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Abstract

In this paper, we prove the Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras
associated to the Pexiderized Cauchy functional equation. This is applied to investigate homomorphisms
between quasi-Banach algebras. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Ras-
sias’ stability theorem that appeared in his paper [Th.M. Rassias, On the stability of the linear mapping in
Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [29] con-
cerning the stability of group homomorphisms: Let (G1,∗) be a group and let (G2,�, d) be
a metric group with the metric d(·,·). Given ε > 0, does there exist δ(ε) > 0 such that if a map-
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ping h :G1 → G2 satisfies the inequality

d
(
h(x ∗ y),h(x) � h(y)

)
< δ

for all x, y ∈ G1, then there is a homomorphism H :G1 → G2 with

d
(
h(x),H(x)

)
< ε

for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable, i.e., if

a mapping is almost a homomorphism, then there exists a true homomorphism near it. In 1941,
Hyers [7] considered the case of approximately additive mappings in Banach spaces and satisfy-
ing the well-known weak Hyers inequality controlled by a positive constant. In 1978, Th.M. Ras-
sias [21] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be
unbounded.

Theorem 1.1 (Th.M. Rassias). Let f :E → E′ be a mapping from a normed vector space E into
a Banach space E′ subject to the inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
(‖x‖p + ‖y‖p

)
(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and L :E → E′ is the unique additive mapping which satisfies

∥∥f (x) − L(x)
∥∥ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 	= 0 and (1.2) for x 	= 0. Also, if the
function t → f (tx) from R to E′ is continuous for each fixed x ∈ E, then L is linear.

In 1990, Th.M. Rassias [22] during the 27th International Symposium on Functional Equa-
tions asked the question whether such a theorem can also be proved for p � 1. In 1991,
Z. Gajda [5] following the same approach as in [21], gave an affirmative solution to this question
for p > 1. It was shown by Z. Gajda [5], as well as by Th.M. Rassias and P. Šemrl [26], that one
cannot prove a Th.M. Rassias’ type theorem when p = 1. The counterexamples of Z. Gajda [5],
as well as of Th.M. Rassias and P. Šemrl [26], have stimulated several mathematicians to invent
new definitions of approximately additive or approximately linear mappings, cf. P. Găvruta [6]
and S. Jung [11], who among others studied the Hyers–Ulam–Rassias stability of functional
equations. The inequality (1.1) that was introduced for the first time by Th.M. Rassias [21]
provided a lot of influence in the development of a generalization of the Hyers–Ulam stabil-
ity concept. This new concept is known as Hyers–Ulam–Rassias stability of functional equations
(cf. the books of P. Czerwik [4] and D.H. Hyers, G. Isac and Th.M. Rassias [8]).

J.M. Rassias [17] following the spirit of the innovative approach of Th.M. Rassias [21] for the
unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor
‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p,q ∈ R with p + q 	= 1.

P. Găvruta [6] provided a further generalization of Th.M. Rassias’ Theorem. In 1996, G. Isac
and Th.M. Rassias [10] applied the Hyers–Ulam–Rassias stability theory to prove fixed point
theorems and study some new applications in nonlinear analysis. In [9], D.H. Hyers, G. Isac and
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Th.M. Rassias studied the asymptoticity aspect of Hyers–Ulam stability of mappings. During the
past few years several mathematicians have published on various generalizations and applications
of Hyers–Ulam stability and Hyers–Ulam–Rassias stability to a number of functional equa-
tions and mappings, for example: quadratic functional equation, invariant means, multiplicative
mappings—superstability, bounded nth differences, convex functions, generalized orthogonal-
ity functional equation, Euler–Lagrange functional equation, Navier–Stokes equations. Several
mathematicians have contributed works on these subjects; we mention a few: C. Park [13–15],
Th.M. Rassias [23–25], F. Skof [28].

In the period 1982–1994 further generalizations were obtained by J.M. Rassias [16–19].
J.M. Rassias and M.J. Rassias [20] considered and investigated quadratic equations involving

a product of powers of norms following the innovative approach of Th.M. Rassias who had in-
troduced the concept of the unbounded Cauchy difference in the year 1978 and he had treated
the subject for the sum of powers of norms. They studied the problem in which an approxi-
mate quadratic mapping degenerates to a genuine quadratic mapping. Analogous results could
be investigated with additive type equations involving a product of powers of norms. The stabil-
ity problems of several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [2,6,13,14,24]).

Theorem 1.2. (See [16,17,19].) Let X be a real normed linear space and Y be a real complete
normed linear space. Assume that f :X → Y is an approximately additive mapping for which
there exist constants θ � 0 and p ∈ R \ {1} such that f satisfies inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � θ‖x‖p/2‖y‖p/2

for all x, y ∈ X. Then there exists a unique additive mapping L :X → Y satisfying
∥∥f (x) − L(x)

∥∥ � θ

|2p − 2| ‖x‖p

for all x ∈ X. If, in addition, f :X → Y is a mapping such that the transformation t 
→ f (tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.3. (See [3,27].) Let X be a real linear space. A quasi-norm is a real-valued function
on X satisfying the following:

(i) ‖x‖ � 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(iii) There is a constant K � 1 such that ‖x + y‖ � K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X,‖.‖) is called a quasi-normed space if ‖.‖ is a quasi-norm on X. The smallest
possible K is called the modulus of concavity of ‖.‖. A quasi-Banach space is a complete quasi-
normed space.

A quasi-norm ‖.‖ is called a p-norm (0 < p � 1) if

‖x + y‖p � ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki–Rolewicz theorem [27] (see also [3]), each quasi-norm is equivalent to some

p-norm. Since it is much easier to work with p-norms than quasi-norms, henceforth we restrict
our attention mainly to p-norms.
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Definition 1.4. (See [1].) Let (A,‖.‖) be a quasi-normed space. The quasi-normed space (A,‖.‖)
is called a quasi-normed algebra if A is an algebra and there is a constant K > 0 such that
‖xy‖ � K‖x‖‖y‖ for all x, y ∈ A.

A quasi-Banach algebra is a complete quasi-normed algebra. If the quasi-norm ‖.‖ is a p-
norm then the quasi-Banach algebra is called a p-Banach algebra.

2. Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras associated
to the Pexiderized Cauchy functional equation

Throughout this section, assume that A is a quasi-normed algebra with quasi-norm ‖.‖A and
that B is a p-Banach algebra with p-norm ‖.‖B. For convenience, let K = 1 be the modulus of
concavity of ‖.‖B. The stability of homomorphisms in quasi-Banach algebras, associated to the
Cauchy functional equation, has been investigated in [15]. We prove the Hyers–Ulam–Rassias
stability of homomorphisms in quasi-Banach algebras, associated to the Pexiderized Cauchy
functional equation.

Theorem 2.1. (See [15].) Let r > 1 and θ be positive real numbers, and let f :A → B be a map-
ping such that

∥∥f (x + y) − f (x) − f (y)
∥∥

B
� θ‖x‖r

A‖y‖r
A, (2.1)∥∥f (xy) − f (x)f (y)

∥∥
B

� θ‖x‖r
A‖y‖r

A. (2.2)

If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism
T :A → B such that

T (x) = lim
n→∞ 2nf

(
x

2n

)
,

∥∥f (x) − T (x)
∥∥

B
� θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A.

Theorem 2.2. (See [15].) Let r < 1
2 and θ be positive real numbers, and let f :A → B be a

mapping satisfying (2.1) and (2.2). If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then
there exists a unique homomorphism T :A → B such that

T (x) = lim
n→∞

1

2n
f

(
2nx

)
,

∥∥f (x) − T (x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A

for all x ∈ A.

The proofs of the following results are similar to the proofs of Theorems 2.1 and 2.2 and we
refer to [15].

Theorem 2.3. Let θ, r, s be positive real numbers with r > 1
2 and s > 1. Assume that f :A → B

is a mapping such that
∥∥f (x + y) − f (x) − f (y)

∥∥
B

� θ‖x‖r
A‖y‖r

A, (2.3)∥∥f (xy) − f (x)f (y)
∥∥

B
� θ‖x‖s

A‖y‖s
A (2.4)

for all x, y ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
homomorphism T :A → B such that
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T (x) = lim
n→∞ 2nf

(
x

2n

)
,

∥∥f (x) − T (x)
∥∥

B
� θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A.

Theorem 2.4. Let θ, r, s be positive real numbers with 0 � r < 1
2 and 0 � s < 1. Assume that

f :A → B is a mapping satisfying (2.3) and (2.4) for all x, y ∈ A. If f (tx) is continuous in
t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism T :A → B such that

T (x) = lim
n→∞

1

2n
f

(
2nx

)
,

∥∥f (x) − T (x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A

for all x ∈ A.

Theorem 2.5. Let θ, r, s be positive real numbers with r > 1
2 and s > 1. Assume that

f,g,h :A → B are mappings such that∥∥f (x + y) − g(x) − h(y)
∥∥

B
� θ‖x‖r

A‖y‖r
A, (2.5)∥∥f (xy) − g(x)h(y)

∥∥
B

� θ‖x‖s
A‖y‖s

A (2.6)

for all x, y ∈ A. If at least one of the mappings t 
→ f (tx), t 
→ g(tx) and t 
→ h(tx) is contin-
uous in t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism T :A → B such
that

T (x) = lim
n→∞ 2n

[
f

(
x

2n

)
− f (0)

]
= lim

n→∞ 2n

[
g

(
x

2n

)
− g(0)

]

= lim
n→∞ 2n

[
h

(
x

2n

)
− h(0)

]

and
∥∥f (x) − f (0) − T (x)

∥∥
B

� θ

(4pr − 2p)1/p
‖x‖2r

A ,

∥∥g(x) − g(0) − T (x)
∥∥

B
� θ

(4pr − 2p)1/p
‖x‖2r

A ,

∥∥h(x) − h(0) − T (x)
∥∥

B
� θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A.

Proof. Letting y = 0 in (2.5) and (2.6), we get that

f (x) = g(x) + h(0), f (0) = g(x)h(0) (2.7)

for all x ∈ A. Once again putting x = 0 in (2.5) and (2.6), we get that

f (y) = g(0) + h(y), f (0) = g(0)h(y) (2.8)

for all y ∈ A. So

f (x) − f (0) = g(x) − g(0) = h(x) − h(0)

for all x ∈ A. Let H :A → B be a mapping defined by

H(x) = f (x) − f (0)
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for all x ∈ A. It follows from (2.7) and (2.8) that

H(x + y) − H(x) − H(y) = (
f (x + y) − f (0)

) − (
g(x) − g(0)

) − (
h(y) − h(0)

)
= f (x + y) − g(x) − h(y)

and

H(xy) − H(x)H(y) = (
f (xy) − f (0)

) − (
g(x) − g(0)

)(
h(y) − h(0)

)
= f (xy) − g(x)h(y)

for all x, y ∈ A. Therefore, H satisfies the inequalities (2.3) and (2.4). By the assumption, the
mapping t 
→ H(tx) is continuous in t ∈ R for each fixed x ∈ A. By Theorem 2.3, there exists
a unique homomorphism T :A → B such that

∥∥H(x) − T (x)
∥∥

B
� θ

(4pr − 2p)1/p
‖x‖2r

A

for all x ∈ A. This implies the requested inequalities. �
Theorem 2.6. Let r, s and θ be positive real numbers with r < 1

2 and s < 1. Assume that
f,g,h :A → B are mappings satisfying (2.5) and (2.6). If at least one of the mappings
t 
→ f (tx), t 
→ g(tx) and t 
→ h(tx) is continuous in t ∈ R for each fixed x ∈ A, then there
exists a unique homomorphism T :A → B such that

T (x) = lim
n→∞

1

2n
f

(
2nx

) = lim
n→∞

1

2n
g
(
2nx

) = lim
n→∞

1

2n
h
(
2nx

)

and

∥∥f (x) − f (0) − T (x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A ,

∥∥g(x) − g(0) − T (x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A ,

∥∥h(x) − h(0) − T (x)
∥∥

B
� θ

(2p − 4pr)1/p
‖x‖2r

A

for all x ∈ A.

Proof. Using the proof of Theorem 2.5 and applying Theorem 2.4, we get the result. �
For r = s = 0, we have the following theorem.

Theorem 2.7. Let θ be a positive real number and let f,g,h :A → B be mappings satisfying
∥∥f (x + y) − g(x) − h(y)

∥∥
B

� θ, (2.9)∥∥f (xy) − g(x)h(y)
∥∥

B
� θ (2.10)

for all x, y ∈ A. If at least one of the mappings t 
→ f (tx), t 
→ g(tx) and t 
→ h(tx) is contin-
uous in t ∈ R for each fixed x ∈ A, then there exists a unique homomorphism T :A → B such
that
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∥∥f (x) − f (0) − T (x)
∥∥

B
� 3θ + M,∥∥g(x) − g(0) − T (x)

∥∥
B

� 3θ + M,∥∥h(x) − h(0) − T (x)
∥∥

B
� 3θ + M (2.11)

for all x ∈ A, where M = ‖f (0) − g(0) − h(0)‖B.

Proof. By Theorem 2.2 of [12], there exists a unique additive mapping T :A → B satisfy-
ing (2.11) and

T (x) = lim
n→∞

1

2n
f

(
2nx

) = lim
n→∞

1

2n
g
(
2nx

) = lim
n→∞

1

2n
h
(
2nx

)
(2.12)

for all x ∈ A. By the same reasoning as in the proof of Theorem of [21], the mapping T :A → B

is R-linear. It follows from (2.10) and (2.12) that

∥∥T (xy) − T (x)T (y)
∥∥

B
= lim

n→∞
1

4n

∥∥f
(
4nxy

) − g
(
2nx

) − h
(
2ny

)∥∥
B

� lim
n→∞

θ

4n
= 0

for all x, y ∈ A. Hence T (xy) = T (x)T (y) for all x, y ∈ A.

Therefore, T is a homomorphism. �
Theorem 2.8. Let r, t and θ be positive real numbers and let q, s < 0 be real numbers. Assume
that f,g,h :A → B are mappings satisfying∥∥f (x + y) − g(x) − h(y)

∥∥
B

� θ‖x‖r
A‖y‖s

A, (2.13)∥∥f (xy) − g(x)h(y)
∥∥

B
� θ‖x‖t

A‖y‖q
A (2.14)

for all x ∈ A and all y ∈ A \ {0}. If g(0) = 0 and the mappings t 
→ g(tx), t 
→ f (tx) and
t 
→ h(tx) are continuous in 0 ∈ R for each fixed x ∈ A, then

(i) f = h;
(ii) the mapping g :A → B is a homomorphism;

(iii) if λ = r + s 	= 1, then∥∥f (x) − g(x)
∥∥

B
� C‖x‖λ

A (2.15)

for all x ∈ A, where C = min{θ, 2θ

|2λp−2p |1/p }. Moreover, g :A → B is a unique homomor-

phism satisfying (2.15).

Proof. Letting x = 0 in (2.13) and (2.14), we get that

f (y) = h(y), f (0) = 0 (2.16)

for all y ∈ A \ {0}. Replacing y by y/n in (2.16) and letting n → ∞, we get that f (0) = h(0).

So f = h, and it proves (i).
To prove (ii), replacing y by ny in (2.13), we get that∥∥f (x + ny) − g(x) − f (ny)

∥∥
B

� θns‖x‖r
A‖y‖s

A (2.17)

for all x ∈ A and all y ∈ A \ {0}. Therefore, (2.17) implies that

lim
[
f (x + ny) − f (ny)

] = g(x)

n→∞
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for all x ∈ A and all y ∈ A \ {0}. So (i) and (2.13) imply that∥∥g(x + y) − g(x) − g(y)
∥∥

B

= lim
n→∞

∥∥[
f (x + y + ny) − f (ny)

] − g(x) − [
f (y + ny) − f (ny)

]∥∥
B

= lim
n→∞

∥∥f (x + y + ny) − g(x) − h(y + ny)
∥∥

B

� lim
n→∞ θ(n + 1)s‖x‖r

A‖y‖s
A = 0

for all x ∈ A and all y ∈ A \ {0}. Since g(0) = 0, g(x + y) = g(x) + g(y) for all x, y ∈ A. So g

is Q-linear and the mapping t 
→ g(tx) is continuous in t ∈ R for each fixed x ∈ A. Therefore g

is R-linear. Also, we have∥∥g(xy) − g(x)g(y)
∥∥

B

= lim
n→∞

∥∥[
f (xy + nxy) − f (nxy)

] − g(x)
[
f (y + ny) − f (ny)

]∥∥
B

� lim sup
n→∞

∥∥f (xy + nxy) − g(x)h(y + ny)
∥∥

B

+ lim sup
n→∞

∥∥f (nxy) − g(x)h(ny)
∥∥

B

� lim
n→∞ θ(n + 1)q‖x‖t

A‖y‖q
A + lim

n→∞ θnq‖x‖t
A‖y‖q

A = 0

for all x ∈ A and all y ∈ A \ {0}. Since g(0) = 0, g(xy) = g(x)g(y) for all x, y ∈ A. Thus (ii) is
proved.

To prove (iii), we have two cases.

Case I. Let λ > 1. Letting y = x in (2.13) and using (i), we get that∥∥f (2x) − g(x) − f (x)
∥∥

B
� θ‖x‖λ

A (2.18)

for all x ∈ A \ {0}. It is clear that (2.18) holds for all x ∈ A. Once again, letting x = −y in (2.13)

and using (i) and (ii) we get that∥∥f (y) − g(y)
∥∥

B
� θ‖y‖λ

A (2.19)

for all y ∈ A \ {0}. It is clear that (2.19) holds for all y ∈ A. Hence it follows from (2.18) and
(2.19) that∥∥f (2x) − 2f (x)

∥∥
B

� 2θ‖x‖λ
A (2.20)

for all x ∈ A. If we replace x in (2.20) by x

2n+1 and multiply both sides of (2.20) to 2n, then we
have ∥∥∥∥2n+1f

(
x

2n+1

)
− 2nf

(
x

2n

)∥∥∥∥
B

� θ

(
2

2λ

)n+1

‖x‖λ
A (2.21)

for all x ∈ A. Since B is a p-Banach algebra,
∥∥∥∥2n+1f

(
x

2n+1

)
− 2mf

(
x

2m

)∥∥∥∥
p

B

�
n∑

i=m

∥∥∥∥2i+1f

(
x

2i+1

)
− 2if

(
x

2i

)∥∥∥∥
p

B

� θp

n∑(
2

2λ

)(i+1)p

‖x‖λp
A (2.22)
i=m
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for all non-negative integers m and n with n � m and all x ∈ A. It follows from (2.22) that
the sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define a mapping T :A → B by

T (x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A. It follows from (ii) and (2.19) that

∥∥g(x) − T (x)
∥∥

B
= lim

n→∞ 2n

∥∥∥∥g

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
B

� θ lim
n→∞

(
2

2λ

)n

‖x‖λ
A = 0

for all x ∈ A. So T = g. Moreover, letting m = 0 and passing the limit n → ∞ in (2.22), we get

∥∥f (x) − g(x)
∥∥

B
� 2θ

(2λp − 2p)1/p
‖x‖λ

A (2.23)

for all x ∈ A. Therefore (2.15) follows from (2.19) and (2.23). To prove the uniqueness of g, let
Q :A → B be another homomorphism satisfying (2.15). We have

∥∥g(x) − Q(x)
∥∥

B
= lim

n→∞ 2n

∥∥∥∥f

(
x

2n

)
− Q

(
x

2n

)∥∥∥∥
B

� C lim
n→∞

(
2

2λ

)n

‖x‖λ
A = 0

for all x ∈ A. So g = Q.

Case II. Let λ < 1. If we replace x in (2.20) by 2nx and divide both sides of (2.20) by 2n+1,

then we have∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2n
f

(
2nx

)∥∥∥∥
B

� θ

(
2λ

2

)n

‖x‖λ
A (2.24)

for all x ∈ A. Since B is a p-Banach algebra,

∥∥∥∥ 1

2n+1
f

(
2n+1x

) − 1

2m
f

(
2mx

)∥∥∥∥
p

B

�
n∑

i=m

∥∥∥∥ 1

2i+1
f

(
2i+1x

) − 1

2i
f

(
2ix

)∥∥∥∥
p

B

� θp
n∑

i=m

(
2λ

2

)ip

‖x‖λp
A (2.25)

for all non-negative integers m and n with n � m and all x ∈ A. It follows from (2.25) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define a mapping T :A → B by

T (x) := lim
n→∞

1

2n
f

(
2nx

)

for all x ∈ A. The rest of the proof is similar to the proof of Case I. This proves (iii). �
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Corollary 2.9. Let r, t and θ be positive real numbers and let q, s < 0 be real numbers. Assume
that f :A → B is a mapping satisfying∥∥f (x + y) − f (x) − f (y)

∥∥
B

� θ‖x‖r
A‖y‖s

A, (2.26)∥∥f (xy) − f (x)f (y)
∥∥

B
� θ‖x‖t

A‖y‖q
A (2.27)

for all x ∈ A and all y ∈ A \ {0}. If the mapping t 
→ f (tx) is continuous in 0 ∈ R for each fixed
x ∈ A, then the mapping f :A → B is a homomorphism.

In Theorem 2.8, let 0 < t < 1 and λ < 1. If we replace x by nx and divide both sides of (2.14)

by n, then we have∥∥∥∥1

n
f (nxy) − g(x)h(y)

∥∥∥∥
B

� θnt−1‖x‖t
A‖y‖q

A

for all x ∈ A and all y ∈ A \ {0}. Therefore

lim
n→∞

1

n
f (nxy) = g(x)h(y)

for all x, y ∈ A. It follows from the proof of Theorem 2.8 (part (iii)), g(xy) = g(x)h(y) for all
x, y ∈ A. Since the mapping g :A → B is a homomorphism, then we have

g(x)
[
g(y) − h(y)

] = 0 (2.28)

for all x, y ∈ A. Similarly, one can obtain (2.28) if t > 1 and λ > 1. Therefore we have the
following results:

Corollary 2.10. In Theorem 2.8, let B = C with p = 1. Then f,g,h :A → B are homomor-
phisms. Moreover, f = g = h.

Corollary 2.11. In Theorem 2.8, let A and B be unital with units eA and eB, respectively. If
g(eA) = eB, then f,g,h :A → B are homomorphisms. Moreover, f = g = h.

Theorem 2.12. Let θ be a positive real number and let r, s < 0 be real numbers. Assume that
f,g :A → B are mappings satisfying∥∥f (x + y) − f (x) − g(y)

∥∥
B

� θ‖x‖r
A‖y‖r

A, (2.29)∥∥f (xy) − f (x)g(y)
∥∥

B
� θ‖x‖s

A‖y‖s
A (2.30)

for all x, y ∈ A \ {0}. If the mapping t 
→ g(tx) from R to B is continuous at zero for each fixed
x ∈ A, then

(i) the mapping g :A → B is a homomorphism;
(ii) f = g.

Proof. Replacing x by nx in (2.29), we get that∥∥f (nx + y) − f (nx) − g(y)
∥∥

B
� θnr‖x‖r

A‖y‖r
A (2.31)

for all x, y ∈ A \ {0} and all positive integers n. Letting n → ∞ in (2.31), we get that

lim
[
f (nx + y) − f (nx)

] = g(y)

n→∞
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for all x, y ∈ A \ {0}. Once again replacing y by ny in (2.29) and letting n → ∞, we get that

lim
n→∞

[
f (x + ny) − g(ny)

] = f (x)

for all x, y ∈ A \ {0}. Let x ∈ A \ {0}. We have

lim
n→∞

[
f (nx) − g(nx)

] = f (y) − g(y) (2.32)

for all y ∈ A \ {0}. Hence we have∥∥g(x + y) − g(x) − g(y)
∥∥

B

= lim
n→∞

∥∥[
f (x + y + ny) − f (ny)

] − g(x) − [
f (y + ny) − f (ny)

]∥∥
B

= lim
n→∞

∥∥f (x + y + ny) − f (y + ny) − g(x)
∥∥

B

= lim
n→∞ θ(n + 1)r‖x‖r

A‖y‖r
A = 0

for all x, y ∈ A \ {0}. Therefore, g(x + y) = g(x) + g(y) for all x, y ∈ A \ {0}. Let x ∈ A \ {0}.
Then g(2x) = 2g(x). Replacing x by x/n in the last equation, we get that

g

(
2x

n

)
= 2g

(
x

n

)
(2.33)

for all positive integers n. Since the mapping t 
→ g(tx) is continuous at zero for each fixed
x ∈ A, letting n → ∞ in (2.33), we have g(0) = 0. Therefore, g is Q-linear. The continuity of
the mapping t 
→ g(tx) at zero for each fixed x ∈ A implies its continuity in t ∈ R for each fixed
x ∈ A. So g is R-linear. Also, we have∥∥g(xy) − g(x)g(y)

∥∥
B

= lim
n→∞

∥∥[
f (xy + nxy) − f (nxy)

] − [
f (x + nx) − f (nx)

]
g(y)

∥∥
B

� lim sup
n→∞

∥∥f (xy + nxy) − f (x + nx)g(y)
∥∥

B

+ lim sup
n→∞

∥∥f (nxy) − f (nx)g(y)
∥∥

B

� lim
n→∞ θ(n + 1)r‖x‖r

A‖y‖r
A + lim

n→∞ θnr‖x‖r
A‖y‖r

A = 0

for all x, y ∈ A \ {0}. Since g(0) = 0, g(xy) = g(x)g(y) for all x, y ∈ A. Thus the mapping
g :A → B is a homomorphism.

To prove (ii), fix y0 ∈ A \ {0} and let b = f (y0) − g(y0). It follows from (2.32) that

f (x) = g(x) + b (2.34)

for all x ∈ A \ {0}. Let x0, y0 ∈ A \ {0}. We have two cases:

Case I. x0y0 	= 0. In this case, it follows from (i) and (2.34) that

f

(
n

m
x0y0

)
− 1

m
f (nx0)g(y0) =

[
g

(
n

m
x0y0

)
+ b

]
− 1

m

[
g(nx0) + b

]
g(y0)

= n

m
g(x0)g(y0) + b − n

m
g(x0)g(y0) − b

m
g(y0)

= b − b
g(y0)
m
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for all positive integers m,n. Therefore, we get from (i) and (2.30) that∥∥∥∥b − b

m
g(y0)

∥∥∥∥
B

� θ

(
n

m

)s

‖x0‖s
A‖y0‖s

A

for all positive integers m,n. Letting n → ∞ in the last inequality, we get that

b = b

m
g(y0)

for all positive integers m. So b = 0. Hence we get from (2.34) that

f (x) = g(x) (2.35)

for all x ∈ A \ {0}.
Letting y = −x in (2.29), we get from (i) and (2.35) that

∥∥f (0)
∥∥

B
� θ‖x‖2r

A (2.36)

for all x ∈ A \ {0}. So f (0) = 0 and (ii) follows from (i) and (2.35).

Case II. x0y0 = 0. In this case, it follows from (i) and (2.30) that∥∥f (0) − nf (x0)g(y0)
∥∥

B
� θns‖x0‖s

A‖y0‖s
A

for all positive integers n. So limn→∞ nf (x0)g(y0) = f (0) and hence f (x0)g(y0) = 0. There-
fore f (0) = 0. Replacing x and y by nx and −nx in (2.29), respectively, we get from (i) that∥∥g(nx) − f (nx)

∥∥
B

� θn2r‖x‖2r
A

for all x ∈ A\ {0} and all positive integers n. So limn→∞[f (nx)−g(nx)] = 0 for all x ∈ A\ {0}.
Since f (0) = 0, (2.32) implies that f = g. �
Corollary 2.13. Let θ be a positive real number and let r, s < 0 be real numbers. Assume that
f :A → B is a mapping such that

∥∥f (x + y) − f (x) − f (y)
∥∥

B
� θ‖x‖r

A‖y‖r
A, (2.37)∥∥f (xy) − f (x)f (y)

∥∥
B

� θ‖x‖s
A‖y‖s

A (2.38)

for all x, y ∈ A \ {0}. If the mapping t 
→ f (tx) from R to B is continuous at zero for each fixed
x ∈ A, then f :A → B is a homomorphism.

Theorem 2.14. Let θ be a positive real number and let r, s < 0 be real numbers. Assume that
f,g,h :A → B are mappings such that

∥∥f (x + y) − g(x) − h(y)
∥∥

B
� θ‖x‖r

A‖y‖r
A, (2.39)∥∥f (xy) − h(x)g(y)

∥∥
B

� θ‖x‖s
A‖y‖s

A (2.40)

for all x, y ∈ A \ {0}. Let f,h be odd mappings and let the mappings t 
→ f (tx) and t 
→ g(tx)

from R to B be continuous at zero for each fixed x ∈ A. Then f,g,h :A → B are homomor-
phisms and moreover f = g = h.
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Proof. Similar to the proof of Theorem 2.12, we have

lim
n→∞

[
h(nx) − g(nx)

] = h(y) − g(y) (2.41)

for all x, y ∈ A \ {0}. Since f,h are odd mappings, letting y = −x in (2.39), we get that∥∥h(x) − g(x)
∥∥

B
� θ‖x‖2r

A

for all x ∈ A \ {0}. Therefore

lim
n→∞

[
h(nx) − g(nx)

] = 0 (2.42)

for all x ∈ A \ {0}. It follows from (2.41) and (2.42) that

h(x) = g(x) (2.43)

for all x ∈ A \ {0}. Replacing y by −y − x in (2.39), we get from (2.43) that∥∥h(x + y) − h(x) − f (y)
∥∥

B
� θ‖x‖r

A‖x + y‖r
A (2.44)

for all x ∈ A \ {0} and all y ∈ A \ {−x}. Therefore

lim
n→∞

[
h(nx + y) − h(nx)

] = f (y),

lim
n→∞

[
h(nx + y) − f (nx)

] = h(y)

for all x, y ∈ A \ {0}. So

lim
n→∞

[
h(nx) − f (nx)

] = h(y) − f (y) (2.45)

for all x, y ∈ A \ {0}. Fix y0 ∈ A \ {0} and let a = h(y0) − f (y0). It follows from (2.45) that

h(x) = f (x) + a (2.46)

for all x ∈ A \ {0}. Since f,h are odd mappings, we have from (2.46)

0 = h(x) + h(−x) = f (x) + f (−x) + 2a = 2a

for all x ∈ A \ {0}. Therefore a = 0. Since f (0) = h(0) = 0, (2.46) implies that f (x) = h(x)

for all x ∈ A. Hence one can obtain the functional inequalities (2.29) and (2.30) from (2.39)

and (2.40). Therefore, the results follow from Theorem 2.12. �
3. Homomorphisms between unital quasi-Banach algebras

Throughout this section, assume that A is a quasi-Banach algebra with quasi-norm ‖.‖A and
unit e and that B is a p-Banach algebra with p-norm ‖.‖B and unit e′. Let K be the modulus of
concavity of ‖.‖B.

We investigate homomorphisms between unital quasi-Banach algebras, associated to the Pex-
iderized Cauchy functional equation. We generalize the results of [15].

Theorem 3.1. Let θ, r, s be positive real numbers with r > 1
2 and s > 1, and let f,g,h :A → B

be mappings satisfying (2.5) and (2.6). If at least one of the mappings t 
→ f (tx), t 
→ g(tx)

and t 
→ h(tx) is continuous in t ∈ R for each fixed x ∈ A and limn→∞ 2n[f ( e
2n ) − f (0)] = e′,

then the mappings f,g,h :A → B are homomorphisms. Moreover, f = g = h.
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Proof. Using the proof of Theorem 2.5, we get that

f (x) − f (0) = g(x) − g(0) = h(x) − h(0) (3.1)

for all x ∈ A. By Theorems 2.1 and 2.5, there exists a homomorphism T :A → B defined by

T (x) = lim
n→∞ 2n

[
f

(
x

2n

)
− f (0)

]

for all x ∈ A. Let H(x) = f (x) − f (0) for all x ∈ A. It follows from the proof of Theorem 2.5
that

H(x + y) − H(x) − H(y) = f (x + y) − g(x) − h(y),

H(xy) − H(x)H(y) = f (xy) − g(x)h(y)

for all x, y ∈ A. Therefore, (2.6) implies that

∥∥T (x) − H(x)
∥∥

B
= lim

n→∞

∥∥∥∥2nH

(
x

2n

)
− H(x)

∥∥∥∥
B

= lim
n→∞

∥∥∥∥2nH

(
ex

2n

)
− e′H(x)

∥∥∥∥
B

= lim
n→∞

∥∥∥∥2nH

(
ex

2n

)
− 2nH

(
e

2n

)
H(x)

∥∥∥∥
B

� θ lim
n→∞

(
2

2s

)n

‖e‖s
A‖x‖s

A = 0

for all x ∈ A. So H = T and (3.1) imply that f (e) − f (0) = g(e) − g(0) = h(e) − h(0) = e′.
Since g(0)h(x) = g(x)h(0) = f (0) for all x ∈ A,

h(0) = e′h(0) = [
g(e) − g(0)

]
h(0) = 0.

So f (0) = g(0)h(0) = 0. Since f (0) = g(0) + h(0), g(0) = 0. Hence f = g = h = T . �
Corollary 3.2. Let θ, r, s be positive real numbers with r > 1

2 and s > 1, and let f :A → B be
a mapping satisfying (2.3) and (2.4). If the mapping t 
→ f (tx) is continuous in t ∈ R for each
fixed x ∈ A and limn→∞ 2nf ( e

2n ) = e′, then the mapping f :A → B is a homomorphism.

Theorem 3.3. Let θ, r, s be positive real numbers with r < 1
2 and s < 1, and let f,g,h :A → B

be mappings satisfying (2.5) and (2.6). If at least one of the mappings t 
→ f (tx), t 
→ g(tx)

and t 
→ h(tx) is continuous in t ∈ R for each fixed x ∈ A and limn→∞ 1
2n f (2ne) = e′, then the

mappings f,g,h :A → B are homomorphisms. Moreover, f = g = h.

Proof. Using the proof of Theorem 2.5, we get (3.1). By Theorems 2.2 and 2.6, there exists a
homomorphism T :A → B defined by

T (x) = lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Similar to the proof of Theorem 3.1, let H(x) = f (x) − f (0) for all x ∈ A. Then
we get that H = T .

The rest of the proof is the same as the proof of Theorem 3.1. �
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Corollary 3.4. Let θ, r, s be positive real numbers with r < 1
2 and s < 1, and let f :A → B be

mappings satisfying (2.3) and (2.4). If the mapping t 
→ f (tx) is continuous in t ∈ R for each
fixed x ∈ A and limn→∞ 1

2n f (2ne) = e′, then the mapping f :A → B is a homomorphism.

Remark 3.5. In Theorems 3.1 and 3.3, one can obtain the result if e and e′ are left (right) units
for A and B, respectively.

Theorem 3.6. Let θ be a positive real number and let f,g,h :A → B be mappings satisfying
(2.9) and (2.10). If at least one of the mappings t 
→ f (tx), t 
→ g(tx) and t 
→ h(tx) is contin-
uous in t ∈ R for each fixed x ∈ A and limn→∞ 1

2n f (2ne) = e′, then the mappings g,h :A → B

are homomorphisms. Moreover, g = h and∥∥f (x) − g(x)
∥∥

B
� θ (3.2)

for all x ∈ A.

Proof. By Theorem 2.7 and its proof, there exists a unique homomorphism T :A → B satisfy-
ing (2.12). Then we have

∥∥T (x) − h(x)
∥∥

B
= lim

n→∞

∥∥∥∥ 1

2n
f

(
2nx

) − h(x)

∥∥∥∥
B

= lim
n→∞

∥∥∥∥ 1

2n
f

(
2nex

) − e′h(x)

∥∥∥∥
B

= lim
n→∞

1

2n

∥∥f
(
2nex

) − g
(
2ne

)
h(x)

∥∥
B

� lim
n→∞

θ

2n
= 0

for all x ∈ A. Therefore T = h.

Similarly, we get that T = g. Hence (3.2) follows from (2.9). �
Corollary 3.7. Let θ be a positive real number and let f :A → B be a mapping satisfying∥∥f (x + y) − f (x) − f (y)

∥∥
B

� θ,
∥∥f (xy) − f (x)f (y)

∥∥
B

� θ

for all x, y ∈ A. If the mapping t 
→ f (tx) is continuous in t ∈ R for each fixed x ∈ A and
limn→∞ 1

2n f (2ne) = e′, then the mapping f :A → B is a homomorphism.

Remark 3.8. In Theorem 3.6, we cannot infer that f is a homomorphism. Let A be a unital
algebra with unit e, and let f,g,h :A → A be mappings defined by

f (x) = x + θ

2‖e‖e, g(x) = h(x) = x

for all x ∈ A. It is clear that the conditions of Theorem 3.6 hold (with A = B), but the mapping
f :A → A is not a homomorphism.
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[6] P. Găvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math.

Anal. Appl. 184 (1994) (2000) 431–436.
[7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224.
[8] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[9] D.H. Hyers, G. Isac, Th.M. Rassias, On the asymptoticity aspect of Hyers–Ulam stability of mappings, Proc. Amer.

Math. Soc. 126 (1998) 425–430.
[10] G. Isac, Th.M. Rassias, Stability of ψ -additive mappings: Applications to nonlinear analysis, Int. J. Math. Math.

Sci. 19 (1996) 219–228.
[11] S. Jung, On the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996)

221–226.
[12] Y.H. Lee, K.W. Jun, A note on the Hyers–Ulam–Rassias stability of Pexider equation, J. Korean Math. Soc. 37

(2000) 111–124.
[13] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002) 711–720.
[14] C. Park, Isomorphisms between unital C∗-algebras, J. Math. Anal. Appl. 307 (2005) 753–762.
[15] C. Park, Hyers–Ulam–Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. (2007),

in press.
[16] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982)

126–130.
[17] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984)

445–446.
[18] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989) 268–273.
[19] J.M. Rassias, Complete solution of the multi-dimensional problem of Ulam, Discuss. Math. 14 (1994) 101–107.
[20] J.M. Rassias, M.J. Rassias, On some approximately quadratic mappings being exactly quadratic, J. Indian Math.

Soc. 69 (2002) 155–160.
[21] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[22] Th.M. Rassias, Problem 16; 2, in: Report of the 27th International Symp. on Functional Equations, Aequationes

Math. 39 (1990) 292–293; 309.
[23] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246

(2000) 352–378.
[24] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
[25] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, Boston and

London, 2003.
[26] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers–Ulam stability, Proc. Amer.

Math. Soc. 114 (1992) 989–993.
[27] S. Rolewicz, Metric Linear Spaces, PWN–Polish Sci. Publ., Warszawa, 1984.
[28] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113–129.
[29] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.


