Crystals and Nakajima monomials for quantum generalized Kac-Moody algebras

Kyeonghoon Jeong ${ }^{\text {a,1 }}$, Seok-Jin Kang ${ }^{\text {a,1 }}$, Jeong-Ah Kim ${ }^{\text {b,2 }}$, Dong-Uy Shin ${ }^{\text {c, }, 3}$
a Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea
${ }^{\text {c }}$ Department of Mathematics Education, Hanyang University, Seoul 133-791, Republic of Korea
Received 3 October 2006
Available online 7 March 2008
Communicated by Efim Zelmanov

Abstract

We introduce the notion of Nakajima monomials for quantum generalized Kac-Moody algebras and construct the crystals $B(\infty)$ and $B(\lambda)$ in terms of Nakajima monomials. We also give an explicit description of the Nakajima monomials in the crystals $B(\infty)$ and $B(\lambda)$ for the rank 2 quantum generalized Kac-Moody algebras and for the quantum Monster algebra. © 2008 Elsevier Inc. All rights reserved.

Keywords: Crystals; Nakajima monomials; Generalized Kac-Moody algebras

Introduction

The crystal basis theory was introduced by Kashiwara for the quantum groups associated with Kac-Moody algebras [7]. Among others, he showed that there exist a crystal basis $B(\infty)$ for the negative part of a quantum group and a crystal basis $B(\lambda)$ for the irreducible highest weight module $V(\lambda)$ with a dominant integral highest weight λ. During the past 15 years, it has

[^0]become one of the most exciting themes in combinatorial representation theory, for it has a lot of important and interesting applications both in combinatorics and in representation theory.

In [9,10], Nakajima discovered that the set of monomials appearing in t-analogue of q-characters for finite dimensional representations of quantum affine algebras has a colored oriented graph structure. These monomials are called the Nakajima monomials, and in [8] and [11], Kashiwara and Nakajima independently defined a crystal structure on the set of Nakajima monomials. Moreover, it was shown that the connected component containing a maximal vector with a dominant integral weight λ is isomorphic to the crystal $B(\lambda)$.

In [6], Kang, Kim and Shin extended the above idea to the realization of the crystal $B(\infty)$ in terms of Nakajima monomials. That is, by adding a new variable 1, they introduced the notion of modified Nakajima monomials, defined a crystal structure on the set of modified Nakajima monomials, and showed that the connected component containing $\mathbf{1}$ is isomorphic to the crystal $B(\infty)$.

On the other hand, in [2], Jeong, Kang and Kashiwara developed the crystal basis theory for the quantum generalized Kac-Moody algebras - the quantum groups associated with generalized Kac-Moody algebras. As in the Kac-Moody algebra case, they showed that there exist a crystal basis $B(\infty)$ for the negative part of a quantum generalized Kac-Moody algebra and a crystal basis $B(\lambda)$ for the irreducible highest weight module $V(\lambda)$ with a dominant integral highest weight λ.

In this paper, we introduce the notion of Nakajima monomials for quantum generalized KacMoody algebras and construct the crystals $B(\infty)$ and $B(\lambda)$ in terms of Nakajima monomials. We first prove the recognition theorems for $B(\infty)$ and $B(\lambda)$ in which they are characterized as the crystals satisfying certain rank 2 conditions. We then introduce two kinds of Nakajima monomials - Verma type and integrable type - and define a crystal structure on each set of Nakajima monomials.

Using the crystal embedding theorem (see [3]) and the recognition theorems, we show that the connected component of Nakajima monomials of Verma type (respectively integrable type) containing 1 (respectively a maximal vector with a dominant integral weight λ) is isomorphic to the crystal $B(\infty)$ (respectively $B(\lambda)$). Finally, we give an explicit description of the Nakajima monomials in the crystals $B(\infty)$ and $B(\lambda)$ for the rank 2 quantum generalized Kac-Moody algebras and for the quantum Monster algebra.

1. Crystals

Let I be a countable index set. A Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is a real matrix satisfying the following conditions: (i) $a_{i i}=2$ or $a_{i i} \leqslant 0$ for all $i \in I$, (ii) $a_{i j} \leqslant 0$ if $i \neq j$, (iii) $a_{i j} \in \mathbf{Z}$ if $a_{i i}=2$, (iv) $a_{i j}=0$ if and only if $a_{j i}=0$. We say that an index $i \in I$ is real if $a_{i i}=2$ and imaginary if $a_{i i} \leqslant 0$. We denote by $I^{\mathrm{re}}=\left\{i \in I \mid a_{i i}=2\right\}$ and $I^{\mathrm{im}}=\left\{i \in I \mid a_{i i} \leqslant 0\right\}$ the set of real indices and the set of imaginary indices, respectively. In this paper, we assume that $a_{i j} \in \mathbf{Z}, a_{i i} \in 2 \mathbf{Z}$, and A is symmetrizable.

A Borcherds-Cartan datum $\left(A, P^{\vee}, P, \Pi^{\vee}, \Pi\right)$ consists of
(i) A : a Borcherds-Cartan matrix,
(ii) $P^{\vee}=\left(\bigoplus_{i \in I} \mathbf{Z} h_{i}\right) \oplus\left(\bigoplus_{i \in I} \mathbf{Z} d_{i}\right)$: the dual weight lattice,
(iii) $P=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(P^{\vee}\right) \subset \mathbf{Z}\right\}$, where $\mathfrak{h}=\mathbf{Q} \otimes \mathbf{Z} P^{\vee}$: the weight lattice,
(iv) $\Pi^{\vee}=\left\{h_{i} \mid i \in I\right\}$: the set of simple coroots,
(v) $\Pi=\left\{\alpha_{i} \mid i \in I\right\}$: the set of simple roots.

In particular, we have $\left\langle h_{i}, \alpha_{j}\right\rangle=a_{i j}$ for all $i, j \in I$.
We denote by $P^{+}=\left\{\lambda \in P \mid \lambda\left(h_{i}\right) \geqslant 0\right.$ for all $\left.i \in I\right\}$ the set of dominant integral weights. For instance, the fundamental weight $\Lambda_{i}(i \in I)$ defined by

$$
\Lambda_{i}\left(h_{j}\right)=\delta_{i j} \quad \text { and } \quad \Lambda_{i}\left(d_{j}\right)=0 \quad(j \in I)
$$

is a dominant integral weight. For convenience, we will abuse the notation and write $\lambda=$ $\sum_{i \in I} a_{i} \Lambda_{i}$ whenever $\left\langle h_{i}, \lambda\right\rangle=a_{i} \in \mathbf{Z},\left\langle d_{i}, \lambda\right\rangle=0$. We also use the notation $Q=\bigoplus_{i \in I} \mathbf{Z} \alpha_{i}$ and $Q_{+}=\sum_{i \in I} \mathbf{Z}_{\geqslant 0} \alpha_{i}$.

Let $U_{q}(\mathfrak{g})$ be the quantum generalized Kac-Moody algebra associated with the BorcherdsCartan datum ($A, P^{\vee}, P, \Pi^{\vee}, \Pi$) (see, for example, [2,4]). We recall the definition of abstract crystals for quantum generalized Kac-Moody algebras introduced in [3].

Definition 1.1. An abstract $U_{q}(\mathfrak{g})$-crystal or simply a crystal is a set B together with the maps $\mathrm{wt}: B \rightarrow P, \tilde{e}_{i}, \tilde{f}_{i}: B \rightarrow B \sqcup\{0\}$ and $\varepsilon_{i}, \varphi_{i}: B \rightarrow \mathbf{Z} \sqcup\{-\infty\}(i \in I)$ satisfying the following conditions:
(i) $\operatorname{wt}\left(\tilde{e}_{i} b\right)=\mathrm{wt} b+\alpha_{i}$ if $\tilde{e}_{i} b \neq 0$,
(ii) $\operatorname{wt}\left(\tilde{f}_{i} b\right)=\mathrm{wt} b-\alpha_{i}$ if $\tilde{f}_{i} b \neq 0$,
(iii) for any $i \in I$ and $b \in B, \varphi_{i}(b)=\varepsilon_{i}(b)+\left\langle h_{i}\right.$, wt $\left.b\right\rangle$,
(iv) for any $i \in I$ and $b, b^{\prime} \in B, \tilde{f}_{i} b=b^{\prime}$ if and only if $b=\tilde{e}_{i} b^{\prime}$,
(v) for any $i \in I$ and $b \in B$ such that $\tilde{e}_{i} b \neq 0$, we have
(a) $\varepsilon_{i}\left(\tilde{e}_{i} b\right)=\varepsilon_{i}(b)-1, \varphi_{i}\left(\tilde{e}_{i} b\right)=\varphi_{i}(b)+1$ if $i \in I^{\mathrm{re}}$,
(b) $\varepsilon_{i}\left(\tilde{e}_{i} b\right)=\varepsilon_{i}(b)$ and $\varphi_{i}\left(\tilde{e}_{i} b\right)=\varphi_{i}(b)+a_{i i}$ if $i \in I^{\text {im }}$,
(vi) for any $i \in I$ and $b \in B$ such that $\tilde{f}_{i} b \neq 0$, we have
(a) $\varepsilon_{i}\left(\tilde{f}_{i} b\right)=\varepsilon_{i}(b)+1$ and $\varphi_{i}\left(\tilde{f}_{i} b\right)=\varphi_{i}(b)-1$ if $i \in I^{\mathrm{re}}$,
(b) $\varepsilon_{i}\left(\tilde{f}_{i} b\right)=\varepsilon_{i}(b)$ and $\varphi_{i}\left(\tilde{f}_{i} b\right)=\varphi_{i}(b)-a_{i i}$ if $i \in I^{\text {im }}$,
(vii) for any $i \in I$ and $b \in B$ such that $\varphi_{i}(b)=-\infty$, we have $\tilde{e}_{i} b=\tilde{f}_{i} b=0$.

Definition 1.2. Let B_{1} and B_{2} be crystals. A map $\psi: B_{1} \rightarrow B_{2}$ is called a morphism of crystals or a crystal morphism if it satisfies the following conditions:
(i) for $b \in B_{1}$, we have

$$
\mathrm{wt}(\psi(b))=\mathrm{wt}(b), \quad \varepsilon_{i}(\psi(b))=\varepsilon_{i}(b), \quad \varphi_{i}(\psi(b))=\varphi_{i}(b) \quad \text { for all } i \in I,
$$

(ii) if $b \in B_{1}$ and $\tilde{f}_{i} b \in B_{1}$, then we have $\psi\left(\tilde{f}_{i} b\right)=\tilde{f}_{i} \psi(b)$.

Example 1.3.

(a) The crystal basis $B(\lambda)$ of the irreducible highest weight module $V(\lambda)$ with $\lambda \in P^{+}$is a $U_{q}(\mathfrak{g})$-crystal, where the maps $\varepsilon_{i}, \varphi_{i}(i \in I)$ are given by

$$
\varepsilon_{i}(b)= \begin{cases}\max \left\{k \geqslant 0 \mid \tilde{e}_{i}^{k} b \neq 0\right\} & \text { for } i \in I^{\mathrm{re}}, \\ 0 & \text { for } i \in I^{\mathrm{im}}\end{cases}
$$

$$
\varphi_{i}(b)= \begin{cases}\max \left\{k \geqslant 0 \mid \tilde{f}_{i}^{k} b \neq 0\right\} & \text { for } i \in I^{\mathrm{re}}, \\ \left\langle h_{i}, \operatorname{wt}(b)\right\rangle & \text { for } i \in I^{\mathrm{im}}\end{cases}
$$

(b) The crystal basis $B(\infty)$ of $U_{q}^{-}(\mathfrak{g})$ is a $U_{q}(\mathfrak{g})$-crystal, where

$$
\begin{aligned}
& \varepsilon_{i}(b)= \begin{cases}\max \left\{k \geqslant 0 \mid \tilde{e}_{i}^{k} b \neq 0\right\} & \text { for } i \in I^{\mathrm{re}}, \\
0 & \text { for } i \in I^{\mathrm{im}},\end{cases} \\
& \varphi_{i}(b)=\varepsilon_{i}(b)+\left\langle h_{i}, \operatorname{wt}(b)\right\rangle \quad(i \in I)
\end{aligned}
$$

Example 1.4. For $\lambda \in P$, the singletons $T_{\lambda}=\left\{t_{\lambda}\right\}$ and $R_{\lambda}=\left\{r_{\lambda}\right\}$ are $U_{q}(\mathfrak{g})$-crystals with the maps defined by

$$
\operatorname{wt}\left(t_{\lambda}\right)=\lambda, \quad \varepsilon_{i}\left(t_{\lambda}\right)=\varphi_{i}\left(t_{\lambda}\right)=-\infty, \quad \tilde{e}_{i} t_{\lambda}=\tilde{f}_{i} t_{\lambda}=0 \quad \text { for all } i \in I
$$

and

$$
\operatorname{wt}\left(r_{\lambda}\right)=\lambda, \quad \varepsilon_{i}\left(r_{\lambda}\right)=-\left\langle h_{i}, \lambda\right\rangle, \quad \varphi_{i}\left(r_{\lambda}\right)=0, \quad \tilde{e}_{i} r_{\lambda}=\tilde{f}_{i} r_{\lambda}=0 \quad \text { for all } i \in I .
$$

Example 1.5. For each $i \in I$, let $B_{i}=\left\{b_{i}(-n) \mid n \geqslant 0\right\}$. Then B_{i} is a crystal with the maps defined by

$$
\begin{gathered}
\mathrm{wt}\left(b_{i}(-n)\right)=-n \alpha_{i}, \\
\tilde{e}_{i} b_{i}(-n)=b_{i}(-n+1), \quad \tilde{f}_{i} b_{i}(-n)=b_{i}(-n-1), \\
\tilde{e}_{j} b_{i}(-n)=\tilde{f}_{j} b_{i}(-n)=0 \quad \text { if } j \neq i, \\
\varepsilon_{i}\left(b_{i}(-n)\right)=n, \quad \varphi_{i}\left(b_{i}(-n)\right)=-n \quad \text { if } i \in I^{\mathrm{re}}, \\
\varepsilon_{i}\left(b_{i}(-n)\right)=0, \quad \varphi_{i}\left(b_{i}(-n)\right)=-n a_{i i} \quad \text { if } i \in I^{\mathrm{im}}, \\
\varepsilon_{j}\left(b_{i}(-n)\right)=\varphi_{j}\left(b_{i}(-n)\right)=-\infty \quad \text { if } j \neq i
\end{gathered}
$$

Here, we understand $b_{i}(-n)=0$ for $n<0$. The crystal B_{i} is called an elementary crystal.
Example 1.6. For two crystals B_{1} and B_{2}, their tensor product $B_{1} \otimes B_{2}$ is a crystal with the maps $\mathrm{wt}, \varepsilon_{i}, \varphi_{i}$ given by

$$
\begin{aligned}
& \mathrm{wt}\left(b \otimes b^{\prime}\right)=\operatorname{wt}(b)+\operatorname{wt}\left(b^{\prime}\right), \\
& \varepsilon_{i}\left(b \otimes b^{\prime}\right)=\max \left(\varepsilon_{i}(b), \varepsilon_{i}\left(b^{\prime}\right)-\left\langle h_{i}, \mathrm{wt}(b)\right\rangle\right), \\
& \varphi_{i}\left(b \otimes b^{\prime}\right)=\max \left(\varphi_{i}(b)+\left\langle h_{i}, \mathrm{wt}\left(b^{\prime}\right)\right\rangle, \varphi_{i}\left(b^{\prime}\right)\right), \\
& \tilde{f}_{i}\left(b \otimes b^{\prime}\right)= \begin{cases}\tilde{f}_{i} b \otimes b^{\prime} & \text { if } \varphi_{i}(b)>\varepsilon_{i}\left(b^{\prime}\right), \\
b \otimes \tilde{f_{i}} b^{\prime} & \text { if } \varphi_{i}(b) \leqslant \varepsilon_{i}\left(b^{\prime}\right),\end{cases} \\
& \tilde{e}_{i}\left(b \otimes b^{\prime}\right)= \begin{cases}\tilde{e}_{i} b \otimes b^{\prime} & \text { if } \varphi_{i}(b) \geqslant \varepsilon_{i}\left(b^{\prime}\right) \text { and } i \in I^{\mathrm{re}} \\
0 & \text { or } \varphi_{i}(b)>\varepsilon_{i}\left(b^{\prime}\right)-a_{i i} \text { and } i \in I^{\mathrm{im}}, \\
b \otimes \tilde{e}_{i} b^{\prime} & \text { if } \varepsilon_{i}\left(b^{\prime}\right)<\varphi_{i}(b) \leqslant \varepsilon_{i}(b)<\varepsilon_{i}\left(b^{\prime}\right) \text { and } i \in I_{i i},\end{cases} \\
& \text { or } \varphi_{i}(b) \leqslant \varepsilon_{i}\left(b^{\prime}\right) \text { and } i \in I^{\mathrm{im}} .
\end{aligned}, ~
$$

Example 1.7. Let $\mathbf{i}=\left(i_{1}, i_{2}, \ldots\right)$ be an infinite sequence in I such that every $i \in I$ appears infinitely many times in \mathbf{i}, and let

$$
\begin{aligned}
B(\mathbf{i})= & \left\{\cdots \otimes b_{i_{k}}\left(-x_{k}\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right)\right. \\
& \left.\in \cdots \otimes B_{i_{k}} \otimes \cdots \otimes B_{i_{1}} ; x_{k} \in \mathbf{Z}_{\geqslant 0}, \text { and } x_{k}=0 \text { for } k \gg 0\right\} .
\end{aligned}
$$

Then $B(\mathbf{i})$ has a crystal structure as follows. Let $b=\cdots \otimes b_{i_{k}}\left(-x_{k}\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right) \in B(\mathbf{i})$. Then we have

$$
\mathrm{wt}(b)=-\sum_{k} x_{k} \alpha_{i_{k}} .
$$

For $i \in I^{\mathrm{re}}$, we have

$$
\begin{aligned}
& \varepsilon_{i}(b)=\max \left\{x_{k}+\sum_{l>k}\left\langle h_{i}, \alpha_{i_{l}}\right\rangle x_{l} 1 \leqslant k, i_{k}=i\right\} \\
& \varphi_{i}(b)=\max \left\{-x_{k}-\sum_{1 \leqslant l<k}\left\langle h_{i}, \alpha_{i_{l}}\right\rangle x_{l} ; 1 \leqslant k, i_{k}=i\right\},
\end{aligned}
$$

and, for $i \in I^{\mathrm{im}}$, we have

$$
\varepsilon_{i}(b)=0 \quad \text { and } \quad \varphi_{i}(b)=\left\langle h_{i}, \operatorname{wt}(b)\right\rangle .
$$

For $i \in I^{\mathrm{re}}$, we have

$$
\begin{aligned}
& \tilde{e}_{i} b= \begin{cases}\cdots \otimes b_{i_{n_{e}}}\left(-x_{n_{e}}+1\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right) & \text { if } \varepsilon_{i}(b)>0 \\
0 & \text { if } \varepsilon_{i}(b) \leqslant 0\end{cases} \\
& \tilde{f}_{i} b=\cdots \otimes b_{i_{n_{f}}}\left(-x_{n_{f}}-1\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right),
\end{aligned}
$$

where n_{e} (respectively n_{f}) is the largest (respectively smallest) $k \geqslant 1$ such that $i_{k}=i$ and $x_{k}+$ $\sum_{l>k}\left\langle h_{i}, \alpha_{i_{l}}\right\rangle x_{l}=\varepsilon_{i}(b)$. When $i \in I^{\mathrm{im}}$, let n_{f} be the smallest k such that

$$
i_{k}=i \quad \text { and } \quad \sum_{l>k}\left\langle h_{i}, \alpha_{i l}\right\rangle x_{l}=0
$$

Then we have

$$
\tilde{f_{i}} b=\cdots \otimes b_{i_{n_{f}}}\left(-x_{n_{f}}-1\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right)
$$

and

$$
\tilde{e}_{i} b=\left\{\begin{array}{l}
\cdots \otimes b_{i_{n_{f}}}\left(-x_{n_{f}}+1\right) \otimes \cdots \otimes b_{i_{1}}\left(-x_{1}\right) \\
\quad \text { if } x_{n_{f}}>0 \text { and } \sum_{k<l \leqslant n_{f}}\left\langle h_{i}, \alpha_{i_{l}}\right\rangle x_{l}<a_{i i} \\
\quad \text { for any } k \text { such that } 1 \leqslant k<n_{f} \text { and } i_{k}=i, \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

Example 1.8. Let $R_{\lambda}=\left\{r_{\lambda}\right\}$ be the crystal given in Example 1.4. Then for a crystal $B, B \otimes R_{\lambda}$ is a crystal with the maps wt, $\varepsilon_{i}, \varphi_{i}$ given by

$$
\begin{aligned}
\mathrm{wt}\left(b \otimes r_{\lambda}\right) & =\operatorname{wt}(b)+\lambda, \\
\varepsilon_{i}\left(b \otimes r_{\lambda}\right) & =\max \left(\varepsilon_{i}(b),-\left\langle h_{i}, \lambda+\mathrm{wt}(b)\right\rangle\right), \\
\varphi_{i}\left(b \otimes r_{\lambda}\right) & = \begin{cases}\varphi_{i}(b)+\left\langle h_{i}, \lambda\right\rangle & \text { for } i \in I^{\mathrm{re}}, \\
\max \left(\varphi_{i}(b)+\left\langle h_{i}, \lambda\right\rangle, 0\right) & \text { for } i \in I^{\mathrm{im}},\end{cases} \\
\tilde{e}_{i}\left(b \otimes r_{\lambda}\right) & = \begin{cases}\tilde{e}_{i} b \otimes r_{\lambda} & \text { if } \varphi_{i}(b) \geqslant-\left\langle h_{i}, \lambda\right\rangle \text { and } i \in I^{\mathrm{re}}, \\
0 & \text { or } \varphi_{i}(b)+\left\langle h_{i}, \lambda\right\rangle+a_{i i}>0 \text { and } i \in I^{\mathrm{im}}, \\
\text { otherwise },\end{cases} \\
\tilde{f}_{i}\left(b \otimes r_{\lambda}\right) & = \begin{cases}\tilde{f}_{i} b \otimes r_{\lambda} & \text { if } \varphi_{i}(b)>-\left\langle h_{i}, \lambda\right\rangle, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

2. The recognition theorems

Let B be an abstract crystal and let J be a subset of I. We denote by $U_{q}\left(\mathfrak{g}_{J}\right)$ the quantum group associated with the Borcherds-Cartan matrix $A_{J}=\left(a_{i j}\right)_{i, j \in J}$. Moreover, we denote by $\psi_{J}(B)$ the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal obtained from B by removing all the i-arrows with $i \notin J$.

Theorem 2.1. Suppose that B is an abstract crystal satisfying the following conditions:
(i) there exists a unique element $b_{0} \in B$ such that $\tilde{e}_{i} b_{0}=0$ for all $i \in I$,
(ii) for all $b \in B$, there exist $i_{1}, \ldots, i_{r} \in I(r \geqslant 0)$ such that $b=\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}} b_{0}$,
(iii) for all $J \subset I$ with $|J| \leqslant 2, \psi_{J}(B)$ is a disjoint union of the crystals $B_{J}(\infty) \otimes T_{\mu}$ with $\mu \in P_{J}$.

Then there is a crystal isomorphism $B \xrightarrow{\sim} B(\infty) \otimes T_{\lambda}$ with $\lambda=\operatorname{wt}\left(b_{0}\right)$.

Proof. The proof is almost the same as the one for quantum groups associated with Kac-Moody algebras (see [5, Proposition 2.4.4]).

Theorem 2.2. Suppose that B is an abstract crystal satisfying the following conditions:
(i) there exists a unique element $b_{0} \in B$ such that $\tilde{e}_{i} b_{0}=0$ for all $i \in I$,
(ii) for all $b \in B$, there exist $i_{1}, \ldots, i_{r} \in I(r \geqslant 0)$ such that $b=\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}} b_{0}$,
(iii) for all $J \subset I$ with $|J| \leqslant 2, \psi_{J}(B)$ is a disjoint union of the crystals $B_{J}(\mu)$ with $\mu \in P_{J}^{+}$.

Then there is a crystal isomorphism $B \xrightarrow{\sim} B(\lambda)$ with $\lambda=\mathrm{wt}\left(b_{0}\right)$.
Proof. By (i) and (ii), $B=\left\{\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}} b_{0} \mid r \geqslant 0, i_{k} \in I\right\}$. Moreover, by (ii), the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal generated by b_{0} is isomorphic to $B_{J}(\lambda)$ with $\lambda=\mathrm{wt}_{J}\left(b_{0}\right) \in P_{J}^{+}$. For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in I^{r}$, write $|\sigma|=r$ and $\tilde{f}_{\sigma}=\tilde{f}_{\sigma_{1}} \cdots \tilde{f}_{\sigma_{r}}$. We will show by induction on r that

$$
A(r): \quad \tilde{f}_{\sigma} b_{0}=0 \quad \text { if and only if } \quad \tilde{f}_{\sigma} u_{\lambda}=0 \quad \text { for all }|\sigma|=r,
$$

$$
B(r): \quad \tilde{e}_{i} \tilde{f}_{\sigma} b_{0}=0 \quad \text { if and only if } \quad \tilde{e}_{i} \tilde{f}_{\sigma}\left(u_{\lambda}\right)=0 \quad \text { for all }|\sigma|=r,
$$

$$
C(r): \quad \tilde{f}_{\sigma} b_{0}=\tilde{f}_{\tau} b_{0} \quad \text { if and only if } \quad \tilde{f}_{\sigma}\left(u_{\lambda}\right)=\tilde{f}_{\tau}\left(u_{\lambda}\right) \quad \text { for all }|\sigma|=|\tau|=r .
$$

When $r=0$, our assertions are trivial. Assume that our assertions are true for all sequences σ with $|\sigma|<r$. By the same argument given in [5, Proposition 2.4.4], one can prove $B(r)$ and $C(r)$. So it suffices to show $A(r)$. Write $j=\sigma_{1}, \sigma^{\prime}=\left(\sigma_{2}, \ldots, \sigma_{r}\right)$ for $\sigma=\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. If $\tilde{f}_{\sigma^{\prime}} u_{\lambda}=0$, then $\tilde{f}_{\sigma} u_{\lambda}=0$, and by the induction hypothesis $A(r-1), \tilde{f}_{\sigma^{\prime}} b_{0}=0$, which implies $\tilde{f}_{\sigma} b_{0}=0$. If $\tilde{f}_{\sigma^{\prime}} u_{\lambda} \neq 0$, write $\tilde{f}_{\sigma^{\prime}} u_{\lambda}=\tilde{f}_{j}^{k} \tilde{f}_{\tau} u_{\lambda}$, where $k \geqslant 0$ and $\tilde{e}_{j} \tilde{f}_{\tau} u_{\lambda}=0$. By the induction hypothesis $B(r-1), \tilde{e}_{j} \tilde{f}_{\tau} b_{0}=0$ and $\tilde{f}_{\sigma^{\prime}} b_{0}=\tilde{f}_{j}^{k} \tilde{f}_{\tau} b_{0}$. Now, by our assumption (iii), we have

$$
\begin{aligned}
\tilde{f}_{\sigma} b_{0}=0 \quad \Leftrightarrow & \tilde{f}_{j}\left(\tilde{f}_{\sigma^{\prime}} b_{0}\right)=0 \\
& \Leftrightarrow \varphi_{j}\left(\tilde{f}_{\sigma^{\prime}} b_{0}\right)=0 \\
& \Leftrightarrow 0=\varepsilon_{j}\left(\tilde{f}_{\sigma^{\prime}} b_{0}\right)+\left\langle h_{j}, \operatorname{wt}\left(\tilde{f}_{\sigma^{\prime}} b_{0}\right)\right\rangle \\
& = \begin{cases}k+\left\langle h_{j}, \operatorname{wt}\left(\tilde{f}_{\tau} b_{0}\right)-k \alpha_{j}\right\rangle & \text { if } j \in I^{\mathrm{re}}, \\
\left\langle h_{j}, \operatorname{wt}\left(\tilde{f}_{\tau} b_{0}\right)-k \alpha_{j}\right\rangle & \text { if } j \in I^{\mathrm{im}}\end{cases} \\
& = \begin{cases}-k+\varphi_{j}\left(\tilde{f}_{\tau} u_{\lambda}\right)-\varepsilon_{j}\left(\tilde{f}_{\tau} u_{\lambda}\right) & \text { if } j \in I^{\mathrm{re}}, \\
-k a_{j j}+\varphi_{j}\left(\tilde{f}_{\tau} u_{\lambda}\right) & \text { if } j \in I^{\mathrm{im}}\end{cases} \\
\Leftrightarrow & \varphi_{j}\left(\tilde{f}_{\tau} u_{\lambda}\right)=k \quad \text { if } j \in I^{\mathrm{re}}, \quad \text { and } \quad \varphi_{j}\left(\tilde{f}_{\tau} u_{\lambda}\right)=0 \quad \text { if } j \in I^{\mathrm{im}} \\
\Leftrightarrow & \tilde{f}_{j}^{k+1} \tilde{f}_{\tau} u_{\lambda}=\tilde{f}_{\sigma} u_{\lambda}=0 .
\end{aligned}
$$

Hence $A(r)$ is proved.
Define a map $\psi: B \rightarrow B(\lambda)$ by $\psi\left(\tilde{f}_{\sigma} b_{0}\right)=\tilde{f}_{\sigma} u_{\lambda}$. Then by $A(r)$, it commutes with \tilde{f}_{i}. By $B(r)$ and $C(r)$, we have

$$
\tilde{e}_{i} \tilde{f}_{\sigma} b_{0}=0 \quad \Leftrightarrow \quad \tilde{e}_{i} \tilde{f}_{\sigma} u_{\lambda}=0
$$

and

$$
\begin{aligned}
\tilde{e}_{i} \tilde{f}_{\sigma} b_{0}=\tilde{f}_{\tau} b_{0} & \Leftrightarrow \quad \tilde{f}_{\sigma} b_{0}=\tilde{f}_{i} \tilde{f}_{\tau} b_{0} \\
& \Leftrightarrow \quad \tilde{f}_{\sigma} u_{\lambda}=\tilde{f}_{i} \tilde{f}_{\tau} u_{\lambda} \\
& \Leftrightarrow \quad \tilde{e}_{i} \tilde{f}_{\sigma} u_{\lambda}=\tilde{f}_{\tau} u_{\lambda}
\end{aligned}
$$

which shows that ψ commutes with \tilde{e}_{i}. Hence B is isomorphic to $B(\lambda)$.

3. Monomial realization of $\boldsymbol{B}(\infty)$

In this section, we introduce the notion of Nakajima monomials for quantum generalized KacMoody algebras and give a realization of the crystal $B(\infty)$ in terms of Nakajima monomials.

Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a Borcherds-Cartan matrix. For each $i \in I$, we define an integer $N_{i} \in \mathbf{Z}$ by

$$
N_{i}= \begin{cases}1+a_{i i} & \text { if } a_{i i}<0 \\ 0 & \text { otherwise }\end{cases}
$$

and set $\mathbf{Z}_{i}=\left\{n \in \mathbf{Z} \mid n \geqslant N_{i}\right\}$.
Let $Y_{i}(n)(i \in I, n \in \mathbf{Z})$ and $\mathbf{1}$ be commuting variables, and let \mathcal{M} be the set of monomials in $Y_{i}(n)$'s and $\mathbf{1}$ of the form

$$
\begin{equation*}
\text { 1. } \prod_{i \in I, n \in \mathbf{Z}_{i}} Y_{i}(n)^{y_{i}(n)} \tag{3.1}
\end{equation*}
$$

satisfying the following conditions:
(i) $y_{i}(n) \in \mathbf{Z}$ if $i \in I^{\mathrm{re}}$, and $y_{i}(n) \in \mathbf{Z}_{\geqslant 0}$ if $i \in I^{\text {im }}$,
(ii) for each $i \in I, y_{i}(n)=0$ for all but finitely many n,
(iii) for each i with $a_{i i}<0$, if $y_{i}(k)>0$ for some $k=a_{i i}+1, \ldots,-1$, then $y_{i}(k+1)>0$.

Note that this is a product of infinite variables. This can be interpreted as a function $f: I \times \mathbf{Z} \rightarrow \mathbf{Z}$ defined by $f(i, n)=y_{i}(n)$. The multiplication of two such functions is given by $(f \times g)(i, n)=$ $f(i, n)+g(i, n)$. For convenience, we will use the monomial notation.

The monomials in \mathcal{M} are called the Nakajima monomials of Verma type. We wish to define a crystal structure on \mathcal{M}. For a Nakajima monomial $M \in \mathcal{M}$ of the form (3.1), we define

$$
\begin{gather*}
\operatorname{wt}(M)=\sum_{i \in I}\left(\sum_{n} y_{i}(n)\right) \Lambda_{i}, \\
\varphi_{i}(M)=\max \left\{\sum_{N_{i} \leqslant k \leqslant n} y_{i}(k) \mid n \geqslant N_{i}\right\}, \\
\varepsilon_{i}(M)=\varphi_{i}(M)-\left\langle h_{i}, \operatorname{wt}(M)\right\rangle . \tag{3.2}
\end{gather*}
$$

To define the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}(i \in I)$ on \mathcal{M}, we choose a set $C=\left(c_{i j}\right)_{i \neq j}$ of nonnegative integers such that $c_{i j}+c_{j i}=1$ and define

$$
A_{i}(n)= \begin{cases}Y_{i}(n) Y_{i}(n+1) \prod_{j \neq i} Y_{j}\left(n+c_{j i}\right)^{a_{j i}} & \text { if } i \in I^{\mathrm{re}} \\ Y_{i}(n)^{-1} \cdots Y_{i}\left(n+a_{i i}+1\right)^{-1} \prod_{j \neq i} Y_{j}\left(n+c_{j i}\right)^{a_{j i}} & \text { if } a_{i i}<0 \\ \prod_{j \neq i} Y_{j}\left(n+c_{j i}\right)^{a_{j i}} & \text { if } a_{i i}=0\end{cases}
$$

For each $i \in I$, we set

$$
\begin{align*}
& n_{f}=n_{f}(M)= \begin{cases}\min \left\{n \geqslant N_{i} \mid \varphi_{i}(M)=\sum_{N_{i} \leqslant k \leqslant n} y_{i}(k)\right\} & \text { if } M \neq \mathbf{1}, \\
0 & \text { if } M=\mathbf{1},\end{cases} \\
& n_{e}=n_{e}(M)= \begin{cases}\max \left\{n \geqslant N_{i} \mid \varphi_{i}(M)=\sum_{N_{i} \leqslant k \leqslant n} y_{i}(k)\right\} & \text { if } i \in I^{\mathrm{re}}, \\
n_{f} & \text { if } i \in I^{\mathrm{im}}\end{cases} \tag{3.3}
\end{align*}
$$

Note that $n_{f} \geqslant 0$ by the conditions (i) and (iii) of \mathcal{M}, and for each $i \in I^{\text {im }}$, if $n_{f}>0$, then n_{f} is the largest positive integer k such that $y_{i}(k)>0$. Also, for each $i \in I^{\mathrm{im}}$, we define $S_{i}\left(n_{f}\right)$ as follows:
(i) when $a_{i i}<0, n_{f}>0$,

$$
S_{i}\left(n_{f}\right)=Y_{i}\left(n_{f}\right)^{2} Y_{i}\left(n_{f}-1\right) \cdots Y_{i}\left(n_{f}+a_{i i}+1\right) \prod_{\substack{j \neq i \\ j \in I^{\mathrm{im}}}} Y_{j}\left(n_{f}+c_{j i}\right)^{-a_{j i}}
$$

(ii) when $a_{i i}<0, n_{f}=0$,

$$
S_{i}\left(n_{f}\right)=Y_{i}\left(n_{f}\right) \cdots Y_{i}\left(n_{f}+a_{i i}+1\right) \prod_{\substack{j \neq i \\ j \in I^{\text {im }}}} Y_{j}\left(n_{f}+c_{j i}\right)^{-a_{j i}},
$$

(iii) when $a_{i i}=0$,

$$
S_{i}\left(n_{f}\right)=\prod_{\substack{j \neq i \\ j \in I^{\text {im }}}} Y_{j}\left(n_{f}+c_{j i}\right)^{-a_{j i}}
$$

We now define the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}(i \in I)$ as follows:

$$
\begin{align*}
& \tilde{f}_{i} M=M \cdot A_{i}\left(n_{f}\right)^{-1}, \\
& \tilde{e}_{i} M= \begin{cases}M \cdot A_{i}\left(n_{e}\right) & \text { if } i \in I^{\mathrm{re}} \text { and } \varepsilon_{i}(M)>0, \\
0 & \text { or } i \in I^{\mathrm{im}} \text { and } S_{i}\left(n_{f}\right)^{-1} M \in \mathcal{M},\end{cases} \tag{3.4}
\end{align*}
$$

Then it is straightforward to verify that \mathcal{M} becomes a $U_{q}(\mathfrak{g})$-crystal with the maps wt, $\varepsilon_{i}, \varphi_{i}$, $\tilde{e}_{i}, \tilde{f}_{i}(i \in I)$ defined in (3.2) and (3.4). Moreover, we have a realization of the crystal $B(\infty)$ in terms of the monomials in \mathcal{M}.

Theorem 3.1. Fix $p \in \mathbf{Z}_{\geqslant 0}$ and choose a sequence $\left(\lambda_{i}(p) \mid i \in I\right)$ of nonnegative integers. If M is a maximal vector in \mathcal{M} of the form

$$
M=\mathbf{1} \cdot \prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)} \quad(p \geqslant 0)
$$

then the connected component $C(M)$ of \mathcal{M} containing M is isomorphic to the $U_{q}(\mathfrak{g})$-crystal $B(\infty) \otimes T_{\lambda}$, where $\lambda=\operatorname{wt}(M)=\sum_{i \in I} \lambda_{i}(p) \Lambda_{i}$.

In particular, we have $C(\mathbf{1}) \xrightarrow{\sim} B(\infty)$.
Proof. Let $M=\mathbf{1} \cdot \prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)}(p \geqslant 0)$ be a maximal vector in \mathcal{M}. Thanks to Theorem 2.1, it suffices to prove that for any subset J of I with $|J| \leqslant 2$, the connected component of $\Psi_{J}(\mathcal{M})$ containing M is isomorphic to the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal $B_{J}(\infty) \otimes T_{\lambda}$. If $|J|=1$, it is easy to see that $\tilde{f}_{i}^{N} M \neq 0$ for all $N \geqslant 0$, and so the connected component $C(M)$ of \mathcal{M} containing M is isomorphic to the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal $B_{J}(\infty) \otimes T_{\mathrm{wt}(M)}$.

If $|J|=2$, we assume $J=\{1,2\}$ and take $c_{12}=1, c_{21}=0$. Since the result for Kac-Moody algebra case was already known in [6], we may assume that at least one of the indices is imaginary, say, $a_{11} \leqslant 0$. Then

$$
A_{1}(n)= \begin{cases}Y_{1}(n)^{-1} \cdots Y_{1}\left(n+a_{11}+1\right)^{-1} Y_{2}(n)^{a_{21}} \prod_{j \neq 1,2} Y_{j}\left(n+c_{j 1}\right)^{a_{j 1}} & \text { if } a_{11}<0, \\ Y_{2}(n)^{a_{21}} \prod_{j \neq 1,2} Y_{j}\left(n+c_{j 1}\right)^{a_{j 1}} & \text { if } a_{11}=0,\end{cases}
$$

and

$$
A_{2}(n)= \begin{cases}Y_{2}(n) Y_{2}(n+1) Y_{1}(n+1)^{a_{12}} \prod_{j \neq 1,2} Y_{j}\left(n+c_{j 2}\right)^{a_{j 2}} & \text { if } a_{22}=2, \\ Y_{2}(n)^{-1} \cdots Y_{2}\left(n+a_{22}+1\right)^{-1} Y_{1}(n+1)^{a_{12}} \prod_{j \neq 1,2} Y_{j}\left(n+c_{j 2}\right)^{a_{j 2}} & \text { if } a_{22}<0, \\ Y_{1}(n+1)^{a_{12}} \prod_{j \neq 1,2} Y_{j}\left(n+c_{j 2}\right)^{a_{j 2}} & \text { if } a_{22}=0\end{cases}
$$

Set

$$
\begin{align*}
K_{p}= & \left\{b:=\bigotimes_{n \geqslant p}\left(b_{2}\left(z_{2}(n)\right) \otimes b_{1}\left(z_{1}(n)\right)\right) \otimes t_{\lambda}\right. \\
& =\cdots \otimes b_{2}\left(z_{2}(p+1)\right) \otimes b_{1}\left(z_{1}(p+1)\right) \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes t_{\lambda} \\
& \left.\in \cdots \otimes B_{2} \otimes B_{1} \otimes B_{2} \otimes B_{1} \otimes T_{\lambda} \mid z_{1}(n)=z_{2}(n)=0 \text { for } n \gg p\right\} \tag{3.5}
\end{align*}
$$

We define a map $\Phi: K_{p} \rightarrow \mathcal{M}$ by

$$
\begin{aligned}
b & =\bigotimes_{n \geqslant p}\left(b_{2}\left(z_{2}(n)\right) \otimes b_{1}\left(z_{1}(n)\right)\right) \otimes t_{\lambda} \\
& \mapsto M:=\mathbf{1} \cdot \prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)} \prod_{n \geqslant p} A_{1}(n)^{z_{1}(n)} A_{2}(n)^{z_{2}(n)} \\
& =\mathbf{1} \cdot \prod_{\substack{i \in I \\
n \in \mathbf{Z}_{i}}} Y_{i}(n)^{y_{i}(n)}
\end{aligned}
$$

It is easy to see that $\Phi(b)$ belongs to \mathcal{M} and

$$
\mathrm{wt}(b)=\sum_{n \geqslant p}\left(z_{1}(n) \alpha_{1}+z_{2}(n) \alpha_{2}\right)+\sum_{i \in I} \lambda_{i}(p) \Lambda_{i}=\mathrm{wt} M .
$$

Note that

$$
\varphi_{1}(b)=\lambda_{1}(p)+a_{11} z_{1}(p)+\sum_{k>p}\left(a_{11} z_{1}(k)+a_{12} z_{2}(k-1)\right),
$$

and that

$$
y_{1}(n)= \begin{cases}-\left(z_{1}(n)+\cdots+z_{1}\left(n-a_{11}-1\right)\right)+z_{2}(n-1) a_{12} & \text { if } n>p, \\ \lambda_{1}(p)-\left(z_{1}(p)+\cdots+z_{1}\left(p-a_{11}-1\right)\right) & \text { if } n=p, \\ -\left(z_{1}(p)+\cdots+z_{1}\left(n-a_{11}-1\right)\right) & \text { if } p+a_{11}+1 \leqslant n<p, \\ 0 & \text { otherwise. }\end{cases}
$$

Therefore, we have

$$
\varphi_{1}(M)=\max \left\{\sum_{1+a_{11} \leqslant k \leqslant n} y_{1}(k) \mid n \geqslant 1+a_{11}\right\}=\varphi_{1}(b),
$$

and hence $\varepsilon_{1}(b)=\varepsilon_{1}(M)$.
Now, suppose that \tilde{f}_{1} acts on the k th component of b; i.e.,

$$
\tilde{f}_{1} b=\cdots \otimes b_{1}\left(z_{1}(k)-1\right) \otimes b_{2}\left(z_{2}(k-1)\right) \otimes \cdots \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes t_{\lambda}
$$

Then $\Phi\left(\tilde{f}_{1} b\right)=M \cdot A_{1}(k)^{-1}$. On the other hand, by the definition of Kashiwara operator \tilde{f}_{i} given in Example 1.7, we have

$$
\begin{equation*}
\left\langle h_{1}, z_{2}(k) \alpha_{2}+\sum_{n>k}\left(z_{1}(n) \alpha_{1}+z_{2}(n) \alpha_{2}\right)\right\rangle=0, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle h_{1}, z_{2}(k-1) \alpha_{2}+\sum_{n \geqslant k}\left(z_{1}(n) \alpha_{1}+z_{2}(n) \alpha_{2}\right)\right\rangle>0 . \tag{3.7}
\end{equation*}
$$

Hence $y_{1}(n)=0$ for all $n>k$ and $y_{1}(k)>0$. Therefore,

$$
\tilde{f}_{1} \Phi(b)=\tilde{f}_{1} M=M \cdot A_{1}(k)^{-1}=\Phi\left(\tilde{f}_{1} b\right) .
$$

Next, suppose that \tilde{e}_{1} acts on the k th component of b; i.e.,

$$
\tilde{e}_{1} b=\cdots \otimes b_{1}\left(z_{1}(k)+1\right) \otimes b_{2}\left(z_{2}(k-1)\right) \otimes \cdots \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes t_{\lambda}
$$

Then $\Phi\left(\tilde{e}_{1} b\right)=M \cdot A_{1}(k)$. On the other hand, by the definition of Kashiwara operator \tilde{e}_{i} given in Example 1.7, we have (3.6), (3.7) and

$$
\begin{equation*}
z_{1}(k)<0, \quad \text { and if } \quad z_{1}(k)=-1 \quad \text { and } k>p, \quad z_{2}(k-1)\left\langle h_{1}, \alpha_{2}\right\rangle>0 . \tag{3.8}
\end{equation*}
$$

From (3.8), we know that $S_{1}\left(n_{f}\right)=S_{1}(k)$ is a factor of $\Phi(b)=M$. It follows that $\tilde{e}_{1} \Phi(b)=$ $\tilde{e}_{1} M=M A_{1}(k)=\Phi\left(\tilde{e}_{1} b\right)$. Moreover, according to the definition of Kashiwara operator \tilde{e}_{i}, it is easy to see that $\tilde{e}_{1} b=0$ if and only if $\tilde{e}_{1} M=0$.

Now, if $a_{22}=2$, by the same argument given in the proof of Theorem 3.1 of [6], we have $\varphi_{2}(b)=\varphi_{2}(M)$, and \tilde{f}_{2} and \tilde{e}_{2} commute with Φ. If $a_{22} \leqslant 0$, by the same argument as above, $\varphi_{2}(b)=\varphi_{2}(M), \varepsilon_{2}(b)=\varepsilon_{2}(M)$ and \tilde{f}_{2} and \tilde{e}_{2} commute with Φ. Therefore, we conclude that Φ defines a $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal morphism $K_{p} \rightarrow \Psi_{J}(\mathcal{M})$.

By the crystal embedding theorem, it was shown that the connected component of K_{p} containing $\cdots \otimes b_{1}(0) \otimes b_{2}(0) \otimes b_{1}(0) \otimes t_{\lambda}$ is isomorphic to the crystal $B_{J}(\infty) \otimes T_{\lambda}$ (see $[3,12]$). Therefore, the connected component of $\Psi_{J}(\mathcal{M})$ containing $M=\mathbf{1} \cdot \prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)}$ is isomorphic to the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal $B_{J}(\infty) \otimes T_{\lambda}$.

Example 3.2. Let

$$
A=\left(\begin{array}{ll}
-\alpha & -\beta \\
-\gamma & -\delta
\end{array}\right)
$$

be a Borcherds-Cartan matrix with positive integers α, β, γ and δ. That is, all the indices 1,2 are imaginary. Then we have

$$
\begin{aligned}
& A_{1}(k)=Y_{1}(k)^{-1} Y_{1}(k-1)^{-1} \cdots Y_{1}(k-\alpha+1)^{-1} Y_{2}(k)^{-\gamma}, \\
& A_{2}(k)=Y_{2}(k)^{-1} Y_{2}(k-1)^{-1} \cdots Y_{2}(k-\delta+1)^{-1} Y_{1}(k+1)^{-\beta} .
\end{aligned}
$$

By a direct calculation, we have

$$
C(\mathbf{1})=\left\{\begin{array}{l|l}
\mathbf{1} \cdot \prod_{k=0}^{r} A_{1}(k)^{-a_{1}(k)} A_{2}(k)^{-a_{2}(k)} & \begin{array}{l}
\text { (i) } r \geqslant 0, a_{1}(k) \geqslant 0, a_{2}(k) \geqslant 0, \\
\text { (ii) if } a_{1}(k) \neq 0, \text { then } a_{2}(k-1) \neq 0
\end{array}
\end{array}\right\} .
$$

Example 3.3. Let

$$
A=\left(\begin{array}{cc}
2 & -\alpha \\
-\beta & -\gamma
\end{array}\right)
$$

be a Borcherds-Cartan matrix with $\alpha, \beta, \gamma \in \mathbf{Z}_{\geqslant 0}$. Then we have

$$
\begin{aligned}
& A_{1}(k)=Y_{1}(k) Y_{1}(k+1) Y_{2}(k)^{-\beta} \\
& A_{2}(k)=Y_{2}(k)^{-1} Y_{2}(k-1)^{-1} \cdots Y_{2}(k-\gamma+1)^{-1} Y_{1}(k+1)^{-\alpha}
\end{aligned}
$$

We claim that the connected component $C(\mathbf{1})$ of \mathcal{M} containing $\mathbf{1}$ is the set $\mathcal{M}(\infty)$ of monomials of the form

$$
\mathbf{1} \cdot \prod_{k=0}^{r} A_{1}(k)^{-a_{1}(k)} A_{2}(k)^{-a_{2}(k)} \quad\left(r \geqslant 0, a_{1}(k) \geqslant 0, a_{2}(k) \geqslant 0\right)
$$

satisfying the following conditions:
(i) for each $k \geqslant 0, \alpha a_{2}(k)-a_{1}(k+1) \geqslant 0$,
(ii) for each $k \geqslant 1$, if $a_{2}(k)>0$, then $a_{1}(k)>0$ and $\alpha a_{2}(k)-a_{1}(k+1)>0$.

We first show that $\mathcal{M}(\infty)$ is closed under the Kashiwara operators \tilde{f}_{i}. Let M be a monomial in $\mathcal{M}(\infty)$. Suppose that $\tilde{f}_{i} M$ does not satisfy the condition (i). Then $i=1$ and $\alpha a_{2}(k)=a_{1}(k+1)$ for some $k \geqslant 0$ in M and $\tilde{f}_{1} M$ is obtained from M by multiplying $A_{1}(k+1)^{-1}$. In particular, $n_{f}=k+1$ and $y_{1}(k+1)>0$. However, the multiplicity $y_{1}(k+1)$ of $Y_{1}(k+1)$ in M is

$$
y_{1}(k+1)=-a_{1}(k)-a_{1}(k+1)+\alpha a_{2}(k) \leqslant 0,
$$

which is a contradiction.
Suppose that $\tilde{f_{i}} M$ does not satisfy the condition (ii). Then we have the following two possibilities:
(a) $i=1, a_{2}(k)>0, a_{1}(k)>0$ and $\alpha a_{2}(k)-a_{1}(k+1)=1$ in M, and $\tilde{f}_{1} M$ is obtained by multiplying $A_{1}(k+1)^{-1}$.
(b) $i=2, a_{1}(k)=0, a_{2}(k)=0$ in M, and $\tilde{f}_{2} M$ is obtained by multiplying $A_{2}(k)^{-1}$.

For the case (a), by the same argument as above, we get a contradiction. For the case (b), we have $n_{f}=k$ and $y_{2}(k)>0$. On the other hand, the multiplicity $y_{2}(k)$ of $Y_{2}(k)$ in M is

$$
y_{2}(k)=\beta a_{1}(k)+\sum_{t=k}^{k+\gamma-1} a_{2}(t) .
$$

In this case, since $a_{2}(k)=0$, by (i) and (ii), $a_{1}(t)=a_{2}(t)=0$ for all $t \geqslant k$, and hence $y_{2}(k)=0$, which is a contradiction. Therefore, $\mathcal{M}(\infty)$ is closed under the Kashiwara operator \tilde{f}_{i}.

Similarly, we can prove that $\mathcal{M}(\infty)$ is closed under the Kashiwara operator \tilde{e}_{i}.
It remains to show that $\mathcal{M}(\infty)$ is connected. Suppose that $M \neq \mathbf{1}$ and $\tilde{e}_{i} M=0$ for all $i \in I$. Let j_{1} (respectively j_{2}) be the greatest integer j such that $a_{1}(j)>0$ (respectively $a_{2}(j)>0$) in M. If $j_{1}>j_{2}$, then $\varepsilon_{1}(M)>0$ and $\tilde{e}_{1} M \neq 0$, which implies $j_{1} \leqslant j_{2}$. In this case, $S_{2}\left(j_{2}\right)$ is a factor of M and $\tilde{e}_{2} M=M \cdot A_{2}\left(j_{2}\right) \neq 0$, which is also a contradiction.

Remark 3.4. It can be shown that $\Phi(B)=\mathcal{M}(\infty)$, where Φ is the map in the proof of Theorem 3.1 and B is the crystal in [3, Example 4.3].

4. Monomial realization of $B(\lambda)$

In this section, we introduce another set of Nakajima monomials and give a realization of the crystal $B(\lambda)$ in terms of these monomials. Let \mathfrak{M} be the set of monomials of the form $\mathfrak{m}=$ $\prod_{\substack{i \in I \\ n \in \mathbf{Z}}} Y_{i}(n)^{y_{i}(n)}$, where $Y_{i}(n)(i \in I, n \in \mathbf{Z})$ are commuting variables, $y_{i}(n) \in \mathbf{Z}$ for $i \in I^{\mathrm{re}}$, $y_{i}(n) \in \mathbf{Z}_{\geqslant 0}$ for $i \in I^{\mathrm{im}}$ and for each $i \in I, y_{i}(n)=0$ for all but finitely many n. The monomials in \mathfrak{M} are called the Nakajima monomials of integrable type.

For a monomial $\mathfrak{m} \in \mathfrak{M}$, we define

$$
\begin{gather*}
\mathrm{wt}(\mathfrak{m})=\sum_{i}\left(\sum_{n} y_{i}(n)\right) \Lambda_{i}, \\
\varphi_{i}(\mathfrak{m})=\max \left\{\sum_{k \leqslant n} y_{i}(k) \mid n \in \mathbf{Z}\right\}, \\
\varepsilon_{i}(\mathfrak{m})=\max \left\{-\sum_{k>n} y_{i}(k) \mid n \in \mathbf{Z}\right\} . \tag{4.1}
\end{gather*}
$$

To define the Kashiwara operators, we take $c_{i j}$ and $A_{i}(n)$ to be the same ones as in Section 3, and define

$$
\begin{aligned}
& n_{f}=n_{f}(\mathfrak{m})=\min \left\{n \in \mathbf{Z} \mid \varphi_{i}(\mathfrak{m})=\sum_{k \leqslant n} y_{i}(k)\right\}, \\
& n_{e}=n_{e}(\mathfrak{m})= \begin{cases}\max \left\{n \in \mathbf{Z} \mid \varphi_{i}(\mathfrak{m})=\sum_{k \leqslant n} y_{i}(k)\right\} & \text { if } i \in I^{\mathrm{re}}, \\
n_{f} & \text { if } i \in I^{\mathrm{im}},\end{cases}
\end{aligned}
$$

$$
T_{i}\left(n_{f}\right)= \begin{cases}Y_{i}\left(n_{f}\right)^{2} Y_{i}\left(n_{f}-1\right) \cdots Y_{i}\left(n_{f}+a_{i i}+1\right) \prod \underset{j \neq I^{j \mathrm{im}}}{j \neq i} Y_{j}\left(n_{f}+c_{j i}\right)^{-a_{j i}} & \text { if } a_{i i}<0 \\ \prod_{\substack{j \neq i \\ j \in I^{\text {im }}}} Y_{j}\left(n_{f}+c_{j i}\right)^{-a_{j i}} & \text { if } a_{i i}=0\end{cases}
$$

We now define the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}(i \in I)$ by

$$
\begin{align*}
& \tilde{f}_{i} \mathfrak{m}= \begin{cases}\mathfrak{m} \cdot A_{i}\left(n_{f}\right)^{-1} & \text { if } \varphi_{i}(\mathfrak{m})>0 \\
0 & \text { otherwise },\end{cases} \\
& \tilde{e}_{i} \mathfrak{m}= \begin{cases}\mathfrak{m} \cdot A_{i}\left(n_{e}\right) & \text { if } i \in I^{\mathrm{re}} \text { and } \varepsilon_{i}(\mathfrak{m})>0, \\
0 & \text { or } i \in I^{\mathrm{im}} \text { and } T_{i}\left(n_{f}\right)^{-1} \mathfrak{m} \in \mathfrak{M}, \\
0 & \text { otherwise. }\end{cases} \tag{4.2}
\end{align*}
$$

Then it is straightforward to verify that \mathfrak{M} becomes a $U_{q}(\mathfrak{g})$-crystal with the maps $\mathrm{wt}, \varepsilon_{i}, \varphi_{i}$, $\tilde{e}_{i}, \tilde{f}_{i}(i \in I)$ defined in (4.1) and (4.2). Moreover, we have a realization of the crystal $B(\lambda)$ in terms of Nakajima monomials of integrable type.

Theorem 4.1. Fix $p \in \mathbf{Z} \geqslant 0$ and choose a sequence $\left(\lambda_{i}(p) \mid i \in I\right)$ of nonnegative integers. If \mathfrak{m} is a maximal vector in \mathfrak{M} of the form

$$
\mathfrak{m}=\prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)} \quad(p \in \mathbf{Z})
$$

then the connected component $C(\mathfrak{m})$ of \mathfrak{M} containing \mathfrak{m} is isomorphic to the $U_{q}(\mathfrak{g})$-crystal $B(\lambda)$ with $\lambda=\operatorname{wt}(\mathfrak{m})=\sum_{i \in I} \lambda_{i}(p) \Lambda_{i}$.

Proof. Let $\mathfrak{m}=\prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)}$ be a monomial in \mathfrak{M} such that $\tilde{e}_{i} \mathfrak{m}=0$ for all $i \in I$. Thanks to Theorem 2.2, it suffices to prove that for any subset J of I with $|J| \leqslant 2$, the connected component of $\Psi_{J}(\mathfrak{M})$ containing \mathfrak{m} is isomorphic to the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal $B_{J}(\lambda)$. We assume $J=\{1,2\}$ and take $c_{12}=1, c_{21}=0$. Since the proof for the Kac-Moody algebras case was already known, we may assume that at least one of the indices is imaginary, say, $a_{11} \leqslant 0$. Set

$$
\begin{align*}
\bar{K}_{p}= & \left\{b:=\bigotimes_{n \geqslant p}\left(b_{2}\left(z_{2}(n)\right) \otimes b_{1}\left(z_{1}(n)\right)\right) \otimes r_{\lambda}\right. \\
& =\cdots \otimes b_{2}\left(z_{2}(p+1)\right) \otimes b_{1}\left(z_{1}(p+1)\right) \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes r_{\lambda} \\
& \left.\in \cdots \otimes B_{2} \otimes B_{1} \otimes B_{2} \otimes B_{1} \otimes R_{\lambda} \mid z_{1}(n)=z_{2}(n)=0 \text { for } n \gg p\right\} . \tag{4.3}
\end{align*}
$$

We define a map $\Phi: \bar{K}_{p} \rightarrow \mathfrak{M}$ by

$$
\begin{aligned}
b & =\bigotimes_{n \geqslant p}\left(b_{2}\left(z_{2}(n)\right) \otimes b_{1}\left(z_{1}(n)\right)\right) \otimes r_{\lambda} \\
& \mapsto \mathfrak{m}:=\prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)} \cdot \prod_{n \geqslant p} A_{1}(n)^{z_{1}(n)} A_{2}(n)^{z_{2}(n)} .
\end{aligned}
$$

It is easy to see that $\Phi(b)$ belongs to $\mathfrak{M}, \operatorname{wt}(b)=\operatorname{wt}(\mathfrak{m}), \varphi_{1}(b)=\varphi_{1}(\mathfrak{m})$, and $\varepsilon_{1}(b)=\varepsilon_{1}(\mathfrak{m})$.

Now, suppose that \tilde{f}_{1} acts on the k th component of b; i.e.,

$$
\tilde{f}_{1} b=\cdots \otimes b_{1}\left(z_{1}(k)-1\right) \otimes b_{2}\left(z_{2}(k-1)\right) \otimes \cdots \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes r_{\lambda}
$$

Then $\Phi\left(\tilde{f}_{1} b\right)=\mathfrak{m} \cdot A_{1}(k)^{-1}$ and by the tensor product rule, we have

$$
\begin{gather*}
\left\langle h_{1}, \mathrm{wt}(b)\right\rangle>0 \tag{4.4}\\
\left\langle h_{1}, z_{2}(k) \alpha_{2}+\sum_{n>k}\left(z_{1}(n) \alpha_{1}+z_{2}(n) \alpha_{2}\right)\right\rangle=0, \tag{4.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\langle h_{1}, z_{2}(k-1) \alpha_{2}+\sum_{n \geqslant k}\left(z_{1}(n) \alpha_{1}+z_{2}(n) \alpha_{2}\right)\right\rangle>0 . \tag{4.6}
\end{equation*}
$$

By (4.5) and (4.6), we have $y_{1}(n)=0$ for all $n>k$ and $y_{1}(k)>0$. Therefore,

$$
\tilde{f}_{1} \Phi(b)=\tilde{f}_{1} \mathfrak{m}=\mathfrak{m} \cdot A_{1}(k)^{-1}=\Phi\left(\tilde{f}_{1} b\right) .
$$

Suppose that \tilde{e}_{1} acts on the k th component of b; i.e.,

$$
\tilde{e}_{1} b=\cdots \otimes b_{1}\left(z_{1}(k)+1\right) \otimes b_{2}\left(z_{2}(k-1)\right) \otimes \cdots \otimes b_{2}\left(z_{2}(p)\right) \otimes b_{1}\left(z_{1}(p)\right) \otimes t_{\lambda}
$$

Then $\Phi\left(\tilde{e}_{1} b\right)=\mathfrak{m} \cdot A_{1}(k)$. On the other hand, we have (4.4)-(4.6) and

$$
\begin{equation*}
z_{1}(k)<0, \quad \text { and if } \quad z_{1}(k)=-1 \quad \text { and } k>p, \quad z_{2}(k-1)\left\langle h_{1}, \alpha_{2}\right\rangle>0 . \tag{4.7}
\end{equation*}
$$

From (4.4) and (4.7), we know that $T_{1}\left(n_{f}\right)=T_{1}(k)$ is a factor of $\Phi(b)=\mathfrak{m}$. It follows that $\tilde{e}_{1} \Phi(b)=\tilde{e}_{1} \mathfrak{m}=\mathfrak{m} \cdot A_{1}(k)=\Phi\left(\tilde{e}_{1} b\right)$.

Now, if $a_{22}=2$, we have

$$
\begin{aligned}
\varepsilon_{2}(\mathfrak{m})= & \max \left\{-\sum_{k>n} y_{2}(k) \mid n \in \mathbf{Z}\right\} \\
= & \max \left\{-\sum_{k>p-1} y_{2}(k), \max \left\{-\sum_{k>n} y_{2}(k) \mid n \geqslant p\right\}\right\} \\
= & \max \left\{-\lambda_{2}(p)-\sum_{k \geqslant p}\left(2 z_{2}(k)+\left\langle h_{2}, \alpha_{1}\right\rangle z_{1}(k)\right),\right. \\
& \left.-z_{2}(n)-\sum_{k>n}\left(2 z_{2}(k)+\left\langle h_{2}, \alpha_{1}\right\rangle z_{1}(k)\right) \mid n \geqslant p\right\} \\
= & \varepsilon_{2}(b),
\end{aligned}
$$

and hence $\varphi_{2}(b)=\varphi_{2}(\mathfrak{m})$. Moreover, by the tensor product rule of Kashiwara operators and the definition of Kashiwara operator in \mathfrak{M}, it is easy to see that \tilde{f}_{2} and \tilde{e}_{2} commute with the map Φ.

If $a_{22} \leqslant 0$, by the same argument as above, $\varphi_{2}(b)=\varphi_{2}(\mathfrak{m}), \varepsilon_{2}(b)=\varepsilon_{2}(\mathfrak{m})$, and \tilde{f}_{2} and \tilde{e}_{2} commute with the map Φ.

Therefore, we conclude Φ defines a $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal morphism $\bar{K}_{p} \rightarrow \Psi_{J}(\mathfrak{M})$. Note that the connected component of \bar{K}_{p} containing $\cdots \otimes b_{2}(0) \otimes b_{1}(0) \otimes r_{\lambda}$ is isomorphic to the crystal $B_{J}(\lambda)[3,13]$. Therefore, the connected component of $\Psi_{J}(\mathfrak{M})$ containing $\mathfrak{m}=$ $\prod_{i \in I} Y_{i}(p)^{\lambda_{i}(p)}$ is isomorphic to the $U_{q}\left(\mathfrak{g}_{J}\right)$-crystal $B_{J}(\lambda)$.

Example 4.2. Let

$$
A=\left(\begin{array}{cc}
2 & -\alpha \\
-\beta & -\gamma
\end{array}\right)
$$

be a Borcherds-Cartan matrix with $\alpha, \beta, \gamma \in \mathbf{Z}_{\geqslant 0}$, and let $\mathfrak{m}=Y_{1}(p)^{\lambda_{1}(p)} Y_{2}(p)^{\lambda_{2}(p)}$ be a maximal vector so that $\lambda=\operatorname{wt}(\mathfrak{m})=\lambda_{1}(p) \Lambda_{1}+\lambda_{2}(p) \Lambda_{2}$. Then $C(\mathfrak{m})$ is the set $\mathfrak{M}(\lambda)$ consisting of monomials of the form

$$
\mathfrak{m} \cdot \prod_{k=p}^{r} A_{1}(k)^{-a_{1}(k)} A_{2}(k)^{-a_{2}(k)} \quad\left(r \geqslant p, a_{1}(k), a_{2}(k) \geqslant 0\right)
$$

satisfying the following conditions:
(i) for each $k \geqslant p, \alpha a_{2}(k)-a_{1}(k+1) \geqslant 0$,
(ii) for each $k \geqslant p+1$, if $a_{2}(k)>0$, then $a_{1}(k)>0$ and $\alpha a_{2}(k)-a_{1}(k+1)>0$,
(iii) $0 \leqslant a_{1}(p) \leqslant \lambda_{1}(p)$,
(iv) if $a_{2}(p) \neq 0$, then $\beta a_{1}(p)+\lambda_{2}(p)>0$.

Since the rest of our proof is similar to that of Example 3.3, we only prove that the conditions (iii) and (iv) are preserved by the Kashiwara operator $\tilde{f_{i}}$.

Suppose that $\tilde{f}_{1} \mathfrak{m}$ does not satisfy the condition (iii). Then $a_{1}(p)=\lambda_{1}(p)$ in \mathfrak{m} and $\tilde{f}_{1} \mathfrak{m}$ is obtained by multiplying $A_{1}(p)^{-1}$. But, in this case, $n_{f}>p$, which cannot occur by the definition of Kashiwara operators.

Suppose that $\tilde{f}_{i} \mathfrak{m}$ does not satisfy the condition (iv). Then $i=2, a_{2}(p)=\beta a_{1}(p)+\lambda_{2}(p)=0$ in \mathfrak{m}, and $\tilde{f}_{2} \mathfrak{m}$ is obtained by multiplying $A_{2}(p)^{-1}$. However, this cannot occur because the multiplicity $y_{2}(p)$ is 0 in \mathfrak{m}.

Remark 4.3. It can be shown that $\Phi\left(B^{\lambda}\right)=\mathfrak{M}(\lambda)$, where Φ is the map in the proof of Theorem 4.1 and B^{λ} is the crystal in [3, Example 5.3].

5. Quantum monster algebra

Let $I=\left\{(i, t) \mid i \in \mathbf{Z}_{\geqslant-1}, 1 \leqslant t \leqslant c(i)\right\}$, where $c(i)$ is the i th coefficient of the elliptic modular function

$$
j(q)-744=q^{-1}+196884 q+21493760 q^{2}+\cdots=\sum_{i=-1}^{\infty} c(i) q^{i}
$$

Consider the Borcherds-Cartan matrix $A=\left(\alpha_{(i, t),(j, s)}\right)_{(i, t),(j, s) \in I}$ whose entries are given by $\alpha_{(i, t),(j, s)}=-(i+j)$. The associated generalized Kac-Moody algebra \mathfrak{g} is called the Monster Lie algebra, and it played a crucial role in Borcherds' proof of the Moonshine conjecture [1]. The corresponding quantum generalized Kac-Moody algebra is called the quantum Monster algebra.

For $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in I$, we define $\left(p_{1}, q_{1}\right)>\left(p_{2}, q_{2}\right)$ if and only if $p_{1}>p_{2}$, or $p_{1}=p_{2}$ and $q_{1}>q_{2}$. Also, for $\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right) \in I \times \mathbf{Z}_{\geqslant 0}$, with $\left(p_{1}, q_{1}\right) \in I, r_{1} \in \mathbf{Z}_{\geqslant 0}$, we define $\left(p_{1}, q_{1}, r_{1}\right)>\left(p_{2}, q_{2}, r_{2}\right)$ if and only if

$$
r_{1}>r_{2}, \quad \text { or } \quad r_{1}=r_{2} \quad \text { and } \quad\left(p_{1}, q_{1}\right)>\left(p_{2}, q_{2}\right) .
$$

In the following proposition, we give an explicit description of the Nakajima monomials in $B(\infty)$ for the quantum Monster algebra.

Proposition 5.1. The connected component $C(\mathbf{1})$ of \mathcal{M} containing $\mathbf{1}$ is the set $\mathcal{M}(\infty)$ consisting of monomials of the form

$$
\text { 1. } \prod_{(i, t) \in I} \prod_{k=0}^{r} A_{(i, t)}(k)^{-a_{(i, t)}(k)} \quad\left(r \geqslant 0, a_{(i, t)}(k) \geqslant 0\right)
$$

satisfying the following conditions:
(i) for each $k \geqslant 0$,

$$
\sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k)-a_{(-1,1)}(k+1) \geqslant 0
$$

(ii) if $a_{(i, t)}(k)>0(t=1, \ldots, c(i), k \geqslant 1)$ with $i \neq-1$, then there is a (p, q, r) such that

$$
\begin{equation*}
(i, t, k-1)<(p, q, r)<(i, t, k) \quad \text { and } \quad(p+i) a_{(p, q)}(r)>0 . \tag{5.1}
\end{equation*}
$$

In addition, if there exists a unique $(p, q, r)=(-1,1, k)$ satisfying (5.1), then

$$
\sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k)-a_{(-1,1)}(k+1)>0 .
$$

Proof. We first show that $\mathcal{M}(\infty)$ is closed under the Kashiwara operators $\tilde{f}_{(i, t)}$. Let M be a monomial in $\mathcal{M}(\infty)$. Suppose that $\tilde{f}_{(i, t)} M$ does not satisfy the condition (i). Then

$$
(i, t)=(-1,1), \quad \sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k)-a_{(-1,1)}(k+1)=0 \quad \text { for some } k \geqslant 0 \text { in } M,
$$

and $\tilde{f}_{(-1,1)} M$ is obtained by multiplying $A_{(-1,1)}(k+1)^{-1}$. In particular, $n_{f}=k+1$ and $y_{(-1,1)}(k+1)>0$. However, the multiplicity $y_{(-1,1)}(k+1)$ in M is

$$
y_{(-1,1)}(k+1)=-a_{(-1,1)}(k)-a_{(-1,1)}(k+1)+\sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k) \leqslant 0,
$$

which is a contradiction.
Suppose that $\tilde{f}_{(i, t)} M$ does not satisfy the condition (ii). Then we have the following two possibilities:
(a) $a_{(i, t)}(k)=0,(p+i) a_{(p, q)}(r)=0$ for all $(i, t, k-1)<(p, q, r)<(i, t, k)$ in M, and $\tilde{f}_{(i, t)} M$ is obtained from M by multiplying $A_{(i, t)}(k)^{-1}$.
(b) $a_{(i, t)}(k)>0, a_{(-1,1)}(k)>0, a_{(p, q)}(r)=0$ for all $(i, t, k-1)<(p, q, r)<(i, t, k)$ with $(p, q, r) \neq(-1,1, k)$,

$$
\sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k)-a_{(-1,1)}(k+1)=1 \quad \text { in } M
$$

and $\tilde{f}_{(-1,1)} M$ is obtained from M by multiplying $A_{(-1,1)}(k+1)^{-1}$.
For the case (a), we have $n_{f}=k$ and the multiplicity $y_{(i, t)}(k)$ of $Y_{(i, t)}(k)$ in M is

$$
\begin{aligned}
y_{(i, t)}(k) & =\sum_{s=k}^{k+2 i-1} a_{(i, t)}(s)+\sum_{(l, m)<(i, t)}(l+i) a_{(l, m)}(k)+\sum_{(l, m)>(i, t)}(l+i) a_{(l, m)}(k-1) \\
& =\sum_{s>k}^{k+2 i-1} a_{(i, t)}(s),
\end{aligned}
$$

which should be positive. However, if $y_{(i, t)}(k)>0$, then $a_{(i, t)}(s)>0$ for some $k<s \leqslant k+2 i-1$, which implies $y_{(i, t)}(s)>0$. This is a contradiction to the fact that $n_{f}=k$.

For the case (b), we have $n_{f}=k+1$ and $y_{(-1,1)}(k+1)>0$. However, the multiplicity $y_{(-1,1)}(k+1)$ is

$$
\begin{aligned}
y_{(-1,1)}(k+1) & =-a_{(-1,1)}(k)-a_{(-1,1)}(k+1)+\sum_{i \geqslant 2} \sum_{t=1}^{c(i)}(i-1) a_{(i, t)}(k) \\
& =-a_{(-1,1)}(k)+1 \leqslant 0
\end{aligned}
$$

which is a contradiction. Therefore, $\mathcal{M}(\infty)$ is closed under the Kashiwara operator $\tilde{f}_{(i, t)}$.
Similarly, we can prove that $\mathcal{M}(\infty)$ is closed under the Kashiwara operator $\tilde{e}_{(i, t)}$.
It remains to show that $\mathcal{M}(\infty)$ is connected. Suppose that $M \neq \mathbf{1}$ and $\tilde{e}_{(i, t)} M=0$ for all $(i, t) \in I$. Let $\left(i_{0}, t_{0}, k_{0}\right) \in I \times \mathbf{Z}_{\geqslant 0}$ be such that

$$
a_{\left(i_{0}, t_{0}\right)}\left(k_{0}\right)>0 \quad \text { and } \quad a_{(i, t)}(k)=0 \quad \text { for all }(i, t, k)>\left(i_{0}, t_{0}, k_{0}\right) .
$$

Then we have

$$
\begin{gathered}
\varepsilon_{(i, t)}(M)>0 \quad \text { when }(i, t)=(-1,1) \in I^{\mathrm{re}}, \\
S_{(i, t)}\left(k_{0}\right) \text { is a factor of } M \quad \text { when }(i, t) \neq(-1,1) .
\end{gathered}
$$

In either case, $\tilde{e}_{(i, t)} M \neq 0$, which is a contradiction.
Now, we give an explicit description of the Nakajima monomials in $B(\lambda)$ for the quantum Monster algebra.

Proposition 5.2. Let $\left.\boldsymbol{\lambda}_{(i, t)}(0) \mid(i, t) \in I\right)$ be a sequence of nonnegative integers. If \mathfrak{m} is a maximal vector in \mathfrak{M} of the form

$$
\mathfrak{m}=\prod_{(i, t) \in I} Y_{(i, t)}(0)^{\lambda_{(i, t)}(0)}
$$

then the connected component $C(\mathfrak{m})$ of \mathfrak{M} containing \mathfrak{m} is the set $\mathfrak{M}(\lambda)$ consisting of monomials of the form

$$
\mathfrak{m} \cdot \prod_{(i, t) \in I} \prod_{k=0}^{r} A_{(i, t)}(k)^{-a_{(i, t)}(k)} \quad\left(r \geqslant 0, a_{(i, t)}(k) \geqslant 0\right)
$$

satisfying the conditions (i)-(ii) in Proposition 5.1 and two additional conditions:
(iii) $0 \leqslant a_{(-1,1)}(0) \leqslant \lambda_{(-1,1)}(0)$,
(iv) if $a_{(i, t)}(0)>0$ and $\lambda_{(i, t)}(0)=0$ with $(i, t, 0) \neq(-1,1,0)$, then there is a $(j, s, 0)$ such that

$$
(j, s, 0)<(i, t, 0) \quad \text { and } \quad(i+j) a_{(j, s)}(0)>0 .
$$

Proof. Since the proof is similar to that of Proposition 5.1, we only prove that the conditions (iii) and (iv) are preserved by the Kashiwara operator $\tilde{f}_{(i, t)}$. Suppose that $\tilde{f}_{(-1,1)} \mathfrak{m}$ does not satisfy the condition (iii). Then $a_{(-1,1)}(0)=\lambda_{(-1,1)}(0)$ in \mathfrak{m} and $\tilde{f}_{(-1,1)} \mathfrak{m}$ is obtained by multiplying $A_{(-1,1)}(0)^{-1}$. However, in this case, $n_{f}>0$, which cannot occur by the definition of Kashiwara operators.

Suppose that $\tilde{f}_{(i, t)} \mathfrak{m}$ does not satisfy the condition (iv). Then $a_{(i, t)}(0)=\lambda_{(i, t)}(0)=0$, $(i+j) a_{(j, s)}(0)=0$ for all $(j, s, 0)<(i, t, 0)$ in \mathfrak{m}, and $\tilde{f}_{(i, t)} \mathfrak{m}$ is obtained by multiplying $A_{(i, t)}(0)^{-1}$. However, this cannot occur, since the multiplicity $y_{(i, t)}(0)$ is 0 in \mathfrak{m}.

References

[1] R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405-444.
[2] K. Jeong, S.-J. Kang, M. Kashiwara, Crystal bases for quantum generalized Kac-Moody algebras, Proc. London Math. Soc. 90 (2005) 395-438.
[3] K. Jeong, S.-J. Kang, M. Kashiwara, D.-U. Shin, Abstract crystals for quantum generalized Kac-Moody algebras, Int. Math. Res. Not. 2007 (2007), Art. ID rnm001, 18 p.
[4] S.-J. Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995) 1041-1066.
[5] S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Affine crystals and vertex models, Internat. J. Modern Phys. A Suppl. 1A (1992) 449-484.
[6] S.-J. Kang, J.-A. Kim, D.-U. Shin, Modified Nakajima monomials and the crystal B(∞), J. Algebra 308 (2007) 524-535.
[7] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465516.
[8] M. Kashiwara, Realizations of crystals, in: Contemp. Math., vol. 325, Amer. Math. Soc., 2003, pp. 133-139.
[9] H. Nakajima, Quiver varieties and tensor products, Invent. Math. 146 (2001) 399-449.
[10] H. Nakajima, t-Analogue of the q-characters of finite dimensional representations of quantum affine algebras, in: Physics and Combinatorics, Proceedings of the Nagoya 2000 International Workshop, World Scientific, 2001, pp. 195-218.
[11] H. Nakajima, t-Analogs of q-characters of quantum affine algebras of type A_{n}, D_{n}, in: Contemp. Math., vol. 325, Amer. Math. Soc., 2003, pp. 141-160.
[12] D.-U. Shin, Polyhedral realization of crystal bases for generalized Kac-Moody algebras, J. London Math. Soc. (2) (2007), doi:10.1112/jlms/jdm094.
[13] D.-U. Shin, Polyhedral realization of the highest weight crystals for generalized Kac-Moody algebras, preprint, 2006, Trans. Amer. Math. Soc., in press.

[^0]: * Corresponding author.

 E-mail addresses: khjeong@math.snu.ac.kr (K. Jeong), sjkang@math.snu.ac.kr (S.-J. Kang), jakim@uos.ac.kr (J.-A. Kim), dushin@hanyang.ac.kr (D.-U. Shin).

 1 This research was supported in part by KOSEF Grant \# R01-2003-000-10012-0 and KRF Grant \# 2005-070-C00004.
 2 This research was supported by KOSEF Grant \# R01-2003-000-10012-0 and KRF Grant \# 2007-531-C00004.
 3 This research was supported by KOSEF Grant \# R01-2003-000-10012-0 and KRF Grant \# 2007-331-C00007.

