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d-ISOMETRIC LINEAR MAPPINGS IN LINEAR d-NORMED
BANACH MODULES

CHOONKIL PARK AND THEMISTOCLES M. RASSIAS

ABSTRACT. We prove the Hyers-Ulam stability of linear d-isometries in
linear d-normed Banach modules over a unital C*-algebra and of lin-
ear isometries in Banach modules over a unital C*-algebra. The main
purpose of this paper is to investigate d-isometric C*-algebra isomor-
phisms between linear d-normed C*-algebras and isometric C*-algebra
isomorphisms between C*-algebras, and d-isometric Poisson C*-algebra
isomorphisms between linear d-normed Poisson C*-algebras and isometric
Poisson C*-algebra isomorphisms between Poisson C*-algebras.

We moreover prove the Hyers-Ulam stability of their d-isometric ho-
momorphisms and of their isometric homomorphisms.

1. Introduction and preliminaries

In 1940, S. M. Ulam [58] raised the following question: Under what con-
ditions does there exist an additive mapping near an approximately additive
mapping?

Let X and Y be Banach spaces with norms ||-|| and || ||, respectively. Hyers
[20] showed that if € > 0 and f : X — Y such that

1f(z+y) - fla) - fWll <e

for all z,y € X, then there exists a unique additive mapping 7T : X — Y such
that
If(z) - T(x)| <€
forall z € X.
Consider f : X — Y to be a mapping such that f(tz) is continuous in t € R
for each fixed © € X. Assume that there exist constants ¢ > 0 and p € [0,1)
such that

1f(z+y) = fl=) — f@l < e(ll]” +[lyl")
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for all z,3y € X. Th. M. Rassias [47] showed that there exists a unique R-linear
mapping T : X — Y such that
2¢

1) - T@I < 5=

for all z € X. This inequality has provided a lot of influence in the development
of what we now call Hyers-Ulam stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms, or the stability
of the equation of homomorphism, was taken up by a number of mathematicians
(cf. [8,9, 12, 19, 21, 22, 23, 24, 32, 33, 35, 45, 50, 51, 52, 54, 56]). Th. M.
Rassias [48] during the 27*% International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for p > 1. Z.
Gajda [14] following the same approach as in Th. M. Rassias [47], gave an
affirmative solution to this question for p > 1.

Givruta [15] generalized the Rassias’ result in the following form: Let G be
an abelian group and X a Banach space. Denote by ¢ : G x G = [0,00) a
function such that

ll={l?

— 1
xy:Z—ﬁcp ac2k < 00
k=

for all z,y € G. Suppose that f: G — X is a mapping satisfying

£ (z +y) = f(z) — FWIl < e(z,y)
for all z,y € G. Then there exists a unique additive mapping 7 : G — X such
that

If(z) - T()l| < 56(z, )

l\DI»—l

for all z € G.
Let X and Y be metric spaces. A mapping f : X — Y is called an isometry
if f satisfies

dY (f(m)a f(y)) = dX(IB,y)

for all z,y € X, where dx (-,-) and dy(-,-) denote the metrics in the spaces X
and Y, respectively. For some fixed number r > 0, suppose that f preserves
distance 7; i.e., for all z,y in X with dx(z,y) = r, we have dy (f(z), f(y)) =
r. Then r is called a conservative(or preserved) distance for the mapping f.
Aleksandrov [1] posed the following problem:

Remark (Aleksandrov problem). Examine whether the existence of a single
conservative distance for some mapping 7" implies that T' is an isometry.

The isometric problems have been investigated in several papers (see [2, 7,
11, 16, 18, 27, 28, 29, 49, 53, 57, 60]). Th. M. Rassias and P. Semrl [55]
proved the following theorem for mappings satisfying the strong distance one
preserving property (SDOPP), i.e., for every z,y € X with ||z —y|| = 1 it
follows that ||f(z) — f(y)|| = 1 and conversely.
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Theorem 1.1 ([55]). Let X and Y be real normed linear spaces such that one
of them has dimension greater than one. Suppose that f : X — Y is a Lipschitz
mapping with Lipschitz constant k < 1. Assume that f is a surjective mapping
satisfying (SDOPP). Then f is an isometry.

Definition 1.1 ([5]). Let X be a real linear space with dimX > d and

Iy, : X¢ = R a function. Then (X, ||-,...,-||) is called a linear d-normed
space if
(dNy) lz1,...,24]| =0 <= 21, ..., 24 are linearly dependent
(dN2) ||z1, .- -, zdll = [|&j1s - - -, xj, || for every permutation (j1,...,Ja4)
of (1,...,d)
(dN3) |lazi,...,z4ll = |e||lz1, ... zd]

(dN4) Hl‘ +Y,Z2,. .. 7$d” < ||$7z2a v 7wd” + Hyax%‘ .. =‘,L'dH
for all @ € R and all z,y,21,...,24 € X. The function ||,...,-|| is called the
d-norm on X.

In [46], the author defined the notion of d-isometry and proved the Rassias
and Semrl’s theorem in linear d-normed spaces.

Definition 1.2 ([46]). We call f: X — Y a d-Lipschitz mapping if there is
a k > 0 such that

(1) = Flyn)s-- -, flwa) = Flya)ll < wllwr =y, - 2a — yall
for all z1,...,24,Y1,--.,¥qa € X. The smallest such & is called the d-Lipschitz

constant.

Definition 1.3 ([46]). Let X and Y be linear d-normed spaces and f: X =Y
a mapping. We call f a d-isometry if

lzr —y1s-- - xa — yall = [1f(x1) = Flyr)s - flza) — fya)ll
forall zy,...,2q4,y1,.--, ¥4 € X.

For a map f : X — Y, consider the following condition which is called
the d-distance one preserving property : For x1,...,%Z4,¥1,.-.,Ya € X with

21 =y, xa —wall = 1, 1 f (1) — fn1), -+, flza) = Flya)ll = 1.

Definition 1.4 ([6]). The points z,y,2 € X are said to be colinear if z — y
and r — z are linearly dependent.

Theorem 1.2 ([46, Theorem 2.7}). Let f : X =Y be a d-Lipschitz mapping
with d-Lipschitz constant k < 1. Assume that if z,y,z are colinear then f(z),
f(), f(2) are colinear, and that if x1 —y1,...,Tq — ya are linearly dependent
then f(z1) — f(y1),- .-, f(xa) — f(ya) are linearly dependent. If f satisfies the
d-distance one preserving property, then f is a d-isometry.

We define the notion of linear d-normed Banach space.
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Definition 1.5. A linear d-normed and normed space X with d-norm

[ [P

and norm || - || is called a linear d-normed Banach space if (X,|| - ||) is a
Banach space.

A Banach x-algebra A is a Banach algebra with an involution * : A — A
such that (z*)* = z holds for all z € A. A C*-algebra A is a Banach *-
algebra whose norm || - || satisfies ||z*|| = ||z|| and {|z*z|| = ||z||? for all z € A.
Let A and B be C*-algebras. An algebra homomorphism H : A — B is
called a C*-algebra homomorphism if H(z*) = H(z)* holds for all = € A (see
3, 4, 10, 13, 26, 32, 33, 34, 35, 37, 41, 43]).

Definition 1.6. Let A and B be linear d-normed unital C*-algebras. A C*-
algebra homomorphism H : A — B is called a d-isometric C*-algebra homo-
morphism if the mapping H : A — B satisfies

1H(z1) = H(y1), .-, H(za) — H(ya)lls = llzr — y1,-- ., 2a = yalla

forall z1,...,2q4,91,-..,y4 € A. If, in addition, the C*-algebra homomorphism
H : A — B is bijective, then the C*-algebra homomorphism H : 4 — B is
called a d-isometric C*-algebra isomorphism.

Definition 1.7. Let A and B be unital C*-algebras. A (C*-algebra homo-
morphism H : A — B is called an isometric C*-algebra homomorphism if the
mapping H : A — B satisfies

1H(z) - H)ll = llz - yl|

for all z,y € A. If, in addition, the C*-algebra homomorphism H : 4 — B is
bijective, then the C*-algebra homomorphism H : A — B is called an isometric
C*-algebra isomorphism.

A Poisson C*-algebra A is a C*-algebra with a C-bilinear map {-,-} : A x
A — A, called a Poisson bracket, such that (A, {-,-}) is a complex Lie algebra
and
{ab,c} = a{b,c} + {a,c}b
for all a,b,c € A. Poisson algebras have played an important role in many
mathematical areas and have been studied to find sympletic leaves of the cor-

responding Poisson varieties. It is also important to find or construct a Poisson
bracket in the theory of Poisson algebra (see [17, 30, 31, 38]).

Definition 1.8. A C*-algebra homomorphism H : A — B is called a Poisson
C™-algebra homomorphism if H : A — B satisfies

{H(z),H(y)} = {=,y}
for all z,y € A.
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Definition 1.9. A Poisson C*-algebra homomorphism H : 4 — B is called a
d-isometric Poisson C*-algebra homomorphism if H : A — B satisfies

|H (1) = H(y1), ..., H(za) = Hya)lls = l#1 — y1,- -, %2 — yalla

forall z1,...,24,Y1,-..,ya € A. If, in addition, the Poisson C*-algebra homo-
morphism H : A — B is bijective, then the Poisson C*-algebra homomorphism
H : A — Bis called a d-isometric Poisson C*-algebra isomorphism.

Definition 1.10. A Poisson C*-algebra homomorphism H : A — B is called
an isometric Poisson C*-algebra homomorphism if H : A — B satisfies

|1H(z) - Hy)ll = |lz - yl|

for all z,y € A. If, in addition, the Poisson C*-algebra homomorphism H :
A — B is bijective, then the Poisson C*-algebra homomorphism H : A — B is
called an isometric Poisson C*-algebra isomorphism.

The paper is organized as follows: In Section 2, we prove the Hyers-Ulam
stability of linear d-isometries in linear d-normed Banach modules over a unital
C*-algebra and of linear isometries in Banach modules over a unital C*-algebra.

In Section 3, we investigate d-isometric C*-algebra isomorphisms between
linear d-normed unital C*-algebras and isometric C*-algebra isomorphisms be-
tween unital C*-algebras, and prove the Hyers-Ulam stability of d-isometric
C*-algebra homomorphisms in linear d-normed unital C*-algebras and of iso-
metric C*-algebra homomorphisms in unital C*-algebras.

In Section 4, we investigate d-isometric Poisson C*-algebra isomorphisms
between linear d-normed unital Poisson C*-algebras and isometric Poisson
C*-algebra isomorphisms between unital Poisson C*-algebras, and prove the
Hyers—Ulam stability of d-isometric Poisson C*-algebra homomorphisms in lin-
ear d-normed unital Poisson C*-algebras and of isometric Poisson C*-algebra
homomorphisms in unital Poisson C*-algebras.

2. d-isometric linear mappings in linear d-normed Banach modules
over a C*-algebra

Throughout this section, let A be a unital C*-algebra with norm |- |, unit e
and unitary group U(A) := {u € Ajuu* = u*u = e}. Assume that X is a left
(linear d-normed) Banach modules over A with d-norm ||-,...,-||x and norm
[]-|] and that Y is a left (linear d-normed) Banach modules over A with d-norm
I, .--,/ly and norm || - ||.

Definition 2.1. An A-linear mapping L : X — Y is called a d-isometric
A-linear mapping if the mapping L : X — Y satisfies

|L(z1) — L(y1), ..., L(za) — Ly)lly = llz1 — 91, ., 24 — yallx
forall zy,...,zq,%1,...,¥4 € X.
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Theorem 2.1. Let f : X — Y be a mapping satisfying f(0) = 0 for which
there is a function ¢ : X¢ — [0, 00) such that

o0

. ~ 1 . )
(2.1) P(z1,...,2q) 1= Z E(p(?ml, e 2y < oo,
j=0
(2.i) |f(uzy + uzs) — uf(zq) — uf(z2)|| < @z, 22, 0,...,0),
N —
d — 2 times
(2.iii) [ If(@1),. ., fEa)lly = llzy, - zallx | < o2, ..., 2a)
forallu e U(A) and all x1,...,24 € X. Then there exists a unique d-isometric
A-linear mapping L : X = Y such that
. 1.
(2'1V) Hf(l')—L(CL’)“ S i(p(mama O,...,O )
N e’

d — 2 times

forallz € X.

Proof. Let u =1 € U(A). By the Gavruta’s theorem [18], it follows from (2.i)
and (2.ii) that there exists a unique additive mapping L : X — Y satisfying
(2.iv). The additive mapping L : X — Y is given by

1
(2.1) L(z) = lim 2—nf(2"a:)

n—oo

forall z € X.

By the same reasoning as in the proof of [32] and [37], one can show that
the additive mapping L : X — Y is an A-linear mapping.

It follows from (2.iii) that

1 1
Hlgn £ 2 21), ., 5 f(2%2a)lly — 21, zallx |

1 n n n n
= 5l If2721), -, f(272a)lly = lI12"21, .., 2%24]x |

< ?%cp(Q"xl,...,T‘md) < —2}7;90(2":1:1,...,2"3:4),
which tends to zero as n — oo for all z1,...,24 € X by (2.i). So by (2.1)
IL@),. -, Laa)ly = Jim |5-7@), ., o F2 20l
= llz1,...,2zd||x
for all z4,...,24 € X. Hence
IL(z1) — L{y1), - - -, L(za) — Lya)lly = IL(z1 — 1), ..., L(za — ya)lly
= ||3?1 — Y1, Td — Yallx

for all z1,...,24,41,---,y4 € X. So the mapping L : X - Y is a d-isometry,
as desired. a
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Corollary 2.2. Let § and p < 1 be positive real numbers. Let f : X =Y be a
mapping satisfying f(0) = 0 such that

If (uzy + ums) — uf(z1) — uf (@) < (llmH”Jrllﬂsz")

(1), Flaally =z, zallx | < 92 [lz;17
=1
for allu € U(A) and all 1, . ..,x4 € X. Then there exists a unique d-isometric
A-linear mapping L : X — Y such that

26
1/(@) - L@ < s lall
forallz € X.
Proof. Define ¢(z1,...,2q) = 92?21 [|lz;||P and apply Theorem 2.1. O

Definition 2.2. An A-linear mapping L : X — Y is called an isometric A-
linear mapping if the mapping L : X — Y satisfies

L) — L) = |z -yl

for all z,y € X.

Theorem 2.3. Let f : X = Y be a mapping satisfying f(0) = 0 for which
there is a function ¢ : X¢ — [0,00) satisfying (2.1) and (2.ii) such that

(2.v) HIF@I =zl | < o, ..., 2)

——r

d times
for all z € X. Then there exists a unique isometric A-linear mapping L : X —
Y satisfying (2.iv).
Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a
unique A-linear mapping L : X — Y satisfying (2.iv). The A-linear mapping
L:X — Y is given by

(2.2) L(z) = lim ——f(2" )
TL—>OO

for all z € X.

It follows from (2.v) that

n 1 n n 1 n
I H— @ z)ll = llzll | = o=l IF @™ )| = 112"2(| | £ 55927, ...,2"2),
2 2 \—V—’
d times

which tends to zero as n — oo for all z € X by (2.i). So by (2.2)
. |
Il = Jim [l @) = [z

for all z € X. Hence

I1L(z) = Ll = [|IL{z — y)ll = ||z = yl|
for all z,y € X, as desired. O
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Corollary 2.4. Let 8 and p < 1 be positive real numbers. Let f : X > Y be a
mapping satisfying f(0) = 0 such that
If (uzy + uzs) = uf(@1) — uf(@2)ll < 0(|z1][7 + [|22]7),
HIF @I = M=l | < db||=|[”

for allu e U(A) and all z,z1,...,24 € X. Then there exists a unique isometric
A-linear mapping L: X = Y such that
26
— P
/() = L)l < 5—5; ll=ll
forallz e X.
Proof. Define p(zy,...,z4) =8 ijl l|z;]|? and apply Theorem 2.3. O

3. d-isometric isomorphisms between linear d-normed unital
C*-algebras

Throughout this section, assume that A is a (linear d-normed) unital C*-

algebra with d-norm ||-,. .., || 4, norm || -||, unit e and unitary group #(A) and
that B is a (linear d-normed) unital C*-algebra with d-norm ||-,...,-||s and
norm || - ||.

We investigate d-isometric C*-algebra isomorphisms between linear d-norm-
ed unital C*-algebras.

Theorem 3.1. Let h : A = B be a bijective mapping satisfying h(0) = 0 and
h(2"uy) = h(2™u)h(y) for all u € U(A), ally € A and all n € Z, for which
there is a function ¢ : A% — [0,00) such that

. - 2.1 ) ,
(3.) P(z1,...,2q) == Z Ega(Q’wl, 2y < oo,
=0
(311) ”h’(/J“’L‘l + M‘r2) - ,Lth(.’l?l) - ,uh(mg)]l < 90(:1;171'2: 07 .. '70 )a
——

d — 2 times

(3.iii) IR2™u") — h(2™u)*|| < (2™, ..., 2"),
(3.iv) | th(z1), - .., h(zd)lls = l|z1,- - -, zalla | < @(1, .., 2a)

for allu € U(A), all z1,...,zq €A, alp e T :={A € C| |A =1} and all
n € Z. Assume that

is invertible.

. h(2"e)
(3.v) lim on

n—+o0

Then the bijective mapping h : A — B is a d-isometric C* -algebra isomorphism.
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Proof. We can consider a C*-algebra as a Banach module over the unital C*-
algebra C. By Theorem 2.1, there exists a unique C-linear mapping H : 4 — B
such that

(3.v1) Ih(z) - H(z)|| <

l\D!b—-‘

o(z,z, 0,...,0)
——

d — 2 times

for all z € A. The mapping H : A — B is given by

(3.1) H(z) = nll)n;o —2——h(2 x)
for all z € A.
By (3.1) and (3.iil), we get
o o h@Mu) o hQ27u)* L h(2Mu) ., .
B = mr = — (i = A

for all u € U(A). Since H is Clinear and each z € A is a finite linear combi-
nation of unitary elements (see [33, Theorem 4.1.7]), i.e., z = 3272, Mju; (A; €
C,u; € U(A)),

Z/\ H(u;))* = H( Z/\ u;)* = H(z)*

for all z € A.
Since h(2™uy) = h(2™u)h(y) for all u € U(A), ally € 4 and all n € Z,
1
(3.2) H(uy) = hm g——h( y) = le 2—ﬂh(2"u)h(y) = H(u)h(y)

for all u € U(A) and all y € A. By the additivity of H and (3.2),
2"H(uy) = H(2"uy) = H(u(2"y)) = H(u)h(2"y)
for all u € U({A) and all y € A. Hence
(33) H(uy) = 5 H@h(2"y) = H(w) - -h(2"y)
for all u € U(A) and all y € A. Taking the limit in (3.3) as n — oo, we obtain
(34) H(uy) = H(u)H(y)

for all w € U(A) and all y € A. Since H is C-linear and each z € A is a finite
linear combination of unitary elements, ie., x = Z;nzl Aju; (A; € Cu; €
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U(A)), it follows from (3.4) that

H(zy) = HO_ Ajusy) = Y AH(usy) = > N\H(uy)H(y)
j=1 j=1 j=1

=H()_ \u;)H(y) = H(z)H(y)
=1
for all z,y € A.
By (3.2) and (3.4),
H(e)H(y) = H(ey) = H(e)h(y)
for all y € A. Since lim, o ﬂ;:—ez = H(e) is invertible,

H(y) = h(y)
for all y € A.
It follows from (3.iv) that
1 1
[ 5=h@20), ., 5o hl@ a5 = 12, 2l |
1
= ganl 12" 1), ..., M2 2a) |5 = (12721, .., %24l 4 |
1 1
< %90(271.%1, crey 2nxd) < 2_n(p(2nx1’ (R 2nxd)a
which tends to zero as n — oo for all zy,...,24 € A by (3.i). By (3.1),
M 1 n 1 n
|H @), Hzls = lim |5-h(@), ., ooh(2wa) s
= ||.'I?1,...,{I}d||A

for all z1,...,z4 € A. Since H : A = B is additive,
|H(z1) = H(y1), -, H(za) — Hya)lls = |1H(z1 —91), ..., H(za — ya)lls

=|lz1 —y1,..., 2 — Yalla
for all zy,...,24,91,-..,Y%a € A. So the additive mapping H : A = Bis a
d-isometry.
Therefore, the bijective mapping h : A — B is a d-isometric C*-algebra
isomorphism, as desired. a

Corollary 3.2. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2™uy) = h(2"u)h(y) for all w € U(A), all y € A and all n € Z, for which
there exist constants 6 > 0 and p € [0,1) such that
Ih{pz1 + px2) — ph(z1) — ph(ze)| < O(|lza|[P + |lz2]?),
[A(2"w") — h(2™u)*|| < 277d6,

d
| IB(@1), -, h(za)lls = e, zalla | <0 llslIP

=1
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for all p € T', all u € U(A), all n € Z and all z1,...,2q4 € A. Assume
that lim,_, h(gne) is invertible. Then the bijective mapping h: A > B is a

d-isometric C*-algebra isomorphism.

Proof. Define p(z1,...,2q4) = 92;’:1 l|z;||P and apply Theorem 3.1. g

Theorem 3.3. Let h : A = B be a bijective mapping satisfying h(0) = 0 and
h(2"uy) = h(2"u)h(y) for all u € U(A), ally € A and all n € Z, for which
there is a function ¢ : A% — [0, 00) satisfying (3.1), (3.ili), (3.iv) and (3.v) such
that

(3.vii) Ih(pzy + pxe) — ph(z1) — ph(z2)l| < (21,22, 0,...,0 ),
——
d —~ 2 times

for oll z,,z5 € A and p = 1,i. If h(tx) is continuous in t € R for each fived
z € A, then the bijective mapping h : A — B is a d-isometric C*-algebra
isomorphism.

Proof. Put p = 1in (3.vil). By the same reasoning as in the proof of Theorem
3.1, there exists a unique d-isometric involutive additive mapping H : A — B
satisfying (3.vi). The mapping H : 4 — B is given by

A S
H(z) = nll)rlgo 5;h(2 z)

for all z € A. By the same reasoning as in the proof of (47, Theorem], the
additive mapping H : A — B is R-linear.
Put g = 4 in (3.vii). By the same method as in the proof of Theorem 3.1,
one can obtain that
h(2™ ih(27™
H(iz) = tim 2270 _ oy B2 g

n—o0 oan n-— 0o an

for all z € A.
For each element A € C, A = s + it, where s,t € R So

H(\z) = H(sz +itz) = sH(z) + tH(iz) = sH(z) + itH(z) = (s + it)H(z)
= AH(zx)
foral e Candallz € A. So
H(Cz+ny) = H(Cz) + H(ny) = CH(z) + nH(y)

for all ¢,n € C and all z,y € A. Hence the additive mapping H : A — B is
C-linear.
Since h(2"uy) = h(2"u)h(y) for all u € U(A), all y € A and all n € Z,

(35)  Hw)= Jim b ) = lim Soh(Muh() = HEAG)

for all uw € U(A) and all y € A. By the additivity of H and (3.5),
2"H (uy) = H(2"uy) = H(u(2"y)) = H(u)h(2"y)
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for all u € U(A) and all y € A. Hence

1 1
(3.6) H(uy) = 5 Hwh(2") = H(u)57h(2"y)
for all u € U(A) and all y € A. Taking the limit in (3.6) as n — oo, we obtain
(3.7) H(uy) = H(u)H (y)

for all u € U(A) and all y € A. Since H is Clinear and each z € A is a finite
linear combination of unitary elements, ie., z = 37" Aju; (A\; € Cou; €
U(A)), it follows from (3.7) that

H(zy) = H() Nujy) =Y NiH(uy) = > NH(uy)H(y)
Jj=1 j=1 j=1

for all z,y € A.
By (3.5) and (3.7),

H(e)H(y) = H(ey) = H(e)h(y)

for all y € A. Since lim,,_, o, h(gn ) = H(e) is invertible,

H(y) = My)
for all y € A.
Therefore, the bijective mapping h : A — B is a d-isometric C*-algebra
isomorphism, as desired. O

Corollary 3.4. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2"uy) = h(2™u)h(y) for all u € U(A), all y € A and all n € Z, for which
there exist constants § > 0 and p € [0,1) such that

1Puzs + paz) — ph(zs) — phiz:)]] < 0(]|z1]1? + [l22|P),
[[R(2"u®) — A(2"u)*|| < 277d6),

d
| R(z1), -, hlza)lls = ller, .. zalla | <O Nl

=1
for p =14, ellu € U(A), alln € Z and all z:1,...,24 € A. Assume that
lim, 00 ﬂsn—el is invertible. If h(tz) is continuous in t € R for each fized
z € A, then the bijective mapping h : A — B is a d-isometric C*-algebra

isomorphism.
Proof. Define @(z1,...,24) = 02;.1:1 [lz;]|P and apply Theorem 3.3. O

Now we prove the Hyers—Ulam stability of d-isometric C*-algebra homomor-
phisms in linear d-normed unital C*-algebras.
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Theorem 3.5. Let h : A — B be a mapping satisfying h(0) = 0 for which
there exists a function ¢ : A% — [0,00) satisfying (3.i), (3.ii), (3.iii) and (3.iv)
such that

(3.viii) Ih(2™u - 270) — R(2"W)h(2™0)|| < @(2"u, 2, 0,...,0)
N —r
d — 2 times

for all u,v € U(A) and all n € Z. Then there exists a unique d-isometric
C*-algebra homomorphism H : A — B satisfying (3.vi).

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a
unique d-isometric C-linear involutive mapping H : A — B satisfying (3.vi).
The mapping H : A — B is given by

.1 n
(3.8) H(z) = nlgr;o —2—;h(2 x)
for all z € A.
By (3.vii),
1 " n n n 1 n ™
5—27||h(2 u-2™v) — h(2"u)h(2"0)|| < 52;;«,0(2 u,2"v, 0,...,0)
w—/
d — 2 times
1
< —=¢(2"u,2™, 0,...,0),
2" ———
d — 2 times

which tends to zero as n — oo by (3.1). By (3.8),

h(2Muw-2™) . A2 wh(2™) _ . h(2"u) h(2"v
i) = Jim "I iy MO - g REEER)
= H(u)H(v)

for all u,v € U(A). Since H is Clinear and each z € A is a finite linear
combination of unitary elements, i.e., z = 3._; Mju; (A; € Cyu; € U(A)),

m

H(zv) = H(Z Ajujv) = f: N H(ujv) = i AjH (uj)H(v)
J Jj=1 j=1

1

= H(3 Mup) H(v) = H@)H()
j=1

for all z € A and all v € i{(A4). By the same method as given above, one can
obtain that

H(zy) = H(z)H(y)

for all z,y € A. So the mapping H : A — B is a d-isometric C*-algebra
homomorphism, as desired. O



262 CHOONKIL PARK AND THEMISTOCLES M. RASSIAS

Corollary 3.6. Let h : A — B be a mapping satisfying h(0) = 0 for which
there exist constants 8 > 0 and p € [0,1) such that

(pzy + pxs) — ph(zy) — phz)|l < 8(@1 ][ + [lz2]IP),
[~(2%u") = h(2™u)"]] < 27d6),
|h(2"u - 2™) — h(2™u)h(2™)|| < 277114,

d
| (1), - h(zalls = ller, -, zalla | <0 llaylP

i=1

for all p € T, all u,v € U(A), alln € Z and all z1,...,z4 € A. Then there
exists a unique d-isometric C*-algebra homomorphism H : A — B such that

Ih(z) ~ H@)ll < 5ol
for all z € A.
Proof. Define ¢(z1,...,24) = Oz;l:l [lz;]|P and apply Theorem 3.5. a

We investigate isometric C*-algebra isomorphisms between unital C*-alge-
bras.

Theorem 3.7. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2"uy) = h(2"u)h(y) for all v € U(A), ally € A and all n € Z, for which
there is a function ¢ : A* — [0, 00) satisfying (3.i), (3.ii), (3.iii) and (3.v) such
that

(3.ix) [R@I = [l | < (2, ..., 2)

d times

for allz € A. Then the bijective mapping h : A — B is an isometric C*-algebra
isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a
unique C*-algebra homomorphism H : A — B satisfying (3.vi), and H(z) =
h(z) for all z € A. The mapping H : A — B is given by

.1 n
(3.9 H(z) = n1—1—>nolo 2—nh(2 x)
for all z € A.
It follows from (3.ix) that
| SR ) = lzl] | = o | IR2P2)| = [1272]] | < 59(272, ..., 2%),
2 2 2 ———
d times

which tends to zero as n — oo for all z € A4 by (3.i). By (3.9),

|H @) = lim ||5-A@"0)l| =l
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for all z € A. Since H : A — B is additive,

H(z) = Hy)l| = |H(z - y)ll = |l= - yl|

for all z,y € A. So the additive mapping H : A — B is an isometry.
Therefore, the bijective mapping h : A — B is an isometric C*-algebra
isomorphism, as desired. O

Corollary 3.8. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2"Muy) = h{2"wh{y) for all u € U(A), all y € A and all n € Z, for which
there exist constants 8 > 0 and p € [0,1) such that
Ih(pay + pz2) — phz:) — phiz2)ll < 8(||z1 || + [lz2][P),
|h{(2™u*) — h(2"uw)*|| < 27Pd8,
[HllAa@)I] = ll=]l | < db]|=]|P

for all p € T, allu € U(A), alln € Z and all z,z1,22 € A. Assume that
lim;, o0 ﬂ;n_el is invertible. Then the bijective mapping h : A — B is an
isometric C*-algebra isomorphism.
Proof. Define ¢(zy,...,24) =0 Zj__l llz;||P and apply Theorem 3.7. O

Theorem 3.9. Let h : A — B be a bijective mapping satisfying h{0) = 0 and
h(2%uy) = h2™u)h(y) for all u € U(A), all y € A and all n € Z, for which
there is a function ¢ : A% — [0,00) satisfying (3.1), (3.iii), (3.v), (3.vil) and
(3.ix) such that If h(tz) is continuwous in t € R for each fizred x € A, then the
bijective mapping h: A — B is an isometric C*-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 3.1, 3.3 and 3.7. 0

Corollary 3.10. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h{(2%uy) = h(2™u)h(y) for all u € U(A), all y € A and all n € Z, for which
there ezist constants 8 > 0 and p € [0,1) such that
h(pzy + pz2) — phizy) — ph(z2)ll < 6(|lz P + llz2|lF),
(lA(2"") — h(2"u)"|| < 27dB,
HIR@I = lllf | < dbl]a]]?
Jor allu € U(A), alln € Z, all z,z1,22 € A and p = 1,i. Assume
lim h2e)
n—oco 27

is tnvertible. If h{tz) is continuous in t € R for each fized z € A, then the
bijective mapping h : A — B is an isometric C*-algebra isomorphism.

Proof. Define p(zy,...,2q4) =6 Zj:1 llz;||? and apply Theorem 3.9. O

Now we prove the Hyers-Ulam stability of isometric C*-algebra homomor-
phisms in unital C*-algebras.
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Theorem 3.11. Let h : A — B be a mapping satisfying h{0) = 0 for which
there ezists a function v : A — [0,00) satisfying (3.1), (3.ii), (3.ii), (3.viii)
and (3.ix). Then there exists a unique isometric C*-algebra homomorphism
H: A — B satisfying (3.vi).

Proof. The proof is similar to the proofs of Theorems 3.1, 3.5 and 3.7. a

Corollary 3.12. Let h : A — B be a mapping satisfying h(0) = 0 for which
there exist constants 8 > 0 and p € [0,1) such that
Ih(pz1 + pz2) — phze) — ph(@2)l] < 8(||lz]|P + [|22117),
|A(2"u") ~ h(27u)*|| < 2"7dB,
|R(2"u - 2™v) — h(2™u)h(2™0)|| < 277116,
| 1A = ll=ll | < @f]l=]|P

for all p € T, all u,v € U(A), alln € Z and all x,z1,20 € A. Then there
exists a unique isometric C*-algebra homomorphism H : A = B such that

26
Ih(z) = H(@)ll < 5—; ll=II”
forallz € A.
Proof. Define p(z1,...,2q4) =0 E?:l l|lz;||? and apply Theorem 3.11. 0O

4. d-isometric homomorphisms between linear d-normed Poisson
C*-algebras

Throughout this section, let A be a (linear d-normed) unital Poisson C*-

algebra with d-norm |-, ..., |4, norm || - ||, unit e and unitary group U{A),
and B a (linear d-normed) unital Poisson C*-algebra with d-norm ||-,...,"||s
and norm || - ||.

We are going to investigate d-isometric Poisson C™*-algebra isomorphisms
between linear d-normed unital Poisson C*-algebras.

Theorem 4.1. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2™uy) = h(2"uwh(y) for all y € A, all w € U(A) and all n € Z, for which
there exists a function ¢ : AT — [0,00) such that

o0

(4.1) P21, ... 24, 2, w) 1= Z i.(p(ﬂrcl,...,ijd,2jz,2jw) < 00,
j=0 z
|h(uzy + pao + {z,w}) — ph(z1) ~ ph(z2) — {k(z), A(w)}|

(4.i1) < gz, 22, 0,...,0 ,2,w),

N——

d — 2 times
(4.iii) h(2™u*) — h(2™w)*|| < ¢(2"u,...,2"4,0,0),

R —

d times
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(4.iv) | Wh(z1), .. h(zalls — Nen, o zalla | S oler,. .., 24,0,0)

for all w € U(A), all z1,...,%q,2,w € A, all p € T and all n € Z. Assume
that

271
(4.v) lim ’“2 ¢
Then the bijective mapping h : A — B is a d-isometric Poisson C*-algebra
isomorphism.

s invertible.

Proof. Let z = w = 0 in (4.i1). By the same reasoning as in the proof of
Theorem 3.1, there exists a unique d-isometric C*-algebra homomorphism H :
A —» B such that

N —

d times

for all z € A, and H(z) = h(z) for all z € A. The mapping H : 4 — B is
given by

DO =

N S
(4.1) H(z) = nILn;O 2—nh(2 x)
for all z € A.
It follows from (4.1) that
. h(2’"7)
(4.2) H(z) = nlgrgo 5

for all z € A. Let 21 = 22 = 0 in (4.1i). Then we get
Ih({z, w}) — {h(2), M(w) H] < ¢(0,..-,0,2,w)
N— —

d times
for all z,w € A. So
1 1
Ik 7 n _ n n & L n n
zznﬂh({? 2, 2"w}) = {h(2"2), R(2"w)} < 57000, -, 0,272, 2%w)

d times

1
< =(0,...,0,2"z,2"w)
27 e —

(4.3)

d times

for all z,w € A. By (4.i), (4.2) and (4.3),
H({nw}) = tim M2 o B2z 2]

Ny 0O 22n 00 22n

i

Jim S {h(2"2), h(2"w)}
tim ("D A0, _ (4, Hw))

=300

I

for all z,w € A.
Therefore, the bijective mapping - : A — B is a d-isometric Poisson C*-
algebra isomorphism, as desired. ]
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Corollary 4.2. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
h(2™uy) = h(2"uwh(y) for all u € U(A), ally € A and all n € Z, for which
there exist constants § > 0 and p € [0,1) such that
Wh(pzr + poa + {2, w}) = ph(z)) — nph(z2) — {h(z), h(w) }H]
< Ollza|lP + llzll” + 12]1” + [Jw][?),
|h(2™ 6"} — h(2™u)*|] < 27Pdf,

d
| lia(@1), - h@a)lls=lles, -, zalla | <Y NP
j=1
for all p € T, all u € U(A), all n € Z and all z1,...,24,2,w € A. Assume

that Hm, o %:e)- is invertible. Then the bijective mapping h : A — B is a

d-isometric Poisson C*-algebra isomorphism.

Proof. Define o(,...,34,2,w) = 00, ||z;|P + ||2/|” + ||[w|”) and apply
Theorem 4.1. =

Now we prove the Hyers—Ulam stability of d-isometric Poisson C*-algebra
homomorphisms in linear d-normed unital Poisson C*-algebras.

Theorem 4.3. Let h : A = B be o mapping satisfying h(0) = O for which
there ezists a function ¢ : A2 — [0,00) satisfying (4.1), (4.ii), (4.iil) and
(4.iv) such that
(4.vil) [[R(2%u - 2"0) — h(2"u)h(2"v}|| < (2"u,2™0,0,...,0)

[

d times
for all u,v € U(A) and all n € Z. Then there exists a unique d-isometric
Poisson C*-algebra homomorphism H : A — B satisfying (4.vi).

Proof. The proof is similar to the proofs of Theorems 3.1, 3.5 and 4.1. a

Corollary 4.4. Let h : A — B be o mapping satisfying h(0) = 0 for which
there ezist constants § > 0 and p € [0,1) such that

Ih(pzy + pee + {2z, w}) — ph(z1) — ph(zz) — {h(z), M(w)}|
SOl |l” + llzall” + [1241” + lfwl]P),
[|R(27u*) — h(2™u)*|| < 2"Pd8,
[|R(2™u - 2™0) — h(2™u)h(2"V)|| < 27F 114,

d
L h(21), - hlza)lls — |z, - zalla | <0 llzs]1P
=1
for all p € T, all u,v € U(A), alln € Z and all z,,...,24,2,w € A. Then
there exists a unigue d-isometric Poisson C*-algebra homomorphism H : A —
B such that o9

s llall”

() — Hz) <
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forallz € A.

Proof. Define ¢(z1,...,za,2,w) = 0(X5_, llo;||P + ||2]|” + |[w]|") and apply
Theorem 4.3. ]

We are going to investigate isometric Poisson C*-algebra isomorphisms be-
tween unital Poisson C*-algebras.

Theorem 4.5. Let h: A — B be a bijective mapping satisfying h{0) = 0 and
h(2"uy) = h(2™u)h(y) for all y € A, oll u € U(A) and all n € Z, for which
there exists a function ¢ : A%T? — [0, 00) satisfying (4.1), (4.ii), (4.iii) and (4.v)
such that

for all x € A. Then the bijective mapping h : A — B is an isometric Poisson
C* -algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 3.1, 3.7 and 4.1. O

Corollary 4.6. Let h: A — B be a bijective mapping satisfying h(0) = 0 and
R(2™uy) = h{(2"u)h(y) for all u € U(A), all y € A and all n € Z, for which
there exist constants 8 > 0 and p € [0,1) such that

|h(pz1 + px2 + {2, w}) — ph(z1) — nph(zs) — {A(z), h(w)}|
SOl || + [[z2] P + |27 + [[w]P),

[|R(2"u") — h(2"u)*|| < 27Pd,

| Th(@)I| = lz[| | < df||=|{?

for all p € T, all w € U(A), all n € Z and all z,21,22,2,w € A. Assume
that lim,,_, . ﬂ;n—e) is invertible. Then the bijective mapping h: A — B is an
isometric Poisson C™*-algebra isomorphism.

Proof. Define o(z1,...,24,2,w) = 9(2?:1 [lz; 1P + ||2]]? + ||jw]|P) and apply
Theorem 4.5. O

Now we prove the Hyers-Ulam stability of isometric Poisson C*-algebra
homomorphisms in unital Poisson C*-algebras.

Theorem 4.7. Let h : A — B be a mapping satisfying h(0) = 0 for which
there erists a function ¢ : A2 — [0,00) satisfying (4.1), (4.i), (4.iii), (4.vii)
and (4.viii). Then there exists a unique isometric Poisson C*-algebra homo-
morphism H : A — B satisfying (4.vi).

Proof. The proof is similar to the proofs of Theorems 3.1, 3.7 and 4.1. ]
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Corollary 4.8. Let h : A = B be a mapping satisfying h(0) = 0 for which
there exist constants 8 > 0 and p € [0,1) such that

h(uzy + paz + {z,w}) — ph(z1) — ph(zz) — {h(2), h(w)}|]
<Ol [P + llz2lP + ||2]17 + |lw]P),
1A (2"w") — h(2™w)*|| < 277d6,
[|R(2"u - 2™v) — h(2™u)h(2™V)|| < 27PT1,
| k()] = [l]| | < db]|=|[P
forallpe T, allu,v € U(A), alln € Z and all z, 21,22, 2,w € A. Then there

ezists a unique isometric Poisson C*-algebra homomorphism H : A — B such
that

20
|h(z) — H(z)|| < 5o 12l
for allz € A.

Proof. Define ¢(zy,...,z4,z,w) = 8(X2, |la |17 + ||z + [[uw][”) and apply
Theorem 4.7. O
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