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Abstract

In this paper, we investigate homomorphisms between C∗-ternary algebras and derivations on C∗-ternary
algebras, and homomorphisms between JB∗-triples and derivations on JB∗-triples, associated with the
following Apollonius type additive functional equation

f (z − x) + f (z − y) = −1

2
f (x + y) + 2f

(
z − x + y

4

)
.
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1. Introduction and preliminaries

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) �→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable, and associative in the sense that [x, y, [z,w,v]] = [x, [w,z, y], v] =
[[x, y, z],w, v], and satisfies ‖[x, y, z]‖ � ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [20]).
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If a C∗-ternary algebra (A, [·, · ,·]) has an identity, i.e., an element e ∈ A such that x =
[x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦y := [x, e, y]
and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A,◦) is a unital C∗-algebra, then
[x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

A C-linear mapping H :A → B is called a C∗-ternary algebra homomorphism if

H
([x, y, z]) = [

H(x),H(y),H(z)
]

for all x, y, z ∈ A. A C-linear mapping δ :A → A is called a C∗-ternary derivation if

δ
([x, y, z]) = [

δ(x), y, z
] + [

x, δ(y), z
] + [

x, y, δ(z)
]

for all x, y, z ∈ A (see [9]).
Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes

in view of their applications in physics (see [6]).
Suppose that J is a complex vector space endowed with a real trilinear composition J ×J ×

J � (x, y, z) �→ {xy∗z} ∈ J which is complex bilinear in (x, z) and conjugate linear in y. Then
J is called a Jordan triple system if {xy∗z} = {zy∗x} and{{xy∗z}u∗v

} + {{xy∗v}u∗z
} − {

xy∗{zu∗v}} = {
z{yx∗u}∗v}

hold.
We are interested in Jordan triple systems having a Banach space structure. A complex Jordan

triple system J with a Banach space norm ‖ · ‖ is called a J ∗-triple if, for every x ∈ J , the
operator x�x∗ is hermitian in the sense of Banach algebra theory. Here the operator x�x∗ on
J is defined by (x�x∗)y := {xx∗y}. This implies that x�x∗ has real spectrum σ(x�x∗) ⊂ R.
A J ∗-triple J is called a JB∗-triple if every x ∈ J satisfies σ(x�x∗) � 0 and ‖x�x∗‖ = ‖x‖2.

A C-linear mapping H :J → L is called a JB∗-triple homomorphism if

H
({xyz}) = {

H(x)H(y)H(z)
}

for all x, y, z ∈ J . A C-linear mapping δ :J → J is called a JB∗-triple derivation if

δ
({xyz}) = {

δ(x)yz
} + {

xδ(y)z
} + {

xyδ(z)
}

for all x, y, z ∈ J (see [7]).
Ulam [19] gave a talk before the Mathematics Club of the University of Wisconsin in which he

discussed a number of unsolved problems. Among these was the following question concerning
the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does there
exist a δ > 0 such that if f :G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then a
homomorphism h :G → G′ exists with ρ(f (x),h(x)) < ε for all x ∈ G?

Hyers [3] considered the case of approximately additive mappings f :E → E′, where E and
E′ are Banach spaces and f satisfies Hyers inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and that L :E → E′ is the unique additive mapping satisfying∥∥f (x) − L(x)
∥∥ � ε.
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Th.M. Rassias [11] provided a generalization of Hyers’ Theorem which allows the Cauchy
difference to be unbounded.

Theorem 1.1. (See Th.M. Rassias [11].) Let f :E → E′ be a mapping from a normed vector
space E into a Banach space E′ subject to the inequality

∥∥f (x + y) − f (x) − f (y)
∥∥ � ε

(‖x‖p + ‖y‖p
)

(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and L :E → E′ is the unique additive mapping which satisfies

∥∥f (x) − L(x)
∥∥ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y �= 0 and (1.2) for x �= 0. Also, if for
each x ∈ E the function f (tx) is continuous in t ∈ R, then L is R-linear.

Th.M. Rassias [12] during the 27th International Symposium on Functional Equations asked
the question whether such a theorem can also be proved for p � 1. Gajda [1], following the same
approach as in Th.M. Rassias [11], gave an affirmative solution to this question for p > 1. For
further research developments in stability of functional equations the readers are referred to the
works of Gǎvruta [2], Jung [5], Park [10], Th.M. Rassias [13–16], Th.M. Rassias and Šemrl [17],
Skof [18] and references cited therein.

In an inner product space, the equality

‖z − x‖2 + ‖z − y‖2 = 1

2
‖x − y‖2 + 2

∥∥∥∥z − x + y

2

∥∥∥∥
2

holds, and is called the Apollonius’ identity. The following functional equation, which was mo-
tivated by this equation,

Q(z − x) + Q(z − y) = 1

2
Q(x − y) + 2Q

(
z − x + y

2

)
, (1.3)

is quadratic. For this reason, the function equation (1.3) is called a quadratic functional equation
of Apollonius type, and each solution of the functional equation (1.3) is said to be a quadratic
mapping of Apollonius type. Jun and Kim [4] investigated the quadratic functional equation of
Apollonius type.

In this paper, employing the above equality (1.3), we introduce a new functional equation,
which is called the Apollonius type additive functional equation and whose solution of the func-
tional equation is said to be the Apollonius type additive mapping:

L(z − x) + L(z − y) = −1

2
L(x + y) + 2L

(
z − x + y

4

)
.

In this paper, we investigate homomorphisms and derivations in C∗-ternary algebras, and
homomorphisms and derivations in JB∗-triples.
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2. Homomorphisms between C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A and that B is
a C∗-ternary algebra with norm ‖ · ‖B .

In this section, we investigate homomorphisms between C∗-ternary algebras.

Lemma 2.1. Let f :A → B be a mapping such that∥∥∥∥f (z − x) + f (z − y) + 1

2
f (x + y)

∥∥∥∥
B

�
∥∥∥∥2f

(
z − x + y

4

)∥∥∥∥
B

(2.1)

for all x, y, z ∈ A. Then f is additive.

Proof. Letting x = y = z = 0 in (2.1), we get∥∥∥∥5

2
f (0)

∥∥∥∥
B

�
∥∥2f (0)

∥∥
B
.

So f (0) = 0.
Letting z = 0 and y = −x in (2.1), we get

∥∥f (−x) + f (x)
∥∥

B
�

∥∥2f (0)
∥∥

B
= 0

for all x ∈ A. Hence f (−x) = −f (x) for all x ∈ A.
Letting x = y = 2z in (2.1), we get∥∥∥∥2f (−z) + 1

2
f (4z)

∥∥∥∥
B

�
∥∥2f (0)

∥∥
B

= 0

for all z ∈ A. Hence

f (4z) = −4f (−z) = 4f (z)

for all z ∈ A.
Letting z = x+y

4 in (2.1), we get
∥∥∥∥f

(−3x + y

4

)
+ f

(
x − 3y

4

)
+ 1

2
f (x + y)

∥∥∥∥
B

�
∥∥2f (0)

∥∥
B

= 0

for all x, y ∈ A. So

f

(−3x + y

4

)
+ f

(
x − 3y

4

)
+ 1

2
f (x + y) = 0 (2.2)

for all x, y ∈ A. Let w1 = −3x+y
4 and w2 = x−3y

4 in (2.2). Then

f (w1) + f (w2) = −1

2
f (−2w1 − 2w2) = 1

2
f (2w1 + 2w2) = 2f

(
w1 + w2

2

)

for all w1,w2 ∈ A and so f is additive. �
Theorem 2.2. Let r �= 1 and θ be nonnegative real numbers, and let f :A → B be a mapping
such that
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∥∥∥∥f (z − μx) + μf (z − y) + 1

2
f (x + y)

∥∥∥∥
B

�
∥∥∥∥2f

(
z − x + y

4

)∥∥∥∥
B

, (2.3)

∥∥f
([x, y, z]) − [

f (x), f (y), f (z)
]∥∥

B
� θ

(‖x‖3r
A + ‖y‖3r

A + ‖z‖3r
A

)
(2.4)

for all μ ∈ T
1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A. Then the mapping f :A → B is a C∗-

ternary algebra homomorphism.

Proof. Assume r > 1.
Let μ = 1 in (2.3). By Lemma 2.1, the mapping f :A → B is additive.
Letting y = −x and z = 0, we get∥∥f (−μx) + μf (x)

∥∥
B

�
∥∥2f (0)

∥∥
B

= 0

for all x ∈ A and all μ ∈ T
1. So

−f (μx) + μf (x) = f (−μx) + μf (x) = 0

for all x ∈ A and all μ ∈ T
1. Hence f (μx) = μf (x) for all x ∈ A and all μ ∈ T

1. By the same
reasoning as in the proof of Theorem 2.1 of [8], the mapping f :A → B is C-linear.

It follows from (2.4) that
∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

= lim
n→∞ 8n

∥∥∥∥f

( [x, y, z]
2n · 2n · 2n

)
−

[
f

(
x

2n

)
, f

(
y

2n

)
, f

(
z

2n

)]∥∥∥∥
B

� lim
n→∞

8nθ

8nr

(‖x‖3r
A + ‖y‖3r

A + ‖z‖3r
A

) = 0

for all x, y, z ∈ A. Thus

f
([x, y, z]) = [

f (x), f (y), f (z)
]

for all x, y, z ∈ A. Hence the mapping f :A → B is a C∗-ternary algebra homomorphism.
Similarly, one obtains the result for the case r < 1. �

3. Derivations on C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A.
In this section, we investigate derivations on C∗-ternary algebras.

Theorem 3.1. Let r �= 1 and θ be nonnegative real numbers, and let f :A → A be a mapping
satisfying (2.3) such that

∥∥f
([x, y, z]) − [

f (x), y, z
] − [

x,f (y), z
] − [

x, y,f (z)
]∥∥

A

� θ
(‖x‖3r

A + ‖y‖3r
A + ‖z‖3r

A

)
(3.1)

for all x, y, z ∈ A. Then the mapping f :A → A is a C∗-ternary derivation.

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.2, the mapping f :A → A is C-linear.
It follows from (3.1) that
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∥∥f
([x, y, z]) − [

f (x), y, z
] − [

x,f (y), z
] − [

x, y,f (z)
]∥∥

A

= lim
n→∞ 8n

∥∥∥∥f

( [x, y, z]
8n

)
−

[
f

(
x

2n

)
,

y

2n
,

z

2n

]
−

[
x

2n
, f

(
y

2n

)
,

z

2n

]

−
[

x

2n
,

y

2n
, f

(
z

2n

)]∥∥∥∥
A

� lim
n→∞

8nθ

8nr

(‖x‖3r
A + ‖y‖3r

A + ‖z‖3r
A

) = 0

for all x, y, z ∈ A. So

f
([x, y, z]) = [

f (x), y, z
] + [

x,f (y), z
] + [

x, y,f (z)
]

for all x, y, z ∈ A.
Thus the mapping f :A → A is a C∗-ternary derivation.
Similarly, one obtains the result for the case r < 1. �

4. Homomorphisms between JB∗-triples

Throughout this paper, assume that J is a JB∗-triple with norm ‖ · ‖J and that L is a JB∗-
triple with norm ‖ · ‖L.

In this section, we investigate homomorphisms between JB∗-triples.

Theorem 4.1. Let r �= 1 and θ be nonnegative real numbers, and let f :J → L be a mapping
such that∥∥∥∥f (z − μx) + μf (z − y) + 1

2
f (x + y)

∥∥∥∥
L

�
∥∥∥∥2f

(
z − x + y

4

)∥∥∥∥
L
, (4.1)

∥∥f
({xyz}) − {

f (x)f (y)f (z)
}∥∥

L � θ
(‖x‖3r

J + ‖y‖3r
J + ‖z‖3r

J
)

(4.2)

for all μ ∈ T
1 and all x, y, z ∈ J . Then the mapping f :J → L is a JB∗-triple homomorphism.

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.2, the mapping f :J → L is C-linear.
It follows from (4.2) that

∥∥f
({xy}) − {

f (x)f (y)f (z)
}∥∥

L

= lim
n→∞ 8n

∥∥∥∥f

( {xyz}
2n · 2n · 2n

)
−

{
f

(
x

2n

)
f

(
y

2n

)
f

(
z

2n

)}∥∥∥∥
L

� lim
n→∞

8nθ

8nr

(‖x‖3r
J + ‖y‖3r

J + ‖z‖3r
J

) = 0

for all x, y, z ∈ J . Thus

f
({xyz}) = {

f (x)f (y)f (z)
}

for all x, y, z ∈ J . Hence the mapping f :J → L is a JB∗-triple homomorphism.
Similarly, one obtains the result for the case r < 1. �
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5. Derivations on JB∗-triples

Throughout this paper, assume that J is a JB∗-triple with norm ‖ · ‖J .
In this section, we investigate derivations on JB∗-triples.

Theorem 5.1. Let r �= 1 and θ be nonnegative real numbers, and let f :J → J be a mapping
satisfying (4.1) such that∥∥f

({xyz}) − {
f (x)yz

} − {
xf (y)z

} − {
xyf (z)

}∥∥
J

� θ
(‖x‖3r

J + ‖y‖3r
J + ‖z‖3r

J
)

(5.1)

for all x, y, z ∈ J . Then the mapping f :J → J is a JB∗-triple derivation.

Proof. Assume r > 1.
By the same reasoning as in the proof of Theorem 2.2, the mapping f :J → J is C-linear.
It follows from (5.1) that∥∥f

({xyz}) − {
f (x)yz

} − {
xf (y)z

} − {
xyf (z)

}∥∥
J

= lim
n→∞ 8n

∥∥∥∥f

( {xyz}
8n

)
−

{
f

(
x

2n

)
y

2n

z

2n

}
−

{
x

2n
f

(
y

2n

)
z

2n

}
−

{
x

2n

y

2n
f

(
z

2n

)}∥∥∥∥
J

� lim
n→∞

8nθ

8nr

(‖x‖3r
J + ‖y‖3r

J + ‖z‖3r
J

) = 0

for all x, y, z ∈ J . So

f
({xyz}) = {

f (x)yz
} + {

xf (y)z
} + {

xyf (z)
}

for all x, y, z ∈ J .
Thus the mapping f :J → J is a JB∗-triple derivation.
Similarly, one obtains the result for the case r < 1. �

References

[1] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991) 431–434.
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