV. We also require the missing momentum in the lab-
oratory frame to exceed 0.6 GeV/c, and to point into the detector
acceptance (−0.8660 < cos θ < 0.9563). Here the missing momen-
tum is defined as the difference between the momentum of the
initial e+e− system, and the sum of the observed momentum vec-
tors. An event is subdivided into 3-prong and 1-prong hemispheres
with respect to the thrust axis calculated from the momenta of all
charged tracks and photons in the CM frame. These hemispheres
are referred to as the signal and tag sides, respectively. We allow

mailto:kenji@hepl.phys.nagoya-u.ac.jp


Belle Collaboration / Physics Letters B 664 (2008) 35–40 37
at most two photons on the tag side to take into account initial
state radiation. To reduce the qq̄ background, not more than one
photon on the signal side is allowed for the �−φ, �−K ∗0, �− K̄ ∗0,
�−ρ0 modes while not more than two photons in addition to π0

daughters are permitted for the �−ω modes. A charged particle of
the type x (x = μ, e, K or π ) is identified using the likelihood ra-
tio parameter, Px . This is defined as Px = Lx/(

∑
x Lx), where Lx is

the likelihood for particle type x, determined from the responses of
the relevant detectors [13]. For muon candidates on the signal side
we require Pμ > 0.95 while their momentum should be greater
than 1.0 GeV/c. The efficiency for muon identification is 92% with
a 1.2% probability to misidentify a pion as a muon. Electrons on
the signal side are required to have Pe > 0.9 and momenta greater
than 0.5 GeV/c. The efficiency for the electron identification is 94%
while the probability to misidentify a pion as an electron is 0.1%.

Candidate φ mesons are selected from K +K − pairs with in-
variant mass in the range 1.01 GeV/c2 < MK + K − < 1.03 GeV/c2

(±4σ ). For both kaon daughters we require P K > 0.8. To reduce
the background from the γ → e+e− conversions the cut Pe < 0.1
is applied.

Candidate ω mesons are reconstructed from π+π−π0 with
the invariant mass requirement 0.757 GeV/c2 < Mπ+π−π0 <

0.808 GeV/c2 (±3σ ). A π0 candidate is selected from γ pairs with
invariant mass in the range 0.11 GeV/c2 < Mγ γ < 0.15 GeV/c2.
In order to improve the ω mass resolution, the π0 mass is con-
strained to its world average value of 134.9766 GeV/c2 for the ω
mass reconstruction.

Candidate K ∗0 and K̄ ∗0 mesons are selected from K ±π∓
pairs with invariant mass in the range 0.827 GeV/c2 < MKπ <

0.968 GeV/c2 (±3σ ), which satisfy the condition P K > 0.8 for the
kaon candidate and Pe < 0.1 for both daughters.

Candidate ρ0 mesons are selected from π+π− pairs with in-
variant mass in the range 0.478 GeV/c2 < Mπ+π− < 1.074 GeV/c2

(±4σ ), requiring that the daughter pions have P K < 0.1, Pe < 0.1
and momenta greater than 0.5 GeV/c. In addition, for the τ− →
e−ρ0 mode, we require Pμ < 0.5 for daughter pions in order to
reduce the two-photon background from ee → eeμμ.

Figs. 1(a)–(d) show the invariant mass distributions of the φ,
ω, K ∗0 and ρ0 candidates for the τ− → μ−φ, τ− → μ−ω, τ− →
μ−K ∗0 and τ− → μ−ρ0 modes, respectively. The estimated back-
ground distributions agree with the data. The main background
contribution for the τ− → �−φ mode is due to qq̄ events involv-
ing φ mesons. For the τ− → �−ω mode the dominant background
comes from τ− → π−ωντ decay with the pion misidentified as
a lepton. The τ− → π−π+π−ντ decay is one of the main back-
ground sources for the τ− → �−K ∗0, �− K̄ ∗0 and τ− → �−ρ0

modes. In this background source one pion is misidentified as a
lepton for all modes while for the τ− → �−K ∗0 and �− K̄ ∗0 modes
one additional pion is misidentified as a kaon.

To reduce the remaining background from τ+τ− and qq̄, the
events from the triangular area defined by the missing momen-
tum, pmiss (GeV/c), and missing mass squared, m2

miss ((GeV/c2)2)

are selected for further consideration. These requirements are sum-
marized in Table 1 and illustrated in Fig. 2 by the two-dimensional
plots of pmiss (GeV/c) versus m2

miss ((GeV/c2)2) for the τ− →
μ−ρ0 mode.

For the �−ω (�−K ∗0 and �− K̄ ∗0) mode, we require that the
opening angle between the lepton and ω (K ∗0) on the signal side

in the CM frame, θCM
�ω (θCM

�K ∗0 ), satisfy cos θCM
�ω < 0.88 (cos θCM

�K ∗0 <

0.93). To remove two-photon background for the eV 0 modes, we
further require that the opening angle, α, between the direction
of the total momentum of charged tracks and γ ’s on the signal
side and that on the tag side satisfy the condition cosα > −0.999
for the e−φ, cosα > −0.996 for the e−ω, e−K ∗0(K̄ ∗0) and cosα >

−0.990 for the e−ρ0 mode.
Fig. 1. Invariant mass distributions of (a) φ → K + K − for τ− → μ−φ ,
(b) ω → π+π−π0 for τ− → μ−ω, (c) K ∗0 → K +π− for τ− → μ− K ∗0 and
(d) ρ0 → π+π− for τ− → μ−ρ0 in the region 1.5 GeV/c2 < M�V 0 < 1.95 GeV/c2

and −0.5 GeV < �E < 0.5 GeV. The points with error bars are data. The open his-
togram shows the expected τ+τ− background MC while the filled histogram is the
sum of qq̄ and two-photon MCs. The regions between the vertical lines are selected.

Fig. 2. pmiss vs. m2
miss plots for signal MC and data for the τ → μρ0 mode. The

regions between the vertical lines are selected.

Table 1
Selection criteria using pmiss (GeV/c) and m2

miss ((GeV/c2)2) where pmiss is missing
momentum and m2

miss is missing mass squared

Mode
τ− →

Selection criteria

�−φ pmiss > 8
9 m2

miss and m2
miss > −0.5

�−ω pmiss > 8
3 m2

miss − 8
3 and m2

miss > −0.5

μ− K ∗0 pmiss > 8
4.5 m2

miss − 8
9 and pmiss > 8m2

miss

e− K ∗0 pmiss > 8
5.5 m2

miss − 8
11 and m2

miss > 0

μ− K̄ ∗0 pmiss > 8
6.5 m2

miss and m2
miss > −0.5

e− K̄ ∗0 pmiss > 6
5 m2

miss and pmiss > − 8
1.4 m2

miss

μ−ρ0 pmiss > −8m2
miss − 4 and pmiss > 2m2

miss

e−ρ0 pmiss > −8m2
miss − 4 and pmiss > 1.6m2

miss

To identify signal τ decays, we reconstruct the �V 0 invariant
mass, M�V 0 , and the energy difference in the CM frame, �E , be-
tween the sum of energies on the signal side and the beam-energy,
Ebeam. Signal events should concentrate around M�V 0 = mτ and
�E = 0, where mτ is the nominal τ mass. For the �ω modes,
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Table 2
Resolutions in M�V 0 in MeV/c2 and �E in MeV. The superscripts low and high
indicate the lower and higher sides of the peak, respectively

Mode
τ− →

σ
high
M

�V 0
σ low

M
�V 0

σ
high
�E σ low

�E

μ−φ 3.4 ± 0.2 3.4 ± 0.2 13.2 ± 0.4 14.0 ± 0.5
e−φ 3.7 ± 0.1 3.6 ± 0.1 13.3 ± 0.7 15.4 ± 0.7
μ−ω 5.9 ± 0.1 6.2 ± 0.1 19.3 ± 0.6 30.3 ± 0.8
e−ω 6.1 ± 0.1 6.5 ± 0.1 20.4 ± 0.7 32.5 ± 1.3
μ− K ∗0 4.5 ± 0.4 4.5 ± 0.4 13.8 ± 0.3 14.4 ± 0.4
e− K ∗0 4.3 ± 0.1 5.1 ± 0.1 12.9 ± 0.3 18.0 ± 0.4
μ− K̄ ∗0 4.7 ± 0.1 4.4 ± 0.1 14.0 ± 0.3 15.0 ± 0.3
e− K̄ ∗0 4.6 ± 0.1 4.9 ± 0.1 12.6 ± 0.6 17.8 ± 0.5
μ−ρ0 5.6 ± 0.1 5.0 ± 0.1 13.9 ± 0.4 15.9 ± 0.4
e−ρ0 4.7 ± 0.1 6.3 ± 0.1 14.5 ± 0.4 17.4 ± 0.5

Table 3
Number of events in the background region excluding the signal region for data and
MC

Mode
τ− →

Data MC

μ−φ 2 1.72 ± 1.23
e−φ 2 0+1.19

−0
μ−ω 7 10.46 ± 1.91
e−ω 0 1.07 ± 0.62
μ− K ∗0 3 3.78 ± 1.72
e− K ∗0 1 2.26 ± 1.26
μ− K̄ ∗0 2 1.21 ± 0.92
e− K̄ ∗0 0 0.31 ± 0.31
μ−ρ0 12 4.82 ± 1.25
e−ρ0 0 0.36 ± 0.36

we used the beam-energy constrained mass, Mbc, instead of the

invariant mass Minv, where Mbc =
√

E2
beam − (�pτ )2, in order to im-

prove the mass resolution, which is smeared due to the γ energy
resolution. In calculating the τ momentum �pτ , we replace the
magnitude of the π0 momentum with the value obtained from
the beam energy, the energies of charged tracks on the signal side
and the π0 direction measured by the calorimeter.

The resolutions in �E and M�V 0 , evaluated using the signal
MC, are summarized in Table 2. We define the signal region in
the �E–M�V 0 plane as a ±3σ ellipse. In order to avoid biases in
the event selection, we blind the signal region until the analysis is
finalized.

3. Background estimation

After all selections, a few events remain in the region −10σ low
M

�V 0

< M�V 0 < 10σ
high
M

�V 0
and −10σ low

�E < �E < 3σ
high
�E , which we de-

fine as a background region. This region will be used to estimate
the expected background and is shown in Fig. 3. Table 3 lists the
numbers of events in the background region excluding the signal
region. The background is efficiently suppressed by the event selec-
tion. The comparison between the data and MC shows reasonable
agreement for all modes, except for the τ− → μ−ρ0 mode. For
this mode one of the dominant background sources is qq̄, which
at low multiplicity is poorly described by MC. For all other modes
we estimate the number of background events in the signal el-
lipse from the data in the background region using the following
method.

Since for most of the modes there are single events only in
the �E–MlV 0 plane both in the data and MC, we first study the
background distribution in a sideband region larger than the back-
ground region (1.5 GeV/c2 < M�V 0 < 1.95 GeV/c2 and −0.5 GeV <

�E < 0.5 GeV) and find that the distribution of events in it is ap-
proximately flat in the background region. As confirmed by the MC
Fig. 3. Distributions of �E–M�V 0 in the ±10σ box for (a) τ− → μ−φ ,
(b) τ− → e−φ , (c) τ− → μ−ω, (d) τ− → e−ω, (e) τ− → μ− K ∗0, (f) τ− → e− K ∗0,
(g) τ− → μ− K̄ ∗0, (h) τ− → e− K̄ ∗0, (i) τ− → μ−ρ0 and (j) τ− → e−ρ0 after all
selections. Dots are data and filled boxes show the signal MC. The elliptical area is
the 3σ signal region.
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study, the main background for the φ and K ∗ modes originates
from the mis-identification (π to K ) and the qq̄ background, so
that the M�V 0 and �E values have a quite broad distribution and
can strongly exceed M�V 0 = mτ and �E = 0. Therefore we assume
that this distribution is flat inside the background region and es-
timate the expected number of background events in the signal
region from the number of data events in the background region
times the ratio of the areas of the signal ellipse and background
region. If the number of data events in the background region is
zero, we assign an upper limit of 2.44 events at the 90% confi-
dence level. The expected number of background events obtained
by this method is shown in the third column of Table 4.

For the μ−ω mode, where the number of events in the back-
ground region is larger, we estimate the background contribution
in the signal region using the shape of the background MC distri-
bution normalized to the data yield in the sideband region of the
background region.

For the μ−ρ0 mode, the background events in Fig. 3 come
mostly from τ− → π−π+π−ν decay and qq̄ when one of the
pions is misidentified as a muon. To estimate the background con-
tribution we select a special event sample requiring Pμ < 0.1 for
muon candidates instead of Pμ > 0.95. The number of expected
background events is then calculated from the product of the num-
ber of events with Pμ < 0.1 in the signal region and the muon fake
rate.

4. Results

After unblinding the signal region single events only remain in
some modes, see Fig. 3. The observed number of events in the sig-
nal region is consistent with the expected background. From the
numbers of observed events in the signal region and the num-
bers of expected background events, listed in the second and third
columns of Table 4, respectively, we evaluate the upper limit on
the number of signal events at the 90% CL, s90, with systematic
uncertainties included in the Feldman–Cousins method [14] using
the POLE code [15]. In the cases when we give an upper limit
of the expected background (τ → e−ω, e− K̄ ∗ and e−ρ0 modes),
the number of background events is taken to be zero. This results
in conservative upper limits. The main systematic uncertainties
on the detection efficiency come from track reconstruction (1.0%
per track), electron identification (2.2%), muon identification (2.0%),
kaon/pion separation (1.4% for φ reconstruction, 1.1% for K ∗0 and
1.5% for ρ0), π0 reconstruction (4.0%), statistics of the signal MC
(1.3% for �−φ, 0.7% for �−ω, 0.6% for �−K ∗0 and �− K̄ ∗0, 0.5%
for μ−ρ0 and 0.6% for e−ρ0) and uncertainties in the branching
fractions for φ → K +K − and ω → π+π−π0 (1.2% and 0.8%). The
uncertainty in the number of τ -pair events mainly comes from the
luminosity measurement (1.6%).

The upper limits on the branching fractions, B, are calculated
as B <

s90
2Nττ ε , where Nττ = 4.99 × 108, is the total number of

the τ -pairs produced and ε is the signal efficiency including the
branching fractions of φ → K +K − , ω → π+π−π0, K ∗0 → K +π−
and ρ0 → π+π− [16]. The resulting upper limits on the branching
fractions are summarized in Table 4.

5. Summary

We have searched for the LFV decays τ− → �−φ, �−ω, �−K ∗0,
�− K̄ ∗0 and �−ρ0 using 543 fb−1 of data obtained in the Belle ex-
periment. No evidence for a signal is observed, and the upper lim-
its on the branching fractions are set in the range (5.9–18) × 10−8

at the 90% CL. The results for the τ− → �−φ, �−K ∗0, �− K̄ ∗0 and
�−ρ0 modes are 3–10 times more restrictive than our previous re-
sults obtained using 158 fb−1 of data. The sensitivity improvement
Table 4
Summary of the number of observed events Nobs , the number of expected back-
ground events Nexp, detection efficiency ε , total systematic error �ε/ε , 90% CL
upper limit of the number of signal events s90 and 90% CL upper limit of the
branching fractions B

Mode
τ− →

Nobs Nexp ε (%) �ε/ε (%) s90 UL on B
(90% CL)

μ−φ 1 0.17 ± 0.12 3.14 5.2 4.17 1.3 × 10−7

e−φ 0 0.18 ± 0.12 3.10 5.3 2.27 7.3 × 10−8

μ−ω 0 0.19 ± 0.20 2.51 6.3 2.22 8.9 × 10−8

e−ω 1 < 0.24 2.46 6.3 4.34 1.8 × 10−7

μ− K ∗0 0 0.26 ± 0.15 3.71 4.8 2.20 5.9 × 10−8

e− K ∗0 0 0.08 ± 0.08 3.04 4.9 2.35 7.8 × 10−8

μ− K̄ ∗0 1 0.17 ± 0.12 4.02 4.8 4.14 1.0 × 10−7

e− K̄ ∗0 0 < 0.17 3.21 4.9 2.45 7.7 × 10−8

μ−ρ0 1 1.04 ± 0.28 4.89 4.9 3.34 6.8 × 10−8

e−ρ0 0 < 0.17 3.94 5.1 2.46 6.3 × 10−8

comes from a factor of 3.4-times larger statistics and an optimized
analysis. In particular, we have improved the conditions on pmiss
and m2

miss to reduce ττ and qq̄ background as well as those on
the opening angle α to reduce two-photon background. As a re-
sult, better background suppression is achieved and the efficiency
is improved, e.g. it increases by a factor of 2.8 for the μ−φ and 2.5
for the e−φ mode. The new upper limits can be used to constrain
the parameter space of various scenarios beyond the SM.

After this work was completed, we became aware that the
BaBar Collaboration had also reported a search for the τ− → �−ω
mode in Ref. [17].
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