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We present the results of a time-dependent Dalitz plot analysis of B0 ! �����0 decays based on a
414 fb�1 data sample that contains 449� 106BB pairs. The data were collected on the ��4S� resonance
with the Belle detector at the KEKB asymmetric energy e�e� collider. Combining our analysis with
information on charged B decay modes, we perform a full Dalitz and isospin analysis and obtain a
constraint on the quark mixing angle �2, 68� <�2 < 95� at the 68.3% confidence level for the �2

solution consistent with the standard model. A large standard-model–disfavored region also remains. The
branching fractions for the decay processes B0 ! ���770��� and B0 ! �0�770��0 are measured to be
�22:6� 1:1	stat
 � 4:4	syst
� � 10�6 and �3:0� 0:5	stat
 � 0:7	syst
� � 10�6, respectively. These are
the first branching fraction measurements of the process B0 ! ��770�� with the lowest resonance
��770� explicitly separated from the radial excitations.

DOI: 10.1103/PhysRevD.77.072001 PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw

I. INTRODUCTION

In the standard model (SM), CP violation arises from an
irreducible complex phase in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1]. The SM predicts that mea-
surement of a time-dependent CP asymmetry between the
decay rates of B0 and B0 gives access to the CP violating
phase in the CKM matrix [2–4]. The angle�2 of the CKM
unitarity triangle can be measured via the tree diagram
contribution in b! uud decay processes, such as B0 !
����, B0 ! ����, or B0 ! ���� [5]. In these decay
processes, however, contributions from so-called b! d
penguin diagrams could contaminate the measurement of
�2. Snyder and Quinn pointed out that a Dalitz plot analy-
sis of B0 ! ��, which includes B0 ! ����, B0 !
����, and B0 ! �0�0, offers a unique way to determine
�2 without ambiguity. The Dalitz plot analysis takes into
account a possible contamination from the penguin con-
tribution [6]. In addition, an isospin analysis [7,8] involv-
ing the charged decay modes, B� ! ���0 and
B� ! �0��, provides further improvement of the �2

determination.
The Belle [9] and BABAR [10] Collaborations recently

reported the first measurements employing a time-
dependent Dalitz plot analysis technique. In this paper
we describe the details of the time-dependent Dalitz plot
analysis with the Belle detector at the KEKB asymmetric
energy e�e� collider reported in Ref. [9]. We also present
the first measurements of the branching fractions of B0 !
���770��� and B0 ! �0�770��0 decay processes ob-
tained from the Dalitz plot analysis, where the ��770� is

separated from radial excitations. These results can be
compared with the branching fraction of the process B� !
�0�770��� [11].

A. KEKB and Belle detector

KEKB [12] operates at the ��4S� resonance (
���
s
p
�

10:58 GeV) with a peak luminosity that exceeds 1:6�
1034 cm�2 s�1. At KEKB, the ��4S� is produced with a
Lorentz boost of �� � 0:425 nearly along the electron
beamline (z). Since the B0 and B0 mesons are approxi-
mately at rest in the ��4S� center-of-mass system (cms),
�t can be determined from the displacement in the z
direction, �z, between the vertices of the two B mesons:
�t ’ �z=��c.

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aerogel
threshold Čerenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight scintillation counters (TOF), and an
electromagnetic calorimeter comprised of CsI(Tl) crystals
(ECL) located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K0

L mesons and
to identify muons (KLM). The detector is described in
detail elsewhere [13]. Two inner detector configurations
were used. A 2.0 cm beam pipe and a 3-layer silicon vertex
detector were used for the first data sample of 152�
106BB pairs (DS-I), while a 1.5 cm beam pipe, a 4-layer
silicon detector, and a small-cell inner drift chamber were
used to record the remaining 297� 106BB pairs (DS-II)
[14].
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B. Outline of the analysis

The analysis proceeds in the following steps. First, we
extract the signal fraction (Sec. II). We then determine the
sizes and phases of the contributions from radial excita-
tions (Sec. III). Using the parameters determined in the
steps above, we perform a time-dependent Dalitz plot
analysis (Secs. IV, V, and VI). The fit results are interpreted
as quasi-two-body CP violation parameters (Sec. VII) and
as branching fractions of B0 ! ���770��� and B0 !
�0�770��0 decays (Sec. VIII). We subsequently use these
results to constrain the CKM angle �2 (Sec. IX).

C. Differential decay width of time-dependent Dalitz
plot

We measure the decay process B0 ! �����0, where
we denote the four-momenta of the ��,��, and�0 by p�,
p�, and p0, respectively. The invariant-mass squared of
their combinations,

 s� � �p� � p0�
2; s� � �p� � p0�

2;

s0 � �p� � p��2;
(1)

satisfies the following equation:

 s� � s� � s0 � m2
B0 � 2m2

�� �m
2
�0 ; (2)

by energy and momentum conservation. The differential
(time-integrated) decay width with respect to the variables
above (Dalitz plot) is

 d� �
1

�2��3
jA
���

3�j
2

8m2
B0

ds�ds�; (3)

where A
���

3� is the Lorentz-invariant amplitude of the
B0�B0� ! �����0 decay.

In the decay chain ��4S� ! B0B0 ! f1f2, where one of
the B’s decays into final state f1 at time t1 and the other
decays into another final state f2 at time t2, the time-
dependent amplitude is
 

A�t1; t2� � e���=2�iM��t1�t2�

�

�
cos	�md�t1 � t2�=2
�A1A2 � A1A2�

� i sin	�md�t1 � t2�=2

�
p
q
A1A2 �

q
p
A1A2

��
:

(4)

Here, p and q define the mass eigenstates of neutral B
mesons as pB0 � qB0, with average mass M and width �,
and mass difference �md. The width difference is assumed
to be zero.

The decay amplitudes are defined as follows,

 A1  A�B0 ! f1�; (5)

 A 1  A�B0 ! f1�; (6)

 A2  A�B0 ! f2�; (7)

 A 2  A�B0 ! f2�: (8)

In this analysis, we take A3� as A1 and choose f2 to be a
flavor eigenstate, i.e., A2 � 0 or A2 � 0. Here we call the B
decaying into f1 � fCP � �����0 the CP side B, while
the other B is the tag-side B, f2 � ftag�ftag�. The differen-
tial decay width dependence on time difference �t 
tCP � ttag is then
 

d�� e��j�tj
�
�jA3�j

2 � jA3�j
2�

� qtag � �jA3�j
2 � jA3�j

2� cos��md�t�

� qtag � 2 Im
�
q
p
A�3�A3�

�
sin��md�t�

�
d�t; (9)

where we assume jq=pj � 1 (CP and CPT conservation in
mixing) and jA�B0 ! ftag�j � jA�B

0 ! ftag�j, and inte-
grate over tsum � tCP � ttag. Here qtag is the b-flavor
charge, and qtag � �1��1� when the tag-side B decays
as a B0 (B0) flavor eigenstate.

Combining the Dalitz plot decay width (3) and the time-
dependent decay width (9), we obtain the time-dependent
Dalitz plot decay width

 d�� jA��t; s�; s��j2d�tds�ds�; (10)

where
 

jA��t; s�; s��j2 � e��j�tj
�
�jA3�j

2 � jA3�j
2�

� qtag � �jA3�j
2 � jA3�j

2� cos��md�t�

� qtag � 2 Im
�
q
p
A�3�A3�

�
sin��md�t�

�
;

(11)

 A3� � A3��s�; s��; A3� � A3��s�; s��: (12)

We assume that the B0 ! �����0 decay is dominated
by the B0 ! ����0 amplitudes: B0 ! ����, B0 !
����, and B0 ! �0�0, where � can be ��770�,
��1450�, or ��1700�. Although there could exist contribu-
tions from B0 decays into non-�� �����0 final states,
such as f0�980��0, f0�600��0, !�0, and nonresonant
�����0, we confirm that these contributions are small;
their effects are taken into account as systematic uncer-
tainties (Sec. VI E). The Dalitz plot amplitude A3��s�; s��
can then be written as

 A3��s�; s�� �
X

����;�;0�

f��s�; s��A�; (13)
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q
pA3��s�; s�� �

X
����;�;0�

f��s�; s��A
�; (14)

where A��A�� are complex amplitudes corresponding to
B0�B0� ! ����, ����, �0�0 for � � �;�; 0 and the
functions f��s�; s�� incorporate the kinematic and dy-
namical properties of the B0 decay into a vector � and a
pseudoscalar �. The goal of this analysis is to measure the
complex amplitudes A�, A�, A0, A�, A�, and A0; we then
constrain the CKM angle �2 using these amplitudes.

In contrast to a quasi-two-body CP violation analysis,
the time-dependent Dalitz analysis includes measurements
of the sizes of the interferences among the final states
����, ����, and �0�0, and CP-violating asymmetries
in the mixed final states. In principle, these measurements
allow us to determine all the relative sizes and phases of the
amplitudes A� and A�, which are related to �2 through an
isospin relation [7,8] by

 e�2i�2 �
A� � A� � 2A0

A� � A� � 2A0 : (15)

Consequently, in the limit of high statistics, we can con-
strain �2 without discrete ambiguities.

D. Kinematics of B0 ! ����0

The function f
���

��s�; s�� can be factorized into two parts
as

 f
���

��s�; s�� � T�J F��s�� �� � �;�; 0�; (16)

where F��s�� and T�J correspond to the line shape of the �
and the helicity distribution of the �, respectively. Here we
assume that a single unique functional form for the line

shape F��s� can be used for all six f
���

� [15]. Since this
assumption has no good theoretical or experimental foun-
dation, we check the validity of the assumption with data
and assign systematic errors.

The line shape is parametrized with Breit-Wigner func-
tions corresponding to the ��770�, ��1450�, and ��1700�
resonances:

 F��s� � BWGS
��770� � � � BWGS

��1450� � � � BWGS
��1700�;

(17)

where the amplitudes � and � (denoting the relative size of
two resonances) are complex numbers. We use the
Gounaris-Sakurai (GS) model [16] for the Breit-Wigner
shape of each resonance [17].

In the case of a pseudoscalar-vector (J � 1) decay, T�J is
given by

 T�1 � �4j ~pjjj ~pkj cos�jk; (18)

 

T�1 � �4j ~p�jj ~p�j cos���

T�1 � �4j ~p0jj ~p�j cos�0�

T0
1 � �4j ~p�jj ~p0j cos��0

0
B@

1
CA; (19)

where ~pj, ~pk are the three-momenta of the�j and�k in the
rest frame of �� (or the �i�j system), and �jk� ��� is the
angle between ~pj and ~pk (see Fig. 1).

E. Fitting parameters

After (16) is inserted into expressions (13) and (14), the
coefficients of Eq. (11) become
 

jA3�j
2 � jA3�j

2

�
X

�2f�;�;0g

jf�j
2U��

� 2
X

�<�2f�;�;0g

�Re	f�f��
U�;Re
�� � Im	f�f��
U�;Im�� �;

(20)

 

Im
�
q
p
A�3�A3�

�

�
X

�2f�;�;0g

jf�j2I�

�
X

�<�2f�;�;0g

�Re	f�f
�
�
I

Im
�� � Im	f�f

�
�
I

Re
���; (21)

with

 U�� � jA�j2 � jA
�j2; (22)

 I� � Im	A�A��
; (23)

 U�;Re�Im�
�� � Re�Im�	A�A�� � A�A��
; (24)

 IRe�Im�
�� � Re�Im�	A�A�� � ���A�A��
: (25)

The 27 coefficients (22)–(25) are the parameters deter-
mined by the fit [22]. The parameters (22)–(25) are called
noninterfering and interfering parameters, respectively.
This parametrization allows us to describe the differential
decay width as a linear combination of independent func-
tions, whose coefficients are the fit parameters in a well-
behaved fit. We fix the overall normalization by requiring
U�� � 1. Thus, 26 of the 27 coefficients are free parameters
in the fit.

FIG. 1. The relation between three pions in the rest frame of
��.
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F. Square Dalitz plot (SDP)

The signal and the continuum background e�e� !
qq�q � u; d; s; c�, which is the dominant background in
this analysis, populate the kinematic boundaries of the
usual Dalitz plot as shown in Figs. 2 and 3 (left). Since
we model part of the Dalitz plot probability density func-
tion (PDF) with a binned histogram, the part of the distri-
bution that is concentrated in a narrow region near the edge
of the usual Dalitz plot is not easy to treat. We therefore
apply the transformation

 ds�ds� ! j detJjdm0d�0; (26)

which defines the SDP [11]. The new coordinates are

 m0 
1

�
arccos

�
2
m0 �m

min
0

mmax
0 �mmin

0

� 1
�
; (27)

 �0 
1

�
�0

�
�

1

�
��0

�
; (28)

where m0 �
�����
s0
p

, mmax
0 � mB0 �m�0 , and mmin

0 � 2m��

are the kinematic limits of m0, and J is the Jacobian of the
transformation. The determinant of the Jacobian is given
by

 j detJj � 4j ~p�jj ~p0jm0 �
mmax

0 �mmin
0

2
� sin��m0�

� � sin���0�; (29)

where ~p� and ~p0 are the three-momenta of �� and �0 in
the ���� rest frame. Figures 4 and 3 (right) show the
distributions of the signal and continuum events, respec-
tively, in the square Dalitz plot.

II. EVENT SELECTION AND RECONSTRUCTION

To reconstruct candidate B0 ! �����0 decays,
charged tracks reconstructed with the CDC and SVD are
required to originate from the interaction point (IP) and to
have transverse momenta greater than 0:1 GeV=c. Using
kaon identification (KID) information, we distinguish
charged kaons from pions based on a kaon (pion) like-
lihood LK��� derived from the TOF, ACC, and dE=dx
measurements in the CDC. Tracks that are positively iden-
tified as electrons are rejected.

Photons are identified as isolated ECL clusters that are
not matched to any charged track. We reconstruct �0

candidates from pairs of photons detected in the barrel
(end-cap) ECL with E� > 0:05 (0.1) GeV, where E� is
the photon energy measured with the ECL. Photon pairs
with momenta greater than 0:1 GeV=c in the laboratory

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ρ+

ρ−

ρ0

m′

θ′

FIG. 4 (color online). Distribution of signal Monte Carlo simu-
lation (without detector efficiency and smearing) in the square
Dalitz plot. The solid, dashed, and dotted lines correspond to the
isocontours of

�����
s�
p
� 0:5 GeV, 1.0 GeV, and 1.5 GeV, respec-

tively, for each �� resonance.
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0
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FIG. 3. Distribution of q �q background (from the data Mbc

sideband) in the usual Dalitz plot (left panel) and square
Dalitz plot (right panel).
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FIG. 2 (color online). Distribution of signal Monte Carlo simu-
lation (without detector efficiency and smearing) in the usual
Dalitz plot. The dashed line is the kinematic boundary, while the
hatched region corresponds to the region rejected by the mass cut
described in Sec. II.
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frame and with an invariant mass between 0:1178 GeV=c2

and 0:1502 GeV=c2, roughly corresponding to �3� in the
mass resolution, are used as �0 candidates.

We identify B meson decays using the energy difference
�E  Ecms

B � Ecms
beam and the beam-energy-constrained

mass Mbc 
��������������������������������������
�Ecms

beam�
2 � �pcms

B �
2

q
, where Ecms

beam is the
beam energy in the cms, and Ecms

B and pcms
B are the cms

energy and momentum, respectively, of the reconstructed
B candidate.

We select candidates in a fit region defined as
�0:2 GeV< �E< 0:2 GeV and 5:2 GeV=c2 <Mbc <
5:3 GeV=c2. The fit region consists of a signal region
defined as �0:1 GeV< �E< 0:08 GeV and Mbc >
5:27 GeV=c2, and its complement, called the sideband
region, which is dominated by background events.

The vertex position for the B0 ! �����0 decay is
reconstructed using charged tracks that have enough
SVD hits [23]. The ftag vertex is obtained with well-
reconstructed tracks that are not assigned to fCP. A con-
straint on the interaction-region profile in the plane per-
pendicular to the beam axis is also used with the selected
tracks.

The b flavor of the accompanying B meson is identified
from inclusive properties of particles that are not associ-
ated with the reconstructed B0 ! fCP decay. We use two
parameters, the b-flavor charge qtag and r, to represent the
tagging information [24]. The parameter r is an event-by-
event, Monte Carlo (MC)-determined, flavor-tagging dilu-
tion factor that ranges from r � 0 for no flavor discrimi-
nation to r � 1 for unambiguous flavor assignment. It is
used only to sort data into six r intervals. The wrong-tag
fractions for the six r intervals, wl (l � 1; 2; � � � ; 6), and
the differences between B0 and B0 decays, �wl, are deter-
mined using a high-statistics control sample of semilep-
tonic and hadronic b! c decays [24–26].

The dominant background for the B0 ! �����0 signal
is from continuum. To distinguish these jetlike events from
the spherical B signal events, we combine a set of variables
that characterize the event topology into a signal (back-
ground) likelihood variable Lsig�bkg�, and impose require-
ments on the likelihood ratio R  Lsig=�Lsig �Lbkg�.
Because of a correlation between R and r, these require-
ments depend on the quality of flavor tagging.

When more than one candidate in the same event is
found in the fit region, we select the best candidate based
on the reconstructed �0 mass and R. About 30% of the
signal events have multiple candidates.

After the best candidate selection, we reconstruct the
Dalitz variables s�, s0, and s� from (i) the four-momenta
of the �� and ��, (ii) the helicity angle of the �0 (i.e., the
helicity angle of the���� system), and (iii) the relation of
Eq. (2). Note that the energy of the�0 is not explicitly used
here, which improves the resolution of the Dalitz plot
variables. We reject candidates that are located in one of
the following regions in the Dalitz plot:

�����
s0
p

>

0:95 GeV=c2 and
������
s�
p

> 1:0 GeV=c2 and
������
s�
p

>
1:0 GeV=c2;

�����
s0
p

< 0:55 GeV=c2 or
������
s�
p

< 0:55 GeV=c2

or
������
s�
p

< 0:55 GeV=c2 (see Fig. 2). In these regions, the
fraction of B0 ! �� signal is small. Moreover, radial
excitations [the ��1450� and ��1700�] are the dominant
contributions to B0 ! �����0 in the region with

���
s
p

>
1:0 GeV=c2, where s is either s�, s�, or s0. Since the
amplitudes of the radial excitations are, in general, inde-
pendent of the amplitude of the ��770�, they are considered
to be background in our analysis; vetoing the high mass
region considerably reduces the systematic uncertainties
due to their contributions.

Figure 5 shows the Mbc and �E distributions for the
reconstructed B0 ! �����0 candidates within the �E
and Mbc signal regions, respectively. The signal yield is
determined from an unbinned four-dimensional extended-
maximum-likelihood fit to the �E-Mbc and Dalitz plot
distribution in the fit region defined above; the Dalitz
plot distribution is only used for the events inside the
�E-Mbc signal region. The �E-Mbc distribution of signal
is modeled with binned histograms obtained from MC
simulation, where the correlation between �E and Mbc,
the dependence on p�0 , and the difference between data
and MC simulation are taken into account. We also take
into account incorrectly reconstructed signal events, which
we call self-cross-feed (SCF). This component constitutes
�20% of the signal. In a SCF event, either one of the three
pions in fCP is swapped with a pion in ftag, or else the�0 in
fCP is misreconstructed. We give the details of the �E-Mbc

and Dalitz plot PDF’s of the SCF component in
Appendix A. For continuum, we use the ARGUS parame-
trization [27] for Mbc and a linear function for �E. The
�E-Mbc distribution of BB background is modeled by
binned histograms based on MC simulation. The Dalitz
plot distributions for all components are modeled in the
same way as the time-dependent fit described later, but
integrated over the proper time difference, �t, and summed
over the flavor of the tag-side B, qtag. The fit yields 971�
42 B0 ! �����0 events in the signal region, where the
error is statistical only.

0

100

200

300

400

500

5.2 5.22 5.24 5.26 5.28 5.3

Mbc (GeV/c2)

E
ve

nt
s 

/ 0
.0

02
G

eV
/c

2

(a)

0

50

100

150

200

250

300

-0.2 -0.1 0 0.1 0.2

∆E (GeV)

E
ve

nt
s 

/ 0
.0

01
G

eV (b) signal
SCF
BB

–

qq–

FIG. 5 (color online). The Mbc (a) and �E (b) distributions
within the �E and Mbc signal regions. The histograms are
cumulative. Solid, dot-dashed, dotted, and dashed hatched histo-
grams correspond to correctly reconstructed signal, SCF, BB,
and continuum PDFs, respectively.
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III. DETERMINATION OF THE CONTRIBUTIONS
FROM RADIAL EXCITATIONS

Although the contributions from radial excitations are
suppressed by the selections in the Dalitz plot described in
the previous section, there are still significant contributions
from the long tails of the radial excitations and their
interferences. We thus need to determine the sizes of the
radial excitations and their uncertainties to properly model
the signal PDF’s and systematic uncertainties associated
with their degrees of freedom.

Using the same data sample as described above but
performing a time-integrated Dalitz plot fit with a wider
Dalitz plot acceptance, 0:55 GeV=c2 <

�����
s0
p

<
1:5 GeV=c2 or

������
s�
p

< 1:5 GeV=c2 or
������
s�
p

<1:5 GeV=c2,
we determine the � line shape, i.e., the phases and ampli-
tudes of the coefficients � and � in Eq. (17). We use these
for all of the decay amplitudes. In this fit, we use the PDG
values [28] for the masses and widths of the ��1450� and
��1700�. The fit yields

 j�j � 0:31�0:07
�0:06; arg� � �219�16

�18�
�;

j�j � 0:08�0:04
�0:03; arg� � �102�26

�32�
�:

(30)

The mass distributions and fit results are shown in Fig. 6.
Figure 7 schematically shows how the radial excitations
contribute to our fit result. Note that the above values are
quantities used for the time-dependent Dalitz fit, and we do
not regard them as our measurements of � and �. This is
because these parameters are determined from the region
where ���� and ���� modes, etc., interfere, and they
depend on the unfounded common line-shape assumption
of Eq. (16); hence we do not give their systematic errors.
Because statistics are low, we cannot determine � and �
for each decay mode without imposing the common line-
shape assumption. However, we include the effect of pos-
sible decay-mode–dependent differences in the values of
� and � in the systematic errors, which are described in
Sec. VI A.

Thus, it is important to determine the common or aver-
age line shape as well as to obtain an upper limit on the
deviation from the average line shape for each of the six
decay amplitudes. For this purpose, we put constraints on
additional amplitudes that describe (i) the excess in the
high mass region,

���
s
p

> 0:9 GeV=c2, where s is either s�,
s�, or s0; and (ii) interferences between radial excitations
and the lowest resonance ��770� [e.g., interferences be-
tween ��770���� and ��1450����, etc.]. The nominal fit
is performed with the average line shape determined
above, fixing all of the additional amplitudes to zero.
When floating the additional amplitudes for the other
resonances, we obtain results consistent with zero for all
of the additional amplitudes but with large uncertainties
compared to the errors for the average line-shape parame-
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FIG. 6 (color online). Mass distributions and fitted line shapes in ���� (left panel), ���� (middle panel), and �0�0 (right panel)
enhanced regions. The histograms are cumulative. Solid, dot-dashed, dotted, and dashed hatched histograms correspond to correctly
reconstructed signal, SCF, BB, and continuum PDFs, respectively. Note that there are feed-downs from other quasi-two-body
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FIG. 7 (color online). A schematic figure of the fit result of the
line shape and the contributions from radial excitations. Note
that our definition of F��s� does not include the factor 1=�1�
�� �� as in Eq. (17). The inset shows the high mass region,
m�� > 1:15 GeV=c2, on a semilog scale where the interference
between the ��770� and radial excitations is visible. One can see
that the ��770� and ��1450� destructively interfere with each
other near

���
s
p
 m�� � 1:4 GeV=c2, which means that the

��1450� has a large impact on the phase of F��s�, although
the absolute value of jF��s�j is not much affected.
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ters above. The fit result with the additional line-shape
parameters is used in the systematic error study; the un-
certainties in these additional line-shape parameters are
also taken into account.

IV. TIME-DEPENDENT DALITZ PLOT ANALYSIS

To determine the 26 Dalitz plot parameters, we define
the following event-by-event PDF:

 P� ~x�  fsigP sig� ~x� � fBBP BB� ~x� � fqqP qq� ~x�; (31)

where P sig, P BB, and P qq are PDF’s for signal, BB back-
ground, and continuum background, respectively, and fsig,
fBB, and fqq are the corresponding fractions that satisfy

 fsig � fBB � fqq � 1: (32)

The vector ~x, the arguments of the PDF’s, corresponds to a
set of event-by-event variables:

 ~x  ��E;Mbc;m0; �0; �t; qtag; l;p�0�: (33)

A detailed description of the PDF can be found in
Appendix A.

With the PDF defined above, we form the likelihood
function

 L 
Y
i

P� ~xi�; (34)

where i is an index over events. We maximize L to
determine the 26 Dalitz plot parameters using the like-
lihood function with the signal fraction and the line-shape
parameters obtained in Secs. II and III, respectively.

V. FIT RESULT

An unbinned maximum likelihood fit to the 2824 events
in the signal region yields the result listed in Table I. The
correlation matrix for the 26 parameters, after combining
statistical and systematic errors, is shown in Appendix B.
Figure 8 shows the projections of the square Dalitz plot in
data with the fit result superimposed. We also show the
mass and helicity distribution for each �� enhanced region
along with projections of the fit (Fig. 9). We find that U�0 is
4:8� above zero, corresponding to clear evidence for the
presence of the decay B0 ! �0�0 in agreement with our
previous measurement [29] (see Sec. VIII). Figure 10
shows the �t distributions and background-subtracted
asymmetries. We define the asymmetry in each �t bin by
�N� � N��=�N� � N��, where N���� corresponds to the
background-subtracted number of events with qtag �

�1��1�. The ���� enhanced region shows a significant
cosinelike asymmetry, arising from a nonzero value ofU��.
Note that this is not a CP-violating effect, since ���� is
not a CP eigenstate. No sinelike asymmetry is observed in
any of the ����, ����, or �0�0 enhanced regions.

As a check of our fit, we perform the time-dependent
Dalitz plot fit with the B0 lifetime floated as a free parame-
ter. We obtain 1:41� 0:07 ps for the lifetime, where the
error is statistical only, while the changes of the other
parameters are very small compared to their statistical
errors. The lifetime we obtain is consistent with world
average [28] and thus validates our understanding of the
PDF’s and the background fraction.

TABLE I. Results of the time-dependent Dalitz fit.

Fit result

U�� �1 (fixed)
U�� �1:27� 0:13�stat� � 0:09�syst�
U�0 �0:29� 0:05�stat� � 0:04�syst�
U�;Re
�� �0:49� 0:86�stat� � 0:52�syst�

U�;Re
�0 �0:29� 0:50�stat� � 0:35�syst�

U�;Re
�0 �0:25� 0:60�stat� � 0:33�syst�

U�;Im�� �1:18� 0:86�stat� � 0:34�syst�

U�;Im�0 �0:57� 0:35�stat� � 0:51�syst�

U�;Im�0 �1:34� 0:60�stat� � 0:47�syst�

U�� �0:23� 0:15�stat� � 0:07�syst�
U�� �0:62� 0:16�stat� � 0:08�syst�
U�0 �0:15� 0:11�stat� � 0:08�syst�
U�;Re
�� �1:18� 1:61�stat� � 0:72�syst�

U�;Re
�0 �2:37� 1:36�stat� � 0:60�syst�

U�;Re
�0 �0:53� 1:44�stat� � 0:65�syst�

U�;Im�� �2:32� 1:74�stat� � 0:91�syst�

U�;Im�0 �0:41� 1:00�stat� � 0:47�syst�

U�;Im�0 �0:02� 1:31�stat� � 0:83�syst�

I� �0:01� 0:11�stat� � 0:04�syst�
I� �0:09� 0:10�stat� � 0:04�syst�
I0 �0:02� 0:09�stat� � 0:05�syst�
IRe
�� �1:21� 2:59�stat� � 0:98�syst�
IRe
�0 �1:15� 2:26�stat� � 0:92�syst�
IRe
�0 �0:92� 1:34�stat� � 0:80�syst�
IIm
�� �1:93� 2:39�stat� � 0:89�syst�
IIm
�0 �0:40� 1:86�stat� � 0:85�syst�
IIm
�0 �2:03� 1:62�stat� � 0:81�syst�
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FIG. 8 (color online). Distributions of �0 (a) and m0 (b) with fit
results. The histograms are cumulative. Solid, dot-dashed, dot-
ted, and dashed hatched histograms correspond to correctly
reconstructed signal, SCF, BB, and continuum PDFs, respec-
tively.
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Treatment of statistical errors

With a toy MC study, we check the pull distributions,
where the pull is defined as the residual divided by the
MINOS error. Here, the MINOS error, which corresponds
to the deviation from the best fit parameter when

�2 ln�L=Lmax� increases by 1, is an estimate of the sta-
tistical error. Although the pull is expected to follow a
Gaussian distribution with unit width, we find that the
width of the pull distribution tends to be significantly larger
than 1 for the interfering parameters due to small statistics.
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FIG. 10 (color online). Proper time distributions of good-tag (r > 0:5) regions for ftag � B0 (upper plots) and ftag � B0 (middle
upper plots), in ���� (left plots), ���� (middle plots), �0�0 (right plots) enhanced regions, where solid (red), dotted, and dashed
curves correspond to signal, continuum, and BB PDFs. The middle lower and lower plots show the background-subtracted
asymmetries in the good-tag (r > 0:5) and poor-tag (r < 0:5) regions, respectively. The significant asymmetry in the ���� enhanced
region (middle plots) corresponds to a nonzero value of U�� .
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We verify with MC simulation that with high statistics the
widths of the pull distributions are unity. To restore the pull
width to unity, we multiply the MINOS errors of the
interfering parameters by a factor of 1.17, which is the
average pull width for the interfering parameters obtained
above, and quote the results as the statistical errors. For the
noninterfering terms, we quote the MINOS errors without
any correction factor.

VI. SYSTEMATIC UNCERTAINTIES

Tables II, III, and IV list the systematic errors for the 26
time-dependent Dalitz plot parameters. The total system-
atic error is obtained by adding each source of systematic
uncertainty in quadrature.

A. Radial excitations (�0 and �00)

The largest contribution for the interfering parameters
tends to come from radial excitations. The systematic error
related to the radial excitations [��1450� and ��1700�, or
�0 and �00] can be categorized into three classes:
(i) uncertainties from the line-shape variation, i.e., the
line-shape difference between each decay amplitude,
(ii) uncertainties in external parameters, m��1450�, ���1450�,
m��1700�, ���1700�, and (iii) uncertainties in the common
line-shape parameters � and � used for the nominal fit.

In our nominal fit, we assume all six decay amplitudes
have the same contribution from ��1450� and ��1700�; i.e.,
we assume Eq. (16). This assumption, however, is not well
grounded. In general, the contributions from ��1450� and

TABLE III. Table of systematic errors (2). The notation ‘‘<0:01’’ means that the value is small
and less than 0.01, and thus not visible for the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

U�� U�� U�0 U�;Re
�� U�;Re

�0 U�;Re
�0 U�;Im�� U�;Im�0 U�;Im�0

�0 and �00 0.01 0.02 0.04 0.53 0.29 0.42 0.70 0.31 0.59
SCF 0.02 0.02 0.02 0.09 0.17 0.17 0.13 0.09 0.18
Signal Dalitz 0.01 0.02 0.01 0.27 0.20 0.14 0.30 0.15 0.19
Background Dalitz 0.04 0.03 0.02 0.28 0.32 0.22 0.30 0.20 0.30
Other ��� 0.03 0.03 0.02 0.07 0.08 0.12 0.13 0.08 0.08
Background fraction 0.02 0.04 0.01 0.18 0.17 0.14 0.22 0.13 0.11
Physics 0.01 0.01 <0:01 0.03 0.03 0.03 0.04 0.01 0.04
Background �t <0:01 <0:01 <0:01 0.02 0.03 0.02 0.03 0.02 0.03
Vertexing 0.02 0.01 0.05 0.18 0.20 0.17 0.08 0.07 0.11
Resolution 0.01 0.01 <0:01 0.10 0.14 0.28 0.07 0.11 0.26
Flavor tagging 0.01 0.01 <0:01 0.03 0.03 0.03 0.05 0.03 0.02
Fit bias <0:01 0.02 <0:01 0.03 0.09 0.02 0.27 0.08 0.26
TSI 0.03 0.03 0.01 0.06 0.03 0.01 0.05 0.04 0.02

Total 0.07 0.08 0.08 0.72 0.60 0.65 0.91 0.47 0.83

TABLE II. Table of systematic errors (1). The notation ‘‘<0:01’’ means that the value is small
and less than 0.01, and thus not visible for the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

U�� U�0 U�;Re
�� U�;Re

�0 U�;Re
�0 U�;Im�� U�;Im�0 U�;Im�0

�0 and �00 0.01 0.01 0.31 0.19 0.19 0.21 0.39 0.30
SCF 0.01 0.02 0.31 0.09 0.11 0.11 0.12 0.11
Signal Dalitz 0.06 0.01 0.15 0.20 0.18 0.13 0.10 0.10
Background Dalitz 0.02 0.01 0.17 0.11 0.11 0.14 0.10 0.19
Other ��� 0.04 0.02 0.06 0.08 0.07 0.10 0.09 0.07
Background fraction 0.02 0.01 0.08 0.04 0.07 0.06 0.03 0.11
Physics 0.02 <0:01 0.01 0.01 0.02 0.01 0.01 0.01
Background �t <0:01 <0:01 0.03 0.01 0.01 0.02 0.01 0.01
Vertexing 0.03 0.01 0.03 0.05 0.02 0.09 0.05 0.07
Resolution <0:01 <0:01 0.03 0.05 0.02 0.02 0.02 0.03
Flavor tagging <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 0.01
Fit bias 0.02 0.02 0.10 0.11 0.07 0.06 0.24 0.22
TSI <0:01 <0:01 0.01 0.02 0.02 0.02 0.01 <0:01

Total 0.09 0.04 0.52 0.35 0.33 0.34 0.51 0.47
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��1700� can be different for each of the decay amplitudes,
and thus the systematic uncertainty from this assumption
must be addressed. Without the assumption about the
higher resonances, Eq. (16) becomes

 f
���

� � T�1 F
���
�
��s��; (35)

where
 

F
���
�
��s�  BW��770��s� � ��� ��

���

��BW��1450��s�

� �����
���

��BW��1700��s�: (36)

The variation of the contributions from radial excitations is

described by nonzero ��
���

� and ��
���

�, which are 12 com-
plex variables. We generate various toy MC-simulated
samples, where the inputs A� and A� are fixed but the

values of ��
���

� and ��
���

� are varied randomly within the

constraints on ��
���

� and ��
���

�; these constraints are ob-
tained from the results in Sec. III, which are combined with
the isospin relation [7,8] to improve the constraints. The
statistics for each pseudoexperiment are set to be large
enough so that the statistical uncertainty is negligible.
We assign the changes in the fit results as well as the MC

biases due to the changes in ��
���

� and ��
���

� as systematic
errors.

For the masses and widths of the ��1450� and ��1700�,
we use the values from the PDG [28]. To estimate the
systematic error originating from uncertainties in their
parameters, we generate toy MC-simulated samples vary-
ing the input masses and widths. We fit them using pa-
rametrizations with the masses and widths of the nominal
fit. Here, we vary the masses by twice the PDG error [�
50 MeV=c2 for the ��1450� and �40 MeV=c2 for the

��1700�] since the variations between independent experi-
ments are much larger than the 1� PDG errors, while we
vary the widths by the �1� PDG errors. We quote the
mean shift of the toy MC-simulation ensemble as the
systematic error. We also take into account the systematic
errors from the uncertainties in � and � for the nominal fit
[Eq. (30)] in the same way.

B. SCF

Systematic errors due to SCF are dominated by the
uncertainty in the difference between data and MC simu-
lation; these errors are determined from B! D���� control
samples that contain a single �0 in the final state. We vary
the amount of SCF by its 1� error, which is�100% for the
CR SCF and �30�60�

�30 % for the NR SCF in DS-I (DS-II),
where DS-I and DS-II denote the subsets of data taken with
the different detector configurations defined in Sec. I A.
Here, NR represents the neutral-pion-replaced SCF and CR
represents the charged-pion-replaced SCF. We quote the
differences from the nominal fit as the systematic error.
The event fraction for each r region (for CR and NR), the
wrong-tag fractions (for CR), and lifetime used in the �t
PDF (for CR), which are obtained from MC simulation, are
also varied, and the differences in the fit results are as-
signed as a systematic error.

C. Signal Dalitz PDF

Systematic errors due to the Dalitz PDF for signal are
mainly from the Dalitz-plot-dependent efficiency. We take
account of MC simulation statistics in the efficiency and
uncertainty in the �0 momentum-dependent efficiency
correction, 	0�p�0�, obtained from the control samples of
the decay modes B0!��D����, B0!��D����, B�!
��D���0, and B� ! ��D���0. The Dalitz plot efficiency

TABLE IV. Table of systematic errors (3). The notation ‘‘<0:01’’ means that the value is small
and less than 0.01, and thus not visible for the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

I� I� I0 IRe
�� IRe

�0 IRe
�0 IIm

�� IIm
�0 IIm

�0

�0 and �00 0.02 0.02 0.03 0.82 0.64 0.55 0.46 0.56 0.48
SCF 0.01 0.01 0.01 0.18 0.27 0.10 0.38 0.17 0.14
Signal Dalitz 0.01 0.01 0.01 0.28 0.22 0.14 0.27 0.21 0.30
Background Dalitz 0.01 0.01 0.01 0.29 0.35 0.26 0.28 0.26 0.34
Other ��� 0.02 0.03 0.01 0.13 0.10 0.10 0.10 0.13 0.14
Background fraction 0.01 0.01 0.01 0.13 0.24 0.19 0.16 0.15 0.25
Physics 0.01 0.01 <0:01 0.04 0.05 0.03 0.04 0.03 0.05
Background �t <0:01 <0:01 <0:01 0.05 0.04 0.03 0.05 0.04 0.09
Vertexing 0.02 0.01 0.03 0.11 0.24 0.09 0.31 0.36 0.16
Resolution 0.01 0.01 0.01 0.19 0.22 0.15 0.28 0.20 0.23
Flavor tagging <0:01 <0:01 <0:01 0.04 0.07 0.04 0.04 0.07 0.03
Fit bias <0:01 0.01 <0:01 0.11 0.10 0.41 0.25 0.13 0.18
TSI <0:01 <0:01 <0:01 0.09 0.04 0.06 0.05 0.18 0.05

Total 0.04 0.04 0.05 0.98 0.92 0.80 0.89 0.85 0.81
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obtained from MC simulation is found to have a small
charge asymmetry (� 3% at most). We use this asymmet-
ric efficiency for our nominal fit. To estimate the system-
atic error from the asymmetry, we fit the data using a
symmetric efficiency and conservatively quote twice the
difference between symmetric and asymmetric efficiencies
as the systematic error. The Dalitz plot efficiency is
r-region dependent and obtained as a product with the
event fraction in the corresponding region, F l

sig �

	l�m0; �0�, using MC simulation. The difference in the
fraction for data and MC simulation is estimated to be
�10% using the B0 ! D���� control sample. The frac-
tions are varied by �10% to estimate the systematic error.

D. Background Dalitz PDF

The Dalitz plot for continuum background has an un-
certainty due to the limited statistics of the sideband
events, which we use to model the PDF. We estimate the
uncertainty by performing a toy MC study of sideband
events. With each MC pseudoexperiment, we model the
PDF in the same way as we do for real data. Using the PDF,
we fit the data in the signal region and quote the variation
of fit results as the systematic error. The flavor-asymmetry
parameters for the continuum background, which are fitted
from sideband events, are varied by their uncertainties.
Systematic uncertainty from the statistics of the BB MC
simulation, which is used to model the BBDalitz plot PDF,
is also taken into account.

E. B0 ! �����0 processes other than B0 ! ����0

The primary contribution to the systematic errors of the
noninterfering parameters tends to come from the B0 !
�����0 decay processes that are not B0 ! ����0. We
take account of the contributions from B0 ! f0�980��0,
B0 ! f0�600��0, B0 ! !�0, and nonresonant B0 !
�����0. Upper limits on their contributions are deter-
mined from data, except for B0 ! !�0, for which we use
world averages for B�B0 ! !�0� [30] and B�!!
����� [28]. For the mass and width parameters of the
f0�600� resonance, we use recent measurements by BES
[31], CLEO [32], and E791 [33] and take the largest
variation. We find no significant signals for any of the
above decay modes. Using the 1� upper limits as input,
we generate toy MC simulation for each mode with the
interference between the B0 ! ����0 and the other B0 !
�����0 mode taken into account. We obtain the system-
atic error by fitting the toy MC simulation assuming B0 !
����0 only in the PDF. Within the physically allowed
regions, we vary the CP violation parameters of the other
B0 ! �����0 modes and the relative phase difference
between B0 ! ����0 and the other B0 ! �����0

modes, and use the largest deviation as the systematic error
for each decay mode.

In the above procedure, we use relativistic Breit-Wigner
functions for the f0�980� and f0�600�. To validate the
estimated systematic uncertainties, we investigate possible
model dependence as follows. For the f0�980�, we perform
the same procedure using a coupled-channel Breit-Wigner
function [34], which takes account of the opening of the
KK decay channel, instead of a simple relativistic Breit-
Wigner function. We observe no systematic increase in the
uncertainties. By changing the model for the f0�980�, the
total systematic error for the ‘‘�����0 other than ��’’
category increases by at most 10% in the noninterfering
parameters, which are the only parameters in which the
systematic error contribution from this category is signifi-
cant. Thus, we conclude that the model dependence of the
f0�980� resonance parametrization is negligibly small. For
the f0�600�, the situation is more complicated because
there are not only possible variations of the resonance
mass spectrum but also uncertainties in the low mass
���� S-wave component; this contribution may not be
modeled by a simple scalar resonance such as the f0�600�,
but by a more sophisticated description known as the K
matrix [35,36]. To address this issue in a model-
independent and conservative way, we perform the system-
atic error study assuming a hypothetical scalar resonance
that has exactly the same mass spectrum as the �0�770�.
Since this resonance, as a ���� S-wave contribution, is
maximally similar to the �0�0 signal, this procedure will
lead to systematic uncertainties larger than, or at least
comparable to, any other model of the ���� S-wave
contribution. We find that including the hypothetical reso-
nance leads to no significant increase of the systematic
uncertainties compared to those we assigned to the f0�600�
in our nominal systematic errors. The increase compared to
the case of the f0�600� is at most 30% in the noninterfering
parameters, which corresponds to only a 10% increase of
the total systematic error for the ‘‘�����0 other than
��’’ category. This follows because the discrimination
power of the �0�0 signal from these low-mass ����

S-wave contributions, in general, primarily comes from
the helicity distribution; the result is not sensitive to the
details of the models of the low mass ���� distributions.
Thus, the systematic uncertainties that we have assigned
for a possible contribution from B0 ! f0�600��0 are rea-
sonable estimates of the systematic uncertainties from
possible B0 ! (low mass ���� S-wave) �0 contributions
in general.

F. Background fraction

Systematic errors due to the event-by-event �E-Mbc

background fractions are studied by varying the PDF shape
parameters; the fraction of continuum background; and a
correction factor to the signal PDF shape, which takes
account of the difference between data and MC simulation,
by�1�. We also vary the fractions of the BB background,
which are estimated with MC simulation, by �50% (�
20%) for b! c (b! u) processes.
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G. Physics parameters

We use world averages [28,30] for the following physics
parameters: 
B0 and �md (used for signal and BB back-
ground �t), the CKM angles �1 and �2 (used in BB
background), and the branching fractions of b! u decay
modes (used in BB background). The systematic error is
assigned by varying these parameters by�1�. The charge
asymmetry of B0 ! a�1 �

�, for which we use zero in the
nominal fit, is varied over the physically allowed region,
i.e., �1.

H. Background �t PDF

Systematic errors from uncertainties in the background
�t shapes for both continuum and BB backgrounds are
estimated by varying each parameter by �1�.

I. Vertex reconstruction

To determine the systematic error that arises from un-
certainties in the vertex reconstruction, the track and vertex
selection criteria are varied to search for possible system-
atic biases. In addition to the tracks, the IP constraint is also
used in the vertex reconstruction with the smearing due to
B-flight distance taken into account. The systematic error
due to the IP constraint is estimated by varying the smear-
ing by �10 �m.

J. Resolution function for the �t PDF

Systematic errors due to uncertainties in the resolution
function are estimated by varying each resolution parame-
ter obtained from data (MC simulation) by �1� (� 2�).
Systematic errors due to uncertainties in the wrong-tag
fractions are also studied by varying the wrong-tag fraction
individually for each r region.

K. Fit bias

We observed fit biases due to small statistics for some of
the fitted parameters. Since these biases are much smaller
than the statistical errors, we do not correct for them but
rather take them into account in the systematic errors. For
each parameter, we estimate the size of the fit bias from a
toy MC study and quote the bias in the systematic errors.
We also confirm that the bias is consistent between toy MC
and full detector MC simulation.

L. Tag-side interference

Finally, we investigate the effects of tag-side interfer-
ence (TSI), which is the interference between CKM-
favored and CKM-suppressed B! D transitions in the
ftag final state [37]. A small correction to the PDF for the
signal distribution arises from the interference. We esti-
mate the size of the correction using a B0 ! D��‘��
control sample. We then generate MC pseudoexperiments
and make an ensemble test to obtain the systematic biases.

VII. QUASI-TWO-BODY PARAMETERS

One can deduce quasi-two-body CP-violation parame-
ters from the fit result of the time-dependent Dalitz plot
analysis. In this section, we obtain the quasi-two-body
CP-violation parameters from the results for the U and I
parameters determined in the previous section.

The time-dependent partial width for the quasi-two-
body decay process of B0 ! ���� is given by [38]
 

d�

d�t
/ �1�ACP

���e
�j�tj=
B0

� 	1� qtag�C��C� cos��md�t�

� qtag�S � �S� sin��md�t�
; (37)

where the upper (lower) sign is taken for B0 ! ����

(����). The parameters ACP
��, C, �C, S, and �S charac-

terize CP-violating and charge-asymmetric properties of
B0 ! ����; ACP

�� is a time- and flavor-integrated charge
asymmetry, C is a flavor-dependent direct CP-violation
parameter, S is a mixing-induced CP-violation parameter,
and �C and �S are CP-conserving parameters (i.e., non-
zero �C or �S does not imply CP violation). They are
related to the parameters obtained in the time-dependent
Dalitz plot analysis as
 

ACP
�� �

U�� �U
�
�

U�� �U
�
�

;

C 
C� � C�

2
; �C 

C� � C�

2
;

S 
S� � S�

2
; �S 

S� � S�

2
; (38)

where

 C � �
U��
U��

; C� �
U��
U��

; S� �
2I�
U��

; S� �
2I�
U��

:

(39)

We obtain

 A CP
�� � �0:12� 0:05� 0:04; (40)

 C � �0:13� 0:09� 0:05; (41)

 �C � �0:36� 0:10� 0:05; (42)

 S � �0:06� 0:13� 0:05; (43)

 �S � �0:08� 0:13� 0:05; (44)

where first and second errors are statistical and systematic,
respectively. The correlation matrix is shown in Table V.

The angle�eff
2 , which equals�2 in the no-penguin limit,

can be defined as [39]

 �eff
2 

1
2��

eff;�
2 ��eff;�

2 � (45)

with

MEASUREMENT OF CP ASYMMETRIES AND BRANCHING . . . PHYSICAL REVIEW D 77, 072001 (2008)

072001-13



 2�eff;�
2 � ̂ � arcsin

�
S � �S�������������������������������

1� �C� �C�2
p

�
; (46)

and

 ̂ � arg�A��A��: (47)

Our measurement gives

 �eff
2 � �88:0� 3:9� 1:7��; (48)

where �eff
2 � 90� would give values of S and �S consis-

tent with zero. There also exists a mirror solution �eff
2 �

�2:0� 3:9� 1:7�� due to the twofold ambiguity in the
arcsine. In addition, other solutions, �eff

2 � 45� and
135�, are also allowed, in principle. The additional solu-
tions correspond to cases where 2�eff;�

2 � ̂ and 2�eff;�
2 �

̂ differ by �180�; they can be excluded by including a
weak theoretical assumption [flavor SU�3� or QCD facto-
rization implies a much smaller value] [39]. The measured
�eff

2 can be used to constrain�2 in a model-dependent way,
using a theoretical assumption that puts a limit on the
difference �2 ��

eff
2 [39,40].

The direct CP-violation parameters for the process
B0 ! ����, A��

�� and A��
�� , are defined as

 A��
�� �

��B0 ! ����� � ��B0 ! �����

��B0 ! ����� � ��B0 ! �����
(49)

and

 A��
�� �

��B0 ! ����� � ��B0 ! �����

��B0 ! ����� � ��B0 ! �����
: (50)

One can transform the parameters ACP
��, C, and �C into the

direct CP violation parameters as

 A��
�� � �

ACP
�� � C�ACP

���C

1� �C�ACP
��C

; (51)

 A��
�� �

ACP
�� � C�ACP

���C

1� �C�ACP
��C

: (52)

We obtain

 A��
�� � �0:21� 0:08� 0:04; (53)

 A��
�� � �0:08� 0:16� 0:11; (54)

with a correlation coefficient of �0:47. Our result differs
from the case of no direct CP asymmetry (A��

�� � 0 and
A��

�� � 0) by 2.3 standard deviations (Fig. 11).
We also measure the CP violating parameters of the

quasi-two-body B0 ! �0�0 decay process. The time-
dependent partial width for the process is given as

 

d�

d�t
/ e�j�tj=
B0 	1� qtagA�0�0 cos��md�t�

� qtagS�0�0 sin��md�t�
; (55)

where A�0�0 and S�0�0 are the parameters to be measured.
They are calculated from the parameters fitted in the time-
dependent Dalitz plot analysis as

 A �0�0 � �
U�0
U�0

; S�0�0 �
2I0

U�0
: (56)

We obtain

 A �0�0 � �0:49� 0:36� 0:28; (57)

 S �0�0 � �0:17� 0:57� 0:35; (58)

with a correlation coefficient of �0:08. We observe a very
small correlation between the quasi-two-body
CP-violation parameters of the processes B0 ! ����

and B0 ! �0�0, whose absolute values are less than about
0.02. Our measurement of A�0�0 is consistent with the
previous measurement from Belle [29].

VIII. BRANCHING FRACTION MEASUREMENTS

The number of B0 ! �����0 events, Nsig, obtained in
Sec. II is

 Nsig � 971� 42: (59)

FIG. 11. Contour plot of the confidence level for the direct CP
violation parameters A��

�� vs A��
�� .

TABLE V. Correlation matrix of the quasi-two-body parame-
ters, with statistical and systematic errors combined.

ACP
�� C �C S �S

ACP
�� �1:00

C �0:17 �1:00
�C �0:09 �0:16 �1:00
S �0:01 �0:02 �0:00 �1:00
�S �0:00 �0:01 �0:02 �0:29 �1:00
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The branching fraction for B0 ! ����0 ! �����0 in-
cluding radial excitations is given as

 B �B0 ! ��all� �
Nsig

NBB	
Det	Veto	0KID ; (60)

where 	Det and 	Veto are the average detection efficiency
and the efficiency corresponding to the Dalitz veto (i.e., the
upper and lower bounds on s�, s�, and s0), respectively;
	0KID is the efficiency correction factor to take account of
the KID difference between data and MC simulation; and
NBB is the number of BB pairs produced, where we assume
equal numbers of B0B0 and B�B� pairs. The branching
fraction for the decay to a ground state ���770��� is given
as
 

B�B0 ! ���770���� � f��all
f���770�B�B

0 ! ��all�

�	�;�
 � 	�;�
; 	0; 0
�; (61)

where f��all
and f���770� are the fractions of B0 ! ��all�

�

among all B0 ! ��all ! �����0 and that of B0 !
���770��� among B0 ! ��all�

�, respectively. Here, ��all
symbolically represents the total contribution from
���770�, ���1450�, and ���1700�. The fraction f��all

is

calculated from the parameters U�� and U�;Re�Im�
�� (�, � �

�, �, 0) in Table I, while the coefficients representing
contributions from radial excitations ��;�� in Eq. (30)
determine f���770�. More details of the formalism can be
found in Appendix C. The values for these coefficients are
shown in Table VI. Note that f���770� is close to 1 and j1�
f���770�j is much smaller than the error in our result. This
means that it is reasonable to compare the central values of
our result with the preceding branching fraction measure-
ments that do not separate the contribution from radial
excitations. However, the errors are not directly
comparable.

From (59) and the coefficients in Table VI, we obtain

 B �B0 ! ��all� � �25:8� 1:2� 3:6� � 10�6; (62)

and

 B �B0 ! ���770���� � �22:6� 1:1� 4:4� � 10�6;

B�B0 ! �0�770��0� � �3:0� 0:5� 0:7� � 10�6:

(63)

Here, the first and second errors correspond to the statisti-
cal and systematic errors, respectively, where statistical
errors include the contributions from the statistical errors
on the number of events (Nsig) and uncertainties in the

Dalitz parameters (U�� and U�;Re�Im�
�� ). The correlation

coefficient for the statistical errors between B�B0 !
���770���� and B�B0 ! �0�770��0� is �0:09. The
branching fractions obtained are consistent with our pre-
vious measurements [29,41].

A. Systematic uncertainties

Table VII summarizes the systematic errors for the
branching fraction measurement. We discuss each item in
the table in the following.

1. Radial excitations (�0 and �00)

As in the time-dependent analysis, the systematic un-
certainties related to the radial excitations come from
(i) uncertainties due to line-shape variation,
(ii) uncertainties in masses and widths of the ��770� and
its radial excitations, and (iii) the common line-shape
parameters. Their impacts are estimated in the same man-
ner as done for the time-dependent analysis. The impact
from possible line-shape variation, which is constrained by
our data, is estimated by a MC study. We adopt the same
uncertainties for the masses and widths of the ��770� and
radial excitations as in the time-dependent analysis and
estimate their impact on the branching fractions. The errors
due to common line-shape parameters ��;�� are also taken
into account.

The uncertainty for this category is sizable since the
��770� and radial excitations are separated in the branch-
ing fraction analysis. This is an essential difference from
the time-dependent analysis, where we do not separate the
��770� and the radial excitations.

2. Physics parameters

This category includes the systematic error from the
uncertainties in the branching fractions of the BB back-
ground components as well as those due to the possible

TABLE VII. Summary table of the systematic errors for the
branching fraction measurements. A common factor of�10�6 is
omitted for simplicity.

��all ���770��� �0�770��0

�0 and �00 �2:8 �3:9 �0:5
Physics parameters �0:1 �0:1 �0:0
Fit �1:7 �1:5 �0:2
Detection efficiency �1:4 �1:3 �0:2
TDPA systematic �0:2 �0:4 �0:4
Number of B �B �0:3 �0:3 �0:0

Total �3:6 �4:4 �0:7

TABLE VI. Summary of the coefficients used in the branching
fraction measurement.

	Det 0.10
	Veto 0.84
	0KID 0.96

f��all
0.89

f�0
all

0.12

f���770� 0.99
f�0�770� 0.99
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contribution from the B0 ! �����0 processes other than
B0 ! ����0.

3. Fit

This category includes the uncertainties related to the
extended unbinned maximum likelihood fit, except for the
items included in the above two categories. It consists of
the uncertainties from the modeling of PDF used in the fit,
where the possible uncertainty in the SCF component has a
sizable impact; the fraction of the BB background compo-
nent, which is fixed in the nominal fit; and the fit bias.

4. Detection efficiency

The largest components of the detection efficiency sys-
tematic uncertainty are the differences between data and
MC simulation. We consider differences in �0 detection
efficiency with �0 momentum dependence, the KID effi-
ciency correction (	0KID), the continuum event suppression
cut, and the vertex reconstruction efficiency. All are esti-
mated from control sample studies. Small uncertainty due
to the limited statistics of MC simulation used in calcu-
lation of the efficiency is also taken into account.
Table VIII shows the breakdown of the systematic uncer-
tainty contributions from the above items.

5. Time-dependent Dalitz plot analysis (TDPA) systematic
errors

The systematic errors in the Dalitz plot parameters
obtained in the TDPA listed in Table I propagate to the
branching fractions.

6. Number of BB pairs

The number of accumulated BB pairs and its uncertainty
are NBB � �449:3� 5:7� � 106, assuming an equal pro-
duction rate for charged and neutral BB pairs from the
��4S�. The uncertainty in the number of BB pairs prop-
agates to the branching fraction and is taken into account as
a systematic error.

IX. CONSTRAINT ON THE CKM ANGLE �2

We constrain the CKM angle �2 from our analysis
following the procedure described in Ref. [6]. With three
B0 ! ����0 decay modes, we have nine free parameters
including �2:

 

9 � �6 complex amplitudes � 12 d:o:f:� ��2

� �1 global phase� � �1 global normalization�

� �1 isospin relation � 2 d:o:f:�; (64)

where we make use of an isospin relation that relates
neutral B decay processes only [7,8]. Parametrizing the
six complex amplitudes with nine free parameters, we form
a �2 function using the 26 measurements from our time-
dependent Dalitz plot analysis as constraints. We first
optimize all the nine parameters to obtain a minimum
�2, �2

min; we then scan �2 from 0� to 180� optimizing
the other eight parameters, whose resultant minima are
defined as �2��2�; the difference ��2��2� is defined as
��2��2�  �2��2� � �

2
min. Performing a toy MC study

following the procedure described in Ref. [42], we obtain
the 1� C:L: plot in Fig. 12 (dotted line) from the ��2��2�
[43].

In addition to the 26 observables obtained from our
time-dependent Dalitz plot analysis, we use the branching
fraction B�B0 ! ��all� obtained in Sec. VIII and the
following world average branching fractions and asymme-
tries: B�B� ! ���0�, A�B� ! ���0�, B�B� !
�0���, and A�B� ! �0��� [30], which are not corre-
lated with our 26 observables. With the 31 measurements
above, we perform a full combined Dalitz and isospin
(pentagon) analysis. Having five related decay modes, we
have 12 free parameters including �2:
 

12 � �10 complex amplitudes � 20 d:o:f:� ��2

� �1 global phase� � �4 isospin relations � 8 d:o:f:�:

(65)

The detail of the �2 construction can be found in
Appendix D. The �2

min obtained is 10.2, which is reason-
able for 31�measurements� � 12�free parameters� �
19 degrees of freedom. Following the same procedure as
above, we obtain the 1� C:L: plot in Fig. 12 (solid line).
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FIG. 12 (color online). 1� C:L: vs �2. Dotted and solid
curves correspond to the result from the time-dependent Dalitz
plot analysis only and that from the Dalitz and an isospin
(pentagon) combined analysis, respectively.

TABLE VIII. Summary of the systematic uncertainties related
to the detection efficiency.

�0 detection 4.7%
Kaon identification 0.4%
Continuum suppression 2.3%
Vertex reconstruction 1.8%
Dalitz efficiency 0.8%
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We obtain 68� <�2 < 95� as the 68.3% confidence inter-
val consistent with the SM expectation. Several SM-
disfavored regions (0� <�2 < 5�, 25� <�2 < 32�, and
108� <�2 < 180�) are also allowed.

X. CONCLUSION

Using 414 fb�1 of data we have performed a time-
dependent Dalitz plot analysis of the B0 ! �����0 de-
cay mode. Combining our analysis and information from
charged B decay modes, a full Dalitz plot and isospin
analysis is performed to obtain a constraint on �2 in a
model-independent way. We obtain 68� <�2 < 95� at the
68.3% confidence interval for the solution consistent with
the SM expectation. However, a large CKM-disfavored
region also remains. In principle, with more data we may
be able to remove all the additional �2 solutions. From the
result of the Dalitz plot analysis, we also obtain the branch-
ing fractions for the decays B0 ! ���770��� and B0 !
�0�770��0. These are the first branching fraction measure-
ments of these processes with the lowest resonance ��770�
explicitly separated from the radial excitations.
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APPENDIX A: PDFS FOR TIME-DEPENDENT
DALITZ PLOT ANALYSIS

In this section, we describe the details of the PDF for
each component that appears in Eq. (31).

1. Signal PDF

The PDF for signal events consists of a PDF for the
correctly reconstructed events P true and PDFs for SCF
events P i (i � NR, CR):

 P sig� ~x� �

P true� ~x� �
P

i�NR;CR
P i� ~x�

N true �
P

i�NR;CR
N i

; (A1)

where NR and CR represent the �0 (neutral) replaced and
�� (charged) replaced SCF’s, respectively, and N are the
integrals of the PDF’s.

a. PDF for correctly reconstructed events

In terms of the event fractions for the lth flavor-tagging
region (F l

true), the Dalitz-plot-dependent efficiency (	l),
the �0 momentum-dependent efficiency correction taking
account of the difference between data and MC simulation
(	0), wrong-tag fractions (wl), and the differences in
wrong-tag fractions between B0 and B0 (�wl), the PDF
for correctly reconstructed events is given by

 P true� ~x� � F l
true � P true��E;Mbc;p�0�

� 	true�m
0; �0; l�	0�p�0� � j detJ�m0; �0�j

� P true�m0; �0; �t; qtag; l�; (A2)

where the Dalitz-�t PDF P true�m
0; �0; �t; qtag; l� corre-

sponds to the right-hand side of Eq. (11) and is
 

P true�m0; �0; �t; qtag; l�

�
e�j�tj=
B0

4
B0

�
�1� qtag�w1��jA3�j

2 � jA3�j
2�

� qtag�1� 2wl��jA3�j
2 � jA3�j

2� cos��md�t�

� qtag�1� 2wl�2 Im
�
q
p
A3�A�3�

�
sin��md�t�

�
: (A3)

For the �t PDF, the above equation is convolved with the
resolution function [23]. The terms jA3�j

2 � jA3�j
2 and

Im�qp A3�A�3�� are expanded as in Eqs. (20) and (21). The
�E-Mbc PDF is normalized such that

 

ZZ
signal region

d�EdMbcP true��E;Mbc;p�0� � 1 �8p�0�;

(A4)

since we define the Dalitz plot efficiency for events inside
the signal region. Since the PDF’s in the �t-qtag direction
are also normalized to be unity, the integral inside the
signal region, N true, is

 N true �
X
l

N l
true; (A5)

where

MEASUREMENT OF CP ASYMMETRIES AND BRANCHING . . . PHYSICAL REVIEW D 77, 072001 (2008)

072001-17



 N l
true 

X
qtag

Z
d�t

ZZ
signal region

d�EdMbc

ZZ
SDP;Veto

dm0d�0P true� ~x�

� F l
true

ZZ
SDP;Veto

dm0d�0	true�m0; �0; l�	0�p�0�j detJj�jA3�j
2 � jA3�j

2�; (A6)

and the correlation between p�0 and m0 is properly taken
into account in the integration on the last line. The notationRR

SDP;Veto dm
0d�0 means integration over the square Dalitz

plot with the vetoed region in the Dalitz plot taken into
account.

The �0 momentum-dependent �E-Mbc PDF,
P true��E;Mbc;p�0�, is modeled using MC-simulated
events in a binned histogram interpolated in the p�0 direc-
tion, to which a small correction obtained with B0 !

��D���� is applied to account for the difference between
data and MC simulation.

The Dalitz plot distribution is smeared and distorted by
detection efficiencies and detector resolutions. We obtain
the signal Dalitz plot efficiency from MC simulation to
take the former into account. We introduce a dependence
of the efficiency on the r region, 	ltrue, since a significant
dependence is observed in MC simulation. Small correc-
tions, 	0�p�0�, are also applied to the MC-determined
efficiency to account for differences between data and
MC simulation. We use B0 ! ��D����, B0 ! ��D��,
B� ! ��D0, and B� ! ��D0 decays to obtain the cor-
rection factors. The smearing in the Dalitz plot due to the
finite detector resolutions is small compared to the widths
of ��770� resonances; the smearing is confirmed by MC to
be a negligibly small effect.

b. PDF for SCF events

Approximately 20% of signal candidates are SCFs,
which are subdivided into �4% NR SCF and �16% CR

SCF. It is therefore important to develop a model that
describes the SCF component well. The time-dependent
PDF for SCF events is defined as
 

P i��E;Mbc;m0; �0; �t; qtag; l� � F l
i � P i��E;Mbc; si�

� P i�m0; �0; �t; qtag�

�i � NR;CR�; (A7)

with
 

P i�m
0; �0; �t; qtag� �

e�j�tj=
i

4
i
f�1� qtag�wl

i�P life
i �m

0; �0�

� qtag�1� 2wl
i�P cos

i �m
0; �0�

� cos��md�t�

� qtag�1� 2wl
i�P sin

i �m
0; �0�

� sin��md�t�g; (A8)

where F l
i is the event fraction in each tagging r bin.

The �E-Mbc PDF is normalized inside the signal region
as

 

ZZ
signal region

d�EdMbcP i��E;Mbc; si� � 1 �8 si�:

(A9)

As the PDF’s in the �t-qtag direction are normalized to
unity and

P
lF

l
i � 1, the integral inside the signal region,

N i, is

 N i 
X
l

X
qtag

Z
d�t

ZZ
signal region

d�EdMbc

ZZ
SDP;Veto

dm0d�0P l
i��E;Mbc;m0; �0; �t; qtag�

�
ZZ

SDP;Veto
dm0d�0P life

i �m
0; �0�: (A10)

We find that the �E-Mbc distribution for SCF has
a sizable correlation with Dalitz plot variables, but only
in one of its two dimensions. We thus introduce a
model with dependences on the Dalitz plot variable si.
The variable sCR � s�  max�s�; s�� is used, because
the CR SCF can be divided into a �� replaced SCF and
a �� replaced SCF, where s� (s�) is used for �� (��)
replaced SCF. Here, we exploit the fact that almost all
of the �� (��) replaced SCF distributes in the region of
s� < s� (s� > s�). For the NR SCF, sNR � s0. This pa-
rametrization models the correlation quite well, with each
of the parameters si related to the kinematics of replaced
tracks.

Since track (�) replacement changes the measured kine-
matic variables, the SCF events ‘‘migrate’’ in the Dalitz
plot from the correct (or generated) position to the ob-
served position. Using MC simulation, we determine reso-
lution functions Ri�m0obs; �

0
obs;m

0
gen; �

0
gen� to describe this

‘‘migration’’ effect, where �m0obs; �
0
obs� and �m0gen; �0gen� are

the observed and the generated (correct) positions in the
Dalitz plot, respectively. The resolution function satisfies
the normalization condition of

 

ZZ
SDP

dm0obsd�
0
obsRi�m

0
obs; �

0
obs;m

0
gen; �0gen� � 1

�8 m0gen; �
0
gen�:

(A11)
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Together with the efficiency function 	i�m0gen; �
0
gen�, which

is also obtained with MC simulation, the Dalitz plot PDF
for SCF is described as
 

P j
i �m

0; �0� � 	�Ri � 	i� � P
j
phys
�m

0; �0�


ZZ

SDP
dm0gend�0genRi�m0; �0;m0gen; �0gen�

� 	i�m0gen; �0gen� � P
j
phys�m

0
gen; �0gen�;

�i � CR;NR; j � life; cos; sin� (A12)

where

 Plife
phys�m

0
gen; �

0
gen� � j detJj�jA3�j

2 � jA3�j
2�;

Pcos
phys�m

0
gen; �

0
gen� � j detJj�jA3�j

2 � jA3�j
2�;

Psin
phys�m

0
gen; �

0
gen� � j detJj2 Im

�
q
p
A3�A

�
3�

�
:

(A13)

For the NR SCF, the shape of the �t PDF defined in
Eq. (A8) is exactly the same as the correctly reconstructed
signal, i.e., 
NR � 
B0 , wNR

l � wl, and �wNR
l � �wl,

since the replaced �0 is not used for either vertexing or
flavor tagging. On the other hand, for the CR SCF, the �t
PDF is different from correctly reconstructed signal, since
the replaced �� is used for both vertexing and flavor
tagging. Thus, we use MC-simulated CR SCF events to
obtain 
CR, wCR

l , and �wCR
l , which are different from those

of correctly reconstructed signal events. In particular,
�wCR

l is opposite in sign for the �� and �� replaced
SCFs, due to the fact that the replaced �� tends to be
directly used for flavor tagging in the slow pion category.

2. Continuum PDF

The PDF for the continuum background is

 P qq��E;Mbc;m0; �0; �t; qtag; l�

� F l
qq � P

l
qq��E;Mbc� � P qq�m0; �0; �E;Mbc�

�

�
1� qtagAl�m0; �0�

2

�
� P qq��t�; (A14)

where F l
qq is the event fraction for each r region obtained

in the signal yield fit. All the terms on the right-hand side of
the equation are normalized to be unity so that
 X
l

X
qtag

Z
d�t

ZZ
signal region

d�EdMbc

ZZ
SDP;Veto

dm0d�0

� P qq��E;Mbc;m0; �0; �t; qtag; l� � 1: (A15)

Since the allowed kinematic region is dependent on �E
and Mbc, the Dalitz plot distribution is dependent on �E
and Mbc. We define a �E-Mbc-independent PDF,
P qq�m

0
scale; �

0�, where m0scale is a redefined SDP variable
with the kinematic effect taken into account as

 m0scale 
1

�
arccos

�
2

m0 �m
min
0

mmax
0 �mmin

0 � �E� �Mbc

� 1
�
;

(A16)

where

 �Mbc  Mbc �mB0 : (A17)

Using the �E-Mbc-independent PDF, P qq�m0; �0; �E;Mbc�

is described as

 P qq�m0; �0; �E;Mbc� �
1

N qq��E��Mbc�

�
sin��m0�

sin��m0scale�
� P qq�m0scale; �

0�

(A18)

for the region, mmin
0 <m0 <min�mmax

0 ; mmax
0 � �E�

�Mbc� (pqq � 0 otherwise), where N qq��E��Mbc�

and sin��m0�= sin��m0scale� are the normalization factor
and the Jacobian for the parameter transformationm0scale !
m0, respectively. We obtain the pqq�m0scale; �

0� distribution
from data in part of the sideband region, �0:1 GeV<
�E< 0:2 GeV and 5:2 GeV=c2 <Mbc < 5:26 GeV=c2,
where the contribution from BB background is negligible.

Since we find significant flavor asymmetry depending on
the location in the Dalitz plot, we introduce the following
term to take account of it:

 

1� qtagAl�m0; �0�

2
; (A19)

which is r-region dependent. The asymmetry is antisym-
metric in the direction of �0, i.e., Al�m0; �0�> 0
[Al�m0; �0�< 0] in the region of �0 > 0:5 (� < 0:5), and
the size of the asymmetry is at most �20% in the best r
region. This effect is due to the jetlike topology of con-
tinuum events; when an event has a high momentum ��

(��) on the CP side, the highest momentum � on the tag
side tends to have � (� ) charge. The highest momentum
� on the tag side with � (� ) charge tags the flavor as B0

(B0). Since an event with a high momentum �� (��)
resides in the region �0 > 0:5 (�0 < 0:5), a continuum event
in the region �0 > 0:5 (�0 < 0:5) tends to be tagged as B0

(B0). We again parametrize the asymmetry Al�m0; �0� in a
�E-Mbc-independent way as

 Al�m0; �0� � Al�m0; �0; �E;Mbc� � Al�m0scale; �
0�; (A20)

and model it with a two-dimensional polynomial, whose
coefficients are determined by a fit to data in the �E-Mbc

sideband region.

3. BB background PDF

The treatment of BB background is different for CP
eigenstate modes and flavor-specific or charged modes.
The PDF for the CP eigenstate modes is
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 P l
BB
��E;Mbc;m0; �0; �t; qtag�

� F l
BB
� P BB��E;Mbc� � P BB�m

0; �0� � P BB��t; qtag; l�;

(A21)

where P BB��t; qtag� is a time-dependent CP violation PDF
normalized as

 

X
qtag

Z
d�tP BB��t; qtag; l� � 1 �8 l�: (A22)

For the flavor-specific or charged modes, the PDF is
 

P BB��E;Mbc;m0; �0; �t; qtag; l�

� F l
BB
� P BB��E;Mbc�

�
X
qrec

P BB�m
0; �0; qrec� � P BB��t; qtag; qrec; l�; (A23)

where the Dalitz plot PDF P BB�m
0; �0; qrec� is dependent

on the true flavor of the CP (fully reconstructed) side, qrec,
and the time-dependent part is a mixing PDF (lifetime PDF
with flavor asymmetry) for flavor-specific (charged)
modes. The �t PDF is normalized as

 

X
qtag

X
qrec

Z
d�tP BB��t; qtag; qrec; l� � 1 �8 l�: (A24)

The �E-Mbc PDF and Dalitz plot PDF are obtained
mode by mode from MC simulation. The Dalitz plot
PDF of the CP eigenstate modes is assumed to have the
following symmetry,

 P BB�m
0; �0� � P BB�m

0; 1� �0�; (A25)

while that of flavor-specific and charged modes is assumed
to have the following symmetry,

 P BB�m
0; �0; qrec� � P BB�m

0; 1� �0;�qrec�: (A26)

The total PDF of the BB background is a linear combina-
tion of each mode with efficiencies and branching fractions
taken into account.

APPENDIX B: CORRELATION MATRIX OF THE
FIT RESULT

Tables IX, X, and XI show the correlation matrix for the
26 parameters determined in the time-dependent Dalitz
plot analysis, corresponding to the total error matrix with

TABLE IX. Correlation matrix (1) of the 26 fitted parameters, with statistical and systematic
errors combined.

U�� U�0 U�;Re
�� U�;Re

�0 U�;Re
�0 U�;Im�� U�;Im�0 U�;Im�0

U�� �1:00
U�0 �0:22 �1:00
U�;Re
�� �0:06 �0:04 �1:00

U�;Re
�0 �0:10 �0:02 �0:02 �1:00

U�;Re
�0 �0:04 �0:11 �0:01 �0:01 �1:00

U�;Im�� �0:08 �0:03 �0:12 �0:02 �0:00 �1:00

U�;Im�0 �0:03 �0:08 �0:00 �0:13 �0:02 �0:00 �1:00

U�;Im�0 �0:14 �0:08 �0:02 �0:02 �0:10 �0:01 �0:01 �1:00

U�� �0:05 �0:02 �0:00 �0:02 �0:00 �0:02 �0:01 �0:01
U�� �0:23 �0:08 �0:03 �0:04 �0:02 �0:03 �0:01 �0:03
U�0 �0:05 �0:10 �0:01 �0:00 �0:04 �0:01 �0:06 �0:08
U�;Re
�� �0:03 �0:01 �0:03 �0:00 �0:00 �0:04 �0:00 �0:01

U�;Re
�0 �0:04 �0:01 �0:01 �0:12 �0:00 �0:00 �0:01 �0:02

U�;Re
�0 �0:02 �0:04 �0:00 �0:00 �0:06 �0:00 �0:01 �0:08

U�;Im�� �0:04 �0:02 �0:05 �0:01 �0:00 �0:00 �0:00 �0:01

U�;Im�0 �0:03 �0:09 �0:01 �0:01 �0:02 �0:00 �0:04 �0:01

U�;Im�0 �0:01 �0:02 �0:00 �0:00 �0:00 �0:00 �0:00 �0:25

I� �0:00 �0:00 �0:02 �0:01 �0:00 �0:05 �0:01 �0:00
I� �0:06 �0:03 �0:01 �0:01 �0:02 �0:05 �0:00 �0:04
I0 �0:01 �0:01 �0:00 �0:02 �0:00 �0:00 �0:02 �0:02
IRe
�� �0:04 �0:01 �0:01 �0:00 �0:00 �0:16 �0:00 �0:00
IRe
�0 �0:00 �0:02 �0:00 �0:13 �0:01 �0:00 �0:00 �0:00
IRe
�0 �0:06 �0:01 �0:01 �0:01 �0:12 �0:00 �0:01 �0:29
IIm
�� �0:02 �0:01 �0:13 �0:00 �0:00 �0:00 �0:00 �0:00
IIm
�0 �0:01 �0:03 �0:00 �0:00 �0:01 �0:01 �0:04 �0:01
IIm
�0 �0:06 �0:04 �0:01 �0:02 �0:09 �0:02 �0:01 �0:08
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statistical and systematic error matrices combined. We
assume no correlations for the systematic errors.

APPENDIX C: FORMALISM FOR BRANCHING
FRACTION MEASUREMENT

In this section, we describe the formalism for the factors
used in the branching fraction calculation of Eqs. (60) and
(61).

1. Detection efficiency

Since the detection efficiency is Dalitz-plot dependent,
we use the detection efficiency averaged over the Dalitz
plot, 	Det, for the branching fraction measurement. From
Eqs. (A1)–(A3), (A7), (A8), and (A12), the PDF integrated
over �E-Mbc (in the signal region) and �t, and summed
over qtag and l, is

 P sig�m
0; �0� �

P true�m0; �0� �
P

i�CR;NR
P i�m0; �0�

N true �
P

i�CR;NR
N i

; (C1)

with

 P true�m
0; �0� �

X
l

F l
true	true�m

0; �0; l�	0�p�0�Pphys�m
0; �0�;

(C2)

 P i�m
0; �0� �

X
l

F l
i	�	i � Ri� � Pphys
�m

0; �0�; (C3)

and

TABLE XI. Correlation matrix (3) of the 26 fitted parameters, with statistical and systematic
errors combined.

I� I� I0 IRe
�� IRe

�0 IRe
�0 IIm

�� IIm
�0 IIm

�0

I� �1:00
I� �0:06 �1:00
I0 �0:00 �0:01 �1:00
IRe
�� �0:04 �0:06 �0:00 �1:00
IRe
�0 �0:04 �0:00 �0:14 �0:00 �1:00
IRe
�0 �0:02 �0:21 �0:01 �0:01 �0:00 �1:00
IIm
�� �0:07 �0:01 �0:00 �0:35 �0:00 �0:00 �1:00
IIm
�0 �0:15 �0:01 �0:09 �0:01 �0:23 �0:00 �0:01 �1:00
IIm
�0 �0:01 �0:14 �0:23 �0:01 �0:04 �0:06 �0:00 �0:03 �1:00

TABLE X. Correlation matrix (2) of the 26 fitted parameters, with statistical and systematic
errors combined.

U�� U�� U�0 U�;Re
�� U�;Re

�0 U�;Re
�0 U�;Im�� U�;Im�0 U�;Im�0

U�� �1:00
U�� �0:06 �1:00
U�0 �0:00 �0:01 �1:00
U�;Re
�� �0:07 �0:01 �0:00 �1:00

U�;Re
�0 �0:21 �0:03 �0:08 �0:02 �1:00

U�;Re
�0 �0:01 �0:12 �0:16 �0:00 �0:02 �1:00

U�;Im�� �0:03 �0:03 �0:00 �0:20 �0:01 �0:00 �1:00

U�;Im�0 �0:02 �0:01 �0:03 �0:00 �0:01 �0:01 �0:00 �1:00

U�;Im�0 �0:00 �0:03 �0:02 �0:00 �0:00 �0:14 �0:00 �0:01 �1:00

I� �0:02 �0:01 �0:00 �0:03 �0:01 �0:00 �0:02 �0:01 �0:00
I� �0:00 �0:01 �0:01 �0:03 �0:00 �0:05 �0:00 �0:01 �0:07
I0 �0:00 �0:01 �0:07 �0:00 �0:02 �0:02 �0:00 �0:05 �0:06
IRe
�� �0:02 �0:01 �0:00 �0:02 �0:00 �0:00 �0:15 �0:00 �0:00
IRe
�0 �0:01 �0:00 �0:02 �0:00 �0:09 �0:01 �0:00 �0:16 �0:01
IRe
�0 �0:01 �0:08 �0:08 �0:01 �0:00 �0:12 �0:01 �0:00 �0:21
IIm
�� �0:02 �0:04 �0:00 �0:04 �0:00 �0:00 �0:04 �0:00 �0:00
IIm
�0 �0:03 �0:00 �0:03 �0:01 �0:28 �0:00 �0:01 �0:03 �0:01
IIm
�0 �0:00 �0:01 �0:01 �0:00 �0:01 �0:18 �0:00 �0:02 �0:11
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Pphys�m
0; �0�

� jJ�m0; �0�j�jA3�j
2 � jA3�j

2�

� jJ�m0; �0�j
�X
�

U�� jf�j2

�
X
�<�

�U�;Re
�� Re	f�f

�
�
 �U

�;Im
�� Im	f�f

�
�
�

�
: (C4)

Consequently, P sig�m0; �0� can be symbolically rewritten as

 P sig�m0; �0� �
		sig � Pphys
�m

0; �0�

N true �
P

i�CR;NR
N i

; (C5)

where
 

		sig � Pphys
�m0; �0�


X
l

F l
true	true�m

0; �0; l�	0�p�0�Pphys�m
0; �0�

�
X

i�CR;NR

X
l

F l
i	�	i � Ri� � P

phys
�m0; �0�: (C6)

Note that Ri is normalized as Eq. (A11).
Consequently, the detection efficiency averaged over the

Dalitz plot 	Det is

 	Det�

RR
SDP;Veto dm

0d�0		sig�Pphys
�m0;�0�RR
SDP;Vetodm

0d�0Pphys�m0;�0�
(C7)

 �

N true�
P

i�CR;NR
N iRR

SDP;Vetodm
0d�0Pphys�m0;�0�

: (C8)

2. Dalitz veto efficiency

The efficiency corresponding to the Dalitz veto, 	Veto, is
simply calculated as

 	Veto�

RR
SDP;Veto dm

0d�0Pphys�m0;�0�RR
SDP;Whole dm

0d�0Pphys�m
0;�0�

: (C9)

3. Fraction of ��all�
�

The fraction of B0 ! ��all�
� normalized to B0 !

�����0 is

 f��all
�

RR
SDP;Whole dm

0d�0Pphys
all;��m

0;�0�RR
SDP;Whole dm

0d�0Pphys�m0;�0�
; (C10)

where

 Pphys
all;��m

0; �0� � jJ�m0; �0�jU�� jf�j
2: (C11)

4. Fraction of ���770���

The fraction of B0 ! ���770��� normalized to B0 !
��all�

� is

 f���770� �

RR
SDP;Whole dm

0d�0Pphys
�770�;��m

0;�0�RR
SDP;Whole dm

0d�0Pphys
all;��m

0;�0�
; (C12)

where

 Pphys
�770�;��m

0; �0� � jJ�m0; �0�jU�� jf
��770�
� j2: (C13)

The function f��770�
� is defined as

 f��770�
� � T�J�1BW��770��s��; (C14)

corresponding to the ��770� part of f� defined in Eqs. (16)
and (17).

5. Summary

By using the expressions described above, Eqs. (60) and
(61) are rewritten as

 B ���all� �
Nsig

NBB

RR
SDP;Whole dm

0d�0Pphys�m
0; �0�

N true�
P

i�CR;NR
N i

(C15)

and

 B ����770���� �
Nsig

NBB

RR
SDP;Whole dm

0d�0Pphys
�770�;��m

0; �0�

N true �
P

i�CR;NR
N i

:

(C16)

APPENDIX D: METHOD OF �2 CONSTRAINT

1. Formalism

We define amplitudes as

 A�  A�B0 ! �����; (D1)

 A�  A�B0 ! �����; (D2)

 A0  A�B0 ! �0�0�; (D3)

 A�0  A�B� ! ���0�; (D4)

 A0�  A�B� ! �0���; (D5)

and

 A� 
q
p
A�B0 ! �����; (D6)

 A� 
q
p
A�B0 ! �����; (D7)

 A 0 
q
p
A�B0 ! �0�0�; (D8)

 A�0 
q
p
A�B� ! ���0�; (D9)

A. KUSAKA et al. PHYSICAL REVIEW D 77, 072001 (2008)

072001-22



 A0� 
q
p
A�B� ! �0���: (D10)

These amplitudes are obtained from (i) 26 measurements
determined in the time-dependent Dalitz plot analysis as
well as (ii) branching fractions and asymmetry measure-
ments, and give a constraint on �2.

Equations (22)–(25) define the relations between the
amplitudes for the neutral modes and the parameters de-
termined in the time-dependent Dalitz plot analysis. The
relations between the branching fractions and asymme-
tries, and the amplitudes are

 B ���all� � c �
X

���;�;0

�jA�j2 � jA�j2� � 
B0 ; (D11)

 B ����0� � c � �jA�0j2 � jA�0j2� � 
B� ; (D12)

 B ��0��� � c � �jA0�j2 � jA0�j2� � 
B� ; (D13)

 A ����0� �
jA�0j2 � jA�0j2

jA�0j2 � jA�0j2
; (D14)

 A ��0��� �
jA0�j2 � jA0�j2

jA0�j2 � jA0�j2
; (D15)

where c is a constant and the lifetimes 
B0 and 
B� are
introduced to take account of the total width difference
between B0 and B�. Note that we do not use quasi-two-
body parameters related to neutral modes except for
B������, since they are included in the Dalitz plot
parameters.

The amplitudes are expected to follow SU�2� isospin
symmetry to a good approximation [7,8],
 

A� � A� � 2A0 � ~A� � ~A� � 2 ~A0

�
���
2
p
�A�0 � A0��

�
���
2
p
� ~A�0 � ~A0��; (D16)

 

A�0 � A0� �
���
2
p
�A� � A�� � ~A�0 � ~A0�

�
���
2
p
� ~A� � ~A��; (D17)

where

 

~A �  e�2i�2A�;

~A�0  e�2i�2A�0; and ~A0�  e�2i�2A0�:
(D18)

Note that there is an inconsistency in Eq. (D17) between
Refs. [7,8]; we follow the treatment of Ref. [7].

2. Parametrization

Here we give two examples of the parametrization of the
amplitudes. The first example may be more intuitive, while
the second example is well behaved in the fit. The results
are independent of the parametrizations with respect to the
constraint on �2.

In the following, we set the constant c to be unity and
discard the normalization condition jA�j2 � jA�j2 � 1
instead. This is equivalent to letting c be a free parameter
in the �2 constraint fit, keeping the normalization jA�j2 �
jA�j2 � 1. We adopt the former for simplicity. Note that
Eqs. (22)–(25) become
 

U�� � �jA�j2 � jA
�j2�=N;

I� � Im	A�A��
=N;

U�;Re�Im�
�� � Re�Im�	A�A�� � A�A��
=N;

IRe�Im�
�� � Re�Im�	A�A�� � ���A�A��
=N

�N  jA�j2 � jA�j2�

in this case.

a. Amplitude parametrization

We can parametrize the amplitudes as follows [7]:

 A� � e�i�2T� � P�; (D19)

 A� � e�i�2T� � P�; (D20)

 A0 � e�i�2T0 � 1
2�P

� � P��; (D21)

 

���
2
p
A�0 � e�i�2T�0 � P� � P�; (D22)

 

���
2
p
A0� � e�i�2�T� � T� � 2T0 � T�0� � P� � P�;

(D23)

and

 A� � e�i�2T� � P�; (D24)

 A� � e�i�2T� � P�; (D25)

 A 0 � e�i�2T0 � 1
2�P

� � P��; (D26)

 

���
2
p
A�0 � e�i�2T�0 � P� � P�; (D27)

 

���
2
p
A0� � e�i�2�T� � T� � 2T0 � T�0� � P� � P�;

(D28)

where the overall phase is fixed with the convention
ImT� � 0. Thus, there are six complex amplitudes, T�,
T�, T0, P�, P�, and T�0, corresponding to 11 degrees of
freedom; and �2, corresponding to 12 degrees of freedom
in total. This parametrization automatically satisfies the
isospin relations without loss of generality; i.e., the isospin
relations are the only assumption here.

b. Geometric parametrization

We can parametrize the amplitudes using the geometric
arrangement of Fig. 13 that satisfies the isospin relation of
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Eq. (D16). This figure is equivalent to Fig. 3 of Ref. [8],
except that the sides corresponding to B0 ! ���� and
B0 ! �0�0 are swapped. This difference is not physically
significant. We apply this modification only to obtain a
better behaved parametrization; the parametrization here
uses the angles!� and �� related to the process B0�B0� !
����, which are better behaved than those related to
B0�B0� ! �0�0.

To parametrize the amplitudes, we use �2 and the
following 11 geometric parameters:

 !�; !�; !
0; ��; ��; b�; b�; b

0; a�; a�; L; (D29)

where b and a imply branching fraction and asymmetry,
respectively. In terms of these parameters, the amplitudes
can be described as follows:

 A� � ei�!����=2�
������������������������������
b��1� a��=2

q
; (D30)

 

~A� � ei�!����=2�
������������������������������
b��1� a��=2

q
; (D31)

 A� � ei�!����=2�
������������������������������
b��1� a��=2

q
; (D32)

 

~A� � ei�!����=2�
������������������������������
b��1� a��=2

q
; (D33)

 A0 � �L� A� � A��=2; (D34)

 

~A 0 � �L� ~A� � ~A��=2; (D35)

 A0� � ei!
0
����������
b0=2

p
; (D36)

 A�0 �
L���
2
p � A0�; (D37)

 

~A�0 �
L���
2
p � ~A0�; (D38)

and

 

~A0� �
L

2
���
2
p � 	A�0 � A0� �

���
2
p
�A� � A��

�
���
2
p
� ~A� � ~A��
=2: (D39)

Equation (D39) exploits the isospin relation of Eq. (D17),
which Fig. 13 does not incorporate geometrically. The
phase �2 enters when the ~A’s are converted into A’s with
Eq. (D18). When we perform the analysis only with the
time-dependent Dalitz plot observables and without the
information from charged decay modes, we remove the
parameters !0 and b0 from the fit and fix L to be a constant.

This geometric parametrization has a substantial advan-
tage in terms of required computational resources, com-
pared to the parametrization based on the T and P
amplitudes described in the previous section. In the proce-
dure to constrain �2, the minimum �2 has to be calculated
for each value of �2. To avoid local minima, initial values
of the parameters in the minimization have to be scanned.
This inflates the computing time, which increases expo-
nentially with the number of parameters. However, the
number of parameters to be scanned decreases in the
geometric parametrization. Among the 11 parameters ex-
cept for �2, five of them, b�, b�, b0, a�, and a�, are
related to the branching fractions and asymmetries. Since
in most cases they do not have multiple solutions, we do
not have to scan their initial values. In addition, the opti-
mum initial value for L can also be determined using other
parameters and b0, the nominal branching fraction of B0 !
�0�0, from the following relation,

 b0 �

��������L� ei!�
������������
b�=2

q
� ei!�

������������
b�=2

q ��������
2
; (D40)

up to a twofold ambiguity. Here b0 is calculated using the
input parameters as

 b0 �
U�0

U�� �U
�
�

�
B������
c � 
B0

; (D41)

based on Eqs. (22) and (D11). The explicit solution for the
optimal initial value of L is

 L � Re��
��������������������������
b0 � �Im��2

q
�

where �  ei!�
������������
b�=2

q
� ei!�

������������
b�=2

q �
:

(D42)

When b0 � �Im��2 < 0, there is no real-valued solution
and L � Re� is the optimum initial value. With the opti-
mum values calculated above, the initial value of L does
not have to be scanned, except for the twofold ambiguity.
Consequently, the number of parameters to be scanned in
this parametrization is only five, corresponding to!�,!�,
!0, ��, and ��, while 10 of the 11 parameters have to be
scanned in the T and P amplitude parametrization. This
leads to a substantial reduction of the computational re-
sources required.

FIG. 13. Complex pentagons formed from the B! �� decay
amplitudes.
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