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Polyhedral realization of crystal bases for generalized
Kac–Moody algebras

Dong-Uy Shin

Abstract

In this paper, we give a polyhedral realization of the crystal B(∞) of U−
q (g) for the generalized

Kac–Moody algebras. As applications, we give explicit descriptions of crystals for the generalized
Kac–Moody algebras of rank 2 and 3, and Monster Lie algebras.

Introduction

In his study of Conway and Norton’s Moonshine conjecture [3] for the infinite-dimensional
Z-graded representation V � of the Monster sporadic simple group, Borcherds introduced a
new class of infinite-dimensional Lie algebras called the generalized Kac–Moody algebras
[1, 2]. The structure and representation theories of generalized Kac–Moody algebras are very
similar to those of Kac–Moody algebras, and a lot of facts about Kac–Moody algebras can
be extended to generalized Kac–Moody algebras. The main difference is that the generalized
Kac–Moody algebras may have simple roots with non-positive norms, the multiplicity of which
can be greater than one, called imaginary simple roots, and they may have infinitely many
simple roots.

The quantum groups Uq(g) introduced independently by Drinfel’d and Jimbo are
q-deformations of the universal enveloping algebras U(g) of Kac–Moody algebras g; see [4, 7].
The important feature of quantum groups is that the representation theory of Uq(g) is the
same as that of U(g). Therefore, to understand the structure of representations over Uq(g),
it is enough to understand that of representations over Uq(g) for some special parameter q
which is easy to treat. The crystal basis theory, which can be viewed as the representation
theory at q = 0, was introduced by Kashiwara [13]. Among others, he showed that there exist
a crystal basis B(∞) for the negative part of a quantum group and a crystal basis B(λ)
for the irreducible highest weight module V (λ) with a dominant integral highest weight λ.
Crystal bases are given a structure of coloured oriented graphs, called the crystal graphs,
which reflect the combinatorial structure of integrable modules. Therefore, one of the most
fundamental problems in the crystal basis theory is to construct the crystal basis explicitly. In
many articles, one can find several kinds of realizations of crystal bases using combinatorial
objects (for example, [9–12, 15–18]).

In [8], Kang introduced the quantum generalized Kac–Moody algebras Uq(g) — the quantum
groups associated with generalized Kac–Moody algebras g — and he also showed that, for
a generic q, the Verma modules and the unitarizable highest weight modules over g can
be deformed to those over Uq(g). In [5], Jeong, Kang and Kashiwara developed the crystal
basis theory for quantum generalized Kac–Moody algebras. As in the Kac–Moody algebra
case, they showed that there exist a crystal basis B(∞) for the negative part of a quantum
generalized Kac–Moody algebra and a crystal basis B(λ) for the irreducible highest weight
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274 DONG-UY SHIN

module V (λ) with a dominant integral highest weight λ. However, unfortunately, there is no
explicit realization of crystal bases over quantum generalized Kac–Moody algebras using some
combinatorial objects.

Recently, in [6], Jeong, Kang, Kashiwara and the author introduced the notion of abstract
crystals for quantum generalized Kac–Moody algebras, and the embedding of crystals Ψι :
B(∞) ↪→ Z∞

�0,ι, where ι is an infinite sequence from the index set of simple roots. This
embedding Ψι of crystals is an analogue of the crystal embedding (in the Kac–Moody case)
introduced by Kashiwara [14]. However, as in the Kac–Moody case, in general it is not easy
to find the image Im Ψι. In this paper, we give an explicit description of Im Ψι using a unified
method introduced by Nakashima and Zelevinsky [18], called the polyhedral realization. The
main obstacle in applying this method to the quantum generalized Kac–Moody algebras was
a quite different tensor product rule of Kashiwara operators of crystal bases.

As applications, we give explicit descriptions of the crystals B(∞) over generalized
Kac–Moody algebras of ranks 2 and 3. Finally, for the Monster Lie algebra, which played an
important role in proving the Moonshine conjecture, we give the explicit description of Im Ψι.
Since the root multiplicity of the Monster Lie algebra is closely related to the ith coefficient
c(i) of the elliptic modular function j(q) − 744, we expect to obtain some properties about the
coefficients c(i).

1. Crystal bases for quantum generalized Kac–Moody algebras

1.1. Quantum generalized Kac–Moody algebras

Let I be a countable index set. A real matrix A = (aij)i,j∈I is called a Borcherds–Cartan
matrix if it satisfies:

(i) aii = 2 or aii � 0 for all i ∈ I,
(ii) aij � 0 if i �= j,
(iii) aij ∈ Z if aii = 2,
(iv) aij = 0 if and only if aji = 0.

Let Ire = {i ∈ I | aii = 2} and I im = {i ∈ I | aii � 0}. Moreover, we say that an index i in Ire

or I im is real or imaginary, respectively.
In this paper, we assume that for all i, j ∈ I, aij ∈ Z, aii ∈ 2Z and A is symmetrizable. That

is, there is a diagonal matrix D = diag(si ∈ Z>0 | i ∈ I) such that DA is symmetric. We set a
Borcherds–Cartan datum (A, P∨, P, Π∨,Π) as follows:

A : a Borcherds–Cartan matrix,

P∨ =
(⊕

i∈I

Zhi

)
⊕

(⊕
i∈I

Zdi

)
: a free abelian group,

P = {λ ∈ h∗ |λ(P∨) ⊂ Z} : the weight lattice,
Π∨ = {hi | i ∈ I} ⊂ h : the set of simple coroots,
Π = {αi | i ∈ I} ⊂ h∗ : the set of simple roots.

Here, h = Q
⊗

Z P∨, and the simple roots αi (i ∈ I) are defined by

〈hj , αi〉 = aji and 〈dj , αi〉 = δji.

We denote by P+ = {λ ∈ P | 〈hi, λ〉 � 0 for all i ∈ I} the set of dominant integral weights.
We also use the notation Q =

⊕
i∈I Zαi and Q+ =

∑
i∈I Z�0αi.

For an indeterminate q, set qi = qsi and define

[n]i =
qn
i − q−n

i

qi − q−1
i

, [n]i! =
n∏

k=1

[k]i,
[
m
n

]
i

=
[m]i!

[n]i! [m − n]i!
.
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 275

The quantum generalized Kac–Moody algebra Uq(g) associated with a Borcherds–Cartan
datum (A, P∨, P, Π∨,Π) is the associative algebra over Q(q) with 1 generated by the elements
ei, fi (i ∈ I) and qh (h ∈ P∨) with the following defining relations:

q0 = 1, qhqh′
= qh+h′

for h, h′ ∈ P∨,

qheiq
−h = qαi(h)ei, qhfiq

−h = q−αi(h)fi for h ∈ P∨, i ∈ I,

eifj − fjei = δij
qsihi − q−sihi

qi − q−1
i

for i, j ∈ I,

1−aij∑
k=0

(−1)k

[
1 − aij

k

]
i

e
1−aij−k
i eje

k
i = 0 for aii = 2, i �= j,

1−aij∑
k=0

(−1)k

[
1 − aij

k

]
i

f
1−aij−k
i fjf

k
i = 0 for aii = 2, i �= j,

eiej − ejei = fifj − fjfi = 0 if aij = 0.

Let us denote by U+
q (g) and U−

q (g) the subalgebra of Uq(g) generated by the elements ei and
fi, respectively.

1.2. Crystal bases

The category Oint consists of Uq(g)-modules M satisfying the following properties:
(i) M =

⊕
μ∈P Mμ, where Mμ = {v ∈ M | qhv = q〈h,μ〉v for all h ∈ P∨} is finite-dimen-

sional;
(ii) there exist finitely many elements λ1, . . . , λs ∈ P such that wt(M) ⊂

⋃s
j=1(λj − Q+),

where wt(M) = {μ ∈ P | Mμ �= 0};
(iii) if aii = 2, then the action of fi on M is locally nilpotent; that is, for any m ∈ M there

exists a positive integer N such that f̃N
i m = 0;

(iv) if aii � 0, then 〈hi, μ〉 ∈ Z�0 for every μ ∈ wt(M);
(v) if aii � 0 and 〈hi, μ〉 = 0, then f̃iMμ = 0;
(vi) if aii � 0 and 〈hi, μ〉 � −aii, then ẽiMμ = 0.
For instance, the irreducible highest weight module V (λ) = Uq(g)uλ with λ ∈ P+, defined

by the relations:
(i) uλ has weight λ,
(ii) eiuλ = 0 for all i ∈ I,
(iii) f

〈hi,λ〉+1
i uλ = 0 for any i ∈ Ire,

(iv) fiuλ = 0 if 〈hi, λ〉 = 0,
belongs to Oint. Moreover, the category Oint is semisimple and every simple object in Oint is
isomorphic to the irreducible highest weight module V (λ) with λ ∈ P+; see [5].

Fix an index i ∈ I, and for k � 0, set f
(k)
i = fk

i /[k]i! if i is real, and f
(k)
i = fk

i if i is imaginary.
Let M be a Uq(g)-module in Oint. It was shown in [5] that every weight vector v ∈ Mλ can be
written uniquely as

v =
∑
k�0

f
(k)
i vk,

where: (i) vk ∈ Ker ei ∩ Mλ+kαi , (ii) if aii = 2 and 〈hi, λ + nαi〉 < n, then vn = 0, and (iii) if
aii � 0, n > 0 and 〈hi, λ + nαi〉 = 0, then vn = 0. This expression is called the i-string
decomposition of v. The Kashiwara operators ẽi and f̃i on M are defined by

ẽiv =
∑
k�1

f
(k−1)
i vk, f̃iv =

∑
k�0

f
(k+1)
i vk.
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276 DONG-UY SHIN

Let A0 = {f/g ∈ Q(q) | f, g ∈ Q[q], g(0) �= 0} be the localization of Q(q) at (q). A crystal
basis of M is a pair (L, B) such that:

(i) L is a free A0-submodule of M such that M ∼= Q(q)
⊗

A0
L;

(ii) B is a Q-basis of L/qL ∼= Q
⊗

A0
L;

(iii) L =
⊕

λ∈P Lλ, where Lλ = L ∩ Mλ;
(iv) B =

⊔
λ∈P Bλ, where Bλ = B ∩ (Lλ/qLλ);

(v) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I;
(vi) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I;
(vii) for all b, b′ ∈ B and i ∈ I, f̃ib = b′ if and only if b = ẽib

′.
It was proved in [5] that every M ∈ Oint has a crystal basis unique up to an automorphism.

For λ ∈ P+, there is a unique crystal basis (L(λ), B(λ)) of V (λ), where

L(λ) = A0-span {f̃i1 · . . . · f̃ir
vλ | ik ∈ I, r ∈ Z�0},

B(λ) = {f̃i1 · . . . · f̃ir
vλ + qL(λ) ∈ L(λ)/qL(λ)} \ {0}.

Fix i ∈ I. For any P ∈ U−
q (g), there exist unique Q, R ∈ U−

q (g) such that

eiP − Pei =
qsihiQ − q−sihiR

qi − q−1
i

.

We define the endomorphisms e′
i, e

′′
i : U−

q (g) → U−
q (g) by

e′
i(P ) = R, e′′

i (P ) = Q.

Then every u ∈ U−
q (g) can be written uniquely as

u =
∑
k�0

f
(k)
i uk,

where e′
iuk = 0 for all k � 0 and uk = 0 for k  0. Moreover, we have uk = q

aiik(k−1)/4
i Pie

(k)
i u,

which is called the i-string decomposition of u; see [5]. The Kashiwara operators ẽi, f̃i on U−
q (g)

are defined by

ẽiu =
∑
k�1

f
(k−1)
i uk, f̃iu =

∑
k�0

f
(k+1)
i uk.

The crystal basis of U−
q (g) is a pair (L, B) such that:

(i) L is a free A0-submodule of U−
q (g) such that U−

q (g) ∼= Q(q)
⊗

A0
L;

(ii) B is a Q-basis of L/qL ∼= Q
⊗

A0
L;

(iii) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I;
(iv) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I;
(v) for all b, b′ ∈ B and i ∈ I, f̃ib = b′ if and only if b = ẽib

′.
It was proved in [5] that there is a unique crystal basis (L(∞), B(∞)) of U−

q (g), where

L(∞) = A0-span {f̃i1 · . . . · f̃ir · 1 | ik ∈ I, r ∈ Z�0},

B(∞) = {f̃i1 · . . . · f̃ir · 1 + qL(∞) ∈ L(∞)/qL(∞)} \ {0}.

2. Abstract crystals

In this section, we recall the notion of abstract crystals and their examples introduced in [6].
Moreover, we introduce a crystal Z∞

�0,ι associated with an infinite sequence ι.
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 277

2.1. Abstract crystals

An abstract crystal for Uq(g) or a Uq(g)-crystal is a set B together with the maps wt : B → P ,
ẽi, f̃i : B → B ∪ {0} (i ∈ I) and εi, ϕi : B → Z ∪ {−∞} (i ∈ I) such that for all b ∈ B, we have:

(i) wt(ẽib) = wt(b) + αi if i ∈ I and ẽib �= 0,
(ii) wt(f̃ib) = wt(b) − αi if i ∈ I and f̃ib �= 0,
(iii) for any i ∈ I and b ∈ B, ϕi(b) = εi(b) + 〈hi,wt(b)〉,
(iv) for any i ∈ I and b, b′ ∈ B, f̃ib = b′ if and only if b = ẽib

′,
(v) for any i ∈ I and b ∈ B such that ẽib �= 0, we have:

(a) εi(ẽib) = εi(b) − 1 and ϕi(ẽib) = ϕi(b) + 1 if i ∈ Ire;
(b) εi(ẽib) = εi(b) and ϕi(ẽib) = ϕi(b) + aii if i ∈ I im;

(vi) for any i ∈ I and b ∈ B such that f̃ib �= 0, we have:
(a) εi(f̃ib) = εi(b) + 1 and ϕi(f̃ib) = ϕi(b) − 1 if i ∈ Ire;
(b) εi(f̃ib) = εi(b) and ϕi(f̃ib) = ϕi(b) − aii if i ∈ I im;

(vii) for any i ∈ I and b ∈ B such that ϕi(b) = −∞, we have ẽib = f̃ib = 0.
Let B1 and B2 be crystals. A morphism of crystals or a crystal morphism ψ : B1 → B2 is a

map ψ : B1 → B2 such that:
(i) wt(ψ(b)) = wt(b) for all b ∈ B1;
(ii) εi(ψ(b)) = εi(b), ϕi(ψ(b)) = ϕi(b) for all b ∈ B1, i ∈ I;
(iii) if b ∈ B1 and i ∈ I satisfy f̃ib ∈ B1, then we have ψ(f̃ib) = f̃iψ(b).

For a morphism of crystals ψ : B1 → B2, ψ is called a strict morphism if

ψ(ẽib) = ẽiψ(b), ψ(f̃ib) = f̃iψ(b) for all i ∈ I and b ∈ B1.

Here we understand that ψ(0) = 0. Moreover, ψ is called an embedding if the underlying map
ψ : B1 → B2 is injective. In this case, we say that B1 is a subcrystal of B2. If ψ is a strict
embedding, then we say that B1 is a full subcrystal of B2.

Example 2.1. (a) The crystal basis B(λ) of the irreducible highest weight module V (λ)
is an abstract crystal, where the maps εi, ϕi (i ∈ I) are given by

εi(b) = max{k � 0 | ẽk
i b �= 0}, ϕi(b) = max{k � 0 | f̃k

i b �= 0} for i ∈ Ire,

εi(b) = 0, ϕi(b) = 〈hi,wt(b)〉 for i ∈ I im.

(b) The crystal basis B(∞) of U−
q (g) is an abstract crystal, where the maps εi, ϕi (i ∈ I) are

given by

εi(b) =

{
max{k � 0 | ẽk

i b �= 0} for i ∈ Ire,
0 for i ∈ I im,

ϕi(b) = εi(b) + 〈hi,wt(b)〉 for i ∈ I.

Example 2.2. For i ∈ I, let Bi = {bi(−n) | n � 0} and define

wt(bi(−n)) = −nαi,

ẽibi(−n) = bi(−n + 1), f̃ibi(−n) = bi(−n − 1),

ẽjbi(−n) = f̃jbi(−n) = 0 if j �= i,

εi(bi(−n)) = n, ϕi(bi(−n)) = −n if i ∈ Ire,

εi(bi(−n)) = 0, ϕi(bi(−n)) = 〈hi,wt(bi(−n))〉 = −naii if i ∈ I im,

εj(bi(−n)) = ϕj(bi(−n)) = −∞ if j �= i.

Here, we understand that bi(−n) = 0 for n < 0. Then Bi is an abstract crystal, and it is called
an elementary crystal [6].
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278 DONG-UY SHIN

We define the tensor product of a pair of crystals as follows: for two crystals B1 and B2, their
tensor product B1 ⊗ B2 is {b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2} with the following crystal structure. The
maps wt, εi, ϕi are given by

wt(b ⊗ b′) = wt(b) + wt(b′),
εi(b ⊗ b′) = max(εi(b), εi(b′) − 〈hi,wt(b)〉),

ϕi(b ⊗ b′) = max(ϕi(b) + 〈hi,wt(b′)〉, ϕi(b′)).

For i ∈ I, we define

f̃i(b ⊗ b′) =

{
f̃ib ⊗ b′ if ϕi(b) > εi(b′),
b ⊗ f̃ib

′ if ϕi(b) � εi(b′).

For i ∈ Ire, we define

ẽi(b ⊗ b′) =

{
ẽib ⊗ b′ if ϕi(b) � εi(b′),
b ⊗ ẽib

′ if ϕi(b) < εi(b′),

and for i ∈ I im we define

ẽi(b ⊗ b′) =

⎧⎪⎨
⎪⎩

ẽib ⊗ b′ if ϕi(b) > εi(b′) − aii,
0 if εi(b′) < ϕi(b) � εi(b′) − aii,
b ⊗ ẽib

′ if ϕi(b) � εi(b′).

This tensor product rule is different from the one given in [5]. However, when B1 = B(λ) and
B2 = B(μ) for λ, μ ∈ P+, the two rules coincide. Note that by the definition above, B1 ⊗ B2
is a crystal. Moreover, it is not difficult to see that the associativity law for the tensor product
holds [6].

2.2. Crystal structure of Z∞
�0,ι

Let ι = (. . . , ik, . . . , i1) be an infinite sequence such that

ik �= ik+1 and #{k | ik = i} = ∞ for any i ∈ I. (2.1)

Now, we give a crystal structure Z∞
�0,ι on the set of infinite sequences of non-negative integers

Z∞
�0 := {(. . . , xk, . . . , x1) | xk ∈ Z�0 and xk = 0 for k  0}

associated with ι as follows. Let −→x = (. . . , xk, . . . , x1) be an element of Z∞
�0. For k � 1, we

define

σk(−→x ) =

⎧⎪⎪⎨
⎪⎪⎩

xk +
∑
j>k

〈hik
, αij 〉xj if ik ∈ Ire,

∑
j>k

〈hik
, αij 〉xj if ik ∈ I im.

(2.2)

Let

σ(i)(−→x ) = maxk:ik=i{σk(−→x )},

nf = min{k | ik = i, σk(−→x ) = σ(i)(−→x )},

ne =

{
max{k | ik = i, σk(−→x ) = σ(i)(−→x )} if i ∈ Ire,
nf if i ∈ I im.

Now, we define

f̃i
−→x = (xk + δk,nf

)k�1,
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 279

and

ẽi
−→x =

{
(xk − δk,ne)k�1 if −→x satisfies the condition (EC),
0 otherwise,

(2.3)

where the condition (EC) is as follows:

(EC) (i) i ∈ Ire : σ(i)(−→x ) > 0,

(ii) i ∈ I im : for k = ne with k(−) �= 0,

xk > 1, or xk = 1 and
∑

k(−)<j<k

〈hi, αij
〉xj < 0.

Here, k(−) is the maximal index j < k such that ij = ik. We also define

wt(−→x ) = −
∞∑

j=1

xjαij , εi(−→x ) = σ(i)(−→x ), ϕi(−→x ) = 〈hi,wt(−→x )〉 + εi(−→x ).

It is easy to see that Z∞
�0 is a crystal. We denote this crystal by Z∞

�0,ι.

Remark 2.3. Since xk = 0 for k  0, it is clear that εi(−→x ) = 0 for each i ∈ I im, and so
ϕi(−→x ) = 〈hi,wt(−→x )〉.

2.3. Embedding of crystals

Proposition 2.4 [6]. For all i ∈ I, there exists a unique strict embedding

Ψi : B(∞) −→ B(∞) ⊗ Bi such that u∞ �−→ u∞ ⊗ bi(0),

where u∞ is the highest weight vector in B(∞).

Proposition 2.4 yields a procedure to determine the structure of the crystal B(∞) in terms
of elementary crystals. Take an infinite sequence ι = (. . . , i2, i1) in I such that every i ∈ I
appears infinitely many times. For each N � 1, taking the composition of crystal embeddings
repeatedly, we obtain a strict crystal embedding

Ψ(N) := (ΨiN
⊗ id⊗ . . . ⊗ id) ◦ . . . ◦ (Ψi2 ⊗ id) ◦ Ψi1 :

B(∞) ↪→ B(∞) ⊗ Bi1 ↪→ B(∞) ⊗ Bi2 ⊗ Bi1 ↪→ · · · ↪→ B(∞) ⊗ BiN
⊗ . . . ⊗ Bi1 . (2.4)

It is easily seen that, for any b ∈ B, there exists an N > 0 such that

Ψ(N)(b) = u∞ ⊗ biN
(−xN ) ⊗ . . . ⊗ bi1(−x1)

for some x1, . . . , xN ∈ Z�0 and xk = 0 for k > N . Thus the sequence (. . . , 0, xN , . . . , x1) belongs
to Z∞

�0,ι, and so we obtain a map

Ψι : B(∞) −→ Z∞
�0,ι

b �−→ (. . . , 0, xN , . . . , x1).

We can easily see that it is a strict embedding (see also [6]).

3. Polyhedral realizations of B(∞)

In [18], Nakashima and Zelevinsky gave the polyhedral realizations of the crystal bases B(∞)
of the negative parts U−

q (g) of the quantum groups Uq(g) associated with Kac–Moody algebras.
In this section, we extend their theory to the case of quantum generalized Kac–Moody algebras.
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280 DONG-UY SHIN

3.1. Polyhedral realizations of B(∞)

Let ι = (ik)k�1 be a sequence of indices satisfying (2.1). Let Q∞ be an infinite-dimensional
vector space

Q∞ = {−→x = (. . . , xk, . . . , x1) | xk ∈ Q and xk = 0 for k  0}.

For a linear functional ψ ∈ (Q∞)∗, we write ψ(−→x ) =
∑

k�1 ψkxk (ψk ∈ Q). For each k � 1, we
denote by k(+) (resp. k(−)) the minimal (resp. maximal) index j > k (resp. j < k) such that
ij = ik. Let βk ∈ (Q∞)∗ be a linear form

βk(−→x ) = σk(−→x ) − σk(+)(−→x )

=

⎧⎪⎪⎨
⎪⎪⎩

xk +
∑

k<j<k(+)

〈hik
, αij 〉xj + xk(+) if ik ∈ Ire,

∑
k<j�k(+)

〈hik
, αij

〉xj if ik ∈ I im,

(3.1)

and we set β0(−→x ) = 0. Then, we define a piecewise-linear operator Sk = Sk,ι on (Q∞)∗ by

Sk(ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ − ψkβk if ψk > 0, ik ∈ Ire,
ψ − ψk(xk +

∑
k<j<k(+)

〈hik
, αij 〉xj − xk(+)) if ψk > 0, ik ∈ I im,

ψ − ψkβk(−) if ψk � 0.

Let

Θι = {Sjl
· . . . · Sj1xj0 | l � 0, j0, . . . , jl � 1}

be the set of linear forms obtained from the coordinate forms xj by applying transformations
Sk. Moreover, for a given s, t � 1 (t > s), let Θs\t

ι be the subset of Θι of linear forms obtained
from the coordinate forms xs by applying transformations Sk with k �= t; that is,

Θs\t
ι = {Sjl

· . . . · Sj1xs | l � 0, s, j1, . . . , jl � 1},

where j1, . . . , jl �= t. We impose on ι the positivity assumption given in [18]. That is,

if k(−) = 0, then ψk � 0 for any ψ =
∑

ψjxj ∈ Θι. (3.2)

Then we have the following main theorem.

Theorem 3.1. Let ι be a sequence of indices satisfying (2.1) and (3.2). Let Ψι : B(∞) ↪→
Z∞

�0,ι be the crystal embedding. Then Im Ψι is the set Γι consisting of −→x ∈ Z∞
�0,ι satisfying

the following conditions:
(i) ψ(−→x ) � 0 for any ψ ∈ Θι;
(ii) for each t with it ∈ I im, if xt �= 0 and t(−) �= 0, then∑

t(−)<j<t

〈hit , αij 〉xj < 0. (3.3)

In addition, if 〈hit , αij 〉xj = 0 (t(−) < j < t) for all j with ij ∈ I im, then there exists an
integer p (t(−) < p < t) such that ip ∈ Ire,

〈hit , αip〉xp < 0 and ψ(−→x ) > 0 for any ψ ∈ Θp\t
ι . (3.4)

We prove the theorem in Subsection 3.2.
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 281

Corollary 3.2. Assume that all elements of I are imaginary; that is, I = I im. Then the
image of the crystal embedding Im Ψι is equal to the set of −→x ∈ Z∞

�0,ι satisfying (3.3) of
Theorem 3.1.

Proof. By a simple calculation, it is easy to see that the set Θι consists of the linear
combinations of the coordinate forms xj with non-negative coefficients, which completes
the proof.

Now, we consider the case where the cardinality of Ire is 1. Then it is easy to see that Sjxj

is a linear combination of the coordinate forms xk with non-negative coefficients except for
ij ∈ Ire. If ij ∈ Ire, then

Sjxj = −
∑

j<t<j(+)

〈hij
, αit

〉xt − xj(+) ,

and
(i) if k = j(+), then SkSjxj is xj ;
(ii) if j < k < j(+) and 〈hik

, αij 〉 < 0, then SkSjxj is a linear combination of the coordinate
forms xt with non-negative coefficients;

(iii) if k does not belong to cases (i) and (ii), then SkSjxj is Sjxj itself.
Therefore, it is easy to see that condition (i) of Theorem 3.1 is changed to

Sjxj � 0 for all j with ij ∈ Ire. (3.5)

Moreover, for given p, t in Theorem 3.1 (ii), since ψt > 0 for any ψ ∈ Θp\t
ι , the above (i)–(iii)

imply that the condition Spxp > 0 is the same as the condition that ψ(−→x ) > 0 for all ψ ∈ Θp\t
ι .

Finally, by the above (i)–(iii), it is clear that any sequence ι satisfies the positivity assumption
(3.2). Therefore, we have the following simple but important corollary.

Corollary 3.3. Let I be an index set such that the cardinality of Ire is 1, and let ι be a
sequence of indices in I satisfying (2.1). Then the image Im Ψι of the crystal embedding is the
set Γι of −→x ∈ Z∞

�0,ι satisfying the following conditions.
(i) Sjxj � 0 for all j with ij ∈ Ire.
(ii) For each t with it ∈ I im, if xt �= 0 and t(−) �= 0, then∑

t(−)<j<t

〈hit
, αij

〉xj < 0.

In addition, if 〈hit , αij 〉xj = 0 (t(−) < j < t) for all ij ∈ I im, then there exists an integer p
(t(−) < p < t) such that ip ∈ Ire,

〈hit , αip〉xp < 0 and Spxp > 0.

Example 3.4. Assume that I = {1, 2} and ι = (. . . , 2, 1, 2, 1). Set

α1(h1) = −a, α1(h2) = −c, α2(h1) = −b and α2(h2) = 2,

where a, b, c ∈ Z�0. Then Ire = {2}, I im = {1}, and if k � 3, then k(−) �= 0. Therefore, for each
k � 1, if x2k+1 �= 0, then we have∑

2k−1<j<2k+1

〈h1, αij
〉xj = −bx2k < 0.
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282 DONG-UY SHIN

Moreover, since x2k > 0 and i2k = 2 ∈ Ire, we have S2kx2k = x2k − β2k = cx2k+1 − x2k+2 > 0.
Therefore, by Corollary 3.3 the image of the crystal embedding Im Ψι is given by the subset
Γι of −→x ∈ Z∞

�0,ι as follows.
(a) When b = c = 0,

xk = 0 for k � 3.

(b) When neither b nor c is 0,
(i) for each k � 1, we have cx2k+1 − x2k+2 > 0 unless x2k+1 = x2k+2 = 0,
(ii) for each k � 1, if x2k+1 �= 0, then x2k > 0.

3.2. The proof of Theorem 3.1

We know that Im Ψι is a subcrystal of Z∞
�0,ι obtained by applying the Kashiwara operators f̃i

to Ψι(u∞) =
−→
0 = (. . . , 0, 0, 0) and

−→
0 belongs to Γι. Therefore, in order to prove that Im Ψι ⊂

Γι, it suffices to show that Γι is closed under all f̃i. Let −→x ∈ Γι and i ∈ I. Suppose that
f̃i

−→x = (. . . , xk + 1, . . . , x1). Since

ψ(f̃i
−→x ) = ψ(−→x ) + ψk � ψk for any ψ ∈ Θι,

in order to prove (i), it is enough to consider the case when ψk < 0. By the positivity condition
(3.2) of ι, we have k(−) � 1. By (2.2) and the definition of Kashiwara operator f̃i on Z∞

�0,ι, we
have σk(−→x ) > σk(−)(−→x ) (indeed, when ik ∈ I im, we have σk(−→x ) = 0 and σk(−)(−→x ) < 0), and so

βk(−)(−→x ) = σk(−)(−→x ) − σk(−→x ) � −1.

Therefore,

ψ(f̃i
−→x ) = ψ(−→x ) + ψk

� ψ(−→x ) − ψkβk(−)(−→x )
= (Skψ)(−→x ) � 0. (3.6)

Now, suppose that f̃i
−→x does not satisfy the condition (3.3). Then k = t, it ∈ I im and

xt = 0,
∑

t(−)<j<t

〈hit
, αij

〉xj � 0 in −→x .

However, since 〈hit , αij
〉xj � 0 for all t(−) < j < t, we have

∑
t(−)<j<t〈hit

, αij
〉xj = 0, and this

cannot occur, by the definition of Kashiwara operator f̃i.
Now, we show that f̃i

−→x satisfies the condition (3.4). First, suppose that there exist p and
t satisfying (3.4) in −→x . Since ψ(f̃i

−→x ) = ψ(−→x ) + ψk, it is enough to consider the case ψk < 0.
Note that by the condition of p such that 〈hit , αip

〉 < 0, and the definition of the set Θp\t
ι , we

have ψt � 0 for all ψ ∈ Θp\t
ι . Therefore, it suffices to consider the case k �= t. If k �= t, then

Skψ ∈ Θp\t
ι , and by (3.6) ψ(f̃i

−→x ) = ψ(−→x ) + ψk � (Skψ)(−→x ) > 0.
Second, suppose that:
(a) k = t, xt = 0,
(b) for any j such that t(−) < j < t, ij ∈ Ire and 〈hit , αij 〉xj < 0,

there is a ψ ∈ Θj\t
ι such that ψ(−→x ) = 0 in −→x .

Note that since j is an index such that 〈hit , αij 〉 < 0, by the definition of ψ ∈ Θj\t
ι we have

ψt > 0 for all ψ ∈ Θj\t
ι \ {xj}. Here, xj ∈ Θj\t

ι cannot satisfy condition (b). Therefore,

ψ(f̃i
−→x ) = ψ(−→x ) + ψt � ψt > 0 for all ψ ∈ Θj\t

ι \ {xj}.

Therefore, Im Ψι ⊂ Γι.
For the proof of the reverse inclusion Γι ⊂ Im Ψi, note that for any −→x ∈ Z∞

�0,ι \ {−→
0 }

satisfying condition (ii), there is an i ∈ I such that ẽi
−→x �= 0. Indeed, for the largest number
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 283

k such that xk > 0 in −→x , if ik ∈ Ire, then σk(−→x ) = xk > 0 and so σ(ik)(−→x ) � σk(−→x ) > 0,
which implies that ẽik

−→x �= 0. If ik ∈ I im, then nf = ne = k by condition (3.3), and so we have
ẽik

−→x �= 0.
Since Γι ⊂ Z∞

�0,ι, if Γι is closed under the Kashiwara operators ẽi for all i ∈ I, then for any
−→x ∈ Γι, there are i1, . . . , it ∈ I such that

ẽit · . . . · ẽi1
−→x =

−→
0 .

Moreover, this means that
f̃i1 · . . . · f̃it

−→
0 = −→x ,

which implies that Γι ⊂ Im Ψi. Hence, it is enough to show that ẽiΓι ⊂ Γι ∪ {0} for all i ∈ I.
Let −→x ∈ Γι and i ∈ I. Suppose that ẽi

−→x = (. . . , xk − 1, . . . , x1). Since

ψ(ẽi
−→x ) = ψ(−→x ) − ψk � −ψk for any ψ ∈ Θι,

to prove (i) it suffices to consider the case when ψk > 0. By (2.3), we have

βk(−→x ) = σk(−→x ) − σk(+)(−→x ) � 1 (i ∈ Ire)

and
xk +

∑
k<j<k(+)

〈hi, αij 〉xj − xk(+) � 1 (i ∈ I im).

Therefore,

ψ(ẽi
−→x ) = ψ(−→x ) − ψk

�

⎧⎪⎪⎨
⎪⎪⎩

ψ(−→x ) − ψkβk(−→x ) if i ∈ Ire,

ψ(−→x ) − ψk

(
xk +

∑
k<j<k(+)

〈hi, αij 〉xj − xk(+)

)
if i ∈ I im,

= (Skψ)(−→x ) � 0. (3.7)

Now, suppose that ẽi
−→x does not satisfy condition (ii). First, suppose that ẽi

−→x does not
satisfy (3.3). If ik = i ∈ I im and t(−) < k < t, then by the definition of Kashiwara operator ẽi,
we have 〈hi, αit〉 = 0, and so 〈hit , αi〉 = 0. However, in this case, it is clear that (3.3) holds
in ẽi

−→x . Second, suppose that k is a unique index such that t(−) < k < t with ik ∈ Ire and
〈hit , αik

〉xk < 0 in −→x . In this case, Skxk(−→x ) = xk − βk > 0 by (3.4), and by the definition of
Kashiwara operator ẽi, we have βk > 0. Hence, xk > βk > 0 and so xk > 1. Therefore, ẽi

−→x
satisfies (3.3). Hence it suffices to consider the case where ẽi

−→x does not satisfy condition (3.4).
First, suppose that k = p and xp = 1 in −→x . However, since Spxp(−→x ) = xp − βp > 0, we have
βp � 0. This contradicts the definition of Kashiwara operator ẽi.

Second, suppose that k �= p. If k �= t, then by the same argument as in (3.7), we have
ψ(ẽi

−→x ) > 0 for all ψ ∈ Θp\t
ι . Therefore, it suffices to consider the case that k = t and xt > 1.

However, in this case, by the definition of ẽi on Z∞
�0,ι,

xt +
∑

t<j<t(+)

〈hi, αij 〉xj − xt(+) = xt > 1

and so

ψ(ẽi
−→x ) = ψ(−→x ) − ψt

> ψ(−→x ) − ψt

(
xt +

∑
t<j<t(+)

〈hi, αij
〉xj − xt(+)

)

= (Stψ)(−→x ) � 0. (3.8)

Therefore, Γι is closed under all ẽi.
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284 DONG-UY SHIN

4. Applications: rank 3 case and Monster Lie algebra

In this section, we will give an explicit description of the image of the Kashiwara embedding
for the generalized Kac–Moody algebras of rank 3 and Monster Lie algebras.

4.1. Rank 3 case

Assume that I = {1, 2, 3} and ι = (. . . , 1, 3, 2, 1). Consider the case when 1, 2 ∈ I im and
3 ∈ Ire. Let A be a Borcherds–Cartan matrix

A =

⎛
⎝−a −b −c

−d −e −f
−g −h 2

⎞
⎠ ,

where a, b, c, d, e, f, g, h ∈ Z�0. For each k � 1, we have

S3kx3k = gxk+1 + hxk+2 − xk+3,

Moreover, since I im = {1, 2}, for each k with ik = 1, 2,

∑
k(−)<j<k

〈hik
, αij 〉xj =

{
−bxk−2 − cxk−1 if ik = 1,

−fxk−2 − dxk−1 if ik = 2.

Therefore, by Corollary 3.3, we have the following.

Corollary 4.1. Assume that 1, 2 ∈ I im and 3 ∈ Ire. The image of the crystal embedding
Im Ψι is given by the subset Γι of −→x ∈ Z∞

�0,ι satisfying the following conditions.
(i) gx3k+1 + hx3k+2 − x3k+3 � 0 for k � 1.
(ii) For each k � 1, if x3k+1 > 0 and x3k+2 > 0, then

bx3k−1 + cx3k > 0 and fx3k + dx3k+1 > 0,

respectively. Moreover, if bx3k−1 = 0 and dx3k+1 = 0, then

gx3k+1 + hx3k+2 − x3k+3 > 0.

4.2. Monster Lie algebras

Let I = {−1} ∪ N, and let A = (−(i + j))i,j∈I be a Borcherds–Cartan matrix of charge
m = (c(i) | i ∈ I). Here, c(i) is the coefficient of the elliptic modular function

j(q) − 744 = q−1 + 196884q + 21493760q2 + . . . =
∞∑

i=−1

c(i)qi.

Then we have the associated generalized Kac–Moody algebra called the Monster Lie algebra.
On the other hand, let

I = {−1 = −11} ∪ {it | i ∈ N, t = 1, . . . , c(i)} and A = (−(i + j))p,q∈I ,

where p = il and q = jm for some 1 � l � c(i) and 1 � m � c(j). Then the associated
generalized Kac–Moody algebra is also a Monster Lie algebra. From now on, we adopt the
latter exposition of the Monster Lie algebra. Assume that

ι = (. . . ,−1, 3c(3), . . . , 31, 2c(2), . . . , 21, 1c(1), . . . , 11,−1,

2c(2), . . . , 21, 1c(1), . . . , 11,−1, 1c(1), . . . , 11,−1).

Let I(−1) be the set of positive integers t such that it = −1, that is,

I(−1) = {1} ∪ {b(n) = nc(1) + (n − 1)c(2) + . . . + c(n) + n + 1 | n ∈ N},
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POLYHEDRAL REALIZATION OF CRYSTAL BASES 285

and for any n � 1, we set

σ(n) = c(1) + . . . + c(n).

Theorem 4.2. The image of the Kashiwara embedding Im Ψι is given by the subset Γι of
−→x ∈ Z∞

�0,ι such that:
(i) xc(1)+2 = 0, and for each n � 1,

n∑
k=1

k(xb(n)+σ(k)+1 + . . . + xb(n)+σ(k+1)) − xb(n)+σ(n+1)+1 � 0;

(ii) for each k /∈ I(−1), if xk > 0 and k(−) �= 0, then∑
k(−)<j<k

〈hik
, αij 〉xj < 0.

Moreover, if 〈hik
, αij 〉xj = 0 for all k(−) < j < k with j /∈ I−1, then there exists m � 1

such that k(−) < b(m) < k and
m∑

k=1

k(xb(m)+σ(k)+1 + . . . + xb(m)+σ(k+1)) − xb(m)+σ(m+1)+1 > 0.

Proof. By simple calculation, we have

S1x1 = x1 − (x1 + 〈h−1, α1〉(x2 + . . . + xc(1)+1) + xc(1)+2) = −xc(1)+2,

and for each n � 1

Sb(n)xb(n) = xb(n) −
(

xb(n) +
n+1∑
k=1

〈h−1, αk〉(xb(n)+σ(k−1)+1 + . . . + xb(n)+σ(k))

+ xb(n)+σ(n+1)+1

)

=
n∑

k=1

k(xb(n)+σ(k)+1 + . . . + xb(n)+σ(k+1)) − xb(n)+σ(n+1)+1.

Moreover, it is also easy to see that SjSkxk for all j is a linear combination of the coordinate
forms xj with non-negative coefficients. Therefore, we obtain the results.

Finally, by Theorem 4.2, we have the following character formula of the negative part U−
q (g)

of the quantum Monster Lie algebra Uq(g).

Corollary 4.3. We have

ch U−
q (g) =

∑
−→x ∈Γι

ewt(−→x ) =
∑

−→x ∈Γι

e−
∑∞

j=1 xjαij .
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