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Abstract: We study the baryon vertex (BV) in the presence of medium using DBI action

and the force balance condition between BV and the probe branes. We note that a stable

BV configuration exists only in some of the confining backgrounds. For the system of finite

density, the issue is whether there is a canonical definition for the baryon mass in the

medium. In this work, we define it as the energy of the deformed BV satisfying the force

balance condition (FBC) with the probe brane. With FBC, lengths of the strings attached

to the BV tend to be zero while the compact branes are enlongated to mimic the string.

We attribute the deformation energy of the probe brane to the baryon-baryon interaction.

We show that for a system with heavy quarks the baryon mass drops monotonically as a

function of density while it has minimum in case of light quark system.
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1. Introduction

Recently there has been much interest in studying QCD in terms of AdS/CFT correspon-

dence [1]. One particularly interesting question is the study of nucleon in the dense matter

system. Baryons in AdS/CFT was first introduced by Witten in [2], where baryon is iden-

tified with a compact D-brane wrapping the directions transverse to the Nc color D-branes

with Nc strings attached to it. The baryon charge is carried by the end point of the strings

connecting color and flavor branes. After the chiral model of Sakai-Sugimoto [3, 4] was

developed, baryon was discussed as the instanton on the probe branes [5 – 8] and effective

field theory of baryon was developed in [9] in the context of phenomenological AdS/QCD

model [10].

The baryon density problem was first discussed in [11, 12] where chemical potential is

identified as the asymptotic value of the electric potential on the flavor brane. The D3/D7

system of finite temperature and finite baryon density was analyzed in [13] where both

Minkowski embedding as well as the black hole embedding were considered. However, it

has been argued [14] that in the presence of the quark density the D7 brane has to touch

the black hole horizon because the strings connecting D7 and the horizon can be replaced

by the spiky deformation of the D7 brane. So it is an interesting to ask what happens if

there are baryons not just quarks.
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Figure 1: Black hole embedding in quark phase v.s Minkowski Embeddings in baryon phase

In the presence of baryon vertex (outside the black-hole horizon), the string would

not touch the horizon and there would be no reason for the spiky D-brane to touch the

horizon. See figure 1-a. The issue is then whether there is a baryon vertex [2] for the given

background and given probe branes. The probe branes are pulling the baryon vertex to

sustain it from the gravitational pulling of the core, and it is not obvious why a compact D-

brane does/doesn’t exist in such background a priori. See figure 1b. If a BV configuration

does not exist in the black-hole background, it is not clear whether it exist even at the

confining background. This question is even more compelling since in D4-D8D̄8 setup, a

baryon vertex can exist regardless whether D4 background is in the confining or deconfining

phase [15].

One of the purpose of this paper is to examine this issue in various gravity backgrounds

with the probe probe branes using the equation of motion and Force Balancing Condition

(FBC). We will find that there exist baryon vertex (BV) only in some of the confining

backgrounds, while no such object in any of the black hole backgrounds.

In case there are baryons, interesting question is the density dependence of the baryon

mass when baryon vertex exists. Here the central issue is whether there is any canoni-

cal definition of mass in the absence of Lorentz symmetry. In field theory, to separate

the baryon mass in the medium from the inter-baryon interaction energy has ambiguity.

However, in the BV picture, one can define the baryon mass in the medium simply as the

energy of deformed BV and we can attribute the deformation of the the probe brane to

the Baryon-Baryon interaction. We show numerically that mass drops as density increases

for baryons with heavy quarks, while mass v.s density profile has a minimum for baryons

with light quarks. The latter behavior is shared by the systems D4/D6 and D4/D8D̄8.

The rest of the paper goes as follows. In section 2, we study numerically to show that

in the black hole background, there is no compact D-brane as a solution of a DBI action.

In section 3, we show that there are solutions for the baryon vertices in some confining

backgrounds and study the density dependence of the baryon mass. Here we give a full

details for the D4/D6 system and leave other cases to the appendix. We conclude in section

4.

2. Absence of baryon vertex in the deconfining background

In this section, we consider D6 probe branes embedded in the non-extremal black D4

background and show that the solution of a DBI action for the baryon vertex satisfying the

– 2 –
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force balance condition does not exist. We discuss D3/D7 system briefly in the appendix

(Surprisingly, the result is not completely parallel). We start from the gravity background

describing the deconfined phase in Euclidean signature with imaginary potential is given

by

ds2 =

(

U

R

)3/2
(

f(U)dt2 + d~x2 + dx2
4

)

+

(

R

U

)3/2 (

dU2

f(U)
+ U2dΩ2

4

)

eφ = gs

(

U

R

)3/4

, F4 =
2πNc

Ω4
ǫ4, f(U) = 1−

(U0

U

)3
, R3 = πgsNcl

3
s . (2.1)

Here we compactify the time t ∼ t + βt to consider thermal system and we also compactify

x4 for the dimensionality by x4 ∼ x4 +β4 and give antiperiodic boundary condition for the

fermions to break the SUSY completely. There is a horizon at U = U0, and the Hawking

temperature is given by

T =
1

βτ
=

U0

πR2
, f(U) = 1− U3

0

U3
. (2.2)

Introducing a dimensionless coordinate ξ by dξ2

ξ2 = dU2

U2f(U)
, the background geometry be-

comes

ds2 =

(

U

R

)3/2
(

f(U)dt2 + d~x2 + dx2
4

)

+

(

R

U

)3/2 (

U

ξ

)2
(

dξ2 + ξ2dΩ2
4

)

, (2.3)

where U and ξ are related by

(

U

U0

)3/2

=
1

2

(

ξ3/2 +
1

ξ3/2

)

, and f =

(

1− ξ−3

1 + ξ−3

)2

≡ ω2
−

ω2
+

. (2.4)

A baryon in the three-dimensional theory corresponds to the D4 brane wrapped on

an S4 on which Nc fundamental strings terminate. In this configuration, the background

four-form field strength can couple to the world volume gauge field A(1) via Chern-Simons

term.

The metric (2.3) can be written as

ds2 =

(

U

R

)3/2
(

fdt2 + d~x2 + dx2
4

)

+ R3/2
√

U

(

dξ2

ξ2
+ dθ2 + sin2 θdΩ2

3

)

, (2.5)

We take (t, θα) as world volume coordinates of a compact D4 brane, and turn on the Υ(1)

gauge field on it to have Ftθ 6= 0. As the ansatz for the embedding of compact D4, we

assume the SO(4) symmetry so that position of D4 brane and gauge field depend only on

θ i.e. ξ = ξ(θ), At = At(θ), where θ measure the polar angle of S4 from the north pole.

The induced metric on D4 brane is

ds2
D4 =

(

U

R

)3/2

f(U)dt2 + R3/2
√

U

[(

1 +
ξ′2

ξ2

)

dθ2 + sin2 θdΩ2
3

]

, (2.6)
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where ξ′ = ∂ξ/∂θ. The DBI action for single D4 brane with Nc fundamental string can be

written as

SD4 = −µ4

∫

e−φ
√

det(g + 2πα′F ) + µ4

∫

e−φA(1) ∧G(4)

= τ4

∫

dtdθ sin3 θ



−

√

√

√

√

ω2
−

ω
2/3
+

(ξ2 + ξ′2)− F̃ 2 + 3Ãt





=

∫

dtLD4, (2.7)

where

τ4 = µ4Ω3g
−1
s R3 U0

22/3
=

NcU0

28/3(2πl2s)

F̃ =
2πα′24/6

U0
Ftθ, Ãt =

22/3

U0
· 2πα′At. (2.8)

The dimensionless displacement can be defined as follows;

∂LD4

∂F̃
=

sin3 θF̃
√

(ω2
−
/ω

2/3
+ )(ξ2 + ξ′2)− F̃ 2

≡ −D(θ). (2.9)

Then the equation of motion for gauge field is

∂θD(θ) = −3 sin3 θ. (2.10)

Integrating, we get

D(θ) = 2(2ν − 1) + 3

(

cos θ − 1

3
cos3 θ

)

, (2.11)

where the integration constant ν determines the number of fundamental sting ( νNc strings

are attached at south pole and (1− ν)Nc strings at north pole, we set ν = 0)

By performing Legendre transformation, we can get ‘Hamiltonian’

HD4 = F̃
∂LD4

∂F̃
− LD4

= τ4

∫

dθ

√

√

√

√

ω2
−

ω
2/3
+

(ξ2 + ξ′2)

√

D(θ)2 + sin6 θ. (2.12)

The numerical solution of the equation of motion for above Hamiltonian is drawn at figure 2.

There is no closed D4 brane solution which can be a baryon vertex, except a D4 brane

wrapping blackhole horizon itself. We also get same results of absence of D5 baryon vertex

in D3 deconfing background.

Since there is no candidate for the baryon vertex, there is no point to discuss the baryon

on the D6 brane theory. All the baryon charges exists as quarks (strings attached on it) and

there are no Minkowski embedding in this background. This gravity result is consistent

with that of gauge theory result in deconfined phase: there is no baryon in deconfined

phase. The thermodynamical properties of D6 brane in the blackhole background was

discussed recently in [16], so we do not discuss them here.

– 4 –
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Figure 2: (a) Solution of baryon D4 brane in deconfined phase. (b) Solution near the origin

3. The baryon mass in medium in confining background

The non-supersymmetric geometry for confining background of D4 in Euclidean signature

is given by

ds2 =

(

U

R

)3/2
(

ηµνdxµdxν + f(U)dx2
4

)

+

(

R

U

)3/2 (

dU2

f(U)
+ U2dΩ2

4

)

eφ = gs

(

U

R

)3/4

, F4 =
2πNc

Ω4
ǫ4, f(U) = 1−

(UKK

U

)3
, R3 = πgsNcl

3
s . (3.1)

This background is related to the previous one by the double Wick rotation

x4 ←→ t, t←→ x4, U0 ←→ UKK (3.2)

The Kaluza-Klein mass is defined as the inverse radius of the x4 direction: MKK = 3
2

U
1/2

KK

R3/2
.

While UKK, gs, R are bulk parameters, MMM and g2
YM is the parameter of the gauge theory.

They can be related by

gs =
λ

2πlsNcMKK
, UKK =

2

9
λMKKl2s , R3 =

λl2s
2MKK

, λ = g2
YMNc. (3.3)

Introducing a same dimensionless coordinate ξ as previous section, the bulk geometry

becomes

ds2 =

(

U

R

)3/2
(

dt2 + d~x2 + f(U)dx2
4

)

+

(

R

U

)3/2 (

U

ξ

)2
(

dξ2 + ξ2dΩ2
4

)

, (3.4)

and U , ξ are related by
(

U
UKK

)3/2
= 1

2

(

ξ3/2 + 1
ξ3/2

)

.

3.1 Baryon vertex — D4 brane

In confining phase, we consider same configuration of baryon D4 brane wrapping on S4.

The background metric (3.4) can be written as

ds2 =

(

U

R

)3/2
(

dt2 + fdx2
4 + d~x2

)

+ R3/2
√

U

(

dξ2

ξ2
+ dθ2 + sin2 θdΩ2

3

)

, (3.5)
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We are using same world volume coordinate of D4 brane as previous section. The induced

metric on the compact D4 brane is

ds2
D4 =

(

U

R

)3/2

dt2 + R3/2
√

U

[(

1 +
ξ′2

ξ2

)

dθ2 + sin2 θdΩ2
3

]

, (3.6)

and ξ′ = ∂ξ/∂θ. The DBI action for single D4 brane with Nc fundamental string can be

written as [17]

SD4 = −µ4

∫

e−φ
√

det(g + 2πα′F ) + µ4

∫

e−φA(1) ∧G(4)

= τ4

∫

dtdθ sin3 θ

[

−
√

ω
4/3
+ (ξ2 + ξ′2)− F̃ 2 + 3Ãt

]

=

∫

dtLD4, (3.7)

with t4 = µ4Ω3g
−1
s R3 UKK

22/3
=

NcUKK

28/3(2πl2s)

F̃ =
2πα′Ftθ2

4/6

Ukk
,

Ãt =
22/3

UKK
· 2πα′At. (3.8)

The Legendre transformed ‘Hamiltonian’ is

HD4 = F̃
∂LD4

∂F̃
− LD4

= τ4

∫

dθ

√

ω
4/3
+ (ξ2 + ξ′2)

√

D(θ)2 + sin6 θ, (3.9)

where displacement D(θ) is same as (2.11). Solutions of equation of motion for above

Hamiltonian can be obtained numerically. We set ν = 0 because we assume that all funda-

mental strings are attached at north pole(θ = π). Then we should impose smooth boundary

condition (ξ′(0) = 0 and ξ(0) = ξ0) at θ = 0. Numerical solutions are parameterized by

initial value of ξ0. The solutions corresponding to different ξ0’s are drawn in figure 3. In

this figure, Nc fundamental strings are attached at the cusp. This configuration will be

stable only if there is tension balance between two object.

If we call the position of the cusp of D4 brane by Uc, the force from the D4 brane

tension can be obtained by varying the Hamiltonian of D4 brane with respect to Uc while

keeping other variables;

FD4 =
∂H
∂Uc

∣

∣

∣

∣

∣

fix other values

= NcTF

(

1 + ξ−3
c

1− ξ−3
c

)

ξ′c
√

ξ2
c + ξ′2c

, (3.10)

where TF = 22/3τ4
NcUKK

is tension of fundamental string. The tension of D4 brane is always

smaller or equal to the fundamental string. Therefore, if there were no probe branes, the

– 6 –
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Figure 3: Shape of D4 brane for different ξ0.

cusp should be pulled up to infinity and the final configuration of D4 would be ‘tube-like’

shape as in [18]. So far we considered single compact D4 brane with Nc fundamental

strings. Now we need to study the deformation of the D6 which is pulling the compact D4

brane by fundamental strings.

3.2 Fundamental strings connecting baryon vertex and the probe brane

If we take D4-D6 system with confining background and consider the baryon vertex as

compact D4, both D4 and D6 deform due to the interaction between them through fun-

damental string (F1) and the D4 background. When strings and D-branes are in contact,

the length of the F1 tends to be zero while the D-branes are deformed to replace them for

minimum energy configuration. One may say that “ F1 is the most expensive object of

all branes”. Therefore the strings connecting the D4 and D6 have zero length and the D4

and D6 are contacting at a point. In fact there is no way to connect D-branes of different

dimensionality by a tube-like deformation even before we consider a solution of a DBI

system. The point contact is the only possible configuration.

3.3 Probe D6 brane

Now, we put probe D6 brane where the other end points of fundamental strings are at-

tached. The string endpoints can be understood as point charges on D6 brane. The gauge

potential which couples to this point source is At. The the bulk metric (3.4) can be written

as

ds2 =

(

U

R

)3/2
(

dt2 + d~x2 + f(U)dx2
4

)

+

(

R

U

)3/2 (

U

ξ

)2
(

dρ2 + ρ2dΩ2
2 + dy2 + y2dφ2

)

,

(3.11)

where D6 brane world volume coordinates are (t, ~x, ρ, θα). The embedding ansatz is that

only y depends on ρ and φ = 0. The induced metric on D6 brane is

ds2
D6 =

(

U

R

)3/2

(dt2 + d~x2) +

(

R

U

)3/2 (

U

ξ

)2
[

(1 + ẏ2)dρ2 + ρ2dΩ2
2

]

, (3.12)

– 7 –
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where ẏ = ∂y/∂ρ.

The DBI action for Nf D6 brane is

SD6 =

∫

dtLD6 = −Nfµ6

∫

e−φ
√

det(g + 2πα′F )

= −τ6

∫

dtdρρ2ω
4/3
+

√

ω
4/3
+ (1 + ẏ2)− F̃ 2, (3.13)

where

τ6 =
1

4
Nfµ6V3Ω2g

−1
s U3

KK, F̃ =
2 · 22/3πα′Ftρ

UKK
. (3.14)

We define dimensionless quantity Q̃ from the equation of motion for F̃ ;

∂SD6

∂F̃
=

ρ2ω
4/3
+ F̃

√

ω
4/3
+ (1 + ẏ2)− F̃ 2

≡ Q̃. (3.15)

The hamiltonian is connected to the number of point sources (number of fundamental

strings) Q by

Q̃ =
UKKQ

2 · 22/3πα′τ6
. (3.16)

The ‘Hamiltonian’ can be obtained by Legendre transformation;

HD6 = F̃
∂SD6

∂F̃
− SD6

= τ6

∫

dρ

√

ω
4/3
+

(

Q̃2 + ρ4ω
8/3
+

)

√

1 + ẏ2

= τ6

∫

dρV (ρ)
√

1 + ẏ2 (3.17)

The equation of motion after eliminating the gauge field is written explicitly by

ÿ

1 + ẏ2
+

∂ log V

∂ρ
ẏ − ∂ log V

∂y
= 0, (3.18)

and the Gauss-law constraint gives

F̃ =
Q̃ω

4/3
+

√

1 + ẏ2

√

Q̃2 + ρ4ω
8/3
+

. (3.19)

We can solve the eqaution (3.18) if boundary condition is given: In Q̃ = 0 case, the solutions

of probe D6 brane embedding are drawn in figure 4(a). Here we impose ẏ(0) = 0 for the

smoothness. The value of y at the infinity corresponds to mq. In Q̃ 6= 0 case, there are

fundamental strings which connect baryon D4 brane with probe D6 brane. In this case,

– 8 –
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Figure 4: D6 brane embedding with different y0 in the case of Q = 0. Blue circle denote singularity

or horizon. (a) In confinement phase. (b) In deconfined phase

force balance condition request that ẏ(0) be non-zero. The force at the cusp of probe D6

brane can be obtained as;

F̂D6 =
∂HD6

∂Uc

∣

∣

∣

∣

∣

∂

=
Q

2πα′

(

1 + ξ−3
c

1− ξ−3
c

)

ẏc
√

1 + ẏ2
c

. (3.20)

The whole configuration (compact D4+F1+D6) can be stationary if there is a force balance

condition. For Q fundamental strings, the number of baryon D4 is Q/Nc. The condition

which makes the system to be stationary (ρ = 0, yc = ξc) is:

FD6 =
Q

Nc
FD4, (3.21)

which is simplified to be

ẏc =
ξ′c
yc

. (3.22)

With this, the value of ẏc which satisfy force balance condition is uniquely determined for

given value of ξo and mq. The difference between the behaviors of probe D6 branes with

and without the force balance condition is drawn in figure 5; In (a) we draw for the case

Without FBC: Q fundamental strings stretched between baryon D4 and probe D6 brane.

(b) is for the case with FBC: baryon D4 brane is pulled up while probe D6 brane is pulled

down such that the total system is stationary.

Since we established the existence of the baryon vertex, we now want to study how

the the mass of baryon depends on the medium density. The difficulty comes from the

broken symmetry: The very definition of the mass is the casimir Poincare invariance which

is broken in the presence of the medium and it is not obvious what is the most natural

definition of the baryon mass inside a medium.

As we discussed before, the length of the string of the baryon vertex is zero and

therefore D4 and D6 are contacting each other at a point. There are two sources of

– 9 –
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Figure 5: Probe D6 brane embedding for mq = 1.5 (a)without force balance condition. Blue circle

denote singularity where baryon D6 brane wrapped around. Thick vertical line denotes fundamental

strings which are understood as a source. (b)with force balance condition.
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Figure 6: (a) Baryon Mass in medium for D4/D6 system with current quark masses mq =

1.5(dashed line), mq = 1(gray line), mq = 0(real line). (b) The position (mass) of D4 brane

as a function of the electric displacement d for l = 0.5, l = 1 and l = 1.5 from top to below(l = 1

result is obtained in [15]).

contribution of the baryon mass change: One is the deformation of the compact D4 brane

from the spherical shape and the other is the deformation of the probe D6 brane from the

zero charge configuration. We believe that the latter is responsible for the baryon-baryon

interaction while the former is related to the quark-quark interaction to form a baryon in

the medium. Therefore we define the mass in the medium as the energy of the deformed

compact D-brane. Then, the mass of a baryon is proportional to the value of ξ0. The

density dependence of a mass of baryon D4 brane for several value of mq is drawn in

figure 6. For large current quark mass, the baryon mass decreases as a function of the

density. On the other hand, for the small quark mass it has a minimum. Similar behavior

was observed in D4/D8/D̄8 system [15], where we have a zero current quark mass. See

figure 6.
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3.4 Binding energy of baryons and their interaction energy

Consider the configuration where baryon vertex and probe brane is not connected. The

position of baryon vertex is lowest possible value UKK and the shape is spherical. See

figure 5 (a). The energy of this configuration F (0) is given by

F (0) = H(0)
D6 + NBH(0)

D4 + QHF1

= τ6

[

Ĥ(0)
D6(Q̃ = 0) +

Q̃

4
Ĥ(0)

D4(Q̃) + Q̃

∫ ξ0
c

1
(1 + ξ−3)2/3dξ

]

, (3.23)

where H(0)
D6 is the probe D6 brane energy without charge, H(0)

D4 is the compact and spherical

D4 brane energy without attached string and ξ0
c is a position of D6 brane at ρ = 0 and NB

is a baryon number Q/Nc. The energy of configuration (b) in figure 5 with FBC imposed

is given by

F = τ6

[

ĤD6(Q̃) +
Q̃

4
ĤD4

]

. (3.24)

We define the baryon mass in a medium as the energy of the deformed D4 with FBC

imposed:

MB := HD4. (3.25)

The binding energy of a baryon can be defined as the energy difference between the baryon

vertices before and after the deformation:

EB = H(0)
D4(Q) + NcHF1 −MB . (3.26)

The baryon-baryon interaction energy can be defined as the deformation energy of the

probe brane, that is, the difference between the energy of ‘D6 without charge’ and that of

‘D6 with charge and FBC’. Since this energy present for any pair of the charges we expect

that it is proportional to the Q2 at least for small Q̃. Indeed the numerical result shows the

quadratic dependence on the Q. When this quantity is positive (negative), baryon-baryon

interaction is dominated by the repulsion(attraction).

The difference of F and F (0) gives total binding energy plus interaction energy of the

multi-baryon system:

F − F (0) = −NBEB + EInteraction. (3.27)

Numerical result of binding energy as well as the interaction energy is drawn in figure 7

One may ask what happen for D3 brane backgrounds with various probe branes.

Naively we expect similar behavior in this case. Indeed for D3 brane background with

D5 probe brane, completely parallel results are obtained. However, for D3/D7 system with

one direction compactified, the results are not as expected. For the deconfining black hole

background we do not have any baryon vertex configuration as expected. For the confining

D3 background, there are two classes of embedding of D7 brane depending on whether D7

wraps the compact direction or not. In case D7 is wrapping the compact direction, the D7

does not get effectively repulsive force from the confining D3 background. In fact as far
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Figure 7: (a) Binding energy for mq = 0(real line),mq = 1(gray line), mq = 1.5(dashed line).

(b) Interaction energy for mq = 0(real line),mq = 1.5(dashed line)(mq = 1 line is almost same as

dashed line)
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Figure 8: D7 brane embedding with different y0 in the case of Q = 0. Blue circle denote minimal

sphere in thermal AdS5: (a) When D7 wraps compactified spatial direction. (b) When D7 does not

wraps compactified spatial direction.

as D7 embedding is concerned, there is no difference in equation of motion between the

black hole background and confining background, hence for small enough current quark

mass, the D7 embedding should fall into the singularity, an impossible result. Therefore

we do not expect that such D7 embedding is allowed. See figure 8. If D7 is not wrapping

the compact direction, numerical study shows that no stable D7 configuration with finite

current quark mass is allowed. See figure 8. We leave the description of some details to

the appendix.

4. Discussion

We considered the issue of presence of Minkowski brane in the context of baryon mass

in the medium. Although no analytic proof was made, our numerical investigation shows

strong evidence of the absence of the baryon vertex operator in the black hole background.

In the dual picture, this corresponds to the absence of the baryonic states in the N=2 Yang

Mills system with finite quark mass system. On the other hand, we found the existence of
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such states in the confining background like D3/D7 and D4/D6 double wick-rotation. Such

picture is consistent with the naive expectations from the yang-Mills side that baryons exist

only in the confining phase.

It is interesting to classify all the solution of the DBI action with source. The spiky

solutions ( in deconfining background) represent quarks, while the cusp solutions (in confin-

ing) represent the baryons. Now, DBI action allows solutions which is regular everywhere.

How should we interpret this solution in string theory setting? In fact, the very motivation

of the Born-Infeld action is to regularize electromagnetic singularity at the point charge.

The answer to this question is following: in the presence of dense medium, there are two

scales in the system; one is the string scale controlling the scale of the spike and the other

is the inter-particle distance. There are many order of magnitude difference between these

scale. Therefore, the structure of one scale should be neglected when we treat that of the

other scale. That is, when we focus on the physics of density, the spiky structure should

be neglected. If we neglect the latter, then we get the smooth brane without singularity or

cusp. This is the interpretation of the regular solution identified as the Minkowski embed-

ding in [13]. However, we should not forget that there are invisible strings attached to the

probe branes to give charge sources and their energy should be added to the total energy

even though the shape of the regulated brane is smooth. In fact, if we add the string mass

to Minkowski brane solution, the sum is bigger than that of the the black hole embedding,

which means that none of the Minkowski embeddings in the quark phase are physically

realized.

Notice that for the baryon phase also, the D5 mass should be always included as far

as the baryonic states exist. In QCD, most of the mass of the baryons are coming from

the gluons instead of current quark mass. This has an analogue in hQCD: for the baryon

vertex in gravity dual, the string length is always minimized and effectively strings are

replaced by the deformed probe brane. This suggests that in hQCD, the quarks are melt

away in confining phase and all the mass of the baryon is coming from the coherent gluons

which is dual to the compact D-branes in the bulk.

Note added. After finishing this work, we received a relate work [19] where the the

baryon vertex in the absence of the probe branes was discussed.

A. D3 brane — Confining background

We start usual Euclidean D3 black hole geometry.

ds2 =
U2

R2

(

dt2 + d~x2 + f(U)dτ2
)

+ R2

(

dU2

f(U)U2
+ dΩ2

5

)

, (A.1)

where R4 = 2λl4s = 4πgsNcl
4
s and f(U) = 1− (UKK/U)4. Here, λ = g2

YMNc is the ’t Hooft

coupling of the YM theory. τ direction is compactified with period

1

βτ
=

UKK

πR2
=

MKK

2π
, (A.2)
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where MKK is Kaluza-Klein mass. Introducing a dimensionless coordinate ξ defined by

dξ2/ξ2 = dU2/(U2f(U)), the bulk geometry becomes

ds2 =
U2

R2

(

dt2 + fdτ2 + d~x2
)

+
R2

ξ2

(

dξ2 + ξ2dΩ2
5

)

, (A.3)

where U and ξ are related by U2/U2
KK = 1

2(ξ2 + 1/ξ2) and f = (1− ξ4)2/(1 + ξ4)2.

From now on, we will use the metric (A.3) as a background metric with baryon vertex

and probe brane.

A.1 Baryon vertex — D5 brane

The brane configuration which corresponds to the baryon vertex can be understood as D5

brane wrapping compact S5 direction. The background metric (A.3) can be written as

ds2 =
U2

R2

(

dt2 + fdτ2 + d~x2
)

+
R2

ξ2
dξ2 + R2

(

dθ2 + sin2 θdΩ2
4

)

, (A.4)

We assume that only ξ depends on θ and Ftθ 6= 0. The induced metric on D5 brane is

ds2
D5 =

U2

R2
dt2 + R2

(

1 +
ξ′2

ξ2

)

dθ2 + R2 sin2 θdΩ2
4. (A.5)

The DBI action for single D5 brane with Nc fundamental string can be written as similar

to [17]

SD5 = −µ5

∫

√

det(g + 2πα′F ) + µ5

∫

A(1) ∧G(5)

= τ5

∫

dtdθ sin4 θ

[

−
√

ω+(ξ2 + ξ′2)− F̃ 2 + 4Ã

]

, (A.6)

where

τ5 =
µ5Ω4R

4UKK√
2

, F̃ =
2
√

2πα′Ftθ

UKK
, Ãt =

√
2 · 2πα′

UKK
At. (A.7)

and ξ′ = ∂ξ/∂θ.

The displacement can be defined as follows;

∂LD5

∂F̃
=

sin4 θF̃
√

ω+(ξ2 + ξ′2)− F̃ 2
≡ −D(θ). (A.8)

From the equation of motion for gauge field, we can obtain

D(θ) =

[

3

2
(νπ − θ) +

3

2
sin θ cos θ + sin3 θ cos θ

]

, (A.9)

where ν determines the number of fundamental sting( νNc strings are at south pole and

(1− ν)Nc strings are at north pole, we set ν = 0)
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By performing Legendre transformation, we can get ‘Hamiltonian’

HD5 = F̃
∂LD5

∂F̃
−LD5

= τ5

∫

dθ
√

ω+(ξ2 + ξ′2)

√

D(θ)2 + sin8 θ (A.10)

Solutions of equation of motion for above Hamiltonian are characterized by initial value of

ξ0 at θ = 0(we set ξ′(θ = 0) = 0 as a initial condition. The solutions for different ξ0 are

qualitatively same as figure 3.

The force at the cusp of D5 brane tension is

FD5 =
∂H
∂Uc

∣

∣

∣

∣

∣

fix other values

= NcTF

(

1 + ξ−4
c

1− ξ−4
c

)

ξ′c
√

ξ2
c + ξ′2c

, (A.11)

where TF is tension of fundamental string. The force is always smaller than the tension

of fundamental string same as baryon D4 brane case. Therefore, we have to find stable

configuration with probe D-branes which make hole system to be stable.

A.2 Probe D5 brane

We put Nf number of D5 branes as probe flavor brane. The background metric (A.3) can

be written as

ds2 =
U2

R2

(

dt2 + fdτ2 + dx2
2 + dx2

3

)

+
R2

ξ2

(

dy2 + dρ2 + ρ2dΩ2
2 + dz2 + z2dφ2

)

, (A.12)

where D5 brane world volume coordinates are (t, x2, x3, ρ, τα). We also assume that the

only coordinate y depends on ρ and focus on z = φ = 0 solution. The induced metric on

D5 brane is

ds2
D5 =

U2

R2

(

dt2 + dx2
2 + dx2

3

)

+
R2

ξ2

[

(1 + ẏ2)dρ2 + ρ2dΩ2
2

]

(A.13)

with non-zero electric field on it (Fρt 6= 0) and ẏ = ∂y/∂ρ.

DBI action of probe D5 brane is

ŜD5 = −τ̂5

∫

dtdρρ2ω+

√

ω+(1 + ẏ2)− F̃ 2 ≡
∫

dtL̂D5 (A.14)

where

τ̂5 =
1

2
√

2
Nfµ5Ω2V2U

3
KK, F̃ =

2
√

2πα′Fρt

UKK
. (A.15)

We define dimensionless value Q̃ from equation of motion for F̃ is

∂ŜD5

∂F̃
=

ρ3ω+F̃
√

ω+(1 + ẏ2)− F̃
≡ Q̃ (A.16)
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The Legendre transformed ‘Hamiltonian’ from is

ĤD5 = τ̂5

∫

dρ

√

ω+

(

Q̃2 + ρ4ω2
+

)

√

1 + ẏ2 (A.17)

with

Q̃ =
UKKQ

2πα′

√
2τ̂5

, (A.18)

where Q is total number of quarks.

In Q̃ = 0 case, the solutions of probe D5 brane embedding are same as figure 4. In

Q̃ 6= 0 case, we can impose force balance condition

F̂D5 =
Q

Nc
FD5 (A.19)

with following constraint

ẏc =
ξ′c
yc

. (A.20)

The D-brane configurations with and withoutFBC and the density dependence of baryon

mass are qualitatively same as figure 5 and figure 6.

A.3 Probe D7 brane

In this section, we consider D7 brane configuration used in [13, 20]. In this case the

background metric (A.3) can be written as

ds2 =
U2

R2

(

dt2 + fdτ2 + dx2
2 + dx2

3

)

+
R2

ξ2

(

dy2 + dρ2 + ρ2dΩ2
3 + y2dφ2

)

, (A.21)

where ξ2 = y2 + ρ2. D7 brane wraps compactified direction τ . We also assume that the

only coordinate y depends on ρ. The induced metric on D7 brane is

ds2
D7 =

U2

R2

(

dt2 + fdτ2 + dx2
2 + dx2

3

)

+
R2

ξ2

[

(1 + ẏ2)dρ2 + ρ2dΩ2
3

]

(A.22)

with non-zero electric field on it (Fρt 6= 0) and ẏ = ∂y/∂ρ.

DBI action of D7 brane is

SD7 = −τ7

∫

dtdρρ3ω−

√
ω+

√

ω+(1 + ẏ2)− F̃ 2 (A.23)

where,

τ7 =
1

4
Nfµ7Ω3βτV2U

2
0 , F̃ =

2
√

2πα′Fρt

U0
. (A.24)

Equation of motion for F̃ is

∂LD7

∂F̃
=

ρ3ω−ω
1/2
+ F̃

√

ω+(1 + ẏ2)− F̃
≡ Q̃ (A.25)
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We can get a Hamiltonian from Legendre transformation,

HD7 = τ7

∫

dρ
√

ω+

(

Q2 + ρ6ω2
−
ω+

)

√

1 + ẏ2. (A.26)

In the case of Q = 0, the Hamiltonian (A.26) is same as the Hamiltonian for black hole

background. However, in confining background, probe brane cannot end on the singularity.

It means that probe brane cannot cover low y∞ region in Q = 0 case.

A.4 Probe — D7 brane (II)

Here we consider the probe D7 brane does not contain compact direction. The background

metric (A.3) can be written as

ds2 =
U2

R2

(

dt2 + fdτ2 + dx2
2 + dx2

3

)

+
R2

ξ2

(

dy2 + dρ2 + ρ2dΩ2
4

)

, (A.27)

where ξ2 = y2 + ρ2. We also assume that only y depends on ρ. The induced metric on D7

brane is

ds2
D7 =

U2

R2

(

dt2 + dx2
2 + dx2

3

)

+
R2

ξ2

[

(1 + ẏ2)dρ2 + ρ2dΩ2
4

]

(A.28)

with non-zero electric field on it (Fρt 6= 0) and ẏ = ∂y/∂ρ.

DBI action of D7 brane is

SD7 = −τ7

∫

dtdρ
ρ4ω+

ξ2

√

ω+(1 + ẏ2)− F̃ 2, (A.29)

where,

τ7 =
1

2
√

2
Nfµ7Ω4V2R

2U3
0 , F̃ =

2
√

2πα′Fρt

U0
(A.30)

Equation of motion for F̃ is

∂LD7

∂F̃
=

ρ4ω+F̃

ξ2

√

ω+(1 + ẏ2)− F̃
≡ Q̃ (A.31)

We can get a Hamiltonian from Legendre transformation,

HD7 = τ7

∫

dρ

√

ω+

(

Q2 +
ρ8ω2

+

ξ4

)

√

1 + ẏ2 (A.32)

As we discussed before, the solution of equation of motion for above Hamiltonian gives

funny behavior even Q = 0 case. D7 brane does not goes to flat brane as y0 increase.

Moreover, values of y∞ are very small for every y0 even for a very large value of y0. It

means that the value of y∞ cannot cover whole y axes. And therefore we do not consider

this case seriously.
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