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Polyhedral realization of crystal bases for generalized
Kac—Moody algebras

Dong-Uy Shin

ABSTRACT

In this paper, we give a polyhedral realization of the crystal B(oco) of U, (g) for the generalized
Kac—Moody algebras. As applications, we give explicit descriptions of crystals for the generalized
Kac—Moody algebras of rank 2 and 3, and Monster Lie algebras.

Introduction

In his study of Conway and Norton’s Moonshine conjecture [3] for the infinite-dimensional
Z-graded representation V% of the Monster sporadic simple group, Borcherds introduced a
new class of infinite-dimensional Lie algebras called the generalized Kac-Moody algebras
[1, 2]. The structure and representation theories of generalized Kac—Moody algebras are very
similar to those of Kac—-Moody algebras, and a lot of facts about Kac—-Moody algebras can
be extended to generalized Kac—-Moody algebras. The main difference is that the generalized
Kac—Moody algebras may have simple roots with non-positive norms, the multiplicity of which
can be greater than one, called imaginary simple roots, and they may have infinitely many
simple roots.

The quantum groups U,(g) introduced independently by Drinfel’d and Jimbo are
g-deformations of the universal enveloping algebras U(g) of Kac-Moody algebras g; see [4, 7].
The important feature of quantum groups is that the representation theory of U,(g) is the
same as that of U(g). Therefore, to understand the structure of representations over U,(g),
it is enough to understand that of representations over U,(g) for some special parameter ¢
which is easy to treat. The crystal basis theory, which can be viewed as the representation
theory at ¢ = 0, was introduced by Kashiwara [13]. Among others, he showed that there exist
a crystal basis B(oo) for the negative part of a quantum group and a crystal basis B(\)
for the irreducible highest weight module V(\) with a dominant integral highest weight .
Crystal bases are given a structure of coloured oriented graphs, called the crystal graphs,
which reflect the combinatorial structure of integrable modules. Therefore, one of the most
fundamental problems in the crystal basis theory is to construct the crystal basis explicitly. In
many articles, one can find several kinds of realizations of crystal bases using combinatorial
objects (for example, [9-12, 15-18]).

In [8], Kang introduced the quantum generalized Kac-Moody algebras U,(g) — the quantum
groups associated with generalized Kac-Moody algebras g — and he also showed that, for
a generic ¢, the Verma modules and the unitarizable highest weight modules over g can
be deformed to those over U,(g). In [5], Jeong, Kang and Kashiwara developed the crystal
basis theory for quantum generalized Kac-Moody algebras. As in the Kac-Moody algebra
case, they showed that there exist a crystal basis B(oco) for the negative part of a quantum
generalized Kac-Moody algebra and a crystal basis B(X) for the irreducible highest weight
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274 DONG-UY SHIN

module V(\) with a dominant integral highest weight A. However, unfortunately, there is no
explicit realization of crystal bases over quantum generalized Kac-Moody algebras using some
combinatorial objects.

Recently, in [6], Jeong, Kang, Kashiwara and the author introduced the notion of abstract
crystals for quantum generalized Kac-Moody algebras, and the embedding of crystals U, :
B(oo) — Z3;,, where ¢ is an infinite sequence from the index set of simple roots. This
embedding ¥, of crystals is an analogue of the crystal embedding (in the Kac-Moody case)
introduced by Kashiwara [14]. However, as in the Kac-Moody case, in general it is not easy
to find the image Im W,. In this paper, we give an explicit description of Im ¥, using a unified
method introduced by Nakashima and Zelevinsky [18], called the polyhedral realization. The
main obstacle in applying this method to the quantum generalized Kac—-Moody algebras was
a quite different tensor product rule of Kashiwara operators of crystal bases.

As applications, we give explicit descriptions of the crystals B(oo) over generalized
Kac—Moody algebras of ranks 2 and 3. Finally, for the Monster Lie algebra, which played an
important role in proving the Moonshine conjecture, we give the explicit description of Im W, .
Since the root multiplicity of the Monster Lie algebra is closely related to the ith coefficient
(i) of the elliptic modular function j(gq) — 744, we expect to obtain some properties about the
coefficients ¢(7).

1. Crystal bases for quantum generalized Kac—-Moody algebras

1.1. Quantum generalized Kac—Moody algebras

Let I be a countable index set. A real matrix A = (a;;)i jer is called a Borcherds—Cartan

matrix if it satisfies:
(i) a;; =2ora; <0foralliel,

(i) @y <O0if i # j,

(111) Qi S Z if Qi; = 2,

(iv) a;; = 0if and only if a;; = 0.
Let I'* = {i € I | a;; = 2} and I'™ = {i € I | a;; < 0}. Moreover, we say that an index i in ™
or I'™ is real or imaginary, respectively.

In this paper, we assume that for all 4,j € I, a;; € Z, ai; € 2Z and A is symmetrizable. That
is, there is a diagonal matrix D = diag(s; € Zsq | ¢ € I) such that DA is symmetric. We set a
Borcherds—Cartan datum (A, PV, P,1IV,1I) as follows:

A : a Borcherds—Cartan matrix,
pPY = (@ Zhi) @ (@ Zdi> : a free abelian group,
iel iel
P={X\eb*|A(PV) CZ}: the weight lattice,
IV = {h;|i € I} C b : the set of simple coroots,
IT = {a;|i € I} C b* : the set of simple roots.
Here, h = QQ, PV, and the simple roots «; (i € I) are defined by
(hj, ;) = aji and (dj, ;) = 6.
We denote by P ={\ € P|(h;;\) >0 forall i€ I} the set of dominant integral weights.
We also use the notation Q@ = @,c; Za; and Q1 = ), Z>oq.
For an indeterminate ¢, set ¢; = ¢ and define

N | O [

qi — q; b1 n
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The quantum generalized Kac-Moody algebra U,(g) associated with a Borcherds-Cartan
datum (A, PV, P,1IV,1I) is the associative algebra over Q(q) with 1 generated by the elements
ei, fi (i € I) and ¢" (h € PV) with the following defining relations:

qO _ 17 qhqh/ _ qh—i—h/ for h,h/ c P\/’
h _ qm(h)ei’ thiq—h _ q—ai(h)fi for he PV, icl,
sihi _ q—sz:hi

q ..
@ifj _fjei = 5ij7_1 fori,j €1,

1 4

q"eiq”

1—aq;
(1" F _ka”] e; T ek =0 foray =2, i #j,
k=0 i
1—aqj 1
(*1)]C { —ka”] fil_a”_kfjfik =0 fora; =2, i#j,
k=0 i
62'6]‘ - 6]'67; = fzf] - f]fz =0 if aij =0.

Let us denote by U (g) and U, (g) the subalgebra of U, (g) generated by the elements e; and
fi, respectively.

1.2. Crystal bases

The category Oing consists of U,(g)-modules M satisfying the following properties:
(i) M=€D,cp My, where M, ={ve M| ¢"v = ¢y for all h € PV} is finite-dimen-
sional;
(i) there exist finitely many elements Ay, ..., As € P such that wt(M) C Uj—,(\; — Q+),
where wt(M) = {p € P | M, #0};
(iii) if a;; = 2, then the action of f; on M is locally nilpotent; that is, for any m € M there
exists a positive integer N such that fiN m = 0;
(iv) if ay <0, then (hy, u) € Zxo for every p € wt(M);
(v) if a;; < 0 and (h;, ) = 0, then f;M,, = 0;
(Vl) if (0771 g 0 and <h“,UJ> g —Qjq, then éiM/L =0.
For instance, the irreducible highest weight module V (\) = U,y (g)uy with X\ € PT, defined
by the relations:
(i) wx has weight A,
(ii) ejuy =0 for all i € I,
(iii) f;h“)‘)“u)\ =0 for any i € I*°,
(iV) fi’LL)\ =0if <hi, )\> = 0,
belongs to Oj,. Moreover, the category Ojy, is semisimple and every simple object in Ojp is
isomorphic to the irreducible highest weight module V(\) with A\ € PT; see [5].
Fix an index ¢ € I, and for k > 0, set fi(k) = fk/[k];!if i is real, and fi(k) = fFifiis imaginary.
Let M be a Uy(g)-module in Oiye. It was shown in [5] that every weight vector v € M) can be

written uniquely as
Z k
v = fz( )'Uk,

k>0

where: (i) vy € Kere; N Majka,, (i) if a;; = 2 and (h;, A + na;) < n, then v, = 0, and (iii) if
ai; <0, n>0 and (hs, A +na;) =0, then v, =0. This expression is called the i-string
decomposition of v. The Kashiwara operators ¢; and f; on M are defined by

€;v = Z fi(kfl)vk, fiv = Z fi(kJrl)vk.

k>1 k>0
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276 DONG-UY SHIN

Let Ag={f/9€Q(q)]| f.g € Qlq], g(0) # 0} be the localization of Q(q) at (¢q). A crystal
basis of M is a pair (L, B) such that:
(i) L is a free Ag-submodule of M such that M = Q(q) @4, L;
(ii) Bisa Q-basis of L/qL = Q@ L;
(ili) L=@,cp La, where Ly = LN My;
(iV) B = |_|/\€P B, where By, = BN (L)\/qL)\);
(v) &L C L, ;L C L for all i € I
(vi) B c BU{0}, f;Bc BU{0} for all i € I;
(vii) for all b,b' € B and i € I, f;b =1’ if and only if b = &'.
It was proved in [5] that every M € Ojy has a crystal basis unique up to an automorphism.
For A € P, there is a unique crystal basis (L()\), B()\)) of V(\), where

LN\) = Ag-span {f, -...- fivx |ix € 1,7 € Z>o},
B(\) = {fi, -+ fi,ox +aL(N) € L(N)/qL(M)} \ {0}
Fix i € I. For any P € U, (g), there exist unique @, R € U, (g) such that

qsihiQ _ q*Sihz‘R
a—q; "
el Uy (9) = Uy (9) by

1) 71

ei(P)=R, e!/(P)=Q.

K3

eiP—Pei =

We define the endomorphisms e

Then every u € U, (g) can be written uniquely as

u = Z fi(k)uky

k>0

where ejuy, = 0 for all k£ > 0 and ug = 0 for k > 0. Moreover, we have uj, = qf“k(kfl)MPiel(-k)u,
which is called the i-string decomposition of u; see [5]. The Kashiwara operators &;, f; on Uy (9)

are defined by

G = Z fi(k—l)uk’ fou = Z fi(k+l)uk.
E>1 k>0
The crystal basis of U, (g) is a pair (L, B) such that:

(i) L is a free Ag-submodule of U, (g) such that U, (g) = Q(q) @4, L;
(ii) B is a Q-basis of L/qL = Q®,, L
(iii) &L C L, f;L C L for all i € I
(iv) &B Cc BU{0}, f; B C BU{0} for all i € I;
(v) forall b, € Band i € I, f;b =1V if and only if b = &;b’.
It was proved in [5] that there is a unique crystal basis (L(oc), B(oc)) of U, (g), where

L(o0) :Ao—span{fi1 flr ‘1)igel,reZst,
B(oo) ={fi, .. fi, - 1+ qL(o0) € L(00)/qL(c0)} \ {0}.

2. Abstract crystals

In this section, we recall the notion of abstract crystals and their examples introduced in [6].
Moreover, we introduce a crystal ZZ, , associated with an infinite sequence .
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2.1. Abstract crystals

An abstract crystal for U, (g) or a U, (g)-crystal is a set B together with the maps wt : B — P,
€, fi: B— BU{0} (i € I)and &;,¢; : B — Z U {—00} (i € I) such that for all b € B, we have:
i) wt(&b) = wt(b) + o, if i € I and ;b # 0,

i) wt(fib) = wt(b) — o if i € I and f;b # 0,
(iii) for any ¢ € I and b € B, @;(b) = €;(b) + (hs, wt (b)),
iv) for any i € I and b,b’ € B, f;b =1V if and only if b = &;V’,
v) for any ¢ € I and b € B such that é;b # 0, we have:
(a) e;(é;b) =¢€;(b) — 1 and p;(é;b) = gal(b) +1ifie I
(b) £i(E:b) = €i(b) and p;(E:b) = ¢;(b) + ay; if i € I'™;
(vi) for any ¢ € I and b € B such that f;b # 0, we have:
(a) € (fz)—&()"‘land‘%(fz)— (b)_llflelre;
(b) &i(fib) = €i(b) and ¢;(fib) = ¢i(b) — a;; if i € I'™; -

(vii) for any ¢ € I and b € B such that ¢;(b) = —oo, we have é;b = f;b = 0.

Let By and By be crystals. A morphism of crystals or a crystal morphism ¢ : By — B is a
map v : By — By such that:

(i) wt(ep(b)) = wt(b) for all b € By;
(i) &i(¥(b)) = €i(b), @i(¥(b)) = i(b) for all b€ By, i € I; _
(iii) if b € By and i € I satisfy flb € By, then we have 1/1(]2 ) = fiv(b).
For a morphism of crystals ¢ : By — Bs, 1 is called a strict morphism if

V(&) = é;1p(b), O(fib) = fith(b) forallie I and be By.

Here we understand that ¢(0) = 0. Moreover, v is called an embedding if the underlying map
1 : By — By is injective. In this case, we say that B; is a subcrystal of By. If ¢ is a strict
embedding, then we say that B is a full subcrystal of Bs.

ExaMPLE 2.1. (a) The crystal basis B(\) of the irreducible highest weight module V()
is an abstract crystal, where the maps ¢;, p; (i € I) are given by
g;(b) = max{k > 0| &¥b # 0}, @i(b) =max{k >0 fFb#£0} forie I,
gi(b) =0, ©;i(b) = (hi, wt(b)) for i€ I'™.
(b) The crystal basis B(oo) of U, (g) is an abstract crystal, where the maps €;,; (i € I) are
given by
{max{k: 0] &b 0} forie I,
0 for i € I™,
wi(b) = + (h;, wt(b)) foriel.

ExXAMPLE 2.2. For i€ I, let B; = {b;(—n) | n > 0} and define
wt(bi(—n)) = —na,
Eibi(—n) = bi(-n+1), fibi(—n) =bi(-n—1),
&ibi(=n) = fibi(—n) =0 if j #4,
gi(bi(—m)) =n, pi(bi(—n))=-n ifieI™,
ei(bi(—n)) = 0, i(bi(—n)) = (hs, wt(bi(—n))) = —nay; if i€ ™,
gj(bi(=n)) = ¢;(bi(—n)) = —oo if j #i.

Here, we understand that b;(—n) = 0 for n < 0. Then B; is an abstract crystal, and it is called
an elementary crystal [6].
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We define the tensor product of a pair of crystals as follows: for two crystals By and Bs, their
tensor product By ® Bs is {by ® by | by € By, bs € By} with the following crystal structure. The
maps wt, €;, ¢; are given by

wt(b®b') =
gi(b®@b') = max(e;(b
pi(b® V') = max(p; (b

wt(b) + wt(b'),
Jo2ilt) — (o wh(B),
) + (hi, wt(b)), i (b))
For i € I, we define
Fbal) = {fz—b@gb’ i pu(B) > (1),
b fib if i (b) <e&(b).
For i € I*®, we define
e(beb) = {éib?b/ ?f pi(b) = &i(b'),
b@eéeb if pi(b) <ei(b),
and for ¢ € I'™ we define
ebab if o;(b) >e; (V) — ay,
eGbeb)=1<0 if £i(0) < 3(b) < s(V) — ai,
b et if gi(b) < &i(t).

This tensor product rule is different from the one given in [5]. However, when B; = B(\) and
By = B(u) for A\, € P, the two rules coincide. Note that by the definition above, By ® B
is a crystal. Moreover, it is not difficult to see that the associativity law for the tensor product
holds [6].

2.2. Crystal structure of Z,
Let ¢ = (...,i,...,41) be an infinite sequence such that
i #igr1 and #{k|ix =i} = o0 for any i € I. (2.1)
Now, we give a crystal structure Z‘;’O’L on the set of infinite sequences of non-negative integers

Z3o={(- 2k, 71) | 2K € Lo and zp = 0 for k> 0}

associated with ¢ as follows. Let @ = (..., 2x,...,21) be an element of Z3y. For k> 1, we
define
T + Z(hik,aijﬂj if 7y, € I,
on(T) = =k . 2.2
w(@) S iy i) if i € I, @2)
i>k

Let
o () = maxk:ik:i{ak(?)},
ny = min{k | i, =i, op(7) = o (7))},
. {max{k ik =i, ou(T) =0 O(T)} i i eI,
ng if i€ Im,
Now, we define
T = (@ + Ok, i1
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and

67— {(a:k — Ok k1 if @ satisfies the condition (EC), (23)

0 otherwise,
where the condition (EC) is as follows:
(EC) (i)iel™:c®W(Z) >0,
(i) i € I'™ : for k = n. with k) # 0,

T, >1, orzp=1 and Z (hi,aq;)xy < 0.
k() <j<k

Here, k(=) is the maximal index j < k such that i; = 1. We also define
wt(Z) = — ijaij, e(7) = D(T), @i(Z) = (hi,wt(T)) + (7).
j=1
It is easy to see that ZZ is a crystal. We denote this crystal by Z3 ,.

REMARK 2.3. Since zj = 0 for k>> 0, it is clear that ;(7) = 0 for each i € I'™, and so
0i(@) = (hi, (7).

2.3. Embedding of crystals
PROPOSITION 2.4 [6]. For all i € I, there exists a unique strict embedding
U, : B(oo) — B(o0) @ B;  such that ue, — teo @ b;(0),
where uq, is the highest weight vector in B(co).

Proposition 2.4 yields a procedure to determine the structure of the crystal B(oo) in terms
of elementary crystals. Take an infinite sequence ¢ = (...,i9,41) in I such that every i € I
appears infinitely many times. For each N > 1, taking the composition of crystal embeddings
repeatedly, we obtain a strict crystal embedding

TN = (¥, ®id®...®id)o...o (U, ®id) o U, :

It is easily seen that, for any b € B, there exists an N > 0 such that
TN (D) =t @ biy (—zN) @ ... R by, (—x1)

for some z1,...,2ny € Z>o and 2 = 0 for k > N. Thus the sequence (...,0,zn,...,21) belongs
to Z3y ,, and so we obtain a map
U,: B(o) — 0.
b — (..,0,zN,...,21).

We can easily see that it is a strict embedding (see also [6]).

3. Polyhedral realizations of B(co)

In [18], Nakashima and Zelevinsky gave the polyhedral realizations of the crystal bases B(co)
of the negative parts U, (g) of the quantum groups U,(g) associated with Kac-Moody algebras.
In this section, we extend their theory to the case of quantum generalized Kac—-Moody algebras.
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3.1. Polyhedral realizations of B(oc0)

Let ¢ = (ix)r>1 be a sequence of indices satisfying (2.1). Let Q> be an infinite-dimensional
vector space

Q*°={Z=(..,24...,21) | 7x € Q and x = 0 for k > 0}.

For a linear functional ¢ € (Q>)*, we write ¢(7’) = > kst Yk (Y € Q). For each k > 1, we
denote by k) (resp. k(7)) the minimal (resp. maximal) index j > k (resp. j < k) such that
i; = ig. Let By € (Q°)* be a linear form

Bu(T) = ou(T) — 040 (T)

T + Z %,o% x; + e  if iy € I'°
ke<j<k(+) (3.1)

E <hik,0@j>$]‘ if ik S Iim,
k<j<k(H

and we set 50(7) = 0. Then, we define a piecewise-linear operator Sy = S, on (Q™)* by

Y — VxS if ¥y, > 0, iy € I,
Sp(w) = 4 ¥~ ¥l + > (i, ai)w —apen) i g >0, € T,
k<j<k(H)
Y — Y B if ¢ <0
Let
GL :{Sjl ""'Sjlxjo |l207j0""ajl P 1}

be the set of linear forms obtained from the coordinate forms x; by applying transformations
Sk. Moreover, for a given s,t > 1 (t > s), let @f\t be the subset of O, of linear forms obtained
from the coordinate forms x5 by applying transformations Sy with k # ¢; that is,

N ={S;, ... Sjws [120, 8,1,...,5 = 1},
where ji,...,7; # t. We impose on ¢ the positivity assumption given in [18]. That is,
if (=) =0, then ¢, >0 for any ¢ = ijx] €0,. (3.2)

Then we have the following main theorem.

THEOREM 3.1. Let ¢ be a sequence of indices satisfying (2.1) and (3.2). Let ¥, : B(c0) <
ZZ,, be the crystal embedding. Then Im W, is the set I', consisting of T e Z3,,, satisfying
the following conditions:

(i) ¥(@) >0 for any ¢ € O,;

(ii) for each t with i, € I'™, if x; # 0 and t(=) # 0, then

Z <hit;aij>xj < 0. (33)

()<<t

In addition, if (h;,,c;;)x; =0 () < j <t) for all j with i; € I™, then there exists an
integer p (t(~ ) < p < t) such that i, € I'®,

(hi,,c,)x, <0 and () > 0 for any i € O\, (3.4)

We prove the theorem in Subsection 3.2.
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COROLLARY 3.2. Assume that all elements of I are imaginary; that is, I = I'™. Then the
image of the crystal embedding Im ¥, is equal to the set of @ € Z3,, satisfying (3.3) of
Theorem 3.1.

Proof. By a simple calculation, it is easy to see that the set ©, consists of the linear
combinations of the coordinate forms z; with non-negative coefficients, which completes
the proof. |

Now, we consider the case where the cardinality of I is 1. Then it is easy to see that S;z;
is a linear combination of the coordinate forms z; with non-negative coefficients except for
i;j € I'°. If i; € I'®, then

Sjx; = — Z (hijs i) Te — 2500,
j<t<i(H)
and
(i) if k = jP), then Sy, S;z; is x;;
(ii) if j < k < jF) and (hsy,, ;) <0, then S Sjx; is a linear combination of the coordinate
forms x; with non-negative coefficients;
(iii) if & does not belong to cases (i) and (ii), then SpS;z; is S;x; itself.
Therefore, it is easy to see that condition (i) of Theorem 3.1 is changed to

Sjx; 20 forall j withd; € 1™ (3.5)

Moreover, for given p,t in Theorem 3.1 (ii), since v > 0 for any ¢ € O\, the above (1)—(iii)
imply that the condition S,z, > 0 is the same as the condition that (") > 0 for all ) € or\,
Finally, by the above (i)—(iii), it is clear that any sequence ¢ satisfies the positivity assumption
(3.2). Therefore, we have the following simple but important corollary.

COROLLARY 3.3. Let I be an index set such that the cardinality of I'® is 1, and let ¢ be a
sequence of indices in I satisfying (2.1). Then the image Im U, of the crystal embedding is the
setT, of @ € Z%, , satistying the following conditions.

(1) Sjl‘j > 0 for all j with ij e I,
(ii) For each t with i, € I'™, if x; # 0 and t(~) # 0, then

Z (hit,aij>xj < 0.

()<<t

In addition, if (h;,,c;;)z; =0 (t5) < j<t) for all i; € I'™, then there exists an integer p
(t-) < p < t) such that i, € I'°,

(hi,, o, )z, <0 and Spx, > 0.

EXAMPLE 3.4. Assume that [ = {1,2} and ¢ =(...,2,1,2,1). Set
(651 (hl) = —a, Oél(hg) = —C, Ozg(hl) =—-b and Oég(hg) = 2,

where a,b, ¢ € Z>o. Then I'® = {2}, I'™ = {1}, and if k > 3, then k() # 0. Therefore, for each
k> 1, if zop 41 # 0, then we have

Z <h1,0¢ij>$]’ = —bxgy < 0.

2k—1<j<2k+1
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Moreover, since o > 0 and g, = 2 € I, we have SopZor = Top — fok = CTopt1 — Togyz > 0.
Therefore, by Corollary 3.3 the image of the crystal embedding Im ¥, is given by the subset
L, of 7 € Z3,,, as follows.
(a) When b =c¢ =0,
x, = 0 for k > 3.

(b) When neither b nor ¢ is 0,
(i) for each k > 1, we have cxopy1 — Tagso > 0 unless xopr1 = Topo =0,
(ii) for each k > 1, if 2941 # 0, then xof > 0.

3.2. The proof of Theorem 3.1

We know that Im V¥, is a subcrystal of ZZj, , obtained by applying the Kashiwara operators ﬁ

to U, (teo) = ﬁ =(...,0,0,0) and ﬁ belongs to I',. Therefore, in order to prove that Im ¥, C
[',, it suffices to show that I', is closed under all f;. Let ZeTl, and i € 1. Suppose that
f27 =(...,zp+1,...,21). Since

Y(fiT) = () + by =4y, for any ¢ € O,,

in order to prove (i), it is enough to consider the case when ¢, < 0. By the positivity condition
(3.2) of ¢, we have k(=) > 1. By (2.2) and the definition of Kashiwara operator f; on Z%,.,, we
have 0 (2) > o) () (indeed, when i), € I'™, we have o (7)) = 0 and 04— (Z) < 0), and so

B (T) = o) (T) — o (T) < 1.
Therefore,

W(fiT) = () + v
> (7)) — B (T)
= (Sky)(T) = 0. (3.6)

Now, suppose that ﬁ? does not satisfy the condition (3.3). Then k = ¢, i; € I'™ and
xy =0, Z (hi,, i, )r; 20 in .

t() <<t

However, since (h;,, a;;)z; < 0 for all t) < j < t, we hz~we Zt(,)qq(hi“ a;;)r; =0, and this
cannot occur, by the definition of Kashiwara operator f;.

Now, we show that fl? satisfies the condition (3.4). First, suppose that there exist p and
t satisfying (3.4) in 2. Since ¢(f; @) = ¢¥() + g, it is enough to consider the case ¥y, < 0.
Note that by the condition of p such that (h;,, ;) < 0, and the definition of the set ©F \t, we
have ¢, > 0 for all ¥ € @f\t. Therefore, it suffices to consider the case k # t. If k # ¢, then
Sk € O\, and by (3.6) Y(fiT) = () + ¥ > (Skw)(T) > 0.

Second, suppose that:

(a) k=1, 2z =0,

(b) for any j such that t(7) < j < t,i; € I'® and (h;,, a;,)z; <0,

there is a ¢ € ©\' such that Y(T)=0in 7. A

Note that since j is an index such that (h;,,;;) <0, by the definition of ¢ € 0\ we have
Py > 0 for all 1 € ©7\ \{z,}. Here, z; € @7\ cannot satisfy condition (b). Therefore,

V(fHT) = () + e = >0 forall p € O\ {;}.

Therefore, Im¥, C T,. -
For the proof of the reverse inclusion I', C Im¥;, note that for any 2’ € Z3,,\{0}
satisfying condition (ii), there is an ¢ € I such that & # 0. Indeed, for the largest number
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k such that x, >0 in 7, if iy € I™, then ak(7) =1z, >0 and so 0“’”(7) > U/C(?) >0,
which implies that éik7 # 0. If ig € I'™ then ny = n. = k by condition (3.3), and so we have
&, @ #0.

Since I', C ZZ, ,, if I, is closed under the Kashiwara operators é; for all i € I, then for any
7 e I',, there are iq,...,%; € I such that

_)
iyl @ =10,

Moreover, this means that

z ;=

fir oo £ 0 =7,
which implies that I, C Im ¥,;. Hence, it is enough to show that &;I’, C T, U {0} for all i € I.
Let 2 €T, and i € I. Suppose that &7 = («..,z—1,...,21). Since

V(e ) = (T) — v >~y forany Y €0,
to prove (i) it suffices to consider the case when i, > 0. By (2.3), we have

Br(T) = o(T) — o () 21 (i € ')

and
T + Z h“a” —rn =21 (i€ Iim).
k<j<k(H)
Therefore,
V(&) = (@) -
() - mﬁk(?) if i € I',
2 w(?) wk? ((Ek + Z h27 azJ xk(+)> if1 e Iim7
k<j<k()
= (Sp)(Z) = 0. (3.7)

Now, suppose that &7 does not satisfy condition (ii). First, suppose that &7 does not
satisfy (3.3). If i =i € I'™ and t(~) < k < t, then by the definition of Kashiwara operator é;,
we have (h;,a;,) =0, and so (h;,,«;) = 0. However, in this case, it is clear that (3.3) holds
in &7. Second, suppose that k is a unique index such that t(~) < k < ¢ with i; € I and
(hi,, i, )z, <0 in 2. In this case, Spzr(@) =z — Br > 0 by (3.4), and by the definition of
Kashiwara operator €;, we have [ > 0. Hence, xx > B¢ > 0 and so x; > 1. Therefore, &
satisfies (3.3). Hence it suffices to consider the case where & @ does not satisfy condition (3.4).
First, suppose that £ =p and z, =1 in z. However, since prp(7) =1z, — Bp > 0, we have
Bp < 0. This contradicts the definition of Kashiwara operator é;.

Second, suppose that k # p. If k #t, then by the same argument as in (3.7), we have
Y(E;2) >0 for all ¢ € P\, Therefore, it suffices to consider the case that k =t and z; > 1.
However, in this case, by the definition of €; on Z‘;"O’L,

Ty + E (hi, i )xj — 240y = x4 > 1
t<j<t(+)

and so

Y(ET) = Y(T) —
> ’(/J(?) <$t + Z hz, OélJ xt(+)>

t<j<t(+)
= (Swp)(7) > 0. (3.8)

Therefore, T", is closed under all é;.
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4. Applications: rank 3 case and Monster Lie algebra
In this section, we will give an explicit description of the image of the Kashiwara embedding
for the generalized Kac-Moody algebras of rank 3 and Monster Lie algebras.
4.1. Rank 3 case

Assume that I ={1,2,3} and ¢ =(...,1,3,2,1). Consider the case when 1,2 € I'™ and
3 € I". Let A be a Borcherds—Cartan matrix

—a —-b -—c¢
A=|—-d —-e —-f],
—-g —h 2

where a,b,c,d, e, f,g,h € Z>(. For each k > 1, we have
S3kT3k = gThkt1 + hTpro — Tpys,
Moreover, since I'™ = {1,2}, for each k with iy = 1,2,
—bxp_o —crp_1 if iy =1,
S
S o<k Tp_o —dzp_q if i = 2.

Therefore, by Corollary 3.3, we have the following.

COROLLARY 4.1. Assume that 1,2 € I'™ and 3 € I'*®. The image of the crystal embedding
Im W, is given by the subset I, of 7 e Z3,,, satistying the following conditions.

(1) gx3k+1 + hTspro — Tapys = 0 for k > 1.

(ii) For each k > 1, if x3;41 > 0 and x3k42 > 0, then

brsg_1 +crsy >0 and fxs, + d$3k+1 > 0,
respectively. Moreover, if bxs,—1 = 0 and dxsi+1 = 0, then

9T3k41 + hT3gpi2 — 23843 > 0.

4.2. Monster Lie algebras

Let I ={—-1}UN, and let A= (—(i+7j))ijer be a Borcherds-Cartan matrix of charge
m = (c(i) | ¢ € I). Here, (i) is the coefficient of the elliptic modular function

jg) — T44 = g + 196884q + 21493760¢° + ... = > c(i)q".

i=—1

Then we have the associated generalized Kac—-Moody algebra called the Monster Lie algebra.
On the other hand, let

I={-1=-1}U{is|ieN,t=1,...,c(1)} and A= (—(i+J))pger:

where p=14; and ¢ =j, for some 1<I<¢(:) and 1 <m <c¢(j). Then the associated
generalized Kac—Moody algebra is also a Monster Lie algebra. From now on, we adopt the
latter exposition of the Monster Lie algebra. Assume that

L= ( ) _1736(3)7 s 731a20(2)7 sy 21, 15(1)7 sl =1
20(2)7 sy 21, 10(1)7 N T 10(1)7 s 1y, _1)
Let I(_1) be the set of positive integers ¢ such that i; = —1, that is,
Iy = {1} U{b(n) =nc(l) + (n —1)e(2) + ... +c(n) + n+ 1| n € N},

85UB017 SUOWILLIOD) BAITea1D) 3|l idde auy Aq pausenob ae s YO ‘8sn Jo S9|NnJ 10y Afeiq18UIUO /8|1 UO (SUORIPUOD-PUR-SLLLBI OO A3 | 1M ARe.q)1Bu1|UO//SARL) SUORIPUOD PUe SWLB L 38U} 885 *[2202/0T/E2] Uo ARiqiTauluo A|im ‘Ariqr Aisieaun BuedueH Aq #60WP [SWIIZTTT OT/I0p/L00 A8 | M ARIq U UO"20SUTRWIPUO |//SdNY WO} papeojumoq ‘Z ‘8002 ‘0S..697T



POLYHEDRAL REALIZATION OF CRYSTAL BASES 285

and for any n > 1, we set

THEOREM 4.2. The image of the Kashiwara embedding Im W, is given by the subset I, of
T e Z3,,, such that:

(i) @c(1)42 =0, and for each n > 1,

Z E(Zp(n)+o()+1 F - - F To(n)+o(k+1)) = To(n)+o(nt1)+1 = 0;
k=1

(ii) for each k ¢ I(_y), if 2, > 0 and k(=) #£ 0, then
Z (hik,aij>xj < 0.
k() <<k

Moreover, if (h;,,c;,)x; =0 for all k(=) < j < k with j ¢ I_;, then there exists m > 1
such that k(=) < b(m) < k and

Z E(zy(m)+ok)+1 T - - - + To(m)+o(k+1)) = To(m)+o(m+1)+1 > 0.
k=1

Proof. By simple calculation, we have

Sixr =21 — (21 + (ho1,a1) (@2 + ..+ Te)41) + Te()42) = —Te(1)425

and for each n > 1
n+1
Sb(n)Tb(n) = To(n) — <$b(n) D (1, ) (@) o (k1) 41 T - - T Ti(n)ro(h))
k=1

+ wb(n)+a(n+1)+1>
n

= Z E(Zp(n)+ok)+1 F - - F Tom)+o(k+1)) = To(n)+o(nt1)+1
k=1

Moreover, it is also easy to see that S;Spz;, for all j is a linear combination of the coordinate
forms x; with non-negative coefficients. Therefore, we obtain the results. |

Finally, by Theorem 4.2, we have the following character formula of the negative part U; (g)
of the quantum Monster Lie algebra U,(g).

COROLLARY 4.3. We have

ChU Z eWt(?) — Z e el Ty

Zerl, Zerl,
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