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I. INTRODUCTION

allerian degeneration (WD) after ischemic stroke is a 

well-known phenomenon that involves the degeneration 

of distal parts of nerves after injury to the proximal axon or cell 

body. It was first reported by Waller[1].WD involves the 

breakdown of the myelin sheath and the disintegration of 

axonal microfilaments[2], and develops through four different 

stages[3]. The most commonly recognizable cause of WD is 

cerebral infarction, although it can also result from a variety of 

conditions including hemorrhage, trauma, necrosis, and focal 

demyelination[3,4]. Some studies have reported WD of the 

fibers of the corpus callosum, the optic radiations, fornices and 

cerebellar peduncles[5-7].

Because the diagnosis of WD with computed tomography 

(CT) depends on the detection of the atrophy of the pyramidal 

tracts, CT is not a sensitive test for WD in the acute to subacute 

periods. Magnetic resonance imaging (MRI) is superior to CT 

in the diagnosis of WD[8,9]. However, conventional MRI 

shows changes in the white matter only after 20 days (stage 2). 

Yamada et al. showed WD of various tracts, such as the corpus 

callosum, corticospinal tract, and limbic system and Simone et 

al. also described WD of the pontocerebellar fibers[7,10]. 

However, these studies were limited to tracts considerably 

affected with WD. Diffusion-weighted imaging is useful in the 

identification of acute white-matter injury corresponding to 

stage 1 of WD, which is not detectable with conventional 

MRI[11]. Diffusion tenor imaging (DTI) and fiber 

tractography have been used to detect and quantify WD in 

adult patients with stroke[13-16]. This modality provides 

information on microstructural properties[16] and can 

visualize and quantify changes in the integrity and orientation 

of white-matter tracts transected by a focal ischemic lesion. 

The loss of integrity of these directional structures is consistent 
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with reduced anisotropy in the corticospinal tract, ipsilateral to 

the cerebral infarction. DTI has shown that, in the chronic stage 

of stroke, fractional anisotropy(FA) is reduced along the 

pyramidal tract on the affected side below the primary lesion 

months to years after a stroke[12,13]. Moreover, DTI has 

detected WD changes in the pyramidal tract months to years 

after a stroke[12,13] and the characteristic changes reflecting 

early WD[15].

However, most DTI studies have been limited in that they 

have only focused on the corticospinal tract. Various 

insufficiently affected tracts have never been evaluated, 

because only regions of interest (ROIs) specified by the user 

have been compared or a voxel-based analysis performed, 

both of which cause problems in the reliable specification of 

small ROIs or the ambiguous definition of tracts[17]. 

Therefore, various tracts in the hemisphere, such as the 

callosal fibers, association fibers, and projection fibers, have 

not been investigated, despite the ability of DTI to detect the 

early changes of WD.

DTI tractography-based metrics used to assess abnormalities 

in cerebral white matter have recently been reported[18,19]. In 

this method, quantitative tractography evaluating specific fiber 

bundles (track of interests, TOI[20]) with their diffusion 

properties provides relevant white-matter ROIs, so that 

disease-related injuries to specific white-matter pathways can 

be clearly assessed. Therefore, we used TOI analysis of DTI to 

analyze a patient with an old infarction and to demonstrate 

radial WD from encephalomalatic cavities.

II. MATERIALS AND METHODS

A. Subjects and Scanning Methods

We selected a 70-year-old man with an old unilateral infarction 

who has no evidence of WD on previous Routine MRI scan (Fig.1) 

as our case study and an age-matched volunteer as the control. An 

MRI scan was performed after written informed consent was 

obtained. This study was approved by the Institutional Review 

Board of the National Medical Center, Korea. The control subject 

had no history of disease and no abnormal signal in the brain 

parenchyma on routine MRI. Scanning was performed on a 1.5T 

MR system (Siemens AVANTO, Erlangen, Germany), equipped 

with hardware for echo-planar imaging (EPI), shielded gradients, 

and a standard quadrature headcoil. T1-weighted high- resolution 

(1 x 1 x 1 mm) structural images were obtained using a 

magnetization-prepared rapid acquisition gradient echo (MPRA 

GE) sequence. The echo time and repetition time (TE/TR) were 

4.7/1140 ms. A field of view (FOV) of 223 x 256 mm2 and matrix 

of 256 x 240 were used. Scanning was performed in the sagittal 

plane, with alignment parallel to the plane through the falx. The 

average number of scans was one. Fluid-attenuated inversion 

recovery (FLAIR) imaging sequences, with parameters of 

9000/119/1 (repetition time/echo time/excitations), an inversion

(a) (b) (c)

(b) (e) (f)

Fig. 1. The patient, a 70-year-old man with old infarction. AC, Abnormal signal intensities related to an infarction in the right parietal 

lobe. Hypointensities on a T1-weighted image (a), hyperintensities on a T2-weighted image (b), and encephalomalacia with 

gliosis on FLAIR (c) are noted on axial scans of a routine MRI. DF, No evidence of abnormal signal intensity or asymmetric 

atrophy at the level of the basal ganglia (d), midbrain (e), or pons (f) on a T2-weighted image.
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time of 2500 ms, FOV of 159 x 210 mm2, matrix of 256 x 179, 

and section thickness of 5.1 mm were used, and scanning was 

performed in the axial plane with alignment parallel to the plane 

through the orbitmeatal line. In DTI, multisection, single-shot 

diffusion-weighted EPI of the whole brain was performed in 12 

orthogonal directions, with a b value of 1000 s/mm2. For each 

diffusion direction, a combination of x, y and z gradients was 

used to apply a strength of 30 mT/m and a slew rate of 150 

mT/m/s. A TE/TR of 83/9200 ms, FOV of 194 x 256 mm2, 

matrix of 128 x 112, 100% acquisition, EPI factor of 112, and a 

scan time of 65 s were used for 2 mm sections with no section 

gaps.

B. Description of Technique : TOI Analysis 

All data sets were transferred to digital imaging and 

communication (DICOM) format from the MR scanner to a 

Xeon (TM) 2.8 GHz PC workstation and converted to 

ANALYZE format using the free software MRIcro for Windows 

(www.sph.sc.edu/co-md/rorden/mricro.html).

In this study, we focused on four TOIs in each hemisphere: 

the corpus callosum, corticothalamic tract, corticospinal tract, 

and superior longitudinal fasciculus were selected. Each tract 

was guided by two ROIs methods which were defined by one of 

the authors (CCH) using the ROI toolbox included in MRIcro. 

The starting ROI was infarction area in case which was 

semiautomatically segmented based on b0 and FLAIR images 

as the first ROI. In control, right parietal lobe was used (Fig. 

2A). The second ROIs were defined three-dimensional ROIs 

that were believed to contain a section of the desired seed 

structures on an image showing FA by cross-referencing 

neuroanatomical works (Fig. 2B). The postprocessings applied 

are summarized in Figure 3. Both parietal lobes as an starting 

ROIs were defined in control using templete (Fig. 3B). The 

infarction area in the parietal lobe of the patient was 

semiautomatically segmented based on b0 and FLAIR images 

(Fig. 3C). T1-weighted high-resolution structural imaging and 

DTI of the subjects were normalized to the template of the 

Montreal Neurological Institute[21] (MNI) (Fig. 3D). After 

normalization, diffusion parameters such as the mean diffusion 

(Dav), FA, and the major eigenvectors and eigenvalues were 

calculated (Fig. 3E). Tractography was performed on each 

subject using in-house software implemented on MATLAB 

(Mathworks, Natick, MA, USA) and fiber tracking was 

performed using the fiber assignments with continuous tracking 

(FACT) algorithm[22] (Fig. 3F). The corpus callosum, superior 

longitudinal fasciculus, corticothalamic tract, and corticospinal 

tract are classified in Figure 4. We estimated the principal 

orientation of the diffusion tensor at a point within the ROI, 

moved a distance of 0.5 mm in that direction, and determined 

the diffusion tensor at this new location using a B-spline- 

interpolated continuous tensor field. We then moved a further 

0.5 mm in this new principal direction until the FA fell below 

the threshold of 0.1. The procedure was repeated in both 

directions for each seed point within the initial ROI. After fiber 

reconstruction, fibers represented as polylines were 

reparameterized by equivalent-arc-length distance curves (Fig. 

3G). This ensured equidistant sampling along each fiber. Dav

and FA were then extracted at each point using a linear 

interpolation scheme (Fig. 3H). These points allowed us to 

evaluate both the global and local fiber properties. The mean 

Dav and FA over each TOI were calculated for each subject, and 

these were compared between subjects. The local fiber 

diffusion properties were compared using reliably identified 

points with the same arc-length along the fiber. The values of 

Dav and FA were analyzed statistically to compare those of the 

patient with those of the control using the MannWhitney U test 

(a) (b)

Fig. 2. The starting ROIs and the second ROIs for defining four tracts. The segemted infracted area in patient and parietal lobe template in control (a). The second 

ROIs for four white matter tracts on FA map in control case (b) 
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(Fig. 3I). A P value of less than 0.05 was considered to indicate 

statistical significance.

Ⅲ. RESULT

On gross tractography, the corpus callosum and superior 

longitudinal fasciculus on the infarction side were directly 

affected up to the infarction area and the fibers were reduced, 

cut, or bent (Fig. 4B). 

A comparison of the global fiber diffusion characteristics is 

plotted in Figure 5. In brief, this result shows WD of both the 

corpus callosum and the ipsilateral superior longitudinal 

fasciculus, which is consistent with the results of previous 

studies that focused on the corticospinal tract[12-15]. The 

corpus callosum in particular showed trans-hemispherical 

degeneration, consistent with previous reports[23,24]. Local 

fiber characteristics along the geodesic paths in Figure 6 (P< 

0.05) show WD in the corpus callosum, ipsilateral superior 

longitudinal fasciculus, ipsilateral corticospinal tract, and 

ipsilateral corticothalamic tract. Note that WD in the 

ipsilateral corticospinal tract and corticothalamic tract were 

not defined in the global assessments (Fig. 5A,C). Significant 

differences between subjects in the mean Dav and FA values 

for the corticothalamic tract near both thalami and in the FA 

values for the contralateral corticospinal tracts were noted 

(Fig. 6C,D). Corpus callosum, superior longitudinal 

fasciculus, and corticospinal tracts showed no statistically 

significant differences at the subcortical areas (Fig. 6A,B,C). 

The corpus callosum and superior longitudinal fasciculus 

tracts werecut at the point of necrosis in the right parietal lobe 

because most of the tracts were directly affected (Fig. 6A,B). 

We have demonstrated changes in Davand FA values and a 

clear correspondence with the WD in various tracts.

Ⅳ. DISCUSSION

In this case, a neurological examination showed only left 

lower facial weakness, with no general motor or sensory 

weakness. This unilateral central facial weakness (lower face 

muscles) is known to be due to a lesion on the contralateral 

cortex, subcortical white matter, or internal capsule. In 

addition to facial weakness, symptoms may include 

hemiparesis, hemisensory loss, or hemineglect[25].

TOI analysis was successful in WD, even in the presence of 

an infarct involving parts of various tracts, which causes the 

clinical findings to be subtle. This tool is intuitive and has the 

advantage of excluding the incoherent portions of each tract. 

Pierpaoli et al[12] have reported that the corpus callosum, 
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Fig. 3.  Imaging data processing and TOI analysis consisted of the following steps: imaging data (A); defining seed regions in control using the ROI tool box in 

MRIcro (B); segmentation of the infarction area based on b0 and FLAIR in case (C); normalization of T1-weighted high-resolution images and DTI to the MNI 

template (D); computation of DTI parameters (Dav, FA, major eigenvectors and eigenvalues) (E); tractography by FACT guided by ROI method (FA > 0.1, 

angle < 30°) (F); parameterization of fibers by arc-length distances (G); extraction of DTI parameters at each point using a linear interpolation scheme (H); 

statistical analysis with the MannWhitney U test (P < 0.05) (I).
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Fig. 5. Graphs of the means and SD for mean diffusion (Dav) and fractional anisotrophy (FA) for each tract by TOI analysis, compared between the patient (P) and 

the control (C). The upper row is Dav (A, B), the lower is FA (C, D). The right column is the infarction side (A, C) and left is the contralateral side (B, D). A 

statistiacally significant signal (asterisk) in the corpus callosum (CC) on both sides, and the superior longitudinal fasciculus (SLF) on the infarction side. There 

was no significant signal in the corticospinal tract (CST) or the thalamic tract (CT) (* P < 0.05).

(A)

                        

(B)

Fig. 4. Glass brain with white-matter tracts in the control (A) and patient (B). Tractography was performed using MATLAB and the FACT algorithm. White-matter 

tracts were classified in different colors. Red fibers are corpus callosum (CC), green are superior longitudinal fasciculus (SLF), blue are corticospinal tracts 

(CST), and yellow are corticothalamic tracts (CT). The black meshed area in the right parietal lobe is the segmented infarction area (B). Note that the CC and 

SLF on the infarction side are directly affected, (B) showing fibers that are reduced, cut, or bent.
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internal capsule, and cerebral peduncle, where fibers are 

coherently orientedwithin the voxel, have higher anisotropy 

than do the centrum semiovale and other subcortical areas, 

where there is less coherence in the intravoxel orientation of 

fibers because of their structural characteristics: subcortical 

U-fibers, more fiber crossing, and limitations on DTI 

resolution. In this patient, WD in the ipsilateral corticospinal 

tract and corticothalamic tract were defined only on their local 

diffusion properties, which means that TOI analysis made 

possible the exclusion of incoherent areas.
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Fig. 6. Graphs of the statistical analysis of DTI parameters extracted at each point. The x axis represent the scale of the normalized length of each tract. The upper 

row shows mean diffusion (Dav); the lower shows fractional anisotrophy (FA); red curves represent the patient and blue curves are the control; and the red bars 

indicate the area of a statistically significant interval of tracts (AD).

A, corpus callosum (CC). B, superior longitudinal fasciculus (SLF). C, corticospinal tracts (CST). D, corticothalamic tracts (CT). CC, SLF and CT showed no 

statistically significant differences at both ends of tracts correspoding to the subcortical areas. CC and SLF are cut at the point of necrosis in the right parietal 

lobe (red arrow). Note the transcallosal degeneration of the CC (A). Positive findings noted in the SLF, CST, and CT on the infarction side (BD). 
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The significant signal in the corticothalamic tracts near both 

thalami and the contralateral corticospinal tract suggest 

chronic ischemic insult or pathological changes resulting from 

hypertension or diabetes mellitus, so further studies of groups 

of patients with these maladies are required.

This study showed the FA values of the superior 

longitudinal fasciculus, corticospinal tract, and corticothalamic 

tract were higher in control case than those reported elsewhere. 

In particular, Shimony et al. reported that the FA of the 

splenium of the corpus callosum was 0.50, that of the 

projection fibers was 0.3～0.45, and that of the association 

fibers was 0.19～0.26. They also reported that the anisotropy 

values for the association tracts were less than those for the 

projection tracts, which in turn were lower than those for the 

commissural tracts[26]. Differences between user-defined ROI 

and TOI are possible. We expect that TOI analysis will reduce 

the partial volume effect caused by ambiguous ROI, but more 

cases and further investigations are required.

Ⅴ. CONCLUSIONS

In an old infarction, WD in various white-matter tracts 

developed radially from a region of encephalomalacia and 

primary gliosis. TOI analysis of DTI successfully revealed 

WD, although the area was only slightly affected. This method 

can analyze fiber tracts quantitatively that is not apparent on 

visual inspection, in a comparison of ROIs specified by users, 

or with a voxel-based analysis. Therefore, it may be a useful 

tool for identifying abnormalities of a disease of the white 

matter.
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