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Abstract: Although studies of obsessive–compulsive disorder (OCD) over the last 20 years have sug-
gested abnormalities in frontal-subcortical circuitry, evidences of structural abnormalities in those areas
are still imperfect and contradictory. With recent advances in neuroimaging technology, it is now possi-
ble to study cortical thickness based on cortical surfaces, which offers a direct quantitative index of corti-
cal mass. Using the constrained Laplacian-based automated segmentation with proximities (CLASP)
algorithm, we measured cortical thickness of 55 patients with OCD (33 men and 22 women) and 52 age-
and sex-matched healthy volunteers (32 men and 20 women). We found multiple regions of cortical thin-
ning in OCD patients compared to the normal control group. Patients with OCD had thinner left inferior
frontal, left middle frontal, left precentral, left superior temporal, left parahippocampal, left orbitofrontal,
and left lingual cortices. Most thinned regions were located in the left ventral cortex system, providing
a new perspective that this ventral cortical system may be involved in the pathophysiology of OCD.
Hum Brain Mapp 28:1128–1135, 2007. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Obsessive–compulsive disorder (OCD) is an anxiety disor-
der characterized by intrusive, troubling thoughts or repeti-
tive, compulsive behaviors perceived as the products of
one’s own mind [American Psychiatric Association, 1994].
The main pathology of the disease has traditionally been

linked to abnormalities in frontal-subcortical circuitry
[Saxena et al., 1998; Shin et al., 2006]; however, evidence of
structural abnormalities in these regions are imperfect and
contradictory. Some studies have reported smaller volumes
of orbitofrontal cortex (OFC) [Szeszko et al., 1999] and cau-
date nucleus [Robinson et al., 1995; Rosenberg et al., 1997], in
OCD patients, while others have found no differences
between OCD and normal subjects [Aylward et al., 1996; Gra-
chev et al., 1998]. Kim et al. [2001] documented a greater den-
sity of gray matter in the frontal subcortical circuitry in OCD
patients using a voxel-based morphometry (VBM) of seg-
mented MR images. However, volumetric measurements have
revealed smaller OFCs [Choi et al., 2004; Kang et al., 2004] and
no differences in the subcortical cortices, including caudate,
anterior cingulate, thalamus, and the putamen, in OCD
patients compared to normal controls [Kang et al., 2004].
These inconsistent volumetric data might originate partly

from arbitrary delineation of the region of interest (ROI).
However, it seems more likely that such discrepancies stem
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from the fact that most ROIs investigated for OCD-caused
abnormalities, including the orbitofrontal and cingulate cor-
tices, have separate functional and anatomical subdivisions
[Ongur et al., 2003; Zald and Kim, 1996]. Unfortunately,
subregions of these cortices have rarely been measured
individually in MRI studies of OCD, owing to the large size
and variable anatomical borders of the ROIs used [Choi
et al., 2004]. Voxel-based morphometry (VBM), unlike ROI
analysis, can provide a nonbiased measure of highly local-
ized regions without the need to define anatomical borders
a priori [Ashburner and Friston, 2000]. However, VBM com-
pares the differences in the ‘smoothed voxel density’ of grey
matter [Ashburner and Friston, 2000], which is not easy to
interpret because voxel values may vary according to shape
and tissue composition and are only useful within a statistical
context [Lerch et al., 2005]. Furthermore, VBM, which does
not consider sulcal geometry, and ROI analysis appear to
produce conflicting results for similar regions. Tisserand
et al. [2002] compared manual ROI volumetry and VBM anal-
ysis, and did not find a strong agreement between the two
methods; they concluded that manual volumetry remained
the ‘‘gold standard’’ of volumetric analysis of grey matter.
With recent advances in neuroimaging technology, it is

now possible to study cortical thickness based on cortical
surfaces in vivo [Kabani et al., 2001; Narr et al., 2005].
Unlike VBM, cortical thickness measured from cortical sur-
faces can differentiate between cortices of opposing sulcal
walls within the same sulcal bed, similar to manual tracing.
In addition, cortical thickness measurements offer a direct
quantitative index of cortical mass suitable for clinical inter-
pretation, as seen in decreased cortical thickness in patients
with cortical atrophy such as Alzheimer’s disease [Lerch
et al., 2005].
The aim of this study was to compare cortical thickness in

OCD patients with normal controls. We hypothesized that
cortical thickness would differ between study groups in the
regions predicted by previous brain structural studies of
OCD.

SUBJECTS AND METHODS

Subjects

Fifty-five patients with OCD (33 men and 22 women)
were recruited from the OCD clinic at Seoul National Uni-
versity Hospital (SNUH). These patients met the DSM-IV
criteria for OCD, as diagnosed using the Structured Clinical
Interview for DSM-IV (SCID) [First et al., 1996]. The normal
control group consisted of 52 age- and sex-matched healthy
volunteers (32 men and 20 women) recruited from the com-
munity via newspaper advertisements. Exclusion criteria
for OCD subjects and normal controls were the presence of
a medical condition, neurological disorders, or a history of
other major psychiatric disorders, such as substance abuse,
schizophrenia, depression, bipolar disorder, and other anxi-
ety disorders; screening was performed using the SCID.
This study was approved by the institutional review board

of SNUH. Written informed consent was obtained from
subjects before MRIs were performed.
The mean ages of the OCD group and the normal con-

trols were 26.51 6 6.87 years and 26.44 6 5.35 years, respec-
tively (t ¼ 0.06, df ¼ 105, P ¼ 0.96). The mean periods of
education were 14.33 6 2.20 years and 15.67 6 2.01 years,
respectively (t ¼ �3.30, df ¼ 105, P ¼ 0.001), and the mean
socioeconomic status was ranked 3.05 6 0.71 and 2.65 6 0.59
on the Hollingshead Index of Social Position [Hollingshead
and Redlich, 1958], respectively (t ¼ 3.18, df ¼ 105, P ¼
0.002). All participants were right-handed, except for two
OCD patients [Annett, 1970]. At the time of the study, the
patients had a mean duration of illness of 7.96 6 5.92 years,
ranging from 1 to 26 years. The mean onset age was 18.55
6 6.09 years, ranging from 7 to 38 years. Most patients
were taking medication for their disorder, such as selective
serotonin reuptake inhibitors (including sertraline, fluoxe-
tine paroxetine, and clomipramine) and/or atypical anti-
psychotics (including risperidone and olanzapine) and/or
benzodiazepines (including lorazepam and clonazepam) at
the time the MRIs were performed. Clinical assessments
included the Yale-Brown Obsessive Compulsive Scale (Y-
BOCS) [Goodman et al., 1989a,b] for determining OCD
symptom severity. The mean scores for symptoms were as
follows: obsession, 11.35 6 2.53; compulsion, 11.31 6 4.78;
overall, 24.65 6 6.00. The mean Beck depression index
(BDI) [Beck and Steer, 1987b] for depression was 18.04 6
10.39, N ¼ 51, and the mean Beck anxiety index (BAI) [Beck
and Steer 1987a] for anxiety was 20.06 6 14.46, N ¼ 51.

Magnetic Resonance Imaging

Three-dimensional T1-weighted spoiled gradient echo
magnetic resonance images (MRI) were taken on a 1.5-T GE
SIGNA Scanner (GE Medical System, Milwaukee). Imaging
parameters were as follows: 1.5-mm sagittal slices, 5.5-ms
echo time, 14.4-ms repetition time, 1 excitation, 208 rotation
angle, 21-cm field of view, and 256 � 256 matrix. Images
were processed using the software package, ANALYZE (ver-
sion 4.1, Mayo Foundation, Rochester, Minnesota). Images
were resampled to 1.0 mm3 voxels, reoriented to the conven-
tional position, and spatially realigned so that the anterior–
posterior axis of the brain was aligned parallel to the inter-
commissural line, and the other two axes were aligned along
the interhemispheric fissure. The data sets were then filtered
using anisotropic diffusion methods to improve the signal-to-
noise ratio. The semiautomated region growing method
removed images of tissues exterior to the brain. The extracted
brain images were segmented into grey matter, white matter,
and cerebrospinal fluid by employing the fuzzy C-mean algo-
rithm [Yoon et al., 2003]. Intracranial volume was calculated
by adding the volumes of these three components.

Image Processing

To measure cortical thickness, several preprocessing algo-
rithms were required. First, intensity nonuniformity in the

r Cortical Thinning in OCD r

r 1129 r

 10970193, 2007, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.20338 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [16/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



raw MR images resulting from magnetic field inhomogene-
ity needed correction, so that the corrected volumes could be
properly classified into GM, WM, and CSF [Sled et al., 1998].
After comparing local histograms of image intensity in dif-
ferent spatial locations, the shift in the intensity histogram
due to RF inhomogeneity was identified and corrected. Sec-
ond, automatic registration to a stereotaxic space [Collins
et al., 1994; Talairach and Tournoux, 1988] was performed
using the intensity-corrected image to spatially normalize
the brains. This method linearly transforms an MRI by using
gradient descent at multiple scales to maximize the correla-
tion between the individual volume intensity and an average
volume intensity constructed from a large number of previ-
ously aligned brains. Third, a 3D stereotaxic brain mask was
used to remove extracerebral voxels. The tissue classification
was also required to reconstruct cortical surfaces. The dis-
crete classification employed an Intensity-Normalized Ste-
reotaxic Environment for Classification of Tissues (INSECT)
[Zijdenbos et al., 2002]. To reveal the buried CSF in sulci, we
utilized probabilistic classification, which provided com-
bined information on GM and CSF. The probabilistic CSF
voxels outlined the sulcal walls.

Cortical Thickness

Thickness measurement required specific algorithms to
reconstruct inner and outer cortical surfaces [MacDonald
et al., 2000]. These surfaces were automatically reconstructed
by the Constrained Laplacian-based automated segmenta-
tion with proximities (CLASP) algorithm [Im et al., 2006;

Kim et al., 2005; Lee et al., 2006]. CLASP extracted the
inner cortical surface by deforming a sphere polygon model
to the boundary between GM and WM. The number of trian-
gles of the polygon model was hierarchically refined from
320 to 80,920. Then, the outer cortical surface was expanded
from the inner surface to the boundary between GM and
CSF along a Laplacian map, which smoothly increased
potential surfaces between WM and CSF. A CSF fraction
image was skeletonized to determine the boundary of the
outer cortex in buried sulci. Inner and outer surfaces had the
same vertex number (40962) and each vertex between surfa-
ces was related. Thus, the cortical thickness was easily mea-
sured as the distance between related vertices. The procedure
to measure and analyze cortical thickness is summarized in
Figure 1.

Statistical Analysis

To compare thickness between groups, measurements
were spatially normalized. In the CLASP algorithm, the cort-
ical surfaces start from a spherical polygon model. The verti-
ces are transformed to the spherical model and then they are
nonlinearly registered to an average template on the sphere.
A highly flexible deformation, in two dimensions, of a tem-
plate cortex of an individual is used for cortical surface regis-
tration. This algorithm matched the crowns of gyri between
subjects using a geodesic distance map, and then thickness
information on the vertices was transformed to a template.
Diffusion smoothing, which generalizes Gaussian kernel
smoothing, with 10-mm full-width half maximum (FWHM)

Figure 1.

The algorithm measuring cortical thickness.
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was then used to increase the signal-to-noise ratio [Chung
et al., 2002]. Global volume measures of cerebral cortex were
calculated from the segmented images by inner and outer
cortical surfaces to test for group differences in overall tissue
compartment volumes. The distribution of thickness across
the whole brain was assessed on a vertex-by-vertex basis
and statistical parametric maps were constructed to identify
differences in cortical thickness between OCD patients and
controls. Regional differences in cortical thickness were ana-
lyzed using t-test. Significant effects were reported when
they passed a whole-brain false-discovery rate (FDR) with
an FDR corrected P < 0.05 [Genovese et al., 2002] and their
surface sizes exceeded 20 mm2.
After identifying the regions showing differences in cortical

thickness between OCD patients and controls, a linear regres-
sion model was used to evaluate systematic linear trends be-
tween cortical thicknesses in the regions and the YBOCS total
score, BDI, BAI, age, and age of onset. A Bonferroni correction
was performed, considering the multiple regression proce-
dures (a ¼ 0.05, Bonferroni corrected a ¼ 0.01).

RESULTS

Figures 2a,b show the average distribution of scaled corti-
cal thickness in Talairach space. Average thickness in OCD

Figure 2.

(a) Average cortical thickness mapped for 55 OCD patients and (b) 52 age- and sex-matched con-

trol subjects. (c) Average differences in cortical thickness between OCD and normal control sub-

jects (OCD-normal group). The brain surface is color-coded according to the color bar, where

thickness is shown in millimeters.

Figure 3.

FDR-corrected statistical maps of the differences in cortical thick-

ness between OCD patients and control subjects. The color bar

encodes the FDR-corrected P-value demonstrating differences in

cortical thickness between OCD patients and control subjects. Cal-

losal, subcallosal, cerebellum, and midbrain regions were excluded.
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patients is 1.23–5.46 mm on the lateral and medial brain
surfaces, while the thickness of normal subjects is 1.30–
5.58 mm. The distributional pattern of average cortical
thickness was similar between the groups. In both groups,
the lowest cortical thickness on the lateral and medial surfa-
ces was located in superior portions of the postcentral
gyrus, while the highest thickness was located in the tem-
poral lobes, mainly in the temporal pole. The average dif-
ferences in cortical thickness between OCD patients and
normal controls were calculated and mapped; these ranged
from �0.53 to 0.23 mm (Fig. 2c). Except part of the posterior
central gyri and parietal sulci, most regions had a negative
cortical thickness difference (OCD-normal group). OCD
patients had a significantly thinner cortical thickness than
normal subjects in some areas after interindividual differen-
ces in brain size had been removed by transforming images
into standard stereotaxic space. Importantly, all loci were in
the left hemisphere, and included the ventrolateral prefrontal
cortex (VLPFC), middle frontal, precentral, superior tempo-
ral, parahippocampal, orbitofrontal, and lingual gyri (Table I;
Fig. 3). In the regression model, there were no predictors for
the cortical thickness of the above regions based on YBOCS
total score, BDI, BAI, age, or age of onset in OCD patients.
No regions in OCD patients had a significantly greater corti-
cal thickness than normal subjects.

DISCUSSION

Our measurements revealed reduced grey matter in OCD
patients in various regions of the brain, including the
VLPFC, OFC, superior temporal, parahippocampal, precen-
tral, and lingual cortices, all located in the left hemisphere.
The cortical thinning in the left OFC is consistent with pre-
vious VBM and ROI studies [Choi et al., 2004; Kang et al.,
2004; Pujol et al., 2004]. However, while ROI studies have
consistently reported decreased OFC volumes in OCD
patients [Choi et al., 2004; Kang et al., 2004; Szeszko et al.,
1999], VBM results regarding OFC have been inconsistent,
with some studies showing an increased grey matter vol-

ume in OFC [Kim et al., 2001; Valente et al., 2005]. These
conflicting results may be partly the result of different
methodologies and different sample sizes. Pujol et al. [2004]
reported a decreased volume of OFC in OCD patients using
VBM analysis on a large sample size and an improved
methodology of direct-volume testing, which was not avail-
able when we reported altered grey matter density (not vol-
ume) in OCD patients [Kim et al., 2001]. In VBM, the local
volumes of certain regions of the brain might expand or
contract during nonlinear normalization, so to identify re-
gional volume differences in grey matter between groups, it
is essential to correct for the effects of volume change [Ash-
burner and Friston, 2000]; this process was not available at
the time of our first report [Kim et al., 2001]. Another VBM
analysis, which reported an increased volume of OFC in
OCD patients, included a relatively small sample size,
which makes comparing the results to a large group of
OCD patients difficult, because regional brain volumes in a
group of OCD patients might be different from another
group of patients with different symptom dimensions
[Mataix-Cols et al., 2005]. More importantly, grey matter is
arranged in a highly folded sheet, so two separate loci with
small effect size on the cortical surface could converge into
one locus of large effect size in volume. Or, conversely, a sig-
nificant cluster in surface could lose its significance in vol-
ume or vice versa. Thus, sulcal geometry must be considered
when measuring the volume of cortical grey matter [Fischl
et al., 1999; Kippenhan et al., 2005]. Furthermore, the cortical
surface-based registration procedure reduces the misregis-
tration due to interindividual differences based on sulcal
and gyral curvature rather than only intensity information in
VBM, allowing for much higher localization accuracy of
structural and functional features of the human brain [Fischl
et al., 1999]. Therefore, the cortical thinning in the left OFC
reported here, using sulcal geometry from a large sample
size of OCD patients, provides reasonably solid structural evi-
dence of orbitofrontal volume reduction in OCD patients.
The largest area of cortical thinning in OCD patients in

this study occurred in the left VLPFC. Unlike OFC, which is
considered a candidate region of OCD pathogenesis, other

TABLE I. Regions showing cortical thinning in patients with obsessive–compulsive disorder

compared with that in control subjectsa

Region Brodmann’s area Area (mm2)
Peak coordinates

(x, y, z)a t-score

Inferior frontal cortex: VLPFC 47/45 1079 �51, 29, 1 4.47
Middle frontal cortex 10 468 �24, 60, 12 3.50
Precentral cortex 4 112 �51, 2, 46 3.40
Superior temporal cortex 22 44 �64, �38, 12 3.20
Parahippocampal cortex 30 154 �14, �37, �5 4.38
Orbitofrontal cortex 11 46 �6, 47, �27 2.97
Lingual cortex 19 106 �8, �65, 1 3.24

VLPFC, ventolateral prefrontal cortex.
a Foci for significant differences are listed (FDR corrected P < 0.05). Coordinates of the maximum pixel values
in Talairach space are expressed as ‘‘x, y, z’’ in millimeters, relative to anterior commissure: left/right, ante-
rior/posterior, and superior/inferior, respectively.
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regions such as the VLPFC, left superior temporal, left para-
hippocampal, left precentral, and left lingual cortices were
not expected to show structural abnormality. Nevertheless,
various neurophysiologic and neuroimaging studies have
provided insight into the associations between these regions
and OCD pathophysiology. The VLPFC appears to be hy-
peractive in OCD patients, who show a significant meta-
bolic decrease in the VLPFC after paroxetine treatment
[Saxena et al., 2002]. Also, OCD patients show increased ac-
tivity in the VLPFC during the Tower of London task, pos-
sibly to compensate for a decreased responsiveness in the
dorsolateral prefrontal cortex and caudate nucleus [van den
Heuvel et al., 2005]. Abnormalities in the lingual cortex of
OCD patients have been reported using diffusion tensor
imaging [Szeszko et al., 2005]; in this study, the fractional
anisotropy representing the degree to which water diffu-
sion is directionally hindered according to internal struc-
ture decreased within the white matter of the left lingual
cortex in OCD patients compared to normal controls. The
lingual cortex was reported to be involved in early visual
processing and concomitant modulation. Critchley et al.
[2000] found that neural activity in the lingual cortex co-
varied with the generation and representation of somatic
arousal. This study concluded that dysfunction in the lingual
cortex may lead to inappropriate arousal for the presented
stimuli; this is relevant to OCD, which is characterized by
abnormal arousal and sensory processing. The precentral
cortex also showed functional abnormality in OCD patients.
Rossi et al. [2005] found enhanced precentral somatosensory
evoked potentials and hypofunctioning of centrifugal sen-
sory gating in OCD patients. The authors concluded that
dysfunction of the premotor area reflects the inability to
modulate sensory information, due to a ‘‘tonic’’ high level of
cortical excitability of motor and related areas.
A recent magnetoencephalography (MEG) study of OCD

reported topographical abnormalities very similar to those
reported herein. Most OCD patients had abnormal MEG ac-
tivity, but normal electroencephalography (EEG), while nor-
mal controls showed neither MEG nor EEG abnormalities
[Amo et al., 2004]. In OCD patients, paroxysmal rhythmic
MEG activity such as low-amplitude and/or sharp spikes
was found in multiple brain regions, including the OFC, hip-
pocampus, precentral and postcentral gyri, and superior tem-
poral cortices. This finding, which shares anatomical similar-
ity with that reported here, can be regarded as functionally
analogous to our results in the context that MEG does mea-
sure the activity of generators oriented tangentially in the cor-
tex and also that it can measure the activity from convoluted
cortical fissures, which are not available with EEG measure-
ment [Hamalainen, 1992].
Giaccio [2005] argues that the imbalance between dorsal

and ventral systems of the cerebral cortex might contribute
to OCD pathogenesis. According to Giaccio [2005] and other
studies [Pandya and Seltzer, 1982; Petrides and Pandya,
2002; Sanides, 1970; Seltzer and Pandya, 1989], the cerebral
cortex has a dual origin, which has resulted in two distinct
functional regions: the ventral system, which arises from the

amygdala and adjacent olfactory cortex, specializes in identi-
fying stimuli, assigning meaning, and elaborating the moti-
vational aspects of behavior; and the dorsal system, which
stems from the hippocampal-derived cortex, specializes in
interpreting the spatial environment and organizing action
in time and space. A dominance of the ventral system over
the dorsal system, therefore, could cause overevaluation of
stimuli and, at the same time, uncertainty of their occurrence
in time and space, leading to OCD symptoms such as rumi-
nation, excessive guilt, repeated doubts, or self-examination
[Giaccio, 2005]. This hypothesis is supported by the fact that,
except for the parahippocampal cortex, the regions of corti-
cal thinning in OCD patients were located in the ventral cort-
ical system: the OFC (Brodmann area: 11), the inferior frontal
cortex (47/45), the superior temporal cortex (22), lingual cor-
tex (19), and the middle frontal cortex (10). However, it re-
mains to be explained how the known hyperactivity of the
ventral system in OCD patients, as revealed by increased
orbitofrontal activity [Baxter et al., 1987; Kang et al., 2003],
can occur in a region of reduced grey matter. It may be that
the volume loss occurs primarily in the inhibitory neuron.
There is some evidence to support this assumption. g-Amino-
butyric acid (GABA) is the principal inhibitory neurotrans-
mitter in the central nervous system, and is functionally im-
portant in cortical disinhibition. GABA receptor depletion is
often a marker of anxiety characterized by harm-avoidance
behavior and an explicit memory bias for threat cues, result-
ing in heightened sensitivity to negative associations
[Crestani et al., 1999]. Patients with panic disorder have
increased cerebral blood flow and lower benzodiazepine
binding in their parahippocampal–hippocampal area
[Reiman et al., 1984; Schlegel et al., 1994]. In addition, while
it is widely accepted that serotonergic mechanisms are im-
portant to OCD neurobiology, recent evidence suggests that
the GABA receptor gene is susceptible in OCD patients [Zai
et al., 2005].
Although descriptive, it is noteworthy that only the left

hemisphere showed cortical thinning in OCD patients. It is
consistent with our previous hypothesis that the primary
pathology of OCD occurs in the left hyperfrontality, and
that the right hyperfrontality of OCD occurs by a compensa-
tory mechanism; greater left frontal activation is associated
with poorer visuospatial function, and greater right frontal
activation is associated with better visuospatial function
[Shin et al., 2004]. Tot et al. [2002] also found a predominant
left fronto-temporal dysfunction in OCD.
Note that one methodological limitation of this study is

that assessing the subcortical area is impossible using cur-
rent algorithms. Fronto-striatal pathways, including the cau-
date, putamen, globus pallidus, and substantia nigra, are
considered critical to OCD. This limitation is general to most
surface reconstruction algorithms. New algorithms enabling
the measurement of subcortical grey matter are mandatory
for more complete assessment of the grey matter in OCD
patients. Another potential limitation of the study is that
most patients were receiving psychotropic medications at
the time of the MRI. However, illness duration, an indirect
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measure of medication exposure, was not correlated with
cortical thickness of any region showing thinning. Further-
more, except within the basal ganglia, little evidence exists
to suggest that medication induces morphometric alterations
such as neuronal loss or gliosis [Harrison, 1999; Konradi and
Heckers, 2001].
To the best of our knowledge, this is the first study of

cortical thickness in OCD patients. Applying an advanced
methodology to large sample size, we newly found multi-
ple regions of cortical thinning in OCD patients compared
to normal controls. Cortical thinning in the left ventral cor-
tex system could be pathology of OCD.
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