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1. Introduction

There are increasing activities in using AdS/CFT [1] to describe the real systems after

relevant deformations of the AdS background. For example, it has been suggested that

the fireball in Relativistic Heavy Ion Collision (RHIC) should be considered as a strongly

interacting system [2, 3] and the fireball has been studied using dual gravity models [4 – 11].

In the finite temperature context the SUSY is broken, and therefore the models have more

chance to be in the same universality class of real QCD. Many attempts were made to

construct models phenomenologically closer to QCD [12] as well as models with mesons

and quenched quarks [13 – 16].

More recently, in an interesting paper [17], dilaton-gravity solution describing the gluon

condensation at zero temperature [17] was discussed. We call this solution as dilaton-

wall solution. In fact, dilaton-wall solution has a rather long history of being repeatedly

rediscovered [18 – 20]. The gluon condensate was originally introduced, at zero temper-

ature, by Shifman, Vainshtein and Zakharov (SVZ) as a measure for nonperturbative

physics in QCD [21]. At high temperature, it is useful to study the nonperturbative

nature of the quark-gluon plasma (QGP), and it can be served as an order parameter for

(de)confinement [22 – 24]. Recently the role of the gluon condensate in RHIC physics is

extensively studied in [25]. Here motivated by the recent paper [17], we describe the tem-

perature dependence of the gluon condensation by extending dilaton-wall solution to the

finite temperature. We consider the back-reaction of the ads black hole solution and the

immediate consequences are of two folds: one is the development of the singularity (instead

of regular horizon) and the other is the breaking of the conformal symmetry. We shows that

the singularity plays a crucial role to allow the non-vanishing value of gluon condensation.

– 1 –
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We also study thermodynamic quantities and the trace anomaly in the presence of the GC.

Although the singularity of the solution does not admit the Hawking temperature, we ar-

gue that we can nevertheless define the temperature using the holographic correspondence

of an extended Stephan-Boltzmann law. Finally we describe the temperature dependence

of the gluon condensation including the effect of the Hawking-Page transition (HPT).

The rest of the paper goes as follows. In section 2, we first consider the hard wall

model [29], and then we discuss the back-reaction due to the gluon condensation in section

3. Our solution interpolates the dilaton-wall solution and the well-known AdS black hole

solution. Since the solution does not admit the Hawking temperature in generic parameter

values, we define the temperature using the temperature in the absence of condensation

and justify using the holographic correspondences. In section 4, we will discuss the ther-

modynamics of the gluon condensation by calculating various thermodynamic potentials.

In section 5, we consider temperature dependence of the gluon condensation including

Hawking-Page transition [26 – 28]. In the discussion section, we describe some limitations

of the present approach and a few future works.

2. Gluon condensation in hard wall model

The gluon condensation is in fact the simplest quantity in AdS/CFT consideration, since

it couples with the dilaton which is a massless scalar. Here we use a simple model, called

hard wall model, where confinement is treated by introducing the IR cut off. The action

is given by a scalar coupled with background gravity minimally.

S = − 1

2κ2

∫

d4xdz
√

g∂µφ∂µφ. (2.1)

The equation of motion for this massless field is

∂z(z
−3f(z)∂zφ) = 0. (2.2)

In low temperature, the thermal AdS background is dominating for which f(z) = 1, and

the solution is given by

φ(z) = c0 + c1z
4. (2.3)

If we have a hard wall at zm and UV boundary at z = 0, the proper boundary should be

the Dirichlet boundary condition (BC) at the wall and at the AdS boundary z = 0:

φ(zm) = A, φ(0) = B. (2.4)

These boundary conditions determine ci’s as c0 = B, and c1 = (A − B)/z4
m. On the other

hand, the general AdS/CFT dictionary identifies c1 as the gluon condensation

c1 ∼< Tr F 2
µν > . (2.5)

The point here is that it is temperature independent in a confining phase, simply because

there is no explicit temperature dependence in the background metric. In fact this is

– 2 –
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consistent with the recent result in large N gauge theory result [33].1 The temperature

dependence is suppressed for chiral condensation as well as gluon condensation in the

gauge theory context.

According to Herzog [28], there is a Hawking-Page type transition at the T = 21/4/πzm,

and beyond this temperature the AdS black hole background is dominant.

ds2 =
R2

z2

[

dz2 +
(

1 + az4
)

(

d~x2 −
(

1 − az4

1 + az4

)2

dt2

)]

. (2.6)

Here a is related to the temperature by a = (πT )4/4. The scalar equation can be solved

with f(z) = 1 − a2z8. The solution is

φ(z) = φ0 +

√

3

2

c

a
log

1 + az4

1 − az4
, (2.7)

While the UV boundary condition can be easily specified, we can not specify any

regular boundary condition at the horizon unless c = 0. If that is the case, then such

regularity requirement says that gluon condensation is 0 in deconfined phase.

To understand the regularity requirement at the boundary and also for the later com-

parison, we calculate the Lagrangian:

L = R +
12

R2
− 1

2
∂Mφ∂Mφ. (2.8)

The matter part is

−1

2
gzz(∂zφ)2 = − 48c2z8

(1 − a2z8)2
, (2.9)

which is singular at the IR boundary z = zT = a−1/4. The gravity part is free from IR

singularity:

R +
12

R2
= −8. (2.10)

Therefore if c is non-zero, there is no way to cancel out the IR divergence, confirming above

requirement.

Therefore hard wall model prediction for the gluon condensation is the jump from

a constant finite value to 0 at the critical temperature. See the figure 1b. The result

is good qualitatively but NOT very satisfactory, since the lattice data shows that gluon

condensation is non-zero at high temperature.

As we will see in the next section, including the gravity back-reaction changes the

situation.

3. Metric back-reaction to the gluon condensation

Now we consider the back-reaction of the metric to the gluon condensation. We are mainly

interested in the high temperature phase behavior of the gluon condensation. The 5D

1The temperature independence of the chiral condensation were reported long ago [30, 31], and in the

AdS/CFT context we argued in the same line here [32].
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Figure 1: (a) Lattice result of Miller [24] for pure Yang Mills case, (b) The gluon condensate at

finite temperature in Hard wall model.

gravity action with a dilaton is given by

S = γ
1

2κ2

∫

d5x
√

g

[

R +
12

R2
− 1

2
∂Mφ∂Mφ

]

, (3.1)

where γ = +1 for Minkowski metric, and γ = −1 for Euclidean signature. We work with

Minkowski metric for most cases in this paper.

The supersymmetric solution of this system is discovered in last decade [19, 20] to

discuss the running coupling and confinement and rediscovered recently in [17] to discuss

the gluon condensation at zero temperature. We call it as the dilaton-wall solution and

follow the notation of Csaki and Reese [17] closely, where the metric is given by

ds2 =

(

R

z

)2
(

√

1 − c2z8 ηµνdxµdxν + dz2
)

, (3.2)

and the corresponding dilaton profile is given by

φ(z) =

√

3

2
log

(

1 + cz4

1 − cz4

)

+ φ0 , (3.3)

where φ0 is a constant.

Below we give a two-parameter non-BPS solution that contains both the dilaton-wall

solution as well as AdS black hole solution as its limiting cases.2 We start from an ansatz

ds2 =
R2

z2
dz2 + e2A(z)(d~x2 + e2B(z)dt2),

φ = φ(z) . (3.4)

2After the first version of this paper was uploaded, we were informed that our solution also was found

earlier in [34, 35] in other context. So we do not claim any originality in discovering this metric.
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The action and the metric ansatz lead us to the equations of motion:

−z2φ′2 = 12z2A′′ + 12zA′ + 24z2A′2 − 24

0 = 4zB′ + 4z2B′2 + 4z2B′′ + 16z2A′B′

z2φ′2 = 24z2A′2 + 12z2A′B′ − 24

0 = z2φ′′ + zφ′ + 4z2A′φ′ + z2B′φ′, (3.5)

where a prime represents a derivative with respect to z. We are looking for a solution

which is asymptotically AdS and reduces to the AdS black hole in one limit and also leads

to the above BPS solution in some other limit.

After some efforts, we find a solution that is given by

A(z) = − log
z

R
+

a

4f
log

(

1 + fz4

1 − fz4

)

+
1

4
log (1 − f2z8)

B(z) = −a

f
log

(

1 + fz4

1 − fz4

)

φ(z) = φ0 +
c

f

√

3

2
log

(

1 + fz4

1 − fz4

)

. (3.6)

As a result, the dilaton black hole metric reads

ds2 =
R2

z2

[

dz2 +
(

1 − f2z8
)1/2

(

1 + fz4

1 − fz4

)a/2f
(

d~x2 −
(

1 − fz4

1 + fz4

)2a/f

dt2

)]

. (3.7)

Here, f , which determines the position of the singularity, is related to a and c by a

Pythagorean relation:

f2 = a2 + c2. (3.8)

The parameters a and c, the z4 coefficient of the metric and dilaton field respectively,

determine the temperature and the gluon condensation respectively when the other is 0.

Notice that the solution is well defined only in the range 0 < z < f−1/4 := zf . Since 1/z

is the energy scale of the boundary theory in AdS/CFT, zf can be considered as the IR

cut-off. One should also notice that

• For a = 0, the solution reduces to dilaton-wall solution.

• For c = 0, it becomes the Schwarzschild black hole solution (2.6) [8]. In this case,

the parameter a and the temperature is related by a = 1
4(πT )4.

Therefore we expect that our solution describes the finite temperature with the gluon

condensation. However, for the generic value of f , the metric has an essential singularity

at z = f−1/4 and the Hawking temperature can NOT be determined by requiring the

absence of conical singularity at the horizon. See the appendix. So we have to answer

following question associated with the metric:

• How temperature can exist in the presence of essential singularity.

– 5 –
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In field theory, there is no barrier to define temperature in the presence of the gluon

condensation. Therefore geometric indeterminacy should not mean that we do not have

temperature in the presence of condensation. We speculate that the thermalization is

incomplete unless the the gluon condensation disappear. This is deeply related to the

nature of our solution where two independent scales (temperature and gluon condensation)

co-exist. Before we answer this question we have even more urgent question. When c is

non-zero, the dilaton blows up at the horizon as we already have seen in eq. (2.7). The

dilaton blows up at zf here also. Therefore we should ask:

• Why gluon condensation can exist in spite of the IR divergence of the dilaton?

To answer this question we evaluate the graviton and dilaton action. The matter part is

Ldilaton = −1

2
gzz(∂zφ)2 = − 48c2z8

(1 − f2z8)2
, (3.9)

which is of course singular. However the gravity part is also singular in this case

Lgrav = R +
12

R2
= −8 +

48(f2 − a2)z8

(1 − f2z8)2
. (3.10)

The point here is that the singularity in the dilaton part is canceled by the singularity

developed in the gravity-back-reaction to the gluon condensation through the Phytagorean

relation f2 = a2 + c2. Since the total L has no IR singularity for any finite values of c,

there is no reason why we should not allow it.

The allowance of the non-trivial matter field through the singularity cancelation can be

given an interesting interpretation in terms of the boundary condition on the fields: When

the IR boundary is a regular horizon, we have to impose a regular boundary condition there.

This regularity forbids a non-trivial configuration of matter field φ. In the presence of the

singularity, classical gravity near singularity is not valid. Therefore the field configuration

near the singularity is not reliable. Therefore we have to set an IR cutoff before we reach

zf and the boundary condition should be imposed there. This makes everything regular.

In this way, developing singularity is a mechanism by which field configuration can develop

a non-trivial value of condensation. In other words, to allow a forbidden quantity by the

regularity of the horizon, the system must develop an IR cutoff outside the original horizon.

This is the meaning of the singularity located outside original horizon ( f > a). In fact

this is why gluon condensation is allowed in the dilaton-wall solution at zero temperature.

We believe that this is a general phenomena of gravity-matter interaction in AdS/CFT.

Now we turn to the question on the temperature. Our answer is that even in the

presence of c, we still identify a = (πT )4/4. We support this choice by following observation:

the temperature in the gravity theory is a parameter that fixes the scale of the geometry

and the first non trivial coefficient of in the expansion of the metric, g
(4)
µν , should determine

the scale of the metric. A surprising fact is that even in the presence of c, g
(4)
µν does not

change:

g00 = −1 + 3az4 + O(z8), gii = 1 + az4 + O(z12). (3.11)

– 6 –
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The gluon condensation changes the metric only from the g
(8)
µν . This can be understood: For

the gluons participating in the thermal excitations, they should follow the usual Stephan-

Boltzmann law ρ ∼ T 4, since they are just massless excitations. Therefore, it is natural to

identify g
(4)
µν as the gluon contribution to the energy momentum tensor Tµν leaving aside

the contribution of the glueball or the gluon condensation.

g(4)
µν = a(3, 1, 1, 1) =

κ2

2
diag(ρ, p, p, p)gluon. (3.12)

This observation supports the identification a = (πT )4/4, since the thermal gluons as

massless particles should have Stephan-Boltzmann law. However, the identification of the

total energy momentum tensor with the g
(4)
ii should be broken to avoid following contra-

diction: (3.11) indicates that the trace of boundary Tµν is still zero, while we know that

the scale invariance is dynamically broken by developing the condensation, introducing one

more scale c = (πΛ)4. Since a and c are independent constants, it is natural to assume that

the temperature is independent of the condensation and vice versa. While it is natural to

have the notion of in field theoretic temperature in the presence of the gluon condensation,

its dual gravity develops an essential singulariy and forbid the geometric notion of temper-

ature. The coexsitence of two scales and the coexistence of thermal gluon and condensed

gluon means that themalization is incomplete and this, we believe, is the meaning of the

singularity in the gravity description.

4. Thermodynamics with gluon condensation

We now discuss the thermodynamic properties of the system. We begin by calculating the

total action of gravity and the dilaton:

Stot
E

βV
=

4

κ2

∫ zf

ǫ
dz

1

z5

(

1 − f2z8
)

= − 2

κ2
f +

1

κ2ǫ4
, (4.1)

where V is the volume of R3. We renormalize the total action by subtracting the action

value for the pure AdS, which is nothing but the last divergent term in eq. (4.1). To make

sure, one can check that this prescription works for the known (AdS black hole) case: It is

easy to show that in this case,

F/V = −σT 4, E/V = 3σT 3, p = σT 4, (4.2)

with σ = π4

2κ2 = π2N2

8 , so that we can recover well-known Stephan-Boltzmann law with no

condensation case ρ = 3
8π2N2T 4.

In our case,

F/V = −αf(T ), ρ = E/V = α(−f + Tf ′(T )), p = αf, (4.3)

with α = 2
κ2 = N2

2π2 . With the parametrization c = 1
4(πΛ)4 and the temperature identifica-

tion

a =
1

4
(πT )4 (4.4)

– 7 –
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made in last section, the energy density is given by

ρ(T,Λ) = α(3a2 − c2)/f =
3π2N2

c

8

(T 8 − 1
3Λ8)√

T 8 + Λ8
. (4.5)

The result is only for high temperature, since for low temperature other back ground is

dominating. If we identify the dilaton (or gluon condensation) contribution of the energy

momentum tensor as the difference of total and the thermal gluon identified before:

TGC
µν = T total

µν − T gluon
µν = αdiag(Tf ′(T ) − f − 3a, f − a, f − a, f − a). (4.6)

Notice that the gluon condensation contributes negative energy:

ρGC = −α(3a(f − a) + c2)/f < 0, (4.7)

which is a reminiscent of the zero temperature result of Shifman, Vainstein and Za-

kharov [21]. In both case, the negativeness is coming from the renormalization.

At c = 0 it goes to the usual Stephan-Boltzmann law. The pressure can also be

calculated to be

p = αf =
π2N2

c

8

√

T 8 + Λ8 (4.8)

so that the trace anomaly due to the gluon condensation is

ρ − 3p = −4α
c2

f
< 0. (4.9)

For large temperature it goes like ∼ −1/T 4.

In the absence of the proper horizon, the most interesting thermodynamic quantity is

the entropy. The entropy density is

s =
4αa

T
· a

f
=

π2

2
N2

c T 3 · T 4

√
T 8 + Λ8

. (4.10)

Notice that the entropy is decreased compared with the case with no gluon condensation

by the factor a/f . This make sense, since the entropy in condensed state should be less

than that in thermal state. In high temperature limit, all the thermodynamic quantities

saturate to the case of c = 0, regardless of c.

5. Hawking-Page transition

So far we have discussed high temperature regime. Here we discuss the low temperature

regime and the phase transition by discussing the deconfinement phase transition along

the line of [27, 28]. We first evaluate the value of the action with the ‘thermal dilatonic

AdS’ background (tdAdS), which can be obtained by the double Wick rotation ( Wick

rotation and compactifying the time) of the dilaton-wall solution. We take R = 1 here and

hereafter. Using the result for curvature of the tdAdS,

RtdAdS = −4 · (5c4
0z

16 − 22c4
0z

8 + 5)/(1 − c2
0z

8)2 , (5.1)

– 8 –
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the action is given by

StdAdS
E /V3 = − 4

κ2

∫ β′

0
dt

∫ zc

ǫ
dz

1

z5

(

c2
0z

8 − 1
)

, (5.2)

where zc = c
−1/4
0 and V3 =

∫

d~x is the volume of our three dimensional space. The action

for the dilatonic black hole (dBH) solution is given by

SdBH
E

V3
= − 4

κ2

∫ β

0
dt

∫ zf

ǫ
dz

1

z5

(

f2z8 − 1
)

, (5.3)

where zf = f−1/4. We used the fact that the curvature in this back ground is

RdBH = −
4
[

5 − 22f2z8 + 5f4z16 + 12a2z8
]

(1 − f2z8)2
. (5.4)

We determine β′ of tdAdS in terms of β by requiring that the periods of the two backgrounds

in the compactified time direction are the same at z = ǫ:

β′ = β exp[A(ǫ) + B(ǫ) − A0(ǫ)] ≃ β

(

1 − 3

2
aǫ4

)

, (5.5)

where A0(ǫ) = A(ǫ; a = 0). We calculate ∆S := SdBH
E − StdAdS

E :

∆S =
2

κ2

[

c0 +
3

4
a − f

]

βV3. (5.6)

Hawking-Page transition is at

acrit =
12

7
c0(1 +

1

3

√

16 − 7(c/c0)2), (5.7)

and condition for the real solution is c < 1.51c0, but since we expect c < c0, there is always

a phase transition. When c ≪ c0, we get

Tc ≃
√

2Λ, with c0 = (πΛ)4/4. (5.8)

We see that the scale of the gluon condensation provide a cut-off scale. In hard wall model

analyzed in the previous section, 1/zm plays the same role. Due to the first order nature

of the phase transition, we could not predict the value of c. The condensation is piecewise

constant function of T , which has a drop at a certain temperature Tc, which we can estimate

below.

The general structure of temperature dependence of our metric with the Hawking-Page

transition is qualitatively similar except that at high temperature c = 0 for hard wall model

while c 6= 0 with gravity back-reaction.

– 9 –
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6. Discussion

In this paper we discussed the back-reaction of the metric with the gluon condensation

at the finite temperature. We presented a dilatonic black hole solution interpolating the

recently discovered dilaton-wall solution and AdS black hole solution. The result contains

two parameters and breaks the conformal invariance. We evaluated the trace anomaly

and it is proportional to the gluon condensation. We showed how the system uses the

singularity to allow the gluon condensation which is forbidden in the presence of regular

horizon.

The solution does not admit the Hawking temperature, unless the condensation pa-

rameter vanishes. We discussed how to define the temperature in the presence of the

singularity using the holographic correspondence and an extended Stephan-Boltzmann law

in the field theory. Although the AdS/CFT deals with strong coupling and the field theory

with weak coupling, the structure is the same and we think this structure is not modified

as we change the coupling although the coefficient of the each term can be changed as a

function of coupling.

In this paper the interpretation of singularity is such that the solution is physical in

the region outside a region where singularity is contained. Our view is actually practiced

extensively before in the present string community. For example in [14, 40] Constable-

Myers solution, which has a essential singularity, is used to discuss the 3+1 dimensional

confining gauge theory. However, one might wonder whether one can find singularity free

solution by adding some other matter. This is especially relevant because, a singularity

often means we are using wrong degree of freedom or missing some degree of freedom. For

example, in our case, perhaps one should treat the condened part of gluon as independent

degree of freedom. We hope we can report on this issue near future. While we do not

know any example worked out to realize the the senario suggested by referee it is definitely

interesting idea worthwhile to be pushed in the future.

We discussed the temperature dependence of the gluon condensation with the Hawking-

Page transition(HPT). As in the usual case, there is a jump of the gluon condensation at

the critical temperature. Apart from this jump and the determination of the transition

temperature, there is not much feature in the temperature dependence. Such character of

a physical parameter is shared for all AdS/CFT model with HPT. The large N nature of

AdS/CFT forbids to reproduce the details of the temperature dependence found in Lattice

results.

We describe some future directions: we did not include a hard wall at zm since there is

already another scale provided by the gluon condensation. It is interesting to discuss the

Hawking-Page transition in the presence of three or more independent physical scales. Also

it would be interesting to discuss back-reaction of the gravity for other fields like massive

scalar as well as vectors. These topics are under progress. It would be also interesting to

calculate various physical quantities in the presence of the gluon condensate. We want to

come back to this issue in future publications.

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
1
0
5

A. Regularity of the metric and Hawking temperature

Here we discuss the equivalence of the three facts in the class of our metric:

(i) Definability of hawking temperature,

(ii) the regularity of the curvature,

(iii) the rationality of the metric components.

To see this, note that the relevant part of the dBH metric is

ds2 = −g00dt2 +
1

z2
dz2 , (A.1)

where

g00 =
1

z2
(1 − fz4)

1

2
+ 3

2

a
f (1 + fz4)

1

2
− 3

2

a
f . (A.2)

Near zf , behavior of the metric can be examined by introducing the coordinate z = zf (1−
ρβ) and rewriting the metric near ρ ∼ 0,

ds2 ≃ β2

(

ρ2β−2dρ2 + ραβ F (zf )

β2
dt2E

)

(A.3)

where dt2E = −dt2 and F (z) := g00(z)/(1 − z
zc

)
1

2
+ 3

2

a
f , which can be written as

F (z) ≡ 1

z2
(1 + z4/z4

f )
1

2
− 3

2

a
f (1 + z/zf + z2/z2

f + z3/z3
f )

1

2
+ 3

2

a
f . (A.4)

The standard lore to get the temperature is to request the absence of a conical singularity

in eq. A.3. However, this condition is met only when β = 1 and α = 2, which means f = a.

This in turn gives c = 0. Only for this case we have the well known result for the black

hole temperature: T =
√

2/πzf . The Riemann curvature scalar is finite only if f = a and

also f = a gives the rational metric components as is manifest in the AdS Schwarzschild

solution. One should better watch whether these equivalences are more general phenomena.
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