Homomorphisms in C^{*}-ternary algebras and $J B^{*}$-triples

Choonkil Park ${ }^{\text {a,1 }}$, Themistocles M. Rassias ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

Received 8 December 2006
Available online 3 April 2007
Submitted by D. O'Regan

Abstract

In this paper, we investigate homomorphisms between C^{*}-ternary algebras and derivations on C^{*}-ternary algebras, and homomorphisms between $J B^{*}$-triples and derivations on $J B^{*}$-triples, associated with the following Apollonius type additive functional equation $$
f(z-x)+f(z-y)=-\frac{1}{2} f(x+y)+2 f\left(z-\frac{x+y}{4}\right) .
$$ © 2007 Published by Elsevier Inc. Keywords: Apollonius type additive functional equation; C^{*}-ternary algebra homomorphism; Generalized Hyers-Ulam stability; C^{*}-ternary derivation; $J B^{*}$-triple homomorphism; $J B^{*}$-triple derivation

1. Introduction and preliminaries

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=$ $[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leqslant\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see [20]).

[^0]If a C^{*}-ternary algebra $(A,[\cdot, \cdot, \cdot])$ has an identity, i.e., an element $e \in A$ such that $x=$ $[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a unital C^{*}-algebra, then $[x, y, z]:=x \circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see [9]).
Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics (see [6]).

Suppose that \mathcal{J} is a complex vector space endowed with a real trilinear composition $\mathcal{J} \times \mathcal{J} \times$ $\mathcal{J} \ni(x, y, z) \mapsto\left\{x y^{*} z\right\} \in \mathcal{J}$ which is complex bilinear in (x, z) and conjugate linear in y. Then \mathcal{J} is called a Jordan triple system if $\left\{x y^{*} z\right\}=\left\{z y^{*} x\right\}$ and

$$
\left\{\left\{x y^{*} z\right\} u^{*} v\right\}+\left\{\left\{x y^{*} v\right\} u^{*} z\right\}-\left\{x y^{*}\left\{z u^{*} v\right\}\right\}=\left\{z\left\{y x^{*} u\right\}^{*} v\right\}
$$

hold.
We are interested in Jordan triple systems having a Banach space structure. A complex Jordan triple system \mathcal{J} with a Banach space norm $\|\cdot\|$ is called a J^{*}-triple if, for every $x \in \mathcal{J}$, the operator $x \square x^{*}$ is hermitian in the sense of Banach algebra theory. Here the operator $x \square x^{*}$ on \mathcal{J} is defined by $\left(x \square x^{*}\right) y:=\left\{x x^{*} y\right\}$. This implies that $x \square x^{*}$ has real spectrum $\sigma\left(x \square x^{*}\right) \subset \mathbb{R}$. A J^{*}-triple \mathcal{J} is called a $J B^{*}$-triple if every $x \in \mathcal{J}$ satisfies $\sigma\left(x \square x^{*}\right) \geqslant 0$ and $\left\|x \square x^{*}\right\|=\|x\|^{2}$.

A \mathbb{C}-linear mapping $H: \mathcal{J} \rightarrow \mathcal{L}$ is called a $J B^{*}$-triple homomorphism if

$$
H(\{x y z\})=\{H(x) H(y) H(z)\}
$$

for all $x, y, z \in \mathcal{J}$. A \mathbb{C}-linear mapping $\delta: \mathcal{J} \rightarrow \mathcal{J}$ is called a $J B^{*}$-triple derivation if

$$
\delta(\{x y z\})=\{\delta(x) y z\}+\{x \delta(y) z\}+\{x y \delta(z)\}
$$

for all $x, y, z \in \mathcal{J}$ (see [7]).
Ulam [19] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$ exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

Hyers [3] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leqslant \epsilon
$$

Th.M. Rassias [11] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (See Th.M. Rassias [11].) Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leqslant \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the function $f(t x)$ is continuous in $t \in \mathbb{R}$, then L is \mathbb{R}-linear.

Th.M. Rassias [12] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geqslant 1$. Gajda [1], following the same approach as in Th.M. Rassias [11], gave an affirmative solution to this question for $p>1$. For further research developments in stability of functional equations the readers are referred to the works of Gǎvruta [2], Jung [5], Park [10], Th.M. Rassias [13-16], Th.M. Rassias and Šemrl [17], Skof [18] and references cited therein.

In an inner product space, the equality

$$
\|z-x\|^{2}+\|z-y\|^{2}=\frac{1}{2}\|x-y\|^{2}+2\left\|z-\frac{x+y}{2}\right\|^{2}
$$

holds, and is called the Apollonius' identity. The following functional equation, which was motivated by this equation,

$$
\begin{equation*}
Q(z-x)+Q(z-y)=\frac{1}{2} Q(x-y)+2 Q\left(z-\frac{x+y}{2}\right) \tag{1.3}
\end{equation*}
$$

is quadratic. For this reason, the function equation (1.3) is called a quadratic functional equation of Apollonius type, and each solution of the functional equation (1.3) is said to be a quadratic mapping of Apollonius type. Jun and Kim [4] investigated the quadratic functional equation of Apollonius type.

In this paper, employing the above equality (1.3), we introduce a new functional equation, which is called the Apollonius type additive functional equation and whose solution of the functional equation is said to be the Apollonius type additive mapping:

$$
L(z-x)+L(z-y)=-\frac{1}{2} L(x+y)+2 L\left(z-\frac{x+y}{4}\right)
$$

In this paper, we investigate homomorphisms and derivations in C^{*}-ternary algebras, and homomorphisms and derivations in $J B^{*}$-triples.

2. Homomorphisms between C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and that B is a C^{*}-ternary algebra with norm $\|\cdot\|_{B}$.

In this section, we investigate homomorphisms between C^{*}-ternary algebras.
Lemma 2.1. Let $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|f(z-x)+f(z-y)+\frac{1}{2} f(x+y)\right\|_{B} \leqslant\left\|2 f\left(z-\frac{x+y}{4}\right)\right\|_{B} \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in A$. Then f is additive.
Proof. Letting $x=y=z=0$ in (2.1), we get

$$
\left\|\frac{5}{2} f(0)\right\|_{B} \leqslant\|2 f(0)\|_{B} .
$$

So $f(0)=0$.
Letting $z=0$ and $y=-x$ in (2.1), we get

$$
\|f(-x)+f(x)\|_{B} \leqslant\|2 f(0)\|_{B}=0
$$

for all $x \in A$. Hence $f(-x)=-f(x)$ for all $x \in A$.
Letting $x=y=2 z$ in (2.1), we get

$$
\left\|2 f(-z)+\frac{1}{2} f(4 z)\right\|_{B} \leqslant\|2 f(0)\|_{B}=0
$$

for all $z \in A$. Hence

$$
f(4 z)=-4 f(-z)=4 f(z)
$$

for all $z \in A$.
Letting $z=\frac{x+y}{4}$ in (2.1), we get

$$
\left\|f\left(\frac{-3 x+y}{4}\right)+f\left(\frac{x-3 y}{4}\right)+\frac{1}{2} f(x+y)\right\|_{B} \leqslant\|2 f(0)\|_{B}=0
$$

for all $x, y \in A$. So

$$
\begin{equation*}
f\left(\frac{-3 x+y}{4}\right)+f\left(\frac{x-3 y}{4}\right)+\frac{1}{2} f(x+y)=0 \tag{2.2}
\end{equation*}
$$

for all $x, y \in A$. Let $w_{1}=\frac{-3 x+y}{4}$ and $w_{2}=\frac{x-3 y}{4}$ in (2.2). Then

$$
f\left(w_{1}\right)+f\left(w_{2}\right)=-\frac{1}{2} f\left(-2 w_{1}-2 w_{2}\right)=\frac{1}{2} f\left(2 w_{1}+2 w_{2}\right)=2 f\left(\frac{w_{1}+w_{2}}{2}\right)
$$

for all $w_{1}, w_{2} \in A$ and so f is additive.
Theorem 2.2. Let $r \neq 1$ and θ be nonnegative real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|f(z-\mu x)+\mu f(z-y)+\frac{1}{2} f(x+y)\right\|_{B} \leqslant\left\|2 f\left(z-\frac{x+y}{4}\right)\right\|_{B}, \tag{2.3}\\
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leqslant \theta\left(\|x\|_{A}^{3 r}+\|y\|_{A}^{3 r}+\|z\|_{A}^{3 r}\right) \tag{2.4}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x, y, z \in A$. Then the mapping $f: A \rightarrow B$ is a C^{*} ternary algebra homomorphism.

Proof. Assume $r>1$.
Let $\mu=1$ in (2.3). By Lemma 2.1, the mapping $f: A \rightarrow B$ is additive.
Letting $y=-x$ and $z=0$, we get

$$
\|f(-\mu x)+\mu f(x)\|_{B} \leqslant\|2 f(0)\|_{B}=0
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. So

$$
-f(\mu x)+\mu f(x)=f(-\mu x)+\mu f(x)=0
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. Hence $f(\mu x)=\mu f(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. By the same reasoning as in the proof of Theorem 2.1 of [8], the mapping $f: A \rightarrow B$ is \mathbb{C}-linear.

It follows from (2.4) that

$$
\begin{aligned}
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{[x, y, z]}{2^{n} \cdot 2^{n} \cdot 2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), f\left(\frac{y}{2^{n}}\right), f\left(\frac{z}{2^{n}}\right)\right]\right\|_{B} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{8^{n r}}\left(\|x\|_{A}^{3 r}+\|y\|_{A}^{3 r}+\|z\|_{A}^{3 r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. Thus

$$
f([x, y, z])=[f(x), f(y), f(z)]
$$

for all $x, y, z \in A$. Hence the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra homomorphism.
Similarly, one obtains the result for the case $r<1$.

3. Derivations on C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$. In this section, we investigate derivations on C^{*}-ternary algebras.

Theorem 3.1. Let $r \neq 1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.3) such that

$$
\begin{align*}
& \|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \\
& \quad \leqslant \theta\left(\|x\|_{A}^{3 r}+\|y\|_{A}^{3 r}+\|z\|_{A}^{3 r}\right) \tag{3.1}
\end{align*}
$$

for all $x, y, z \in A$. Then the mapping $f: A \rightarrow A$ is a C^{*}-ternary derivation.
Proof. Assume $r>1$.
By the same reasoning as in the proof of Theorem 2.2, the mapping $f: A \rightarrow A$ is \mathbb{C}-linear. It follows from (3.1) that

$$
\begin{aligned}
& \|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \\
& =\lim _{n \rightarrow \infty} 8^{n} \| f\left(\frac{[x, y, z]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}\right), \frac{z}{2^{n}}\right] \\
& \quad-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}\right)\right] \|_{A} \\
& \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{8^{n r}}\left(\|x\|_{A}^{3 r}+\|y\|_{A}^{3 r}+\|z\|_{A}^{3 r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
f([x, y, z])=[f(x), y, z]+[x, f(y), z]+[x, y, f(z)]
$$

for all $x, y, z \in A$.
Thus the mapping $f: A \rightarrow A$ is a C^{*}-ternary derivation.
Similarly, one obtains the result for the case $r<1$.

4. Homomorphisms between $\boldsymbol{J} \boldsymbol{B}^{\boldsymbol{*}}$-triples

Throughout this paper, assume that \mathcal{J} is a $J B^{*}$-triple with norm $\|\cdot\|_{\mathcal{J}}$ and that \mathcal{L} is a $J B^{*}$ triple with norm $\|\cdot\|_{\mathcal{L}}$.

In this section, we investigate homomorphisms between $J B^{*}$-triples.
Theorem 4.1. Let $r \neq 1$ and θ be nonnegative real numbers, and let $f: \mathcal{J} \rightarrow \mathcal{L}$ be a mapping such that

$$
\begin{align*}
& \left\|f(z-\mu x)+\mu f(z-y)+\frac{1}{2} f(x+y)\right\|_{\mathcal{L}} \leqslant\left\|2 f\left(z-\frac{x+y}{4}\right)\right\|_{\mathcal{L}}, \tag{4.1}\\
& \|f(\{x y z\})-\{f(x) f(y) f(z)\}\|_{\mathcal{L}} \leqslant \theta\left(\|x\|_{\mathcal{J}}+\|y\|_{\mathcal{J}}^{3 r}+\|z\|_{\mathcal{J}}^{3 r}\right) \tag{4.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in \mathcal{J}$. Then the mapping $f: \mathcal{J} \rightarrow \mathcal{L}$ is a $J B^{*}$-triple homomorphism.
Proof. Assume $r>1$.
By the same reasoning as in the proof of Theorem 2.2, the mapping $f: \mathcal{J} \rightarrow \mathcal{L}$ is \mathbb{C}-linear. It follows from (4.2) that

$$
\begin{aligned}
& \|f(\{x y\})-\{f(x) f(y) f(z)\}\|_{\mathcal{L}} \\
& \quad=\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{\{x y z\}}{2^{n} \cdot 2^{n} \cdot 2^{n}}\right)-\left\{f\left(\frac{x}{2^{n}}\right) f\left(\frac{y}{2^{n}}\right) f\left(\frac{z}{2^{n}}\right)\right\}\right\|_{\mathcal{L}} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{8^{n r}}\left(\|x\|_{\mathcal{J}}^{3 r}+\|y\|_{\mathcal{J}}^{3 r}+\|z\|_{\mathcal{J}}^{3 r}\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{J}$. Thus

$$
f(\{x y z\})=\{f(x) f(y) f(z)\}
$$

for all $x, y, z \in \mathcal{J}$. Hence the mapping $f: \mathcal{J} \rightarrow \mathcal{L}$ is a $J B^{*}$-triple homomorphism.
Similarly, one obtains the result for the case $r<1$.

5. Derivations on $\boldsymbol{J} \boldsymbol{B}^{*}$-triples

Throughout this paper, assume that \mathcal{J} is a $J B^{*}$-triple with norm $\|\cdot\|_{\mathcal{J}}$. In this section, we investigate derivations on $J B^{*}$-triples.

Theorem 5.1. Let $r \neq 1$ and θ be nonnegative real numbers, and let $f: \mathcal{J} \rightarrow \mathcal{J}$ be a mapping satisfying (4.1) such that

$$
\begin{align*}
& \|f(\{x y z\})-\{f(x) y z\}-\{x f(y) z\}-\{x y f(z)\}\|_{\mathcal{J}} \\
& \quad \leqslant \theta\left(\|x\|_{\mathcal{J}}^{3 r}+\|y\|_{\mathcal{J}}^{3 r}+\|z\|_{\mathcal{J}}^{3 r}\right) \tag{5.1}
\end{align*}
$$

for all $x, y, z \in \mathcal{J}$. Then the mapping $f: \mathcal{J} \rightarrow \mathcal{J}$ is a $J B^{*}$-triple derivation.
Proof. Assume $r>1$.
By the same reasoning as in the proof of Theorem 2.2, the mapping $f: \mathcal{J} \rightarrow \mathcal{J}$ is \mathbb{C}-linear.
It follows from (5.1) that

$$
\begin{aligned}
\| f & (\{x y z\})-\{f(x) y z\}-\{x f(y) z\}-\{x y f(z)\} \|_{\mathcal{J}} \\
& =\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{\{x y z\}}{8^{n}}\right)-\left\{f\left(\frac{x}{2^{n}}\right) \frac{y}{2^{n}} \frac{z}{2^{n}}\right\}-\left\{\frac{x}{2^{n}} f\left(\frac{y}{2^{n}}\right) \frac{z}{2^{n}}\right\}-\left\{\frac{x}{2^{n}} \frac{y}{2^{n}} f\left(\frac{z}{2^{n}}\right)\right\}\right\|_{\mathcal{J}} \\
& \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{8^{n r}}\left(\|x\|_{\mathcal{J}}^{3 r}+\|y\|_{\mathcal{J}}^{3 r}+\|z\|_{\mathcal{J}}^{3 r}\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{J}$. So

$$
f(\{x y z\})=\{f(x) y z\}+\{x f(y) z\}+\{x y f(z)\}
$$

for all $x, y, z \in \mathcal{J}$.
Thus the mapping $f: \mathcal{J} \rightarrow \mathcal{J}$ is a $J B^{*}$-triple derivation.
Similarly, one obtains the result for the case $r<1$.

References

[1] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991) 431-434.
[2] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[3] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
[4] K. Jun, H. Kim, On the stability of Appolonius' equation, Bull. Belg. Math. Soc. Simon Stevin 11 (2004) 615-624.
[5] S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996) 221-226.
[6] R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997) A203-A225.
[7] C. Park, Approximate homomorphisms on $J B^{*}$-triples, J. Math. Anal. Appl. 306 (2005) 375-381.
[8] C. Park, Homomorphisms between Poisson $J C^{*}$-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005) 79-97.
[9] C. Park, Isomorphisms between C^{*}-ternary algebras, J. Math. Anal. Appl. 327 (2007) 101-115.
[10] C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, Math. Nachr., in press.
[11] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[12] Th.M. Rassias, Problem 16; 2, in: Report of the 27 th International Symp. on Functional Equations, Aequationes Math. 39 (1990) 292-293, 309.
[13] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000) 352-378.
[14] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
[15] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[16] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
[17] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989-993.
[18] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
[19] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
[20] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117-143.

[^0]: * Corresponding author.

 E-mail addresses: baak@hanyang.ac.kr (C. Park), trassias@math.ntua.gr (Th.M. Rassias).
 1 The first author was supported by grant No. F01-2006-000-10111-0 from the Korea Science \& Engineering Foundation.

