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Abstract

We introduce the notion of Nakajima monomials for quantum generalized Kac—Moody algebras and
construct the crystals B(co) and B(A) in terms of Nakajima monomials. We also give an explicit description
of the Nakajima monomials in the crystals B(oco) and B (1) for the rank 2 quantum generalized Kac—-Moody
algebras and for the quantum Monster algebra.
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Introduction

The crystal basis theory was introduced by Kashiwara for the quantum groups associated
with Kac—Moody algebras [7]. Among others, he showed that there exist a crystal basis B(c0)
for the negative part of a quantum group and a crystal basis B(A) for the irreducible highest
weight module V(1) with a dominant integral highest weight A. During the past 15 years, it has
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become one of the most exciting themes in combinatorial representation theory, for it has a lot of
important and interesting applications both in combinatorics and in representation theory.

In [9,10], Nakajima discovered that the set of monomials appearing in f-analogue of
g-characters for finite dimensional representations of quantum affine algebras has a colored ori-
ented graph structure. These monomials are called the Nakajima monomials, and in [8] and [11],
Kashiwara and Nakajima independently defined a crystal structure on the set of Nakajima mono-
mials. Moreover, it was shown that the connected component containing a maximal vector with
a dominant integral weight A is isomorphic to the crystal B(}).

In [6], Kang, Kim and Shin extended the above idea to the realization of the crystal B(co) in
terms of Nakajima monomials. That is, by adding a new variable 1, they introduced the notion
of modified Nakajima monomials, defined a crystal structure on the set of modified Nakajima
monomials, and showed that the connected component containing 1 is isomorphic to the crys-
tal B(c0).

On the other hand, in [2], Jeong, Kang and Kashiwara developed the crystal basis theory for
the quantum generalized Kac—-Moody algebras — the quantum groups associated with generalized
Kac—Moody algebras. As in the Kac—-Moody algebra case, they showed that there exist a crystal
basis B(oo) for the negative part of a quantum generalized Kac—Moody algebra and a crystal
basis B()) for the irreducible highest weight module V(1) with a dominant integral highest
weight A.

In this paper, we introduce the notion of Nakajima monomials for quantum generalized Kac—
Moody algebras and construct the crystals B(co) and B(A) in terms of Nakajima monomials.
We first prove the recognition theorems for B(co) and B()) in which they are characterized
as the crystals satisfying certain rank 2 conditions. We then introduce two kinds of Nakajima
monomials — Verma type and integrable type — and define a crystal structure on each set of
Nakajima monomials.

Using the crystal embedding theorem (see [3]) and the recognition theorems, we show that
the connected component of Nakajima monomials of Verma type (respectively integrable type)
containing 1 (respectively a maximal vector with a dominant integral weight A) is isomorphic to
the crystal B(oco) (respectively B(})). Finally, we give an explicit description of the Nakajima
monomials in the crystals B(oo) and B()) for the rank 2 quantum generalized Kac—Moody
algebras and for the quantum Monster algebra.

1. Crystals

Let I be a countable index set. A Borcherds—Cartan matrix A = (a;j); jer 1S a real matrix
satisfying the following conditions: (i) a;; =2 or a;; <0 for all i € I, (i) a;; < 0 if i # j,
(iii) a;; € Z if a;; =2, (iv) a;; = 0 if and only if a;; = 0. We say that an index i € [ is real if
aj; =2 and imaginary if a;; <0. We denote by I = {i € I |a;; =2} and I'™ = {i € I | a;; < 0}
the set of real indices and the set of imaginary indices, respectively. In this paper, we assume that
ajj € Z, a;; € 22, and A is symmetrizable.

A Borcherds—Cartan datum (A, PV, P, ITY, IT) consists of

(i) A:a Borcherds—Cartan matrix,
(i) PV =(B;c; Zhi) & (D;c; Zd;): the dual weight lattice,
(iii) P={rebh* | A(PY) CZ}, where h = Q ®z PV: the weight lattice,
(iv) ITY ={h; | i € I}: the set of simple coroots,
(v) IT ={«a;|i € I}: the set of simple roots.
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In particular, we have (h;, a;) =a;; foralli, j € 1.
We denote by PT ={\ e P | A(h;) > O for alli € I} the set of dominant integral weights. For
instance, the fundamental weight A; (i € I') defined by

A,‘(hj)=8ij and A,‘(dj)zo (jGI)

is a dominant integral weight. For convenience, we will abuse the notation and write A =
Y icr @i Ai whenever (h;,A) =a; € Z, (d;, ) = 0. We also use the notation Q = ), .; Z«;
and Q+ = Ziel Z}()O{i.

Let U, (g) be the quantum generalized Kac—Moody algebra associated with the Borcherds—
Cartan datum (A, PV, P, ITV, IT) (see, for example, [2,4]). We recall the definition of abstract
crystals for quantum generalized Kac—Moody algebras introduced in [3].

Definition 1.1. An abstract U, (g)-crystal or simply a crystal is a set B together with the maps
wt:B — P, &, fi:B— Bu{0} and ¢;,¢;: B — Z 1 {—00} (i € I) satisfying the following
conditions:

(i) wt(e;b) =wtb+q; ifejb #0,
(i) wt(fib) =wtb —qo; if fib#0,
(iii) foranyi € I and b € B, ¢;(b) = ¢;(b) + (h;, wtb),
(iv) foranyi eI and b, b’ € B, fib="»'if and only if b = &; b/,
(v) foranyi € I and b € B such that ¢;b # 0, we have
(a) ei(eib) =¢i(b) — 1, gi(eib) = @i (b) + 1if i € I',
(b) ei(eib) =¢;(b) and ¢; (¢;b) = ¢; (b) + a;; if i € ',
(vi) foranyi €I and b € B such that f,-b # 0, we have
(@) & (fib)=g;(b)+ 1 and ¢; (fib) = ¢;(b) — 1 if i € I"®,
(b) & (fib) =¢i(b) and ¢; (fib) = ¢;i (D) — aj; if i € I'™, ~
(vii) foranyi € I and b € B such that ¢; (b) = —oo, we have ¢;b = fib=0.

Definition 1.2. Let By and B; be crystals. A map v : By — B is called a morphism of crystals
or a crystal morphism if it satisfies the following conditions:

(i) for b € By, we have
wi(y®) =wib).  s(W®)=e®). @G ®)=g®) forallicl,

(ii) if b € By and f;b € By, then we have ¥ (f;b) = iy (b).
Example 1.3.

(a) The crystal basis B(A) of the irreducible highest weight module V(1) with A € P* is a
U, (g)-crystal, where the maps &;, ¢; (i € I) are given by

max{k > 0| &b #£0} foriel™,
0 fori e ['™,

ei(b) = {
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max{k > 0| ffb#0} forieI™,

vib) = { (hi wi(b)) fori € ',

(b) The crystal basis B(co) of Uq’ (g) is a U, (g)-crystal, where
~k .
6 (b) {max{k>o | &b #0} foriel™,
0 fori e I'™,
0i(b) =& (b) + (hi, wi(b)) (i €1).

Example 1.4. For A € P, the singletons T) = {f,} and R) = {r;} are U,(g)-crystals with the
maps defined by

wt(t,) = A, gi(t) = @i (1)) = —o0, éitn = fit, =0 foralliel,
and
wt(ry) = A, ei(r)) =—(h;, A), i(r)) =0, eir) = ﬁm =0 foralliel.

Example 1.5. For each i € I, let B; = {b;(—n)|n > 0}. Then B; is a crystal with the maps
defined by
wt(bi(—n)) = —naq;,
Gibi(=n)=bi(~n+1).  fibi(=n) =b;j(=n 1),
¢jbi(=n) = fibi(=n) =0 if j #1,
& (b,-(—n)) =n, i (bi(—n)) =-n ifiel™,
gi(bi(—n)) =0,  @i(bi(-n)) =—na;; ifiel™,
ej(bi(—=n)) = ¢j(bi(—n)) = —oc0 if j #i.

Here, we understand b; (—n) = 0 for n < 0. The crystal B; is called an elementary crystal.

Example 1.6. For two crystals B; and B», their tensor product B| ® B; is a crystal with the maps
wt, &;, @; given by

wt(b ® b') = wt(b) + wt(b),

ei(b®b') =max(g;(b), & (b') — (hi, wi(b))),

i (b @ b') = max(g; (b) + (hi, wt(B)), ¢ (b)),
) n_ | fib®b  ifgi(b) > & (b)),

fib®b)= b® fib' if g;(b) < & (b)),

eib®b if gi(b) >¢&;(b')andi €™

or ;(b) > &; (b)) —a;; and i € I'™,
ebeb)=10 if &;(b') < @i (b) < & () — ajj,
b®eb if g;(b) <& (D) andi € I™,

or gj(b) <& (V)andi e I'™.
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Example 1.7. Let i = (i1, i2,...) be an infinite sequence in / such that every i € I appears
infinitely many times in i, and let

B(i)={ ®bi(—x) ® -+ ® bj, (—x1)
€ QB ® - ®Bj; x; € Lo, and x; =0 for k > 0}.

Then B(i) has a crystal structure as follows. Let b = -+ ® b;, (—x) ® - - ® b;; (—x1) € B(i).
Then we have

wt(b) = — Zxkotik.
k
For i € I'®, we have

g (b)) = max{xk + Z(hi, aip)x 1<k, iy = i},
1>k

wmb)=nwx{—xk— §:<hhamxu1s:hik=i}
1<I<k

and, for i € I'™, we have
gi(b)=0 and ¢;(b)=(h;, wt(b)).
For i € I'"®, we have

spe | ®bi (=X, + D@ @by (—x1) if £i(b) >0,
B if £;(b) <0,

fib="--®bi, (~xn; =1 ®- - @ bj (—x1),

where n, (respectively n r) is the largest (respectively smallest) k > 1 such that iy =i and x; +
Y ok lhi i) x; =¢;(b). When i € I'™, let n s be the smallest k such that

ix=i and Y (hi,a;)x =0.
1>k

Then we have
fib="-®bi, (—xn; =D& ®bj (=x1)

and

"®bi,lf(_xnf +1)®®b11(_-x1)

Gib = if x,, > 0 and Zk<l<nf(h,~,a,~l)xl < aji
for any k such that 1 <k <ny and iy =1,
0 otherwise.
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Example 1.8. Let R, = {r,} be the crystal given in Example 1.4. Then for a crystal B, B ® R,
is a crystal with the maps wt, ¢;, ¢; given by

wt(b @ ry) = wt(b) + A,
&i(b ®ry) = max(g; (b), —(hi, A + wt(b))),

. _ Jwi(b) + (hi, 1) fori e 1",
GO =) max(gi(b) + (i, 1), 0) fori e '™,
eib®r, if@i(b)>—(h;,A)andi € I, )
ei(b®ry) = or ¢;(b) + (hj,A) +a;; >0and i € '™,
0 otherwise,
Fbor =) fib®n ifei®) >—(hih),
0 otherwise.

2. The recognition theorems

Let B be an abstract crystal and let J be a subset of /. We denote by U, (gy) the quantum
group associated with the Borcherds—Cartan matrix A; = (a;;);, jes. Moreover, we denote by
Yy (B) the U, (gy)-crystal obtained from B by removing all the i-arrows with i ¢ J.

Theorem 2.1. Suppose that B is an abstract crystal satisfying the following conditions:

(i) there exists a unique element bg € B such that e;by = 0 for al! i€ I,~

(ii) forall b € B, there existiy, ...,ir € I (r 2 0) such that b = f;, - -- f; bo,
(iii) for all J C I with |J| <2, ¥y (B) is a disjoint union of the crystals Bj(o0) ® T,, with
wePy.

Then there is a crystal isomorphism B —> B(0c0) ® Ty, with A = wt(bg).

Proof. The proof is almost the same as the one for quantum groups associated with Kac—-Moody
algebras (see [5, Proposition 2.4.4]). O

Theorem 2.2. Suppose that B is an abstract crystal satisfying the following conditions:
(i) there exists a unique element by € B such that e;bg = 0 for alg iel )
(ii) for all b € B, there existiy, ...,i, € I (r = 0) such thatb = f;, - -- f; bo,
@ii) forall J C I with |J| <2, ¥;(B) is a disjoint union of the crystals By () with u € PJ+.
Then there is a crystal isomorphism B —> B(\) with A = wt(by).
Proof. By (i) and (ii), B = {fil -+ fibo | r =0, iy € I}. Moreover, by (ii), the U, (g)-crystal

generated by bg is isomorphic to By(X) with A = wtj(bg) € Pjr. For o = (01,...,0,) € I",
write |o| =r and f, = fal p fgr. We will show by induction on r that

A(r):  fsbo=0 ifandonlyif fyu; =0 forall|o|=r,
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B(r): & fsbo=0 ifandonlyif & f,(uy)=0 forall|o|=r,
C(r): fybo= feby ifandonlyif f,(u;)= fr(u;) forall|o|=]|t|=r.
When r = 0, our assertions are trivial. Assume that our assertions are true for all sequences o
with |o| < r. By the same argument given in [5, Proposition 2.4.4], one can prove B(r) and C (r).
So it suffices to show A(r). Write j =01, 0" = (02, ..., 07) foro = (o1, ..., 00). If foru; =

then fyu; =0, and by the induction hypothesis A(r — 1), fa/bo =0, Wh]Ch implies fybo =
If fyouy #0, write foruy = f fru;, where k >0 and & ej frup, =0. By the induction hypothes1s

B(r—1),¢; f,bo =0 and f(,/bo = f ; fr bo. Now, by our assumption (iii), we have

fobo=0 & fi(forbo) =0
& 9j(forbo) =0
& 0=¢,(forbo) + (k). wt(forbo))

_{k+<hj,wt(f}b0)—kaj) if jel™,
| Ry, wt(febo) — katj) if j e I'm

{ k+¢j(fru)») 8](];1'”)) iijI-re,

—kajj + @ (frus) if jer™

& @i(fiw) =k ifjel™, and ¢;(fru;)=0 ifjel™
< f,]'{+1fr’4)\ = fyu; =0.

Hence A(r) is proved.

Define a map ¢ : B — B(A) by w(fgbo) = fgu;\. Then by A(r), it commutes with fl
By B(r) and C(r), we have

éifobo=0 & & foup=0
and
¢ifobo=frbo &  fobo= fifcho

< fauszifruk

< éifouszruks
which shows that ¥ commutes with ¢;. Hence B is isomorphic to B(A). O
3. Monomial realization of B(oc0)

In this section, we introduce the notion of Nakajima monomials for quantum generalized Kac—
Moody algebras and give a realization of the crystal B(co) in terms of Nakajima monomials.
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Let A = (a;j);, jer be a Borcherds—Cartan matrix. For each i € I, we define an integer N; € Z
by

Ni — 1+a;; ifa; <O,
7o otherwise,

andsetZ;, ={neZ|n > N;}.
Let Y;(n) (i € I,n € Z) and 1 be commuting variables, and let M be the set of monomials in
Y;(n)’s and 1 of the form

1 [T v ® (3.1)

iel,ne’Z;
satisfying the following conditions:

(i) yi(n) e Zifi e I', and y; (n) € Z>q if i € I'™,
(i1) foreachi € I, y;(n) =0 for all but finitely many n,
(iii) for each i with a;; <0, if y; (k) > O for some k =a;; + 1, ..., —1, then y;(k+ 1) > 0.

Note that this is a product of infinite variables. This can be interpreted as a function f: I xZ — Z
defined by f (i, n) = y;(n). The multiplication of two such functions is given by (f x g)(i,n) =
f(i,n) + g(i, n). For convenience, we will use the monomial notation.

The monomials in M are called the Nakajima monomials of Verma type. We wish to define a
crystal structure on M. For a Nakajima monomial M € M of the form (3.1), we define

wt(M) = Z(Z Vi (n)> A,

iel n
¢i (M) =max{ > ik |n >N,-},
N;Skgn
&i(M) = ¢;(M) — (hi, wt(M)). (3.2)

To define the Kashiwara operators ¢;, fl (i € I) on M, we choose a set C = (cjj)ix; of
nonnegative integers such that ¢;; + c¢;; = 1 and define

Yim)Yi(n+ D] Y+ i) ifiel™,
Ai(m) = Yim) ™Yl aig + D7 Yt e if ay <0,
1_[/?51 Yj(n+Cj[)a-ii ifaii =0.

Foreachi € I, we set

in{n = N; | ;(M) =)y, ()} if M #1,
nf=nf<M>={gnm{n 9100 = Lycegni®) 1M 21

maX{n}Ni |<P1(M)=ZNI<k<ny,(k)} ifi e I'®,

. 33
ng ifi e I'™, (3:3)

ne=n,(M) = {
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Note that n s > 0 by the conditions (i) and (iii) of M, and for each i € I imif F>0,thenny
is the largest positive integer k such that y; (k) > 0. Also, for each i € I'™, we define S;(nr) as
follows:

(i) when a;; <0,ny >0,

Si(ng) =Yi(ns)*Yi(ny — 1)+ Yi(ns +aii + 1) 1_[ Yi(ny +cji)~ ",
J#
jerm

(ii) when a;; <0, ny =0,

Sitnp) =Yi(ng)--Yilny +aii +1) l_[ Yj(ns+cji) %,
J#
je[lln

(iii) when a;; =0,

Sinpy= [ Yyt +ci™.
J#i
jellm

We now define the Kashiwara operators é¢;, f, (i € I) as follows:

fiM=M-Ainp)~",
M- Ai(ne) ifiel™ande(M) >0,

eiM = oriel™and Sj(ns)~'MeM, (3.4)
0 otherwise.

Then it is straightforward to verify that M becomes a U, (g)-crystal with the maps wt, ¢;, ¢;,
e, f, (i € I) defined in (3.2) and (3.4). Moreover, we have a realization of the crystal B(co) in
terms of the monomials in M.

Theorem 3.1. Fix p € Z> and choose a sequence (7;(p) | i € I) of nonnegative integers. If M
is a maximal vector in M of the form

M=1-T]vp*? (p=0),
iel
then the connected component C(M) of M containing M is isomorphic to the U, (g)-crystal

B(00) ® Ty, where . =wt(M) =", Ai(p) A;.
In particular, we have C (1) —> B(00).

Proof. Let M =1-[],.; V; (p)*i") (p > 0) be a maximal vector in M. Thanks to Theorem 2.1,
it suffices to prove that for any subset J of I with |J| < 2, the connected component of ¥; (M)
containing M is isomorphic to the U, (gy)-crystal B;j(oo) ® Ty. If |J| =1, it is easy to see
that fl.N M #0 for all N > 0, and so the connected component C(M) of M containing M is
isomorphic to the Uy (gy)-crystal B;j(00) ® Twi(m)-
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If |J| =2, we assume J = {1, 2} and take c1» = 1, c21 = 0. Since the result for Kac—-Moody
algebra case was already known in [6], we may assume that at least one of the indices is imagi-
nary, say, a1 < 0. Then

Ay = | O Vi an A D@ [, ¥y e ifan <0,
Y, (n)42! ]_[#Lij(n—}—cjl)”ﬂ ifa;; =0,

and
Yr(n)Y,(n+ DY (n + 1)%2 Hj;él,Z Yi(n+ C‘jz)aj2 if app =2,
Ar(n) = o)™ Yo an + DT+ D)2 ] 5 Y+ cjo)®? ifaxn <0,

Yi(n+ D[]0 Yj(n +cjo)®? if axp =0.

Set

K, = {b = Q) (b2(22m) @ b (11)) 13
nzp
= ®by(220p+ 1)) ®bi(z1(p+ 1)) ®b2(22(p)) @ bi(z1(p)) ® 11,

€ --QBQR®BI®B,®B1®T) ) z1(n) =z2(n) =0forn > p}. (3.5)
We define a map @ : K, — M by
b= ®(b2(12(n)) ®bi(z1(n))) @1,
nzp
> M:=1-[[vip*? [T Aim™® Ay ()=
iel n=p
=1 [] iy ™.
iel
nez;
It is easy to see that @ (b) belongs to M and
wi(b) = > (zimer + 22(m)ez) + Y Ai(p) A = wiM.
nzp iel
Note that
@1(b) = A1(p) +anzi(p) + Z(auzl(k) + a2k — 1)),
k>p
and that
—(@m+--+zin—an — 1) +z22@m —Dap ifn>p,
yi(n) = r(p) —(@i(p)+---+zi(p—an —1) ifn=p,
—(zi(p)+--+zi(n—an — 1) if p+an+1<n<p,
otherwise.

0
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Therefore, we have

o1(M) =max{ > nk \ n>1 +a11} = g1(b),
I4a 1 <k<n

and hence (D) = &1(M).
Now, suppose that f] acts on the kth component of b; i.e.,

fib=-®bi(z1(k) = 1) @ ba(z2(k — 1)) ® - - @ b2 (22(p)) ® b1 (z1(P)) ® 1.

Then & ( flb) = M -A;(k)~'. On the other hand, by the definition of Kashiwara operator f, given
in Example 1.7, we have

<h1, 22(k)an + Z(zl o1 + 12(n)a2)> =0, (3.6)
n>k
and
<h1,zz(k — Doar + Z(m (n)ay + zg(n)a2)> > 0. 3.7
n>k

Hence y|(n) =0 for all n > k and y; (k) > 0. Therefore,
fieo)= il =M - A1)~ = @(fib).
Next, suppose that e; acts on the kth component of b; i.e.,
eib=---®bi1(z1k) +1) @ ba(22(k = 1)) ® - -- ® b2(22(p)) ® b1 (21(p)) @ 1.

Then @ (e;b) = M - A (k). On the other hand, by the definition of Kashiwara operator ¢; given
in Example 1.7, we have (3.6), (3.7) and

z1(k) <0, andif zj(k)=-—1 andk > p, 22k — 1){h1,a2) > 0. 3.8)

From (3.8), we know that Sy (ns) = S1(k) is a factor of @(b) = M. It follows that ¢, P (b) =
e1M = M A (k) = ®(e1b). Moreover, according to the definition of Kashiwara operator ¢;, it is
easy to see that ;b =0 if and only if e; M = 0.

Now, if az; = 2, by the same argument given in the proof of Theorem 3.1 of [6], we have
¢ (b) = (M), and fz and ep commute with @. If ay; < 0, by the same argument as above,
»(b) = pa(M), e2(b) = e2(M) and fz and ¢, commute with @. Therefore, we conclude that @
defines a U, (gy)-crystal morphism K, — ¥;(M).

By the crystal embedding theorem, it was shown that the connected component of K con-
taining - -- @ b1(0) ® b2(0) ® b1(0) ® 1, is isomorphic to the crystal By (co) ® T (see [3,12]).
Therefore, the connected component of ¥; (M) containing M =1-[];.; Yi( )i (P is isomor-
phic to the U, (gy)-crystal Bj(c0) @ Ty,. O
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Example 3.2. Let

=5 2)

be a Borcherds—Cartan matrix with positive integers «, 8, y and §. That is, all the indices 1, 2 are
imaginary. Then we have

M) =71 "E =D Yk —a+ DT (k)
Ak =Y 'k — D)7k =8+ DT (k+ DE.

By a direct calculation, we have

T a4 e | @7 >0, a1(k) >0, ax(k) >0,
cm—{yrpmm Ay(k)~® Mmﬁm®¢ammmw—n¢0}

k=0
_ 2 —o
A_(—ﬂ —V)

be a Borcherds—Cartan matrix with «, B, y € Z>(. Then we have

Example 3.3. Let

AL(k) =Y ()Y (k+ DY (k) 7P,
Ak =Yk k-1 Yok —y + DT Y+ DT

We claim that the connected component C (1) of M containing 1 is the set M (co) of monomials
of the form

,
L [Ta) ™ ® 4307 2®  (r>0,a1(k) >0, a(k) >0)
k=0

satisfying the following conditions:

(i) foreach k >0, aax(k) —aj(k+1) >0,
(i) foreachk > 1, if ap(k) > 0, then a; (k) > 0 and aar (k) —aj(k+ 1) > 0.

We first show that M (o0) is closed under the Kashiwara operators f, Let M be amonomial in
M(00). Suppose that fiM does not satisfy the condition (i). Then i = 1 and cas (k) = aj(k+ 1)
for some k >0 in M and fj M is obtained from M by multiplying A;(k 4+ 1)~!. In particular,
ny=k+1and yj(k+ 1) > 0. However, the multiplicity y;(k + 1) of Y1(k + 1) in M is

yitk+1)=—ai(k) —ai(k +1) + aaz (k) <0,

which is a contradiction.
Suppose that f; M does not satisfy the condition (ii). Then we have the following two possi-
bilities:
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(@) i=1,aytk) >0, a;(k) >0 and aaz(k) —aij(k+1)=1in M, and f]M is obtained by
multiplying Aj(k + 1)~ i
) i =2,a1(k)=0,a2(k) =0in M, and f> M is obtained by multiplying Ar (k)L

For the case (a), by the same argument as above, we get a contradiction. For the case (b), we
have n y = k and y(k) > 0. On the other hand, the multiplicity y,(k) of Y>(k) in M is

k+y—1

nk) =pai)+ Y a ).

t=k

In this case, since a> (k) = 0, by (i) and (ii), a; (1) = a>(¢t) =0 for all t > k, and hence y, (k) =0,
which is a contradiction. Therefore, M (00) is closed under the Kashiwara operator f,

Similarly, we can prove that M (oo) is closed under the Kashiwara operator ¢;.

It remains to show that M (c0) is connected. Suppose that M # 1 and ;M =0 for all i € I.
Let j; (respectively j») be the greatest integer j such that a;(j) > O (respectively a>(j) > 0)
in M. If ji > jp, then 1 (M) > 0 and e; M # 0, which implies j; < j,. In this case, S>(j2) is a
factor of M and eoM = M - A>(j») # 0, which is also a contradiction.

Remark 3.4. It can be shown that @ (B) = M (c0), where @ is the map in the proof of Theo-
rem 3.1 and B is the crystal in [3, Example 4.3].

4. Monomial realization of B())

In this section, we introduce another set of Nakajima monomials and give a realization of
the crystal B()) in terms of these monomials. Let 9t be the set of monomials of the form m =
[Tier Yi (n)Y ™, where Y;(n) (i € I,n € Z) are commuting variables, y;(n) € Z for i € I'®,

neZ

yi(n) € Zxoforiel im and for each i € I, y;(n) = 0 for all but finitely many n. The monomials
in 91 are called the Nakajima monomials of integrable type.
For a monomial m € 91, we define

wt(m) = Z (Z Vi (n)> A,

i

wi(m>=max{2yi(k) E eZ},

k<n

g,-(m):max{—zy,»(k)(nez}. 4.1)

k>n

To define the Kashiwara operators, we take c; j and A;(n) to be the same ones as in Section 3,
and define

np=ng(m) :min{n €eZ ‘ @i(m) = Zyi(k)},

k<n
max{n € Z | g;(m) =Y, ,vi(k)} ifiel™,
ny ifi e I'™,

ne =n,(m) = {
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Yi(np)2Yi(ng — 1) Yi(np +ai; + D] j# Yjng+c;p)=4 ifai; <0,
T' = jEIlm 1
COZN e Vi e fair =0

jEI“n

We now define the Kashiwara operators ¢;, fl (iel)by

Fm= { m-Ai(np)”"if gi(m) > 0,
0 otherwise,
m-A;(n,) ifiel™andeg;(m)>0,

eim= { oriel™and T;(ns)"'me M, 4.2)
0 otherwise.

Then it is straightforward to verify that 901 becomes a U, (g)-crystal with the maps wt, &;, ¢;,

e, ﬁ (i € I) defined in (4.1) and (4.2). Moreover, we have a realization of the crystal B(A) in
terms of Nakajima monomials of integrable type.

Theorem 4.1. Fix p € Z>( and choose a sequence (A;(p) | i € I) of nonnegative integers. If m
is a maximal vector in N of the form

m=[[rip"? (pep),
iel
then the connected component C(m) of M containing m is isomorphic to the Uy (g)-crystal B(A)

with L =wt(m) =Y, ; Ai(p) A;.

Proof. Let m =[], Yi(p)*(”) be a monomial in 9% such that &m = 0 for all i € /. Thanks to
Theorem 2.2, it suffices to prove that for any subset J of I with |J| < 2, the connected component
of ¥;(OM) containing m is isomorphic to the U, (gy)-crystal By (1). We assume J = {1, 2} and
take c1p = 1, ¢21 = 0. Since the proof for the Kac—-Moody algebras case was already known, we
may assume that at least one of the indices is imaginary, say, aj; < 0. Set

I?p = {b = ®(b2(zz(n)) ® by (Z](n))) 1

nzp
= Qby(2(p+ D) @bi(zi(p+ 1) ® ba(z2(p)) ® bi(z1(p)) ® 12

E-~-®Bz®31®Bz®Bl®R,\‘Zl(ﬂ)zzz(n)ZOforn >>P}- 4.3)

We define a map @ : K , — 90 by

b= ®(b2(zz(n)) ®bi(z1(n)) @ rx

nzp

—m o= l_[ Y; (p))»i(ﬁ) . 1_[ Al(n)z'(n)Az(n)zz(n).
iel n=p

It is easy to see that @ (b) belongs to M, wt(b) = wt(m), p1(b) = ¢1(m), and £1(b) = g1 (m).
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Now, suppose that fl acts on the kth component of b; i.e.,
fib=-@b1(z1k) = 1) ® b2 (22(k = 1)) ® -+~ ® b2(22(p)) @ b1 (21(p)) ® 7.

Then & ( fl b) =m- A;(k)~! and by the tensor product rule, we have

(h1, wt(b)) > 0, (4.4)
<h1 c2aer+ ) (z1(mar + Zz(n)a2)> =0, (4.5)
n>k
and
<h1 s 22(k — Doz + Z(Zl (n)ory + zz(n)a2)> > 0. (4.6)
n=k

By (4.5) and (4.6), we have yj(n) =0 for all n > k and y; (k) > 0. Therefore,
fieo®)=fim=m- A1)~ = 2(fib).
Suppose that e acts on the kth component of b; i.e.,
eib=---®b1(z1(k) +1) @ ba(22(k = 1)) ® - - ® b2 (22(p)) @ b1 (21(p)) @ 1.
Then @ (e1b) = m - Aj (k). On the other hand, we have (4.4)—(4.6) and
z1(k) <0, andif zi(k)=—1 andk > p, z2(k — 1){(h1,a2) > 0. “4.7)
From (4.4) and (4.7), we know that Ti(ns) = Ty (k) is a factor of @(b) = m. It follows that

él(p(b) = élm =m- Al(k) = @(5119).
Now, if ayy =2, we have

e2(m) = max{ — > y2(k) ‘ ne Z}

k>n
=max|— ) yz(k>,max{—2yz<k)\n>p”
k>p—1 k>n

=max{ —A(p) — Z(Zzz(k) + (ha, a1)z1(k)),
kzp

o) = Y (220 + (b, @) () [ n > p}

k>n

= ¢&2(b),

and hence ¢ (b) = @2(m). Moreover, by the tensor product rule of Kashiwara operators and the
definition of Kashiwara operator in 901, it is easy to see that f, and e, commute with the map @.
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If azp < 0, by the same argument as above, ¢3(b) = @2(m), €2(b) = e2(m), and fz and e,
commute with the map @.

Therefore, we conclude @ defines a U, (g,)-crystal morphism K p —> Y5 (). Note that
the connected component of K p containing --- ® b2(0) ® b1(0) ® r, is isomorphic to
the crystal Bj(A) [3,13]. Therefore, the connected component of ¥,; (M) containing m =
[Tic; Yi(p)* P is isomorphic to the U, (g;)-crystal By(A). O

Example 4.2. Let

= (—2/3 :i)

be a Borcherds—Cartan matrix with &, B, ¥ € Z >0, and let m = Y; (p)*1 (P ¥, (p)*2(P) be a maxi-
mal vector so that A = wt(m) = A1(p) A1 + A2(p) Az. Then C(m) is the set M(A) consisting of
monomials of the form

m- [T AP Aa00720 (> p,aik), az(k) >0)
k=p

satisfying the following conditions:

(i) foreach k > p, aay(k) —a1(k+1) >

(i1) foreach k > p + 1, if ap(k) > 0, then al(k) > 0and aay(k) —a;(k+1) >0,
(i) 0 < ai(p) < ri(p),
(iv) if ax(p) # 0, then Bai(p) + r2(p) > 0.

Since the rest of our proof is similar to that of Example 3.3, we only prove that the condi-
tions (iii) and (1v) are preserved by the Kashiwara operator f,

Suppose that flm does not satisfy the condition (iii). Then a;(p) = A;(p) in m and f1m is
obtained by multiplying A{(p)~'. But, in this case, ny > p, which cannot occur by the definition
of Kashiwara operators.

Suppose that f,m does not satisfy the condition (iv). Theni =2, ax(p) = Ba1(p) +r2(p) =
in m, and fom is obtained by multiplying A(p)~'. However, this cannot occur because the
multiplicity y>(p) is 0 in m.

Remark 4.3. It can be shown that @ (B*) = 9t(1), where & is the map in the proof of Theo-
rem 4.1 and B” is the crystal in [3, Example 5.3].

5. Quantum monster algebra

Let I ={(,t)|i €Z>_1, 1 <t <c(i)}, where c(i) is the ith coefficient of the elliptic mod-
ular function

o
(@) —T44 =g~ + 196884 +214937606% +--- = Y c(i)q".

i=—1
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Consider the Borcherds—Cartan matrix A = (1), (j,5))(i,r),(j,s)el Whose entries are given by
Qi) (j,s) = —( + j). The associated generalized Kac-Moody algebra g is called the Monster
Lie algebra, and it played a crucial role in Borcherds’ proof of the Moonshine conjecture [1]. The
corresponding quantum generalized Kac—Moody algebra is called the quantum Monster algebra.

For (p1,q1), (p2, q2) € I, we define (p1,q1) > (p2, g2) if and only if p; > p2, or p1 = p2
and g1 > g2. Also, for (p1, q1,71), (P2, g2, 12) € I x L0, with (p1, q1) € I, r1 € Z(, we define

(p1,q1,71) > (p2, g2, r2) if and only if
ri>ry, or rp=ry and (p1.q1) > (p2,4q2).

In the following proposition, we give an explicit description of the Nakajima monomials in
B(00) for the quantum Monster algebra.

Proposition 5.1. The connected component C (1) of M containing 1 is the set M(00) consisting
of monomials of the form

-
1. l_[ l_[ Ay () ™40 (1 >0, ag,p) (k) = 0)
(i,nel k=0
satisfying the following conditions:
(i) foreachk >0,
c(i)
Y (= Dagn k) —acink+1) >0,
i>21=1
(i) ifaink) >0 =1,...,c@(), k= 1)withi # —1, then there is a (p, q, r) such that
(i, t,k—1)<(p,q,r)<(,t,k) and (p+i)agpqg ) >0. 5.1
In addition, if there exists a unique (p,q,r) = (—1, 1, k) satisfying (5.1), then
c(i)
DY G = Dag.nk) — a1k +1) > 0.

i>2 =1

Proof. We first show that M (c0) is closed under the Kashiwara operators f(; . Let M be a
monomial in M (oo). Suppose that f(; )M does not satisfy the condition (i). Then

c@i)
(i,1) = (=1, 1), DY G = Dagn(k) —ac11y(k+1)=0 forsomek >0in M,
i>2 t=1
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and f(,l,l)M is obtained by multiplying A 1)(k + 1)~!. In particular, ng=k+1 and
Y(=1,1)(k + 1) > 0. However, the multiplicity y_1,1)(k + 1) in M is

c(i)
Yerntke+1) =—ac1n®) —aciyk+1)+Y > (@ — Dagnk) <0,
i>21=1

which is a contradiction.
Suppose that f; M does not satisfy the condition (ii). Then we have the following two
possibilities:

(@) ag,nk)=0,(p+i)agpgy@)=0forall G,t,k—1) <(p,q,r) < (i,t,k)in M, and f(,',l)M
is obtained from M by multiplying A (k)™

() agnk) >0, a—1,1)(k) > 0, agp,q)(r) =0 for all (i,t,k — 1) < (p,q.,r) < (i,t,k) with
(p.g,r)#(—1,1,k),

c(i)
DY G = Dagnk) —aciyk+1)=1 inM,

i>2 =1
and ﬂ,],])M is obtained from M by multiplying Ay 1y(k + n-L
For the case (a), we have n y = k and the multiplicity y( ;) (k) of Y(; 1) (k) in M is

k+2i—1

Yin® = > ain®+ Y. (+Dagm®+ D> (+Dagmk—1)
s=k (I,m)<(i,t) (I,m)>(i,t)
k+2i—1

= Z agi,n(s),

s>k

which should be positive. However, if y ;) (k) > 0, then a(; ;)(s) > Oforsome k < s < k+2i —1,
which implies y; 1) (s) > 0. This is a contradiction to the fact that n y = k.

For the case (b), we have ny =k + 1 and y1,1)(k + 1) > 0. However, the multiplicity
Y-1,nk+1)is

c(i)
Yernk+ 1D =—ac1 (k) —acink+1D+> Y " — Dagnk)
i>2 =1

=—a1,1)(k) +1<0,
which is a contradiction. Therefore, M (co) is closed under the Kashiwara operator f(; ).
Similarly, we can prove that M (oo) is closed under the Kashiwara operator é; ).

It remains to show that M(c0) is connected. Suppose that M # 1 and é(; M = 0 for all
(i,t) € I. Let (io, 19, ko) € I x Z3( be such that

AGig.10) (ko) >0 and a( (k) =0 forall (i, 1, k) > (io, to, ko).
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Then we have

ei.n(M) >0 when (i,t)=(—1,1) e I'®,
S¢i.r) (ko) is a factor of M when (i, 1) # (-1, 1).

In either case, é(; ;M # 0, which is a contradiction. O

Now, we give an explicit description of the Nakajima monomials in B()) for the quantum
Monster algebra.

Proposition 5.2. Let (A 1)(0) | (i, t) € I) be a sequence of nonnegative integers. If m is a maxi-
mal vector in N of the form

m= [ Yon©*©,
@i,r)el

then the connected component C(m) of M containing w is the set (L) consisting of monomials
of the form

.
m- [T [TAwn®“0® (x> 0,a6. &) >0)
(.)€l k=0

satisfying the conditions (1)—(ii) in Proposition 5.1 and two additional conditions:

(i) 0 < a(-1,1)(0) < A—1,1)(0),
(iv) ifain(0) > 0and A 1(0) =0 with (i,t,0) # (=1, 1, 0), then there is a (j, s, 0) such that

(j.5.0) < (i,1.0) and (i + j)ag.(0) > 0.

Proof. Since the proof is similar to that of Proposition 5.1, we only prove that the conditions (iii)
and (iv) are preserved by the Kashiwara operator ﬁi,t). Suppose that f(_ 1,1ym does not satisfy
the condition (iii). Then a(—1,1)(0) = A(~1,1)(0) in m and f(_l,l)m is obtained by multiplying
A, 1)(0)_1 . However, in this case, n s > 0, which cannot occur by the definition of Kashiwara
operators.

Suppose that f(,',l)m does not satisfy the condition (iv). Then a( ;) (0) = A (0) = 0,
(i + jag,s(©0) =0 for all (j,s5,0) < (i,¢,0) in m, and f(i,,)m is obtained by multiplying
A(i.n(0)~1. However, this cannot occur, since the multiplicity y(; ;) (0) is O inm. O
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