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Abstract

In this paper, we investigate homomorphisms in proper JCQ∗-triples and derivations on proper JCQ∗-triples associated with the
following functional equation

1

k
f (kx + ky + kz) = f (x) + f (y) + f (z)

for a fixed positive integer k. We moreover prove the generalized Hyers–Ulam stability of homomorphisms in proper JCQ∗-triples
and of derivations on proper JCQ∗-triples. This is applied to investigate isomorphisms between proper JCQ∗-triples.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

As it is extensively discussed in [47], the full description of a physical system S implies the knowledge of three
basic ingredients: the set of the observables, the set of the states and the dynamics that describes the time evolution of
the system by means of the time dependence of the expectation value of a given observable on a given state. Originally
the set of the observables was considered to be a C∗-algebra [27]. In many applications, however, this was shown not
to be the most convenient choice and the C∗-algebra was replaced by a von Neumann algebra, because the role of
the representation turns out to be crucial mainly when long range interactions are involved (see [10] and references
therein). Here we use a different algebraic structure, similar to the one considered in [22], which is suggested by the
considerations above: because of the relevance of the unbounded operators in the description of S , we will assume that
the observables of the system belong to a quasi ∗-algebra (A,A0) (see [51] and references therein), while, in order to
have a richer mathematical structure, we will use a slightly different algebraic structure: (A,A0) will be assumed to
be a proper CQ∗-algebra, which has nicer topological properties. In particular, for instance, A0 is a C∗-algebra.
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Let A be a linear space and A0 is a ∗-algebra contained in A as a subspace. We say that A is a quasi ∗-algebra over
A0 if

(i) the right and left multiplications of an element of A and an element of A0 are defined and linear;
(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2 for all x1, x2 ∈ A0 and all a ∈ A;

(iii) an involution ∗, which extends the involution of A0, is defined in A with the property (ab)∗ = b∗a∗ whenever
the multiplication is defined.

A quasi ∗-algebra (A,A0) is said to be a locally convex quasi ∗-algebra if in A a locally convex topology τ is
defined such that

(i) the involution is continuous and the multiplications are separately continuous;
(ii) A0 is dense in A[τ ].

Throughout this paper, we suppose that a locally convex quasi ∗-algebra (A[τ ],A0) is complete. For an overview
on partial ∗-algebra and related topics we refer to [2].

In a series of papers [6,14,16,17], many authors have considered a special class of quasi ∗-algebras, called proper
CQ∗-algebras, which arise as completions of C∗-algebras. They can be introduced in the following way:

Let A be a right Banach module over the C∗-algebra A0 with involution ∗ and C∗-norm ‖ · ‖0 such that A0 ⊂ A.
We say that (A,A0) is a proper CQ∗-algebra if

(i) A0 is dense in A with respect to its norm ‖ · ‖;
(ii) (ab)∗ = b∗a∗ whenever the multiplication is defined;

(iii) ‖y‖0 = supa∈A,‖a‖�1 ‖ay‖ for all y ∈ A0.

Several mathematician have contributed works on these subjects (see [1,3–9,11–15,18,19,23,24,31–33,49,
50,52,53]).

Ulam [54] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number
of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does there exist a δ > 0 such
that if f : G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then a homomorphism h : G → G′ exists with
ρ(f (x),h(x)) < ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and some interesting variations of the problem have
also been investigated.

Hyers [28] considered the case of approximately additive mappings f : E → E′, where E and E′ are Banach
spaces and f satisfies Hyers inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping satisfying∥∥f (x) − L(x)
∥∥ � ε.

Th.M. Rassias [40] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be un-
bounded.

Theorem 1.1 (Th.M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′
subject to the inequality

∥∥f (x + y) − f (x) − f (y)
∥∥ � ε

(‖x‖p + ‖y‖p
)

(1.1)
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for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥∥f (x) − L(x)
∥∥ � 2ε

2 − 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈ R, then L is linear.

Th.M. Rassias [41] during the 27th International Symposium on Functional Equations asked the question whether
such a theorem can also be proved for p � 1. Gajda [25] gave an affirmative solution to this question for p > 1. The
inequality (1.1) provided a lot of influence in the development of a generalization of the Hyers–Ulam stability concept.
This new concept is known as generalized Hyers–Ulam stability of functional equations (see [20,21,29]). Beginning
around the year 1980, the topic of approximate homomorphisms and their stability theory in the field of functional
equations and inequalities was taken up by several mathematicians (see [26,30,34–39,42–46,48]).

Definition 1.2. A proper CQ∗-algebra (A,A0), endowed with the Jordan triple product

{z, x,w} = 1

2

(
zx∗w + wx∗z

)
for all x ∈ A and all z,w ∈ A0, is called a proper JCQ∗-triple, and denoted by (A,A0, {·, · ,·}).

Definition 1.3. Let (A,A0{·, · ,·}) and (B,B0{·, · ,·}) be proper JCQ∗-triples.
(i) A C-linear mapping H : A → B is called a proper JCQ∗-triple homomorphism if H(z) ∈ B0 and

H
({z, x,w}) = {

H(z),H(x),H(w)
}

for all z,w ∈ A0 and all x ∈ A. If, in addition, the mapping H : A → B and the mapping H |A0 : A0 → B0 are bijective,
then the mapping H : A → B is called a proper JCQ∗-triple isomorphism.

(ii) A C-linear mapping δ : A0 → A is called a proper JCQ∗-triple derivation if

δ
({w0,w1,w2}

) = {
δ(w0),w1,w2

} + {
w0, δ(w1),w2

} + {
w0,w1, δ(w2)

}
for all w0,w1,w2 ∈ A0.

Throughout this paper, assume that k is a fixed positive integer.
This paper is organized as follows: In Sections 2 and 3, we investigate homomorphisms and derivations in proper

JCQ∗-triples associated with the functional equation

1

k
f (kx + ky + kz) = f (x) + f (y) + f (z).

In Sections 4 and 6, we prove the generalized Hyers–Ulam stability of homomorphisms and of derivations in proper
JCQ∗-triples. In Section 5, we investigate isomorphisms between proper JCQ∗-triples.

2. Homomorphisms in proper JCQ∗-triples

Throughout this section, assume that (A,A0, {·, · ,·}) is a proper JCQ∗-triple with C∗-norm ‖ · ‖A0 and norm ‖ · ‖A,
and that (B,B0, {·, · ,·}) is a proper JCQ∗-triple with C∗-norm ‖ · ‖B0 and norm ‖ · ‖B .

Proposition 2.1. Let X and Y be normed spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively. Let f : X → Y be a
mapping such that

∥∥f (x) + f (y) + f (z)
∥∥

Y
�

∥∥∥∥1

k
f (kx + ky + kz)

∥∥∥∥
Y

(2.1)

for all x, y, z ∈ X. Then f is Cauchy additive.
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Proof. Letting x = y = z = 0 in (2.1), we get

∥∥3f (0)
∥∥

Y
�

∥∥∥∥1

k
f (0)

∥∥∥∥
Y

.

So f (0) = 0.
Letting z = 0 and y = −x in (2.1), we get

∥∥f (x) + f (−x)
∥∥

Y
�

∥∥∥∥1

k
f (0)

∥∥∥∥
Y

= 0

for all x ∈ X. Hence f (−x) = −f (x) for all x ∈ X.
Letting z = −x − y in (2.1), we get

∥∥f (x) + f (y) − f (x + y)
∥∥

Y
= ∥∥f (x) + f (y) + f (−x − y)

∥∥
Y

�
∥∥∥∥1

k
f (0)

∥∥∥∥
Y

= 0

for all x, y ∈ X. Thus

f (x + y) = f (x) + f (y)

for all x, y ∈ X, as desired. �
We investigate homomorphisms in proper JCQ∗-triples.

Theorem 2.2. Let r 	= 1 and θ be nonnegative real numbers, and f : A → B a mapping satisfying f (w) ∈ B0 for all
w ∈ A0 such that

∥∥μf (x) + f (y) + f (z)
∥∥

B
�

∥∥∥∥1

k
f (kμx + ky + kz)

∥∥∥∥
B

, (2.2)

∥∥f
({w0, x,w1}

) − {
f (w0), f (x), f (w1)

}∥∥
B

� θ
(‖w0‖3r

A + ‖x‖3r
A + ‖w1‖3r

A

)
(2.3)

for all μ ∈ T
1 := {λ ∈ C: |λ| = 1}, all w0,w1 ∈ A0 and all x, y, z ∈ A. Then the mapping f : A → B is a proper

JCQ∗-triple homomorphism.

Proof. Let μ = 1 in (2.2). By Proposition 2.1, the mapping f : A → B is Cauchy additive.
Letting z = 0 and y = −μx in (2.2), we get

μf (x) − f (μx) = μf (x) + f (−μx) = 0

for all x ∈ A. So f (μx) = μf (x) for all x ∈ A. By the same reasoning as in the proof of Theorem 2.1 of [35], the
mapping f : A → B is C-linear.

(i) Assume that r < 1. By (2.3),∥∥f
({w0, x,w1}

) − {
f (w0), f (x), f (w1)

}∥∥
B

= lim
n→∞

1

8n

∥∥f
(
8n{w0, x,w1}

) − {
f

(
2nw0

)
, f

(
2nx

)
, f

(
2nw1

)}∥∥
B

� lim
n→∞

8nr

8n
θ
(‖w0‖3r

A + ‖x‖3r
A + ‖w1‖3r

A

) = 0

for all w0,w1 ∈ A0 and all x ∈ A. So

f
({w0, x,w1}

) = {
f (w0), f (x), f (w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can prove that the mapping f : A → B

satisfies

f
({w0, x,w1}

) = {
f (w0), f (x), f (w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

Since f (w) ∈ B0 for all w ∈ A0, the mapping f : A → B is a proper JCQ∗-triple homomorphism, as desired. �
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Theorem 2.3. Let r 	= 1 and θ be nonnegative real numbers, and f : A → B a mapping satisfying (2.2) and f (w) ∈ B0
for all w ∈ A0 such that∥∥f

({w0, x,w1}
) − {

f (w0), f (x), f (w1)
}∥∥

B
� θ · ‖w0‖r

A · ‖x‖r
A · ‖w1‖r

A (2.4)

for all w0,w1 ∈ A0 and all x ∈ A. Then the mapping f : A → B is a proper JCQ∗-triple homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A → B is C-linear.
(i) Assume that r < 1. By (2.4),∥∥f

({w0, x,w1}
) − {

f (w0), f (x), f (w1)
}∥∥

B

= lim
n→∞

1

8n

∥∥f
(
8n{w0, x,w1}

) − {
f

(
2nw0

)
, f

(
2nx

)
, f

(
2nw1

)}∥∥
B

� lim
n→∞

8nr

8n
θ · ‖w0‖r

A · ‖x‖r
A · ‖w1‖r

A = 0

for all w0,w1 ∈ A0 and all x ∈ A. So

f
({w0, x,w1}

) = {
f (w0), f (x), f (w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can prove that the mapping f : A → B

satisfies

f
({w0, x,w1}

) = {
f (w0), f (x), f (w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

Therefore, the mapping f : A → B is a proper JCQ∗-triple homomorphism. �
3. Derivations on proper JCQ∗-triples

Throughout this section, assume that (A,A0, {·, · ,·}) is a proper JCQ∗-triple with C∗-norm ‖ · ‖A0 and norm ‖ · ‖A.
We investigate derivations on proper JCQ∗-triples.

Theorem 3.1. Let r 	= 1 and θ be nonnegative real numbers, and f : A0 → A a mapping such that

∥∥μf (x) + f (y) + f (z)
∥∥

A
�

∥∥∥∥1

k
f (kμx + ky + kz)

∥∥∥∥
A

, (3.1)
∥∥f

({w0,w1,w2}
) − {

f (w0),w1,w2
} − {

w0, f (w1),w2
} − {

w0,w1, f (w2)
}∥∥

A

� θ
(‖w0‖3r

A + ‖w1‖3r
A + ‖w2‖3r

A

)
(3.2)

for all μ ∈ T
1 and all w0,w1,w2, x, y, z ∈ A0. Then the mapping f : A0 → A is a proper JCQ∗-triple derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A0 → A is C-linear.
(i) Assume that r < 1. By (3.2),∥∥f

({w0,w1,w2}
) − {

f (w0),w1,w2
} − {

w0, f (w1),w2
} − {

w0,w1, f (w2)
}∥∥

A

= lim
n→∞

1

8n

∥∥f
(
8n{w0,w1,w2}

) − {
f

(
2nw0

)
,2nw1,2nw2

} − {
2nw0, f

(
2nw1

)
,2nw2

}
− {

2nw0,2nw1, f
(
2nw2

)}∥∥
A

� lim
n→∞

8nr

8n
θ
(‖w0‖3r

A + ‖w1‖3r
A + ‖w2‖3r

A

) = 0

for all w0,w1,w2 ∈ A0. So

f
({w0,w1,w2}

) = {
f (w0),w1,w2

} + {
w0, f (w1),w2

} + {
w0,w1, f (w2)

}
for all w0,w1,w2 ∈ A0.
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(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can prove that the mapping f : A → A

satisfies

f
({w0,w1,w2}

) = {
f (w0),w1,w2

} + {
w0, f (w1),w2

} + {
w0,w1, f (w2)

}
for all w0,w1,w2 ∈ A0.

Therefore, the mapping f : A0 → A is a proper JCQ∗-triple derivation. �
Theorem 3.2. Let r 	= 1 and θ be nonnegative real numbers, and f : A0 → A a mapping satisfying (3.1) such that

∥∥f
({w0,w1,w2}

) − {
f (w0),w1,w2

} − {
w0, f (w1),w2

} − {
w0,w1, f (w2)

}∥∥
A

� θ · ‖w0‖r
A · ‖w1‖r

A · ‖w2‖r
A (3.3)

for all w0,w1,w2 ∈ A0. Then the mapping f : A0 → A is a proper JCQ∗-triple derivation.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1. �
4. Stability of homomorphisms in proper JCQ∗-triples

We prove the generalized Hyers–Ulam stability of homomorphisms in proper JCQ∗-triples.

Theorem 4.1. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping such that f (w) ∈ B0
for all w ∈ A0 and∥∥∥∥1

k
f (μkx + μky + μkz) − μf (x) − μf (y) − μf (z)

∥∥∥∥
B

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
, (4.1)

∥∥∥∥1

k
f (kw0 + kw1 + kw2) − f (w0) − f (w1) − f (w2)

∥∥∥∥
B

� θ
(‖w0‖r

A0
+ ‖w1‖r

A0
+ ‖w2‖r

A0

)
, (4.2)

∥∥f
({w0, x,w1}

) − {
f (w0), f (x), f (w1)

}∥∥
B

� θ
(‖w0‖3r

A + ‖x‖3r
A + ‖w1‖3r

A

)
(4.3)

for all μ ∈ T
1, all w0,w1,w2 ∈ A0 and all x, y, z ∈ A. Then there exists a unique proper JCQ∗-triple homomorphism

H : A → B such that

∥∥f (x) − H(x)
∥∥

B
� 3kθ

(3k)r − 3k
‖x‖r

A (4.4)

for all x ∈ A.

Proof. Let us assume μ = 1 and x = y = z in (4.1). Then we get∥∥∥∥1

k
f (3kx) − 3f (x)

∥∥∥∥
B

� 3θ‖x‖r
A (4.5)

for all x ∈ A. So∥∥∥∥f (x) − 3kf

(
x

3k

)∥∥∥∥
B

� 3kθ

(3k)r
‖x‖r

A

for all x ∈ A. Hence

∥∥∥∥(3k)lf

(
x

(3k)l

)
− (3k)mf

(
x

(3k)m

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥(3k)jf

(
x

(3k)j

)
− (3k)j+1f

(
x

(3k)j+1

)∥∥∥∥
B

� 3kθ

(3k)r

m−1∑ (3k)j

(3k)rj
‖x‖r

A (4.6)

j=l
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for all nonnegative integers m and l with m > l and all x ∈ A. From this it follows that the sequence {(3k)nf ( x
(3k)n

)} is
a Cauchy sequence for all x ∈ A. Since B is complete, the sequence {(3k)nf ( x

(3k)n
)} converges. Thus one can define

the mapping H : A → B by

H(x) := lim
n→∞(3k)nf

(
x

(3k)n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (4.6), we get (4.4).
It follows from (4.1) that∥∥∥∥1

k
H(μkx + μky + μkz) − μH(x) − μH(y) − μH(z)

∥∥∥∥
B

= lim
n→∞(3k)n

∥∥∥∥1

k
f

(
μkx + μky + μkz

(3k)n

)
− μf

(
x

(3k)n

)
− μf

(
y

(3k)n

)
− μf

(
z

(3k)n

)∥∥∥∥
B

� lim
n→∞

(3k)nθ

(3k)nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

for all μ ∈ T
1 and all x, y, z ∈ A. So

1

k
H(μkx + μky + μkz) = μH(x) + μH(y) + μH(z)

for all μ ∈ T
1 and all x, y, z ∈ A. By the same reasoning as in the proof of Theorem 2.1 of [35], the mapping

H : A → B is C-linear.
Now, let T : A → B be another additive mapping satisfying (4.4). Then we have

∥∥H(x) − T (x)
∥∥

B
= (3k)n

∥∥∥∥H

(
x

(3k)n

)
− T

(
x

(3k)n

)∥∥∥∥
B

� (3k)n
(∥∥∥∥H

(
x

(3k)n

)
− f

(
x

(3k)n

)∥∥∥∥
B

+
∥∥∥∥T

(
x

(3k)n

)
− f

(
x

(3k)n

)∥∥∥∥
B

)

� 6k(3k)nθ

(3k)nr ((3k)r − 3k)
‖x‖r

A,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all x ∈ A. This proves the
uniqueness of H .

It follows from (4.2) that H(w) = limn→∞(3k)nf ( w
(3k)n

) ∈ B0 for all w ∈ A0. So it follows from (4.3) that
∥∥H

({w0, x,w1}
) − {

H(w0),H(x),H(w1)
}∥∥

B

= lim
n→∞(3k)3n

∥∥∥∥f

( {w0, x,w1}
(3k)3n

)
−

{
f

(
w0

(3k)n

)
, f

(
x

(3k)n

)
, f

(
w1

(3k)n

)}∥∥∥∥
B

� lim
n→∞

(3k)3n

(3k)3nr
θ
(‖w0‖3r

A + ‖x‖3r
A + ‖w1‖3r

A

) = 0

for all w0,w1 ∈ A0 and all x ∈ A. So

H
({w0, x,w1}

) = {
H(w0),H(x),H(w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

Thus the mapping H : A → B is a unique proper JCQ∗-triple homomorphism satisfying (4.4), as desired. �
Theorem 4.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → B be a mapping satisfying (4.1),
(4.2) and (4.3) such that f (w) ∈ B0 for all w ∈ A0. Then there exists a unique proper JCQ∗-triple homomorphism
H : A → B such that

∥∥f (x) − H(x)
∥∥

B
� 3kθ

3k − (3k)r
‖x‖r

A (4.7)

for all x ∈ A.
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Proof. It follows from (4.5) that
∥∥∥∥f (x) − 1

3k
f (3kx)

∥∥∥∥
B

� θ‖x‖r
A

for all x ∈ A. So

∥∥∥∥ 1

(3k)l
f

(
(3k)lx

) − 1

(3k)m
f

(
(3k)mx

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥ 1

(3k)j
f

(
(3k)j x

) − 1

(3k)j+1
f

(
(3k)j+1x

)∥∥∥∥
B

�
m−1∑
j=l

(3k)jr

(3k)j
θ‖x‖r

A (4.8)

for all nonnegative integers m and l with m > l and all x ∈ A. From this it follows that the sequence { 1
(3k)n

f ((3k)nx)}
is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence { 1

(3k)n
f ((3k)nx)} converges. So one can define

the mapping H : A → B by

H(x) := lim
n→∞

1

(3k)n
f

(
(3k)nx

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (4.8), we get (4.7).
The rest of the proof is similar to the proof of Theorem 4.1. �

5. Isomorphisms between proper JCQ∗-triples

We investigate isomorphisms between proper JCQ∗-triples.

Theorem 5.1. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a bijective mapping satisfying
(4.1) and (4.2) such that

f
({w0, x,w1}

) = {
f (w0), f (x), f (w1)

}
(5.1)

for all w0,w1 ∈ A0 and all x ∈ A. If limn→∞(3k)nf ( e
(3k)n

) = e′ and f |A0 : A0 → B0 is bijective, then the mapping
f : A → B is a proper JCQ∗-triple isomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there is a unique C-linear mapping H : A → B

satisfying (4.4). The mapping H : A → B is given by

H(x) := lim
n→∞(3k)nf

(
x

(3k)n

)

for all x ∈ A.
Since f ({w0, x,w1}) = {f (w0), f (x), f (w1)} for all w0,w1 ∈ A0 and all x ∈ A,

H
({w0, x,w1}

) = lim
n→∞(3k)3n

{
f

(
w0

(3k)n

)
, f

(
x

(3k)n

)
, f

(
w1

(3k)n

)}

= lim
n→∞

{
(3k)nf

(
w0

(3k)n

)
, (3k)nf

(
x

(3k)n

)
, (3k)nf

(
w1

(3k)n

)}

= {
H(w0),H(x),H(w1)

}
for all w0,w1 ∈ A0 and all x ∈ A.

It follows from (4.2) that H(w) = limn→∞(3k)nf ( w
(3k)n

) ∈ B0 for all w ∈ A0. So the mapping H : A → B is a
proper JCQ∗-triple homomorphism.
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By the assumption,

H(x) = H(ex) = lim
n→∞(3k)nf

(
ex

(3k)n

)
= lim

n→∞(3k)nf

(
e

(3k)n
x

)
= lim

n→∞(3k)nf

(
e

(3k)n

)
f (x)

= e′f (x) = f (x)

for all x ∈ A. Hence the bijective mapping f : A → B is a proper JCQ∗-triple isomorphism. �
Theorem 5.2. Let r < 1 and θ be nonnegative real numbers, and let f : A → B be a bijective mapping satisfying
(4.1), (4.2) and (5.1). If limn→∞ 1

(3k)n
f ((3k)ne) = e′ and f |A0 : A0 → B0 is bijective, then the mapping f : A → B

is a proper JCQ∗-triple isomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.2, there is a unique C-linear mapping H : A → B

satisfying (4.7). The mapping H : A → B is given by

H(x) := lim
n→∞

1

(3k)n
f

(
(3k)nx

)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 5.1. �

6. Stability of derivations on proper JCQ∗-triples

We prove the generalized Hyers–Ulam stability of derivations on proper JCQ∗-triples.

Theorem 6.1. Let r > 1 and θ be nonnegative real numbers, and let f : A0 → A be a mapping such that∥∥∥∥1

k
f (μkx + μky + μkz) − μf (x) − μf (y) − μf (z)

∥∥∥∥
A

� θ
(‖x‖r

A0
+ ‖y‖r

A0
+ ‖z‖r

A0

)
, (6.1)

∥∥f
({w0,w1,w2}

) − {
f (w0),w1,w2

} − {
w0, f (w1),w2

} − {
w0,w1, f (w2)

}∥∥
A

� θ
(‖w0‖3r

A + ‖w1‖3r
A + ‖w2‖3r

A

)
(6.2)

for all μ ∈ T
1 and all w0,w1,w2, x, y, z ∈ A0. Then there exists a unique proper JCQ∗-triple derivation δ : A0 → A

such that
∥∥f (w) − δ(w)

∥∥
A

� 3kθ

(3k)r − 3k
‖w‖r

A0
(6.3)

for all w ∈ A0.

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a unique C-linear mapping δ : A0 → A

satisfying (6.3). The mapping δ : A0 → A is defined by

δ(w) := lim
n→∞(3k)nf

(
w

(3k)n

)

for all w ∈ A0.
It follows from (6.2) that∥∥δ

({w0,w1,w2}
) − {

δ(w0),w1,w2
} − {

w0, δ(w1),w2
} − {

w0,w1, δ(w2)
}∥∥

A

= lim
n→∞(3k)3n

∥∥∥∥f

( {w0,w1,w2}
(3k)3n

)
−

{
f

(
w0

(3k)n

)
,

w1

(3k)n
,

w2

(3k)n

}
−

{
w0

(3k)n
, f

(
w1

(3k)n

)
,

w2

(3k)n

}

−
{

w0

(3k)n
,

w1

(3k)n
, f

(
w2

(3k)n

)}∥∥∥∥
A

� lim
(3k)3n

3nr
θ
(‖w0‖3r

A + ‖w1‖3r
A + ‖w2‖3r

A

) = 0

n→∞ (3k)
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for all w0,w1,w2 ∈ A0. So

δ
({w0,w1,w2}

) = {
δ(w0),w1,w2

} + {
w0, δ(w1),w2

} + {
w0,w1, δ(w2)

}
for all w0,w1,w2 ∈ A0.

Thus the mapping δ : A0 → A is a unique proper JCQ∗-triple derivation satisfying (6.3), as desired. �
Theorem 6.2. Let r < 1 and θ be nonnegative real numbers, and let f : A0 → A be a mapping satisfying (6.1) and
(6.2). Then there exists a unique proper JCQ∗-triple derivation δ : A0 → A such that

∥∥f (w) − δ(w)
∥∥

A
� 3kθ

3k − (3k)r
‖w‖r

A0
(6.4)

for all w ∈ A0.

Proof. The proof is similar to the proofs of Theorems 4.1, 4.2 and 6.1. �
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