

Lecture Notes in Computer Science 4761
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roman Obermaisser Yunmook Nah
Peter Puschner Franz J. Rammig (Eds.)

Software Technologies
for Embedded and
Ubiquitous Systems

5th IFIP WG 10.2 International Workshop, SEUS 2007
Santorini Island, Greece, May 7-8, 2007
Revised Papers

13

Volume Editors

Roman Obermaisser
Peter Puschner
Vienna University of Technology, Real-Time Systems Group
Treitlstr. 3/182-1, 1040 Wien, Austria
E-mail: {romano, peter}@vmars.tuwien.ac.at

Yunmook Nah
Dankook University, Department of Electronics and Computer Engineering
Hannam-dong, Yongsan-gu, Seoul 140-714, Korea
E-mail: ymnah@dku.edu

Franz J. Rammig
University Paderborn, Design of Parallel Systems
Fürstenallee 11, 33102 Paderborn, Germany
E-mail: franz@uni-paderborn.de

Library of Congress Control Number: 2007936568

CR Subject Classification (1998): C.2, C.3, D.2, D.4, H.4, H.3, H.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75663-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75663-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12174065 06/3180 5 4 3 2 1 0

Preface

The workshop on Software Technologies for Future Embedded and Ubiquitous
Systems (SEUS) started as an IEEE event in 2003 but was reborn as an IFIP
event during 2006-2007. The SEUS series will be one of the few flagship events
of the newly formed IFIP WG10.2. The Steering Committee of the new SEUS
series is chaired by Franz Rammig, the chairman of IFIP TC10. This workshop
continued the tradition of the first, second, third, and fourth IEEE SEUS work-
shops held in Hakodate (Japan), Vienna (Austria), Seattle (USA), and Gyeongju
(Korea), respectively. It was our great honor and pleasure to hold SEUS 2007
on Santorini, the most famous island for its stunning caldera view among the
Cyclades cluster in Greece.

The application domain of both embedded computing and ubiquitous sys-
tems have had explosive growth over the past few years. Given the advances in
these fields, and also those in the areas of distributed computing, sensor net-
works, middleware, etc., the area of ubiquitous embedded computing is now
being envisioned as the way of the future. The systems and technologies that
will arise in support of ubiquitous embedded computing will undoubtedly need to
address a variety of issues, including dependability, real-time, human-computer
interaction, autonomy, resource constraints, etc. All of these requirements pose
a challenge to the research community. The purpose of SEUS 2007 was to bring
together researchers and practitioners with an interest in advancing the state of
the art and the state of practice in this emerging field, with the hope of fostering
new ideas, collaborations and technologies.

SEUS will now be even more of an elite event where new trends will be
discussed based on a very selective set of contributions. One of its unique char-
acteristic is that some of the papers are presented by invited world-class research
leaders, and we have 23 such contributions in this workshop. This year we re-
ceived 102 regular submissions for the technical program and finally accepted 35
papers, including 31 full papers and 4 short papers, with an acceptance rate of
34%. We owe a great deal of thanks to the members of the Program Committee
and the reviewers. The success of this year’s SEUS would not be possible without
their hard work. We are also grateful to all the members of the Steering Com-
mittee for their advice and support. We would also like to thank the organizers
of ISORC 2007 for their help in organizing the workshop. Finally, we would like
to thank all the authors for their contributions, which made the workshop a
success.

June 2007 Yunmook Nah
Roman Obermaisser

Organization

General Co-chairs

Moon Hae Kim Konkuk University, Korea
Franz J. Rammig University of Paderborn, Germany
Peter Puschner Vienna University of Technology, Austria

Program Co-chairs

Yunmook Nah Dankook University, Korea
Roman Obermaisser Vienna University of Technology, Austria

Publicity Co-chairs

Tei-wei Kuo National Taiwan University, Taiwan
Seongje Cho Dankook University, Korea

Program Committee

Uwe Brinkschulte University of Karlsruhe, Germany
Lynn Choi Korea University, Korea
Paul Couderc IRISA, France
Wilfried Elmenreich Vienna University of Technology, Austria
Sebastian N. Fischmeister University of Pennsylvania, USA
Kaori Fujinami Tokyo University of Agriculture and

Technology, Japan
Petr Grillinger TTTech, Austria
Minyi Guo University of Aizu, Japan
Jan Gustafsson Mälardalen University, Sweden
Hwansoo Han Korea Advanced Institute of Science and

Technology, Korea
Tei-Wei Kuo National Taiwan University, Taiwan
Dongman Lee Information and Communication University,

Korea
Istvan Majzik Budapest University of Technology and

Economics, Hungary
Yukikazu Nakamoto University of Hyogo and Nagoya University,

Japan

VIII Organization

Michael Paulitsch Honeywell AES Centers of Excellence, USA
Philipp Peti General Motors Europe, Germany
Taehyung Wang California State University Northridge, USA

Sponsoring Institutions

The Aerospace Coorporation
TTTech Computertechnik AG

Table of Contents

Ubiquitous Computing Frameworks

An Efficient Method to Create Business Level Events Using Complex
Event Processing Based on RFID Standards . 1

Byung-Kook Son, Jun-Hwan Lee, Kyung-Lang Park,
Cheong-Ghil Kim, Hie-Cheol Kim, and Shin-Dug Kim

Physical/Cyber Objects Management Framework for Multiple-Area
Detectable RFID . 11

Masayuki Iwai, Ryo Osawa, Suzuki Kei, Takuya Imaeda, and
Hideyuki Tokuda

A Task Decomposition Scheme for Context Aggregation in Personal
Smart Space . 20

Hoseok Ryu, Insuk Park, Soon J. Hyun, and Dongman Lee

Distributed k-NN Query Processing for Location Services 30
Jonghyeong Han, Joonwoo Lee, Seungyong Park, Jaeil Hwang, and
Yunmook Nah

Ontology Based Context Alignment for Heterogeneous Context Aware
Services . 40

Seungkeun Lee

Community Computing Model Supporting Community Situation Based
Strict Cooperation and Conflict Resolution . 47

Youna Jung, Jungtae Lee, and Minkoo Kim

Safety-Critical Systems

Advancements in Dependable Time-Triggered Communication 57
Wilfried Steiner

On Distributed Real-Time Scheduling in Networked Embedded Systems
in the Presence of Crash Failures . 67

Binoy Ravindran, Jonathan S. Anderson, and E. Douglas Jensen

Probabilistic Optimization and Assessment of Voting Strategies for
X-by-Wire Systems . 82

Markus Kucera and Hans Mauser

Application of Safety Analyses in Model Driven Development 93
Javier Fernández Briones, Miguel Ángel de Miguel, J.P. Silva, and
Alejandro Alonso

X Table of Contents

Mission Modes for Safety Critical Java . 105
Martin Schoeberl

Safety Property Analysis Techniques for Cooperating Embedded
Systems Using LTS . 114

Woo Jin Lee, Ho-Jun Kim, and Heung Seok Chae

Validation of Embedded and Ubiquitous Systems

Testing Embedded Control Systems with TTCN-3: An Overview on
TTCN-3 Continuous . 125

Ina Schieferdecker and Jürgen Großmann

Cross-Platform Verification Framework for Embedded Systems 137
Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and
Peter Puschner

Experimental Analysis on Time-Triggered Power Consumption
Measurement with DVS-Enabled Multiple Power Domain Platform 149

Songah Chae, Doo-Hyun Kim, Changhee Jung, Duk-Kyun Woo, and
Chaedeok Lim

A Framework for Hardware-in-the-Loop Testing of an Integrated
Architecture . 159

Martin Schlager, Roman Obermaisser, and Wilfried Elmenreich

An Embedded Integration Prototyping System Based on Component
Technique . 171

Youngjin Jung, Jeongbae Lee, Jinbaek Kwon, Keewook Rim, and
Sangyoung Cho

Ubiquitous Computing Applications

TMO Structuring of a Networked System for Seamless Streaming and
Tiled Display of High-Definition Movies . 181

Sheng Liu, K.H. (Kane) Kim, Sung-Jin Kim, Zhen Zhang,
Jongho Nang, Ki-Seok Choi, and Yongbin Kang

Design and Experimental Validation of UAV Control System Software
Based on the TMO Structuring Scheme . 192

Hansol Park, Moon Hae Kim, Chun-Hyon Chang, Keechon Kim,
Jung-Guk Kim, and Doo-Hyun Kim

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives
Fun . 202

Eiji Tokunaga, Masaaki Ayabe, Hiroaki Kimura, and
Tatsuo Nakajima

Table of Contents XI

Speech Recognition System Using DHMMs Based on Ubiquitous
Environment . 213

Jong-Hun Kim, Un-Gu Kang, Kee-Wook Rim, and Jung-Hyun Lee

Healthcare Information Management System in Home Environment 223
Chang-Sun Shin, Su-Chong Joo, and Chang-Won Jeong

Effective Appliance Selection by Complementary Context Feeding in
Smart Home System . 233

Taek Lee, Jiyong Park, and Hoh Peter In

Vector Graphic Reference Implementation for Embedded System 243
Sang-Yun Lee and Byung-Uk Choi

Scheduling and Non Functional Properties

A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a
Reservation Pool . 253

Donghak Pyo, Sunggu Lee, and Min-Gu Lee

Exact Schedulability Analysis for Static-Priority Global Multiprocessor
Scheduling Using Model-Checking . 263

Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu

Soft Real-Time Task Response Time Prediction in Dynamic Embedded
Systems . 273

Cássia Yuri Tatibana, Carlos Montez, and Rômulo Silva de Oliveira

Transparent and Selective Real-Time Interrupt Services for Performance
Improvement . 283

Jinkyu Jeong, Euiseong Seo, Dongsung Kim, Jin-Soo Kim,
Joonwon Lee, Yung-Joon Jung, Donghwan Kim, and Kanghee Kim

An Approach for Energy-Aware Management in Ubiquitous Home
Network Environment . 293

Hyung-Soo Mok, Sung-Yong Son, Jun Hee Hong, and Sanghoon Kim

On-Chip Bus Architecture Optimization for Multi-core SoC Systems . . . 301
Cheng-Min Lien, Ya-Shu Chen, and Chi-Sheng Shih

An Effective Path Selection Method in Multiple Care-of Addresses
MIPv6 with Parallel Delay Measurement Technique 311

Jungwook Song, Heemin Kim, and Sunyoung Han

Self-organization and Reconfiguration

Self-organizing Resource-Aware Clustering for Ad Hoc Networks 319
Tales Heimfarth, Peter Janacik, and Franz J. Rammig

XII Table of Contents

Intelligent Context-Awareness System Using Improved Self-adaptive
Back Propagation Algorithm . 329

Sang-Hun Eo, Wei Zha, Byeong-Seob You, Dong-Wook Lee, and
Hae-Young Bae

Towards an Artificial Hormone System for Self-organizing Real-Time
Task Allocation . 339

Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

On Self-aware Delay Time Based Service Request Optimization for
Gateway Stability in Autonomic Self-healing Systems 348

Junaid Ahsenali Chaudhry, Yonghwan Lee, Seungkyu Park, and
Dugki Min

Algorithmic Skeletons for the Programming of Reconfigurable
Systems . 358

Florian Dittmann

A Framework for Supporting the Configuration and Automatic
Integration of Heterogeneous Location Sensors . 368

Yoo Chul Chung, Yangwoo Ko, Youngrock Cha, and Dongman Lee

Service Discovery and Development Platform

Searching Visual Media Service Providers Using ASN.1-Based Ontology
Reasoning . 378

Youngkun Min, Bogju Lee, and Yunmook Nah

SharedSpace Based Service Discovery Mechanism and Its
Implementation for Ubiquitous Environments . 384

Sangdo Park, Junhyeong Kim, and Paul Barom Jeon

A Study of Developing Virtual Prototyping by Using JavaBean
Interface Tool and SystemC Engine . 389

Husni Teja Sukmana, Jeong B. Lee, Jong Il Kim, Young J. Jung,
Jinbaek Kwon, Kee Wook Rim, and Young R. Lee

Configurable Virtual Platform Environment Using SID Simulator and
Eclipse . 394

Hadipurnawan Satria, Baatarbileg Altangerel, Jinbaek Kwon, and
Jeongbae Lee

Wireless Networks

An Energy-Efficient k-Disjoint-Path Routing Algorithm for Reliable
Wireless Sensor Networks . 399

Jang Woon Baek, Young Jin Nam, and Dae-Wha Seo

Table of Contents XIII

Supporting Mobile Ubiquitous Applications with Mobility Prediction
and Soft Handoff . 409

Marcello Cinque and Stefano Russo

Event-Driven Power Management for Wireless Sensor Networks 419
Sang Hoon Lee, Byong-Ha Cho, Lynn Choi, and Sun-Joong Kim

Time Synchronization in Wireless Sensor Network Applications 429
Y.S. Hong and J.H. No

GENSEN: A Topology Generator for Real Wireless Sensor Networks
Deployment . 436

Tiago Camilo, Jorge Sá Silva, André Rodrigues, and
Fernando Boavida

Energy-Aware Routing for Wireless Sensor Networks by AHP 446
Xiaoling Wu, Jinsung Cho, Brian J. d’Auriol, and Sungyoung Lee

A Wireless System for Real-Time Environmental and Structural
Monitoring . 456

Valerio Plessi, Filippo Bastianini, and Sahra Sedigh

Middleware Architectures and Virtualization

Integrated Notification Architecture Based on Overlay Against DDoS
Attacks on Convergence Network . 466

Mihui Kim, Jaewon Seo, and Kijoon Chae

Making Middleware Secure on Embedded Terminals 477
Yoshiharu Asakura, Atsushi Honda, Satoshi Hieda,
Hiroshi Chishima, and Naoki Sato

Dynamic Translator-Based Virtualization . 486
Yuki Kinebuchi, Hidenari Koshimae, Shuichi Oikawa, and
Tatsuo Nakajima

Mesovirtualization: Lightweight Virtualization Technique for Embedded
Systems . 496

Megumi Ito and Shuichi Oikawa

Environment Interaction

Building a Customizable User Interface Framework Using Hyperlinks
for Smart Devices . 506

Mitsuko Sato, Eigo Okada, and Yukikazu Nakamoto

An Efficient Location Index for the Semantic Search of Moving
Objects . 516

Dong-Oh Kim, Jung-Su Shin, Hong-Koo Kang, and Ki-Joon Han

XIV Table of Contents

Model-Driven Development of Ubiquitous Applications for
Sensor-Actuator-Networks with Abstract State Machines 527

Sebastian Schuster and Uwe Brinkschulte

Design and Implementation of Peripheral Sharing Mechanism on
Pervasive Computing with Heterogeneous Environment 537

Wonhong Kwon, Han Wook Cho, and Yong Ho Song

A Review on System Architectures for Sensor Fusion Applications 547
Wilfried Elmenreich

Author Index . 561

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 1–10, 2007.
© IFIP International Federation for Information Processing 2007

An Efficient Method to Create Business Level Events
Using Complex Event Processing Based on RFID

Standards*

Byung-Kook Son, Jun-Hwan Lee, Kyung-Lang Park, Cheong-Ghil Kim,
Hie-Cheol Kim, and Shin-Dug Kim

Department of Computer Science, Yonsei University,
Seoul, Korea

{ssonkk, jhlee, lanx}@parallel.yonsei.ac.kr,
{Tetons, sdkim}@yonsei.ac.kr

School of Computer and Communication Engineering, Daegu University,
Daegu, Korea

hckim@daegu.ac.kr

Abstract. RFID systems should be designed to process a large number of RFID
data in real time. Therefore, there have been much research and company stud-
ies regarding RFID data processing. One of methods is CEP (Complex Event
Processing), which can provide a method to process RFID data efficiently.
However, previous work is just focused on raw RFID data processing, such as
data filtering, the elimination of duplicated data, and the aggregation of data.
Also, it creates primitive events based on just one physical or logical reader.
Therefore, processing overhead for complex events may increase. And it cannot
provide business level events. Therefore, we propose a method that can reduce
processing overhead and create business level events by using CEP. Proposed
method provides two primitive events that are defined by using the relationship
of two readers. Thus, when any pattern of events is matched for a specific com-
plex event, business level events can be generated and execution time can be
reduced comparing with other mechanisms without those events. And, execu-
tion time can be reduced by about 57% as compared to others.

1 Introduction

RFID (Radio Frequency Identification) systems are constructed as four major compo-
nents, i.e., the tags with unique ID, the RFID readers that identify any tags by using
RF frequency, the middleware that can process raw RFID data, and the applications.
Recently, EPCglobal [1] leads to standards for the components of RFID systems such
as, tag data, air interface for communication, RFID middleware, and so on.

RFID systems should be designed to process many data in real time. Those data is
processed by the RFID middleware.

* This research was supported by the UPLUS project of Ministry of Commerce, Industry and

Energy.

2 B.-K. Son et al.

Therefore, the role of RFID middleware is important in RFID systems. A standard of
RFID middleware is proposed by EPCglobal as ALE (Application Level Event) [2]. How-
ever, RFID middleware based on ALE just provides pure RFID data. As a result, RFID
applications have to include some logics to process business events. Although EPCglobal
proposes the EPCIS (Electronic Product Code Information Service) [3] to provide busi-
ness level events, that is incomplete standard that does not define many specific parts. And
to apply the EPCIS in RFID systems, agreement is required for partners.

Therefore, we propose a CEP based on ALE to provide business level events. Espe-
cially, primitive event types in our proposed method are defined based on relationship
of two readers. That is, most of business events occur when a certain tag moves be-
tween any two or more readers. For example, we can assume a situation that a cus-
tomer pays for some items in a counter with RFID reader after taking out those from a
shelf with RFID reader in the market. In this situation, when a customer takes out an
item from the shelf, a business event for “SELL” can be started. And when a customer
pays for an item at the counter, a business event for “SELL” can be completed. Our
proposed event model can be expressed as “RelativeObservation” by considering rela-
tionship of two readers. And that event model can specify the starting of business level
event (take out an item from the shelf) as “PredictedObservation”. Thus, when any
pattern of events matched for complex event to generate business level events, execu-
tion time can be reduced comparing with other mechanisms without those events and
many effective business level events can be provided. When we use our method, exe-
cution time can be reduced by about 57% comparing with other mechanisms.

2 Related Works

Event processing technology has been studied in active database [4 - 6] for long time.
Especially, it has been studied to process real-time stream data including sensor and
RFID data. Also it is important to improve the performance of RFID systems. There-
fore, in [7], several methods for RFID data management are introduced. In [9], tempo-
ral-based data model and rule-based RFID data transformation are introduced for
RFID data processing. However, it does not provide any simple query to get high
level events. And in [9], to get high level information, complex query has to be used,
because it is not suited for handing RFID events. Therefore, CEP is introduced to
process RFID data efficiently. Especially, in [10], to process RFID data, CEP is con-
sidered in RFID systems. However, it does not provide any information about detailed
architecture of CEP. In [8], CEP is also applied to process RFID data. In that work,
components of CEP are discussed including primitive event types, event operators,
RFID rules, and complex event detection algorithm. It also introduces the algorithm
that can detect non-spontaneous events. However, it is only focused on raw RFID data
processing, such as the elimination of duplicated data, and the aggregation of data.

3 Proposed Complex Event Processing

Basically, we can consider two kinds of events in CEP. One is primitive event and
another is complex event. Primitive events are basically composed to create complex

 An Efficient Method to Create Business Level Events 3

events. Also, complex event can be created when one or more primitives are matched
with any special pattern or when one or more complex events show any special pat-
tern.

3.1 Primitive Event

In RFID systems, previous CEP techniques are focused on raw RFID data processing
in the RFID middleware, elimination of duplicated data, and aggregation of data. For
that reason, a primitive event in previous work [8] is defined based on the tag identi-
fied by just one reader as physical or logical. However, we propose primitive events
based on the tags identified between two readers.

Observation(r, o, t). Observation event type occurs when a reader identifies a tag.
This primitive event type is equal to that in previous work. However, our event type
can be considered unique RFID tag data because based on ALE. In the format of
Observation(r, o, t), where r represents logical reader, o represents the EPC of object,
t represents timestamp when the object is identified by reader.

PredictedObservation(r, o, t). The PredictedObservation event occurs when a tag
disappears from any reader. That is, a tag disappeared from any reader may appear
again to other readers some time. In the format of PredictedObservation(r, o, t), r
represents a logical reader, the o represents the EPC of object, t represents timestamp
when this object disappears from the reader.

RelativeObservation(o, r1, t1, r2, t2). RelativeObservation event occurs when a tag
disappeared from any reader is identified by another reader. RelativeObservation
means that an object is currently identified by r2 after it is identified by r1 first. In the
format of RelativeObservation(o, r1, t1, r2, t2), o represents the EPC of object, r1, r2
represents logical reader, t1 represents relative time(after/before) between two read-
ers, and t2 represents timestamp when this object is identified by reader2.

3.2 Event Operators

As mentioned above, a complex event can be created through detecting any specific
pattern of primitive events or complex events by using event operators. In CEP, the
role of event operators is to define any pattern of complex events. Event operators can
be classified into temporal and non-temporal operators [8]. However in this paper, the
definition of temporal operator is not required, because we cannot predicate the time
when any business event occurs.

So, we have to define new operators for creating the business level events. These
are causal operators that can express any casual relationship. In the market, if we
assume “SELL” event by considering only events occurred at the counter reader, this
may cause any misleading situation. Because, when a worker takes an item to the
counter, this case may predicate a “SELL” event. Therefore, to predicate a correct
business event, we have to check any causing event activated first for this business
event. After then, we can predicate correct event by checking the result activated. For
that reason, causal operators and the relationship of events are important for creating
business level event.

4 B.-K. Son et al.

3.2.1 Proposed Operator for Business Level Event
Table 1 shows operators for creating business level events in this proposed method.

Table 1. Event operator for complex event processing

Operator Meaning Usage
AND(∧) Conjunction of two events E1 and E2 occur when

both E1 and E2 occur without occurrence order
(E1∧E2)

OR(∨) Disjunction of two events E1 or E2 occur when
either E1 or E2 occur without occurrence order

(E1∨E2)

NOT(¬) Negation of E1 event occur when E1 never occur (¬E1)
SEQ (;) Sequence of two events E1 and E2 occur when

both E1 and E2 occur with occurrence order
(E1;E2)

CASUAL() Cause of two event E1 and E2 occur when E1 is
cause E2

(E1 E2)

3.3 Event Rule

We have to detect any complex event by using any given event pattern.

Fig. 1. Event rule definition for complex event

So a method that detects the complex event is required. To detect any complex
event efficiently, a rule should be defined. Traditionally, rule definition to composite
events has been studied based on ECA (Event Condition Action) model. ECA model
can used to detect any event easily and simply. Therefore, we use modified ECA
model to express PredictedObservation and RelativeObservation as shown in Figure 1.

4 CEP Architecture and Operation Flow

Until now, we explain about the components of CEP. In this section, the architecture
to process complex events will be presented. And we will explain the operation flow
of architecture to create complex events.

4.1 Architecture and Operation Flow

Figure 2 shows the proposed architecture for CEP. Proposed method is based on ALE.
Application will request monitoring about business events defined in section 3.3 ac-
cording to rule definition. Query analyzer receives application requests and analyzes

 An Efficient Method to Create Business Level Events 5

them. And query analyzer sends those to the rule matcher. Rule matcher tries to
search its rule repository to check whether same rule exist or not. If there is no match,
rule matcher needs to register that in the rule repository.

Fig. 2. Proposed architecture of complex event processing

After that, the rule matcher sends a message to ALE translator. The ALE translator
makes the ECSpec to creating primitive event. And the ALE translator requests
ECReport message by the ECSpec through ALE API. ALE translator waits for the
ECReport. If ALE translator receives the ECReport from the ALE, it may generate
primitive events based on ECReport. ALE translator may search the relative reader
repository for checking relationship of reader registered to crate the RelativeObserva-
tion event. If the incoming event is not related with the registered reader, ALE trans-
lator may generate the Observation or PredictionObservation events depending on
whether the tag is disappeared from the readers or not. The rule matcher checks
whether primitive events generated by ALE translator matches with any complex
event pattern or not. If primitive events match with any complex event pattern, the
rule matcher may generate complex events.

5 Examples of Complex Event Detection

In this chapter, an example that creates the business level events by using primitive
events, event operators, and event rules is shown. We assume two scenarios. One is
that a customer is shopping as shown in Figure 3. Another one is that an object is
moving along fixed path as shown in Figure 6.

5.1 Scenario 1 (Shopping in the Market)

Figure 3 shows shopping scenario in the market. A customer with shopping cart en-
ters the gateway with RFID reader. When he passes the gateway, the RFID reader

6 B.-K. Son et al.

identifies the tag on shopping cart. After that, he is walking around shelves to find
some items. When he finds item needed, he takes out the item from shelf. After he
finishes shopping, he pays for some items at the counter with RFID reader. On the
other hand, a reader located on shelf reports the message that a particular item has to
be supplemented because the number of items lacks. Therefore, an administrator sup-
plies the item from the warehouse to the shelf in the market.

Fig. 3. A customer pays for items, after taking out some items

Table 2 shows the logical readers named by the role of physical readers in the mar-
ket.

Table 2. Logical readers definition in avobe scenario

Logical Reader Physical Readers Role of Readers
BSectionReader Reader_1 ~ Reader_5 Identify items that exist in the warehouse
BGatewayReader Reader_6 Identify items that take out from warehouse

SEnteranceReader Reader_7 Identify the people that enter in the market
SGatewayReader Reader_20 Identify the items that income in the market
SCalculationReader Reader_8 ~ Reader_11 Identify the items at the counter

ShelfReader Reader_12 ~ Reader_19 Identify the items that exist at the shelves

When considering the business events occurred by a customer in the market, those
events may be caused by shopping, selling, robbery, and refund. And events occurred
by a administrator may be caused by incoming of products, outgoing of products, and
supply of products in the shelf. All business events defined above can be expressed by
our proposed method. Figure 4 shows complex event definition about “SELL”. When
an item on the shelf with RFID readers disappears, PredictedObservation event may
occur as soon as possible. At that time, another reader waits for a tag disappeared
from that reader. If the tag is identified by readers in the counter, system may create
the action as “SELL”.

 An Efficient Method to Create Business Level Events 7

Fig. 4. The complex event definition of “SELL”

Figure 5 shows the complex event definition about “THEFT”. When an item on the
shelf with RFID readers disappears, PredictedObservation event may occur as soon as
possible. If the PredictedObservation event occurs in one reader, another reader in the
store waits for a tag disappeared from that reader. If the tag is identified by reader in the
gateway rather than reader at the counter, the system creates this action as “THEFT”.

Fig. 5. The complex event definition of “THEFT”

5.2 Scenario 2 (Recognition of Right Path)

Another example, recognition of right path, can be performed in our proposed method
as follows. This scenario shows that a tag is moving along any fixed path formed by
many readers. Figure 6 shows the situation that checks whether any tag X is moving
along its correct fixed path or not. We amuse that the fixed path is specified as A->C
->D->E->G->H. In this case, if we use any event model that do not define any relation
ship among readers, although tag X arrives at the reader H after reader A, C, D, E, F, G ,
and H, the system may create a complex event that tag X was moved within the correct
fixed path. However, tag X is moved incorrectly, because tag X passes through the

Fig. 6. The recognition of right path

8 B.-K. Son et al.

reader F undefined in the path. If we use our event model, tag X has to pass through the
reader G after reader E without any other reader between them.

If the path to move is defined as A->C->D->E->G->H, the system may create
complex event that tag X is moved along the incorrect path. Figure 7 shows the com-
plex event definition about “RIGHT PATH”.

Fig. 7. The complex event definition of “RIGHT PATH”

6 Experience Results

In this chapter, we will show experiment results when using our CEP to create com-
plex events. We examine the performance of proposed method by using CEP simula-
tor. Performance of CEP is compared with those without any PredictedObservation
and RelativeObservation events for equal test conditions. As a test condition, the
number of tags is increased by 100 each time. And we assume that 50% of tags are
moved fro one reader to another reader. After that, event processing time is measured
required to create complex events.

Figure 8(a) shows total event processing time to create complex events when the
number of tags increases by 100 each time. Most of time is spent to check whether
primitive events satisfy any predefined complex event pattern or not. Therefore, if we
can reduce the number of primitive events used in pattern match processing, we may
reduce the overall event processing time. Actually, when we reduce the number of
primitive events by using PredictedObservation and RelativeObservation events, we
can obtain the result as shown in Figure 8(a).

 (a) (b)

Fig. 8. (a) Data processing time when the number of tags increase, (b) Increased data process-
ing time when the number of tags increase

 An Efficient Method to Create Business Level Events 9

Figure 8(b) shows the increased time required to process events, when the number
of tags increases by 100 each time. As mentioned above, to create complex events,
pattern matching is needed. Therefore, the more tags increase, the more event proc-
essing times increase. However, the number of events is increased in the proposed
method less than others because of using two primitive events. Therefore, the pro-
posed method can reduce the time to process events when the number of tags in-
creases by 100 each time.

Fig. 9. The number of used events for creating complex events

Figure 9 shows the number of used primitive events to create complex events in the
proposed method and other CEP. Proposed method generates a primitive event based
on the relationship of two readers. Also, it can express the direction of moving tags.
Therefore, when proposed method and other define equal complex events, the number
of used primitive events can be reduced significantly.

7 Conclusion

In this paper, we propose a method that can apply CEP based on RFID standards to
RFID systems. Especially, we introduced new primitive events that are PredictedOb-
servation and RelativeObservation, because most of business level events occur when
any tag moves between any two or more readers. And we propose a method that can
create business level events by using those. And we could confirm the facts that when
any pattern of events matched for complex event to generate business level events,
execution time can be reduced comparing with other mechanisms without those
events and many effective business level events can be provided. When we use our
method, execution time can be reduced by about 57% comparing with other mecha-
nisms. In addition, we can check whether any tag moves along the correct route in
fixed path or not.

However, in the paper, we just consider RFID data for complex event processing.
Therefore we will consider not only RFID data but also other sensor data in future
work. Also we will design new primitive event type, event operator, and event rule
definition for use these data in complex event processing.

10 B.-K. Son et al.

References

1. EPCglobal, http://www.epcglobalinc.org/
2. EPCglobal Proposed Specification, The Application Level Events (ALE) Specification

Version 1.0, EPCglobal (2005)
3. Working Draft Version, EPC Information Services (EPCIS) Version 1.0 Specification,

EPCglobal (2005)
4. Gatziu, S., Dittrich, K.R.: SAMOS: an Active Object-Oriented Database System. IEEE

Quarterly Bulletin on Data Engineering, Special Issue on Active Databases (1992)
5. Chakravathy, S., Krishnaprasad, V., Anwar, E., Kim, S.-k.: Composite Events for Active

Databases: Semantics, Contexts and Detection. In: VLDB, pp. 606–617 (1994)
6. Gatziu, S., Dirtrich, K.R.: Detecting Composite Events in Active Databases Systems Using

Petri Nets. In: Workshop on Research Issues in Data Engineering: Active Database Sys-
tems, pp. 2–9 (1994)

7. Palmer, M.: Seven Principles of Effective RFID data Management. Progress Soft-
ware (2004)

8. Wang, F., Liu, S., Liu, P., Bai, Y.: Bridging Physical and Virtual World: Complex Event
Processing for RFID data Streams. In: Proc. of the 10th International Conference on Ex-
tending Database Technology, Munich Germany (2006)

9. Wang, F., Peiya: Temporal Management of RFID data. In: 31st VLDB Conference, Tond-
heim Norway (2005)

10. Trigg, J.B.: Progress for RFID: An Architectural Overview and Use Case Review. Pro-
gress Software (2005)

Physical/Cyber Objects Management Framework for
Multiple-Area Detectable RFID

Masayuki Iwai, Ryo Osawa, Suzuki Kei, Takuya Imaeda, and Hideyuki Tokuda

Graduate School of Media and Governance, Keio University
5322 Endo, Fujisawa, Kanagawa, 252-8520, Japan

{tailor,ryo,suzuk,che,hxt}@ht.sfc.keio.ac.jp
http://www.ht.sfc.keio.ac.jp/smart-furoshiki

Abstract. Recently, there is lots research for tangible objects which enables to
support users everyday’s life. However, due to the high price of sensors , end-
users hesitate to attach such devices to physical objects. Even worth, batteries
of embedded devices should despoil the living environment. Therefore, the low-
price system to detect users’ phisical objects without battery is needed. We will
propose a novel hardware platform using cheap RFID tags which can attach on
any everyday physical objects. We have designed and implemented two size of
RFID systems which have flexible multiple area antennas to support manage
users’ physical objects. This paper describes details of Smart-Furoshiki system
and its applications.

Keywords: RFID, Multiple-area Detection, Physical Objects Management.

1 Introduction

Nowadays, number of researchers which have proposed ubiquitous systems to detects
physical objects in users’ everyday life are increasing. These systems use lots of embed-
ded computers and sensors to detects human activities [6][10]. As in our past projects,
we have been creating non-export DIY ubiquitous system, for example smart furniture
[3,12,4] without thinking the cost of back-end system.

However, it is difficult to setup all of devices for users who are unfamiliar with com-
puting technology. To make matters worse, buying many of sensors is too expensive
to end users. Most of research has ignored such economical cost and users’ maintain-
ability. To give an actual example, documents using at a weekly meeting should be
not worth to attach sensor-embedded devices which costs more than 15$. Even worth,
batteries of sensor-embedded devices should despoil the earth environment. Therefore,
the low-priced system to support users’ daily life without battery is needed. We will
propose a novel hardware platform using low cost RFID tags which can attach on any
everyday items. We have design and implemented two size of RFID system which has
flexible multiple area antennas to support accumulation of users’ context.

Our reaseach goal is to develop software and harware which enable non-expert users
to create smart objects without battery in cheaper way . We use RFID tags, which is less
than 10cents and they are easy to attach to any kinds of phisical objects.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 11–19, 2007.
c© IFIP International Federation for Information Processing 2007

http://www.ht.sfc.keio.ac.jp/smart-furoshiki

12 M. Iwai et al.

Fig. 1. Furoshiki: traditional Japanese wrapping cloth

We propose a novel hardware called Smart-Furoshiki which is a sensorized cloth for
supporting office and home activities. “Furoshiki” is a type of traditional Japanese wrap-
ping cloth that can were frequently used to transport clothes, gifts, or other goods(see
Figure 1). As Furoshiki is so flexible and simple, it can use lots of porpose. For example
it can wrap any type of shapes from bottles to box. It also can cover on the important
things, or spread under cloth.

Smart-Furoshiki has more than 4 passive RFID antennas and a tiny RFID reader.
Beause of it’s flexbility, Smart-Furoshiki can be used universally for the porpose of table-
cloth, tapestry and cover. Users can easily use Smart-Furoshiki without configuring com-
puters, sensors and networks inside each Smart-Furoshiki. This paper describes details
of Smart-Furoshiki and its software framework of phisical objects managemenet system.

2 Hardware Architecture

In this section, we describe the harware system architecture of Smart-Furoshiki.For the
popose of adapting lots of usage, we have develop two type of Smart-Furoshiki, large
size and mobile size.

2.1 Desktop-Size Furoshiki

Desktop-size version can use in a office and home environment. This type can detect
not only RF-IDs of objects but also the existence area ID. By using these two type of
ID, the system can detects the context information. An example scenario is that a userfs
car key and her/his wallet are always put nearside on the Smart-Furoshiki.

Hardware of Desk-Top Size Furoshiki. Figure 2 and 3 leftside show the architecture
of Smart-Furoshiki. Smart-Furoshiki has 8 RFID antennas and 8 tags. RFID reader uses
8 antennas on timesharing system due to avoid the radio wave collisions between anten-
nas. The reader is special model Takaya TR3-D002C-8 which has 8 antenna channels.
Each antenna is made by conductive fabric[11] for the purpose of bending it flexibly

Physical/Cyber Objects Management Framework for Multiple-Area Detectable RFID 13

Flexible Fabric Antenna

Ti = RFID TagAnt = Antenna

Ant1 Ant3Ant2 Ant4

Ant5 Ant7Ant6 Ant8

RFID-Reader

T1 T2 T3 T4

8T6T5T T7

TR3-MD001D-8

Blue Tooth

Fig. 2. Architecture of the Smart-Furoshiki and Flexible Fabric Antenna

as shown in Figure2. The material of fabric antenna has special film of metal. It has a
thickness of 0.125mm. The density is 72g per m2. According to the tag size, the reading
distance is from -18cm to 18cm.

The 13.56 MHz tags are stitched into the Furoshiki at the center of each antenna.
Every antenna is unified as the cable to the 8 port RFID reader. The Smart-Furoshiki is
separated in to 8 areas, which is cover Furoshikie range of RFID antenna. To simplify
the explanation, we user Ant1-Ant8 as the name of antennas and T1-T8 as RFID tags.
Ti is placed at the center of Ant1 and always detected by Anti.

Figure 3 right side shows the middleware screen shot of Smart-Furoshiki. Smart-
Furosiki can read multiple objects ID in multiple areas unlike other RFID system. The
middleware has also has application repository and multicast data transition architecture
to support applications developers.

2.2 Mobile-Size Furoshiki

Users carry many kinds of everyday objects including books, papers, cell phone, mag-
azines, DVDs, wallet, and music player. Furthermore, they have needs both to reduce
things left behind the bag and not to lose something important work related on the
something on the bags. To satisfy these needs, we have developed mobile type of Smart-

Fig. 3. Exterior of Smart-Furoshiki

14 M. Iwai et al.

Fig. 4. Use Case of Mobile Size Furoshiki

Furoshiki. All the electric devices, such as bluetooth communication module, RFID
reader, and antenna much condenser circuits, and battery, are accumulate into a small
electric box(see Figure 5).

600

60
0

RFID antenna

Battery

RFID reader and Bluetooth serial transmitter

Fig. 5. Harware of Mobile size Smart-Furoshiki

Hardware. Figure 4 show the use case of Mobile-Size Furoshiki. This type of
Furoshiki can put everyday objects inside and can carry it anyplace. The system can
recognize the users’ belongings, a thing left behind and the duration time to bring. Sys-
tem can gather these users context even if users are outside of office.

3 Software Framework of Smart-Furoshiki

In this section, we describe the software framework to manage phicical objects in
Smart-Furoshiki system.

Physical/Cyber Objects Management Framework for Multiple-Area Detectable RFID 15

Fig. 6. Middleware Framework of Smart-Furoshiki

3.1 Total Framework of Smart-Furoshiki Middleware

Smart-Furoshiki Middleware are separated into 3 modules as shown in Figure 6. Smart-
Furoshiki Middleware are separated into 3 modules as shown in Figure 6. First one is
most low level software which only detects RFID numbers eventually.This module send
data to Object Management Layer eventually using bluetooth communication Second
module is Object Management Layer which analyze structure of Smart-Furosihki. An-
alyzing structure is mentioned in next subsection. This Object Management Layer has
a meta-data DB which is mapping between tag-ID and physical objects. This meta-data
DB also obtain the applications’ meta information to launch. Object Management Layer
send detected/detached RFID tag information to upper layer using multicast network
communication.

Third module, most upper layer, is on the client side as shown in Figure6. This Ap-
plication Control Modules try to control suitable application for users using information
from Object Management Layer. Application Control Modules, which are implemented
in windows DLL, are always communicate to the Object Management Layer. This layer
also controls the relations of tags which must detect in the same time to support secure
applications.

3.2 Algolism of Shape Recognition

Smart furoshiki is so flexible that it can be folded into any shape. To recognize the shape
of Smart-Furoshiki, we are using below algorisms.

When Ant1 detects T4, the shape of Smart-Furoshiki is folded in to half as figure
7. When Ant2 detects T1 and Ant3 detects T4 simultaneously, the shape of Smart-

16 M. Iwai et al.

 fold a rag in half (vertical)

T3T4

T7T8

 fold a rag in three

Ant1
T4

T8

T1

T5

T5 T6 T7 T8

 fold a rag in half (horizontal)

Ant2

Ant5 Ant6

3T4T

78

Ant1
T4T4
1

T8T

T3T
Ant2

T3T3
2

T7T
Ant55 Ant66

Ant2

Ant6

Ant3

Ant7

Ant1 Ant2 Ant3 Ant4

Fig. 7. Mechanism of Self Shape Recognition

Furoshiki is folded in to three. In the same way, the detection T2 from Ant1 means
that the shape is folding into half horizontally. In the case that there are more than 2
Smart-Furoshikis, We can estimate physical overlapping of Furoshikis by reading the
neighbor’s tags. Thus, the Smart-Furoshiki can detects tags’ ID, detected area on it, and
physical shape of Furoshiki.

4 Applications

To assume the usage in office environment of Smart-Furoshiki middleware, We have 3
applications based on the affordance of Smart-Furoshiki, laying, covering, and hanging.

4.1 Supporting Collaborative Works by Laying Smart-Furoshiki on A Desk

Currently, the number of documents and data which are treated in cyber space is in-
creasing. However, cyber desktop management systems can not recognize objects on a
physical desktop area, correctly. (ex. Books, DVD jackets, pens, papers, lights, electri-
cal appliances ,room sensors) On the other hand, physical objects can not recognize ei-
ther cyber object which used by same person. This Smart-Furoshiki is a novel hardware
and desktop management system which can handle both cyber and physical objects.

The users can lay Smart-Furoshiki on a desk. The Smart-Furoshiki supports cooper-
ation between objects on it. Objects on Smart-Furoshiki are identified by RF-ID. Figure
8 shows it. When computers are brought close, those computers share directories each
other. When the users edit the same file on those computers, the changes are immedi-
ately updated on the editors each other (1). Also Smart-Furoshiki supports cooperation
between computers and objects. For example, the users place a music CD near a com-
puter, and the music data in CD is copied to the computer (2). Besides, Smart-Furoshiki
supports cooperation between objects. The users can see the movies on the display
putting the movie DVD near the display (3).

Physical/Cyber Objects Management Framework for Multiple-Area Detectable RFID 17

1 32

Fig. 8. Supporting Collaborative Works by Laying Smart-Furoshiki on A Desk

4.2 Managing Objects Covered with Smart-Furoshiki

Users can manage the users’ objects covered with Smart-Furoshiki. The scenario is
showed in Figure 9. First, the user attaches an RF-ID tag to the user’s objects and
registers it to Smart-Furoshiki (1). When the user puts the user’s object that is registered
before, the user is authenticated and login the PC on the desk. The authenticated user
can work at the desk(2). When the user leaves the desk, by covering the objects with
Smart-Furoshiki the user visually hide them and log off the PC (3). When the user wants
to uncover the objects hidden by Smart-Furoshiki, the user must put the user’s object.
If a user that is not authenticated put off Smart-Furoshiki, the Furoshiki informs the
home security system of the theft. Also, Smart-Furoshiki reminds a user of the object
left behind on it. For example, when a user always brings the user’s cell phone, watch
and wallet together Smart-Furoshiki remembers this practice. When the user left the
watch behind although the user brought cell phone and wallet Smart-Furoshiki warns
the user.

4.3 Wall Type Task Schedular Using Smart-Furoshiki

The third example is the application to manage users’ tasks. The scenario is shown in
Figure 5. Smart-Furoshiki hangs on a wall. The wall is separated into some areas. The
area means the priority of tasks, such as “Emergency task” and “Pending task”. First, a
user writes a memo pad about the user’s task with an electronic pen that is able to con-
vert handwriting to digital data [7], and pins that memo pad to Smart-Furoshiki (1). The
application registers a task content written on this memo pad as pinned areas’@meaning
(2). Furthermore, when a user removes the pin, the application deletes the pinned task.

Fig. 9. Managing objects Covered with Smart-Furoshiki

18 M. Iwai et al.

Fig. 10. 1:Writing memo pad 2:Pinned tasks 3:Timeline viwer

The pinned tasks are shared in the group, and also the user can check the tasks wherever
the user can connect the network. Finally, these task histories are referenced on a PC by
Timeline viewer (3). Users can see the task histories, and retrieve before tasks easily.

5 Related Work

There is a research that aims to realize a smart carpet that identifies things on it[2]. How-
ever the size is too large to be used as a tablecloth or a tapestry like Smart-Furoshiki.
bYOB developed at MIT media Lab is a smart bag with embedded sensors [5]. bYOB
is built in antenna of RF reader. Our Smart-Furoshiki is made from a conductive textile
and can work as the antenna itself. Therefore Smart-Furoshiki is thinner and cheaper
than that of bYOB. Other research [1] [9] are also using sensorized fabrics. The aim
of these research is to obtain biometrics information at wearable environment. Our re-
search target, on the other hand, is for collaborative work at office environment.. Elec-
tronic Tablecloth made from E-broidery [8] is an electronic conductive textile can read
an RF-ID tag. However the usage of it is limited to tablecloth. Smart-Furoshiki has
more flexibility.

6 Conclusion

We have developed a cloth-like RFID system called “Smart-Furoshiki” that allows users
to manage phisical objects in inexpensive and environment-aware way. We also provide
a software framework for management RFID information and application control called
Smart-furoshiki Middleware. Smart-Furoshiki Middleware can recognize the changing
its own shape autonomously through combination of detecting RFID tags and antennas.
Moreover, Smart-Furoshiki’s flexibility allows to turn fold this into any shape. Using
these features, Smart-Furoshiki can be based on a lots of applications. To show the
utilization of Smart-Furoshiki for the various purposes at office environment, we im-
plemented demonstrations based on three scenarios. First one is the collaboration be-
tween mobile PCs on the laying Smart-Furoshiki At the second demo by using Smart-
Furoshiki for covering objects, users can keep privacy in easy way. As the third ap-
plication Smart-Furoshiki, hanged on a wall, helps tasks management between cyber
and physical memo papers. Secondly, to accumulate context information even when

Physical/Cyber Objects Management Framework for Multiple-Area Detectable RFID 19

users outside environment, we provide mobile-seize Smart-Furoshiki. We proved two
type of Furoshiki. Large size Smart-Furoshiki can detect objects ID and place using 8
RFID antennas which are made from flexible fabric. Mobile-size has 4 RFID antennas,
chargeable battery, tiny RFID readers, and Bluetooth communication module. By us-
ing two type of Smart-Furoshiki, ubiquitous applications can accumulate users’ context
easily and contentiously.

Acknowledgement

This research has been conducted as part of Ubila Project supported by Ministry of
Internal Affairs and Communications, Japan.

References

1. De Rossi, D., Santa, A., Mazzoldi, A.: Dressware: wearable piezo- and thermoresistive fab-
rics forergonomics and rehabilitation. In: Engineering in Medicine and Biology society,
1997. Proceedings of the 19th Annual International Conference of the IEEE, 5th edn, pp.
1880–1883 (1997)

2. Fukumoto, M., Shinagawa, M.: Carpetlan: A novel indoor wireless(-like) networking and
positioning system. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp
2005. LNCS, vol. 3660, pp. 1–18. Springer, Heidelberg (2005)

3. Kohtake, N., Ohsawa, R., Yonezawa, T., Matsukura, Y., Iwai, M., Takashio, K., Tokuda, H.:
u-Texture:Self-organizable Universal Panels for Creating Smart Surroundings. In: Beigl, M.,
Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 19–36.
Springer, Heidelberg (2005)

4. Kohtake, N., Yonezawa, T., Ohsawa, R., Matsukura, Y., Takashio, K., Tokuda, H.: Creating
pervasive services with self-organizable universal boards. In: Gellersen, H.-W., Want, R.,
Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 187–192. Springer, Heidelberg
(2005)

5. Nanda, G., Michael Bove, J.V., Cable, A.: byob (build your own bag):a computationally-
enhanced modular textile system. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004.
LNCS, vol. 3205, Springer, Heidelberg (2004)

6. Muller-Tomfelde, C., Streitz, N., Tandler, P., Konomi, S.: Roomware: Towards the next gen-
eration of human-computer interaction based on an integrated design of real and virtual
worlds. In: Carroll, J. (ed.) Human-Computer Interaction in the New Millenium, pp. 553–
578. Addison-Wesley, Reading

7. Pentel. Pentel airpen, http://www.airpen.jp/
8. Post, E.R., Orth, M., Russo, P.R., Gershenfeld, N.: E-broidery: design and fabrication of

textile-based computing. IBM Syst. J. 39(3-4), 840–860 (2000)
9. Sensatex, I.: Smart textile, http://www.sensatex.com/

10. Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.
11. Tanaka, M., Jang, J.-H.: Wearable microstrip antenna for satellite communications. In: IEICE

Transaction on Communications (August 2004)
12. Yanagihara, T., Sakakibara, H., Ohsawa, R., Ideuchi, M., Kohtake, N., Iwai, M., Takashio, K.,

Tokuda, H.: A self configurable topology-aware network for smart materials. In: IWSAWC
2005 (June 2005)

http://www.airpen.jp/
http://www.sensatex.com/

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 20–29, 2007.
© IFIP International Federation for Information Processing 2007

A Task Decomposition Scheme for Context Aggregation
in Personal Smart Space

Hoseok Ryu, Insuk Park, Soon J. Hyun, and Dongman Lee

School of Engineering, Information and Communications University,
119, Munjiro, Yuseong-gu, Daejeon, 305-732, Korea

{hsryu, ispark, shyun, dlee}@icu.ac.kr

Abstract. In context-aware computing, the context aggregation is an important
function of the context management. In an infrastructure-based smart space, a
centralized context management system need not concern about its resource
consumption for context aggregation. However, in a personal smart space
which consists of only resource-constrained mobile devices, not only global
resource consumption of the personal smart space but also that of the device
which plays a role of a context manager (coordinator) must be minimized. In
this paper, we propose a task decomposition scheme in which heavy context
aggregation tasks to be imposed on a centralized coordinating device are
decomposed and distributed to all the participating mobile devices (clients) in a
mobile smart space. By decomposing and distributing the heavy aggregation
operations the processing overhead upon the coordinating device can be
minimized while providing equivalent context aggregation capability for
applications, but maintaining the total amount of processing of all devices not to
be significantly increased.

Keywords: Ubiquitous computing, Context awareness, Personal smart space,
Context aggregation, Task distribution.

1 Introduction

In recent years, most existing context-aware services are offered in an
infrastructure-based smart space like a smart home or an office. A centralized
context management system on a powerful, resource-rich machine gathers,
processes, aggregates, and disseminates the context information. Context-aware
services request and get notified of context information from the centralized
context management system.

As a user carries several mobile devices, it composes a personal area network
(PAN). The PAN environment with context management configures a new type of
smart space, called a personal smart space [1], [2]. Each personal smart space
includes a coordinator device and zero or more client devices. Each device may
include several sensors and corresponding context providers which capture context
information from them. Additionally, a coordinator device which has relatively more
resource than client devices provides additional capabilities such as rule-based

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 21

context aggregation, and managing context information and a list of context
providers.

A context aggregation method such as logic inference requires high resource
consumption [4], [5]. If a coordinator device is wholly responsible for context
aggregation in a personal smart space, its processing overhead is significantly
increased and its battery is exhausted. As a result, the personal smart space can last no
longer. To solve this problem, the distribution of context aggregation has been
proposed. By distributing the aggregation function, EDCI [6] focuses on reducing
processing time taken in context reasoning, and Solar [7] focuses on increasing the
reusability of existing context providers. However, none of them considers mobile ad-
hoc settings. A recent work presents a middleware for context provisioning in a
mobile environment which consists of resource-constrained devices. However, it does
not consider resource consumption caused by context aggregation [3].

In this paper, we propose an efficient context aggregation scheme which avoids
overburdening the coordinator device with context aggregation by distributing sub
tasks of high level context in the client devices. The proposed scheme decomposes an
aggregation task into several sub tasks based on the placement of the context
providers on mobile devices in order for the sub tasks not to incur the wasteful
network transmission. The evaluation results shows that the processing overhead of
the coordinator device decreases about 70 percent while maintaining that of each
client device is increased by only 8 percent, comparing with the total amount of
processing in previous work.

The rest of the paper is organized as follows. Section 2 explains the motivation of
the proposed scheme. Section 3 introduces the requirements for context aggregation
in personal smart space. We discuss design consideration and describe the context
management architecture for a personal smart space in Section 4. The implementation
details of the proposed scheme are described in Section 5. Section 6 shows the
performance analysis of our approach. The related work is presented in Section 7.
Finally, conclusion follows in Section 8.

2 Motivation

We develop an example scenario for an over running status. In that scenario, Mr. Kim
carries a cell-phone, a smart watch, a MP3 player, and a PDA. Each device has its
sensors and their corresponding context providers as shown in Fig 1. The example
scenario is as follows.

Mr. Kim is exercising on the running machine in a fitness center. While running
continuously, Mr Kim's pulse and blood pressure may exceed his normal status and he
may be wet with his sweet during his exercising. If his physical condition excesses
beyond normal values, he is on the over running status which has to be taken care of.
Therefore, his PDA alerts to Mr. Kim about adjusting the level of exercise, and shows
the current physical condition information about him on PDA. To support this
example scenario, there is an aggregation rule and ECA policy rule. Aggregation rule
and ECA policy rule included in the context-aware exercise assistant application are
represented as shown in Table 1 and 2, respectively. A mobile device can include
several condition rules for an aggregation task. In this case, the centralized context

22 H. Ryu et al.

aggregation may delay the context aware service not provided on a right time and
cause the concentration of computational overhead on a coordinator device. It is
inefficient to conduct the execution of aggregation processing on every context
change only in a coordinator device.

Fig. 1. An example of context information in a personal smart space

Table 1. The aggregation rule for example scenario

Condition rules:
 a) Vibration(Kim, Running) ^
 b) Pulse(Kim, Over 140) ^
 c) BloodPressure(Kim, Over 160) ^
 d) Sweat(Kim, Wet) ^
e) -> Status(Kim, OverRunning)

Provided by cell-phone
Provided by smart watch
Provided by smart watch
Provided by smart watch
On PDA

Table 2. The ECA rule of context-aware exercise assistant application

On(Status(Kim, OverRunning))
 If(true)
 Do(start(service set2))
 { Alert to Kim for adjusting amount of exercise,

 Show the health information on PDA };

3 Requirements for Context Aggregation in Personal Smart Space

To provide the function of context aggregation in resource limited personal smart
space, we introduce two main requirements of context management.

First, in personal smart space, constrained resource on each mobile device means
that load balancing is an important issue for the context aggregation. Centralized
context aggregation can cause the failure of coordinator device by exhausting the
battery resource and the delay of context aware service by over-loaded aggregation
processing on a coordinator. Therefore, to perform context aggregation effectively on

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 23

resource limited environment, the aggregation processing requires small processing
overhead, and the aggregation task has to be distributed. To deal with these issues, we
use simple inference mechanism instead of heavyweight ontology based inference
engine, and we propose decomposition scheme for the distribution of aggregation task.

Second, the reliability of the context aware system is also an important issue. There
are two kinds of aspects for reliability. One aspect is the reliability of a personal smart
space. To deal with this aspect, Mobile Gaia [2] proposes election algorithm to select
suitable coordinator when previous coordinator dies or disappears. Another aspect is
the reliability of context event subscription. A personal smart space is configured with
several devices including a coordinator device in an ad-hoc manner. Ad-hoc
connectivity among devices can cause the change of network environment. In that
case, it is not impossible to define all possible context event subscription for sub task
rule according to network change. Therefore, characteristics of dynamic network
change require flexible and adaptive context event subscription based on dynamic
operating conditions varying over time and space.

4 Context Management Architecture for Personal Smart Space

To achieve the decomposition of context aggregation tasks, we need to consider three
issues. First, we have to consider how to decompose an aggregation task into several
sub tasks. As mentioned in Section 3, a large number of network transmissions can
cause more processing overhead. Therefore, we decompose an aggregation task into
several sub tasks based on the locality of context provider. If a client device processes
a sub task locally, it is possible to reduce the number of network transmission. In
personal smart space, locality is the most important consideration of any other factors.
Second, it can be possible that a device has two context providers of same type. In
that case, decomposition mechanism must select a suitable provider. Except for
locality of context provider, there are other considering factors to select a suitable
provider like frequency, accuracy, and granularity of context. Third, we also deal with
the reusability of current sub tasks in personal smart space. It is wasteful that a
coordinator delivers existing sub task to the same device every decomposition time.
This fact makes our mechanism require the reusability of current sub task.

4.1 System Architecture

Fundamental functionalities of the context management are gathering, reasoning, and
delivery of context information. We define five components as follows. Context
Widget abstracts the raw sensor data and provides abstract context information.
Context Aggregator provides high-level context information from low-level contexts
according to aggregation rules. In our architecture, to provide small processing
overhead, we use composite event detection mechanism [11] as an inference mechanism
instead of logic based inference engine. Context Interpreter keeps track of the context
in which the user is interested and notifies to application when one of contexts is set to
true. Context Aware Application implements context sensitive application policy,
which is ECA policy performing action according to context event change. Context
Manager has the role of context repository and includes minimal context ontology.

24 H. Ryu et al.

Fig. 2. Context management architecture for a personal smart space

In addition to these components, our efficient aggregation mechanism requires
some extra components to provide the task decomposition scheme. Details of
additional components are as follows. Context Registry manages the list of context
providers. All context providers register themselves to context registry. Moreover, it
supports to lookup the provider with the combination of context name and type.
Moreover, it has the context properties for all existing context providers.
Decomposition Manager receives decomposition requests and applies decomposition
algorithm to generate context event subscription tree and sub task rule tree. After
configuring two kinds of trees, decomposition manager adds sub task rules to the
local aggregator and adds composite event rule to context aggregator..Local
Aggregator detects that a certain sub task rule is satisfied and generates composite
event. Then it notifies composite event change generated from sub task rules to
context aggregator. And all devices in personal smart space have a local aggregator.
Fig 2 shows an overall architecture of the context management in personal smart
space depending on the role of devices.

4.2 Decomposition Algorithm

Decomposition algorithm uses aggregator name as an input parameter. In a personal
smart space, several context aggregators can function as the status aggregator. A
context aggregator includes one or more context aggregation rules. When a context
provider appears or a context aggregator requests the decomposition of context
aggregator, the decomposition manager gets aggregation rules from a context
aggregator, and gets the device list currently available in a personal smart space from
the context registry. This algorithm generates two kinds of trees: the one represents
context event subscription and the other composite event rules and sub task rules. For
a context aggregation rule, decomposition algorithm generates a sub task rule tree
with the result rule of the duplicated random value. Each result rule of a sub task is
represented as RDF triple, SubTaskRule(ip, random value). And after finishing above
sequences, sub task rules are inserted into sub task rule table, and a subscription tree
is generated for a context aggregator.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 25

Fig. 3. Flowchart of task decomposition algorithm

Fig 3 shows the algorithm for task decomposition. In this algorithm, there are some
mechanisms to select context provider of same type and to increase the reusability of
existing sub task rules. We explain later in detail about these issues.

4.2.1 Selection of Suitable Context Provider
If there are several context provider of same type on the same device, we need to
select more suitable provider among them. The function of selectProvider
(possibleProviderList) provides the mechanism for selection of suitable provider.
When a context provider list is registered to Context Registry, some considering
factors like frequency of context change, accuracy of context, and granularity of
context are also registered as the form of ContextProperties class. Then we measure
the utility value from the result of utility function. Fig 4 shows the utility function for
a suitable context provider.

Each factor has its weight value according to developer's policy. This algorithm
calculates utility values for every possible provider, and selects the appropriate
provider which has the highest utility value.

Fig. 4. Utility function for selection of context provider

4.2.2 Reusability of Existing Sub Task Rules
Reuse of existing sub task rules makes it possible to avoid the delivery of a new sub
task rule. Before adjusting the function of addSubTaskRule(), Decomposition
Manager checks that a certain sub task rule exists or not in personal smart space.
Decomposition manager on coordinator device has the list of sub task rules provided

26 H. Ryu et al.

in personal smart space. Just before delivering a sub task rule to other device, this
algorithm check the list of sub task rules. Then if there is a certain sub task rule in
personal smart space, it does not deliver that sub task rule. It only subscribe to context
provider which already has reusable sub task rule.

5 Implementation

We implement the proposed architecture as part of our ubiquitous computing
middleware, called Active Surroundings [10]. Context management components in
Active Surroundings run on IBM J9 (J2ME VM). In this section, we show the
interaction among components in our proposed architecture.

Fig 5 shows the interaction among components to decompose an aggregation task
into several sub tasks. Interaction among components is divided into two phases:
registration phase and decomposition phase. In registration phase, all context widgets,
aggregators, and local aggregators register itself to context registry. In decomposition
phase, decomposition manager conducts a decomposition processing when a context
aggregator or context registry requests decomposition. The overall interaction
procedure among components works as follows.

Fig. 5. Interaction among components for task decomposition

When other context aggregator appears, it requests decomposition to
decomposition manager, and repeat the above procedure of the task decomposition.

6 Performance Analysis

In this section, we show how decomposition scheme reduces processing overhead for
context aggregation. We expect that computational overhead for context aggregation
is distributed in personal smart space. In the experiments, we measure the aggregation
processing time on both coordinator and client devices and compare them with total
processing time taken in the previous approach.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 27

The over-running scenario in Section 2 is used for the experiments. We generate
100 context event changes randomly. Then we compare two cases: processing time in
the previous and our approach. Total processing time for two cases is derived from
the sum of processing time on coordinator, processing time on clients, and network
transmission time for delivery context change events as shown in Equation (1).

PT(total) = PT(coor) + PT(cli) + NTT (1)

PT(total) represents total processing time, PT(coor) represents processing time
on coordinator device, PT(cli) represents processing time on clients, and NTT
represents network transmission time, respectively. We use two PDAs, HP
rx3715(Processor speed: 400MHz, Installed RAM: 152MB), and their operating
system is Microsoft Windows Mobile Pocket PC 2003. We use IBM J9 as the VM
to run our systems.

Fig 6 shows the result of the experiments considering four metrics: PT(total), NTT,
PT(coor), and PT(cli).

0

50

100

150

200

250

300

350

400

PT(total) NTT PT(coor) PT(cli)

A
v
e
ra
g
e
 p
ro
c
e
s
s
in
g
 t
im
e

prev

our

Fig. 6. The processing time and network transmission time on coordinator and clients

As Fig 6 shows, NTT takes the most part of PT(total). It means that network
transmission affects the processing overhead for context aggregation significantly.
Additionally, in case of our scheme, processing overhead only on client device is
larger than that of previous work. However, processing overhead on client devices is
slight to be ignored, comparing with the network transmission overhead.

The previous approach requires more PT(total) because it notifies context event
to other device for every context change. On the contrary, our approach notifies
the context change event only when a sub task rule is satisfied. In this way, the
proposed scheme reduces the processing time for context aggregation. By
reducing the aggregation processing overhead, it is possible to provide context
aware services more efficiently and minimize the resource usage in personal
smart space.

28 H. Ryu et al.

7 Related Works

Previous research projects present infrastructure based context management
architecture in typical smart space. Ontology based context aware middleware
approaches like SOCAM, Context aware middleware in Gaia, and Cobra provide
context information in resource plentiful environment [3], [4]. However, as a new
concept of personal smart space appears, context aware systems need to consider
limited resources on each device.

To provide context information in resource constrained mobile devices, Contory
presents a context factory middleware for context provisioning on smart phone [5]. It
supports three kinds of context provisioning methods including distributed context in
ad hoc networks. The flexibility on switching one method to another at run time
allows optimizing the utilization of computing and communication resources.
However, unfortunately, it does not consider the processing overhead concentrating
on a coordinator device for context aggregation.

Some researches motivating our works consider efficient aggregation processing
by distributing a context aggregation. [6], [7], [8]. Event driven context interpretation
presents the event driven distributed context aggregation model of context aware
system [6]. In this work, distributed processing is easily supported through the use of
several context providers helping an aggregation task. Moreover, as another approach
for distributed aggregation, context fusion network presents graph based context
aware middleware [7], [8]. Graph based abstraction make it easy to collect, aggregate,
and disseminate context information. This approach increases the reusability of
existing operators like context aggregator in context aware middleware. Although
these works provide better processing time and increase the reusability of existing
context providers, limitations of these works is that they conduct the aggregation
processing in a centralized manner on a coordinator device.

8 Conclusion

We propose a resource efficient context aggregation scheme in personal smart space.
We present the context management architecture to distribute aggregation tasks
without predefined sub task rule in personal smart space. With this approach, we
achieve reducing the processing overhead on a coordinator device by distributing an
aggregation task into several sub tasks.

In this approach, we propose a lightweight context aggregation mechanism using
composite event detection. Although it can reduce the aggregation processing
overhead, the lightweight aggregator limits to support semantic context reasoning. We
have a plan to consider providing semantic context information.

Moreover, as an extension of this work, we plan to consider multi-user
environment where all devices are connected in an ad-hoc manner without
coordinator device. Currently, we only support personal smart space considering
single user environment and including a coordinator. With multi-user environment,
we are also investigating some more complex scenarios and planning to present
context management architecture in ad-hoc environment.

 A Task Decomposition Scheme for Context Aggregation in Personal Smart Space 29

Acknowledgments. This research was partially supported by the Ubiquitous
Computing and Network (UCN) Project, the MIC(Ministry of Information and
Communication) 21st Century Frontier R&D Program and the KT-ICU Joint
Research Center in Korea.

References

1. Karypidis, A., Lalis, S.: Automated context aggregation and file annotation for PAN-based
computing. In: Personal and Ubiquitous Computing(PUC 2006), Oct. 2006 (2006)

2. Chetan, S., Al-Muthadi, J., Campbell, R., Mickunas, M.D.: Mobile Gaia: A Middleware
for Ad-hoc Pervasive Computing. In: IEEE Consumer Communications & Networking
Conference (CCNC 2005), Jan. 2005 (2005)

3. Riva, O.: Contory: A Middleware for the Provisioning of Context Information on Smart
Phones. In: Riva, O. (ed.) the Proceedings of the ACM/IFIP/USENIX 7th International
Middleware Conference (Middleware’06) (2006)

4. Gu, T., Pung, H.K., Zhang, D.Q: A Service-Oriented Middleware for Building Context-
Aware Services. Journal of Network and Computer Applications (JNCA) 28(1), 1–18
(2005)

5. Ranganathan, A., Campbell, R.H.: An Infrastructure for Context-Awareness based on First
Order Logic. Personal and Ubiquitous Computing 7 (2003)

6. Tan, J.G., Zhang, D., Wang, X., Cheng, H.S.: Enhancing Semantic Spaces with Event-
Driven Context Interpretation. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.)
PERVASIVE 2005. LNCS, vol. 3468, Springer, Heidelberg (2005)

7. Chen, G., Kotz, D.: "Context Aggregation and Dissemination in Ubiquitous Computing
Systems", Dartmouth Computer Science Technical Report TR, -420 (2002)

8. Chen, G., Li, M., Kotz, D.: Design and Implementation of a Large-Scale Context Fusion
Network. In: Proceedings of the First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous 2004) (2004)

9. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Anchor article of a
special issue on context-aware computing in the Human-Computer Interaction (HCI)
Journal (2001)

10. Lee, D., Han, S., Park, I., Kang, S., Lee, K., Hyun, S.J., Lee, Y.-H., Lee, G.: A Group-
Aware Middleware for Ubiquitous Computing Environments. In: ICAT (2004)

11. Pietzuch, P.R., Shand, B., Bacon, J.: Composite Event Detection as a Generic Middleware
Extension. In: IEEE Network Magazine, Special Issue on Middleware Technologies for
Future Communication Networks (2004)

12. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Computing
Environments. The Knowledge Engineering Review(2003)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 30–39, 2007.
© IFIP International Federation for Information Processing 2007

Distributed k-NN Query Processing
for Location Services

Jonghyeong Han, Joonwoo Lee, Seungyong Park,
Jaeil Hwang, and Yunmook Nah

Department of Electronics and Computer Engineering, Dankook University, Hannam-dong,
Yongsan-gu, Seoul, 140-714, Korea

{jhhan, jwlee, sypark}@dblab.dankook.ac.kr,
hwangjaeil@yahoo.co.kr, ymnah@dku.edu

Abstract. The architecture named the GALIS is a cluster-based distributed
computing system architecture which has been devised to efficiently handle a
large volume of LBS application data. In this paper, we propose a distributed k-
NN query processing scheme for moving objects on multiple computing nodes,
each of which keeps records relevant to a different geographical zone. We also
propose a hybrid k-NN scheme, which utilizes range queries instead of k-NN
queries for the neighboring overlapped nodes, thus resulting in 30% reduction
of query processing cost. Through some experiments, we show the efficiency of
hybrid k-NN scheme over naïve k-NN scheme.

Keywords: k-NN query processing, distributed databases, GALIS, location-
based services.

1 Introduction

Recent advances in location navigation technology and wide distribution of mobile
devices have caused rapid growth of interests in Location Based Services (LBS). But,
most of the current research activities related with LBS systems are single node-
oriented, making it difficult to handle the extreme situation that must cope with a very
large volume, at least millions, of moving objects. The architecture named the GALIS
(Gracefully Aging Location Information System) is a cluster-based distributed
computing system architecture which consists of multiple computing nodes, each
dedicated to keeping records relevant to a different geographical zone and a different
time-zone [1,2,3]. The GALIS consists of SLDS (Short-term Location Data
Subsystem) controlling current location information of moving objects, and LLDS
(Long-term Location Data Subsystem) controlling past location information.

To realize location services, we have to support item-based queries, range queries,
and k-NN (k-Nearest Neighbor) queries. For a k-NN query, the user specifies a point
and the system has to return k closest moving objects. There has been lots of research
efforts to efficiently handle k-NN queries, especially for the centralized computing
environments [6,7,8,9,10,11,12]. In this paper, we propose a naïve distributed k-NN
query processing scheme for moving objects geographically spread over multiple

 Distributed k-NN Query Processing for Location Services 31

computing nodes. The proposed scheme runs k-NN query for the current node,
modifies the query points for overlapped neighboring nodes, and then executes k-NN
queries for neighboring nodes. We have implemented a single node k-NN query
processing scheme, by utilizing R-trees [13,14]. We also propose a hybrid k-NN
scheme, which utilizes range queries instead of k-NN queries for the neighboring
overlapped nodes, thus resulting in 30% reduction of query processing cost.

We propose a naïve method for distributed k-NN query processing on multiple
computing nodes in section 2 and a hybrid k-NN query processing scheme in section
3. Some experimental results related with performance and precision of each query
processing scheme are shown in section 4. Finally, section 5 concludes the paper.

2 A Naïve Scheme for Distributed Processing of k-NN Queries

The two-dimensional space of interest is divided into n spatial regions and the one-
dimensional time axis is divided into p time zones. A region (or partition) of the
geographical area dealt with by the LBS system is called a macro-cell. Each macro-
cell covers a square-shaped region, of which the default unit length is 25.6km but can
be set differently. The regions covered by different macro-cells may be of different
sizes. With respect to keeping records on current (most recently observed) locations,
moving items in a spatial region are covered by a SDP node. With respect to keeping
location histories, moving items in a spatial region are handled by up to p LDP nodes.
Here, p means the number of time zones (or temporal regions).

2.1 Overall Scheme

A k-NN query can be performed on a single node, as shown in Figure 1(a). For
multiple nodes, as shown in Figure 1(b), moving objects for neighboring overlapped
nodes have to be considered.

Fig. 1. Comparison of k-NN query on single node and on multiple nodes

We first run the given k-NN query on the current node. If the circle, whose center
is the query point (indicated as k-NN point in Figure 1) and whose radius is the
distance between the query point and k-th closest point in the current node, is
overlapped with neighboring nodes, as shown in Figure 1(b), we have to decide the
necessity of broadcasting the queries to the neighboring nodes.

32 J. Han et al.

The query processing system to handle k-NN queries consists of Index Creator,
Query Analyzer, Query Checker and Query Creator. The structure of the query
processing system for the case of 4 computing nodes is illustrated in Figure 2.

Fig. 2. Query processing system structure for multiple nodes

The Index Creator configures index structures by making use of location information
of moving objects stored in each node. The Query Analyzer processes the given queries
using appropriate index structures. The Query Checker checks the neighboring nodes
based on the query result from the current node, to determine the necessity of
transferring the queries to the neighboring nodes. The Query Creator creates a partial
query for the target neighboring nodes and sends that partial query to the neighboring
nodes. All the query processing results from neighboring nodes are combined and a
temporary R-tree index structure is created by the Index Creator. The k-NN query is
finally processed by using the final R-tree and its result is returned to user.

2.2 Query Distribution over Neighboring Nodes

If the number of computing nodes is small, it can be possible to process the same k-NN
queries over all the nodes and combine all the results of the queries, to process a given
k-NN query on a computing node (currently queried node). If, however, the number of
the nodes is large, concurrent processing of the same queries over all of the nodes
including the current node might result in severe waste of the computing resources.

To reduce computing overhead, we have to determine the neighboring overlapped
nodes and transfer the queries to such nodes, if the query point of k-NN query is in
the vicinity of the boundary of current node. Figure 3 illustrates such an example of k-
NN query on Node 1, where k = 4. In this figure, the object P2 of Node 2 and the
object P1 of Node 3 can be nearer than the k-NN candidate points between Pk-3 and Pk

on the current node. This means that it is required to send queries to neighboring
overlapped nodes and compare candidate locations and related locations to finalize
true k-NN points, considering all the nodes. It is expected that enlarging an arc
section of the resultant area for the given k-NN query to a round section causes
overlapping of certain part of the area over neighboring nodes.

 Distributed k-NN Query Processing for Location Services 33

Fig. 3. Necessity of transferring queries to neighboring overlapped nodes

After running the k-NN query on the current node, the neighboring overlapped
nodes, which can contain closer points than the current node, can be determined by
using the query point and the query results on the current node.

Figure 4 illustrates the procedure to determine the necessity of transferring queries
to the neighboring overlapped nodes. Let R be the distance between the query point Pq
and the result position Pk (the location of k-th closest object), as shown in Figure 4(a).
Let N, S, E, W be the distances between the query point Pq and the boundary points in
each direction, Pbn (north boundary point), Pbe (east boundary point), Pbs (south
boundary point) and Pbw (west boundary point), respectively, also as shown in Figure
4(a). The neighboring nodes located in the directions with distances (N, S, E, W)
shorter than R, are target nodes to send queries.

Fig. 4. Determination of neighboring nodes to transfer queries

In Figure 4(b), therefore, the neighboring nodes in south and east direction to the
current node are the appropriate nodes to further process the given k-NN query. We
also have to transfer queries to the neighboring node located in the diagonal

34 J. Han et al.

position to the current node and also adjacent with the selected target nodes. In
Figure 4(d), the node in the southeast direction is such a node. Therefore, among 8
neighboring nodes, the final neighboring overlapped nodes, which will further
process the given k-NN query, are the nodes in south, east and southeast direction.
Algorithm 1 shows the procedure of Query Checker to determine neighboring nodes
to send queries.

Algorithm 1. Determining Neighboring Nodes to Send Queries ()
// Pbn, Pbe, Pbs, Pbw : boundary points for the current node
// R : distance between the query point and Pk
// N, S, E, W: the distance between the query point and the boundary points

in each direction
// T: target node list
begin
 if (N<R) then

add north node to T;
if (E<R) add east node and northeast node to T;
if (W<R) add west node and northwest node to T;

 else if (S<R) then
 add south node to T;
 if (E<R) add east node and southeast node to T;
 if (W<R) add west node and southwest node to T;
 else if (E<R) then add east node to T;
 else if (W<R) then add west node to T;
 else add empty node to T;

endif
end.

Fig. 5. The modified query points for the neighboring nodes

For the neighboring overlapped nodes, the boundary point (one of Pbn, Pbe, Pbs and
Pbw), which is located on the boundary between the current node and the neighbor
node, becomes the new query point. For the neighboring node in the diagonal
position, one of the corner point of the current node, facing the neighbor node,
becomes the new query point. In Figure 5(a), Pbe becomes the query point for N2, Pbs
becomes the query point for N3, and the southeast corner point of N1 becomes the
query point for N4. Figure 5(b) shows the typical query shape for the proposed
distributed k-NN query processing.

 Distributed k-NN Query Processing for Location Services 35

3 Hybrid k-NN Query Processing

By utilizing range queries instead of k-NN queries for the neighboring overlapped
nodes, we can reduce the entire query processing time, while obtaining the exactly
same query result. We call this slightly modified scheme as the hybrid k-NN query
processing scheme. In this hybrid scheme, the Query Checker of the query processing
system converts the k-NN query into range queries.

We again use the value R, which is the distance between the query point Pq and the
result position Pk (the location of k-th closest object). Let Rn (radius north), Rw (radius
west), Rs (radius south) and Re (radius east) be the same distance with R to the
corresponding directions. Let Pqn (north query point), Pqw (west query point), Pqs
(south query point) and Pqe (east query point) be the virtual points each located in the
corresponding direction with distance R. Algorithm 2 shows the procedure of Query
Checker to create range queries.

Algorithm 2. Range Query Creation (d direction_of_neighbor_node)
// Pbn, Pbe, Pbs, Pbw : boundary points for the current node
// Pqn, Pqw, Pqs, Pqe : shifted query points to the corresponding direction
// with distance R
begin
 if (d=north) then create query with range (Pqw(x), Pqn(y), Pqe (x), Pbn (y));
 if (d=south) then create query with range (Pqw(x), Pqs(y), Pqe (x), Pbs (y));
 if (d=east) then create query with range (Pqe(x), Pqn(y), Pbe(x), Pqs(y));
 if (d=west) then create query with range (Pqw(x), Pqn(y), Pbw(x), Pqs(y));
end.

Fig. 6. Range query creation example in the east direction

Figure 6 illustrates the procedure to create the range query for the neighbor node
located in the east direction compared to the current node. In this case, the coordinate
(Pqe(x), Pqn(y)) becomes the upper right corner and the coordinate (Pbe(x), Pqs(y))
becomes the lower left corner for the query range.

36 J. Han et al.

Fig. 7. Query range shape example in hybrid k-NN scheme

The lower part of the query range in the east direction crosses over the node
boundary of Node 2. Also, the right part of the range query in the south direction
crosses over the node boundary of Node 3. These two out of node query ranges meet
at the node in the diagonal direction, Node 4. Therefore, the query range for the
diagonal node can be determined from the overflowed portion of one of the
neighboring nodes. In our experiment, we use the right or left side neighboring nodes
in such cases. Figure 7 shows the query range for the hybrid k-NN scheme.

4 Experiments

Four nodes are configured on a single system for excluding communication delay
among the nodes. We used a PC, equipped with 3.0 GHz D-processor and 1 Gbyte
memory, with Red Hat FEDARA Core 4 operating system. We generated moving
objects by using the object location information generator developed by Marios
Hadjieleftheriou of University of California-Riverside. We repeated experiments 18
times, while increasing number of moving objects in each node incrementally, starting
from 1,000 objects until reaching 50,000 objects.

Fig. 8. Naïve k-NN query processing time

To compare query processing times, we measured the processing time of each query
5 times and used the average of 3 measured values, excluding highest and lowest values.

 Distributed k-NN Query Processing for Location Services 37

The value k was fixed as 10. Figure 8 shows the query processing time of the naïve k-
NN scheme and Figure 9 shows the query processing time of the hybrid k-NN scheme.

Fig. 9. Hybrid k-NN query processing time

Figure 10 compares the query processing time of naïve k-NN query processing
scheme and hybrid k-NN query processing scheme. The query processing times of
Node 1 of both methods are the same, because both use the normal k-NN query
processing algorithm. But, in other nodes, the query processing time of hybrid scheme
is faster than the query processing time of naïve scheme, because the hybrid scheme
utilizes range queries instead of k-NN queries for the neighboring overlapped nodes.

Fig. 10. Comparison of query processing time between naïve and hybrid scheme

Fig. 11. Comparison of maximum query processing time

38 J. Han et al.

Figure 11 compares the maximum query processing times (worst cases) of both
schemes. Figure 12 compares the minimum processing time (best case) of naïve k-NN
query processing scheme with the maximum processing time (worst case) of hybrid k-
NN query processing scheme. It clearly shows that the hybrid scheme is always better
than the naïve scheme.

Fig. 12. Comparison of the minimum processing time of naive k-NN query processing scheme
with the maximum processing time of hybrid k-NN query processing scheme

To show the correctness of query results, we compared the query results of k-NN
query processing on a single node with 80,000 objects and naïve scheme and hybrid
scheme on multiple computing nodes, each having 20,000 objects. The final results of
three methods were identical, which means that no correct object is omitted by the
naïve and hybrid k-NN query processing schemes.

5 Conclusion

In this paper, we proposed distributed k-NN (k-Nearest Neighbor) query processing
schemes for moving objects on multiple computing nodes, each of which keeps
records relevant to a different geographical zone. In our naïve method, we first
process the k-NN query on the target node, then decide whether the query region is
overlapped with other nodes, and finally process the k-NN queries from the shifted
query points for the neighboring overlapped nodes.

We also proposed a hybrid k-NN, which utilizes range queries instead of k-NN
queries for the neighboring overlapped nodes, thus resulting in low query processing
cost, while providing the exactly same query results. Through some experiments, we
show the efficiency of hybrid k-NN over naïve k-NN. There should be further
experiments on much heavier traffic with millions of moving objects.

Acknowledgments. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information Technology Research
Center) support program, with grant number IITA-2006-C1090-0603-0006 and IITA-
2006-C1090-0603-0031, supervised by the IITA(Institute of Information Technology
Assessment).

 Distributed k-NN Query Processing for Location Services 39

References

1. Nah, Y., Kim, K.H., Wang, T., Kim, M.H., Lee, J., Yang, Y.K: GALIS: A Cluster-based
Scalable Architecture for Location-based Service Systems. Database Research, 18(4).
KISS SIGDB, 66–80 (2002)

2. Nah, Y., Kim, K.H., Wang, T., Kim, M.H., Lee, J., Yang, Y.K: A Cluster-based TMO-
structured Scalable Approach for Location Information Systems. In: Proc. WORDS 2003
Fall, pp. 225–233. IEEE Computer Society Press, Los Alamitos (2003)

3. Kim, M.H., Kim, K.H., Nah, Y., Lee, J., Wang, T., Lee, J., Yang, Y.K: Distributed
Adaptive Architecture for Managing Large Volumes of Moving Items. In: IDPT. Society
for Design and Process Science, vol. 2, pp. 737–744 (2003)

4. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of
Continuously Moving Objects. In: Proc. ACM SIGMOD, pp. 331–342 (2000)

5. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.: Location-Based Spatial Queries. In:
Proc. ACM SIGMOD, pp. 467–478. ACM Press, New York (2003)

6. Hjaltason, G.R., Samet, H.: Ranking in Spatial Databases. In: Egenhofer, M.J., Herring,
J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 83–95. Springer, Heidelberg (1995)

7. Cheung, K.L., Fu, A.W.-C: Enhanced Nearest Neighbor Search on the R-tree. SIGMOD
Record 27(3), 16–21 (1998)

8. Iwerks, G.S., Samet, H., Smith, K.P.: Continuous k-Nearest Neighbor Queries for
Continuously Moving Points with Updates. In: Proc. VLDB, pp. 512–523 (2003)

9. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques
(1991)

10. Song, Z., Roussopoulos, N.: K-Nearest Neighbor Search for Moving Query Point. In: Proc.
SSTD, pp. 79–96 (2001)

11. Hadjieleftheriou, M., Hoel, E.G., Tsotras, V.J.: SaIL: A Spatial Index Library for Efficient
Application Integration. GeoInformatica 9(4), 367–389 (2005)

12. Shakhnarovish, Darrell, Indyk (eds.): Nearest-Neighbor Methods in Learning and Vision.
MIT Press (2005)

13. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc. ACM
SIGMOD, pp. 47–57. ACM Press, New York (1984)

14. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: an Efficient and
Robust Access Method for Points and Rectangles. In: Proc. ACM SIGMOD, pp. 322–331.
ACM Press, New York (1990)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 40–46, 2007.
© IFIP International Federation for Information Processing 2007

Ontology Based Context Alignment
for Heterogeneous Context Aware Services

Seungkeun Lee

INRIA Rhône-Alpes
Montbonnot Saint-Martin, France

Seung-Keun.Lee@inrialpes.fr

Abstract. In a pervasive environment, context aware services are necessary to
enable collaborate and communicate with others in order to provide proper
service to users. Each service can be designed with individual context
information which represents different perspective over the context. This paper
proposes an advanced context management model with context alignment
among heterogeneous context aware services. This model enable the interaction
between context information producer devices and context information
consumer devices and as well as their insertion in an open environment. And
this paper show how this model can be used in context aware middleware.

Keywords: Context Aware, Context Alignment, Ubiquitous Computing.

1 Introduction

The context aware computing systems are being studied and many prototypes have
been implemented [1,2,3,4,5]. The popularity of context aware computing research
indicates that systems that can identify the user’s context and that of the surrounding
environment have the profound potential to provide services that are much more user
specific. Context information can be retrieved from a wide diversity of sources such
as user profiles, location system, sensors, devices.

However, conventional context modeling approaches based on ontology bear several
problems. First, a context awareness service must share the context ontology with the
context awareness system in the designing phase. In turn, when a context awareness
service is dynamically added to or deleted from the system, the new context awareness
service cannot share the context ontology with the system under the circumstances
where other context awareness services are not affected. In addition, the problem of
context uncertainty, which can arise in the process of deducing the data acquired from
the sensor into the context information based on the dynamic modification of the
context ontology, must be resolved. This study proposes the dynamic context
management by context alignment between the context awareness services.

We have built a context alignment manager for test the proposed model. The designed
manager can align between context aware services and manage the alignment relation.
This alignment relation is used for context aware service to cooperate with others.

 Ontology Based Context Alignment for Heterogeneous Context Aware Services 41

2 Relative Works

In this dynamic pervasive environment, each context manager manages context
information of its device. To express its context model, its needs or its capabilities, we
use semantic web languages described below. They ensure interoperability between
these heterogeneous devices. The ground language for the semantic web is RDF
(Resource Description Framework [5]). It enables expressing assertions of the form
subject-predicate-object. The strength of RDF is that the names of entities (subjects,
predicates or objects) are URIs (the identifiers of the web that can be seen as a
generalization of URLs: http://www.w3c.org/sw). This opens the possibility for
different RDF documents to refer precisely to an entity (it is reasonable to think that a
URI denotes the same thing for all of its users).

The OWL language [6], has been designed for expressing « ontologies » or
conceptual models of a domain of knowledge. It constrains the interpretation of
RDFgraphs concerning this domain. OWL defines classes of objects and predicates
and makes it possible to declare constraints applying to them (i.e., that the « output » of
a « thermometer » is a « temperature »). The context model that we will use at that
stage is very simple: a context is a set of RDF assertions. Interoperability is guaranteed
through considering that context-aware devices are consumer and producer of RDF.
However, this is not precise enough and devices might want to extract only the relevant
information from context sources. For that purpose, a language like RDQL [7] is useful
for querying or subscribing to context sources. In order to post the relevant queries to
the adequate components, it is necessary that components publish the OWL classes of
objects and properties on which they can answer.

3 Context Alignment Model

A context awareness service must be able to exchange context information based on
identical understanding of the content among the user, devices and services. This
chapter presents a method for dynamically modifying the context information
required by the context awareness services operated from the context awareness
middleware, as well as the hierarchical context ontology management and context
uncertainty resolution methods in order to deliver the changes in the middleware so
that the corresponding context information can be received from the middleware.

3.1 Hierarchical Context Ontology

The context information managed by the middleware is constructed into the domain
context information that is delivered to all services in the middleware and the
individual context information defined for each service. All of the context information
is defined by ontology. If a service is newly allocated in the middleware, the
middleware must be able to integrate the existing domain context information and the
individual context information separately defined in the service for operation. Here,
the correlation between the two sets of context information must be guaranteed, for
which purpose the common context information layer is located between the two
context information layers. The common context information defines the basic

42 S. Lee

elements required for the context awareness application as the Person, CompEntity,
Location, Environment and Activity, and the domain context information and the
individual context information are designed by inheriting the common context
information. By providing correlation among sets of context information inherited
from an identical parent class, the information is used to integrate the two sets of
context information in the middleware. Fig 1 displays the hierarchical context
ontology designed in this paper.

Fig. 1. Hierarchical Context Information

Every type of ontology is inherited from the context class for creation. The
common ontology comprises Person, CompEntity, Location and Environment and
Activity Class inherited from the highest Context class, as well as Service, Device and
Network inherited from CompEntity. Context may include multiple attributes to
describe the corresponding situation, as well as other situations as properties. For
example, in home network ontology, if there is a Room context inherited from the
Location class and a Temperature context inherited from the Environment class, the
Temperature context can be used as the property of the Room context.

3.2 Context Alignment

We identify one-to-one context alignment between two context aware services using
lexical resemblance between concept names and then inference. The lexical alignment
identifies shared concepts across context information based on lexical similarity
between concept names. Both preferred concept names and synonyms are used in the
lexical alignment process. Lexical similarity is assessed through exact match.
Concepts exhibiting similarity at the lexical level across context are called alignment,
as they could be be used as reference concepts in the structural validation and for

 Ontology Based Context Alignment for Heterogeneous Context Aware Services 43

comparing associative relationship. Additional alignment provided a definition of the
alignment structure so as to be able to use and reuse it in various situations. Given two
contexts C1 and C2, alignments are made of a set of correspondences (called mappings
when the relation is oriented) between pairs of (simple or complex) entities e1, e2
belonging to C1 and C2 respectively. A correspondence is described as a quadruple:

<e1, e2, R >

e1, e2 are the entities (e.g., formulas, terms, classes, individuals) between which a
relation is asserted by the correspondence. R is the relation, between e1 and e2,
asserted by the correspondence. For instance, this relation can be a simple set-
theoretic relation (applied to entities seen as sets or their interpretation seen as sets), a
fuzzy relation, a probabilistic distribution over a complete set of relations, a similarity
measure, etc. These relationships are subClassOf, TransitiveProperty, subPropertyOf,
disjointWith and inverseOf

Having extracted the relations explicitly represented in the ontologies, we then
normalize the representation of the relations in each ontology in order to facilitate
structural comparisons across contexts. We first complement the hierarchical relations
represented explicitly with their inverses as necessary. Implicit semantic relations are
then extracted from various combinations of hierarchical relations (inference).
Inference generates additional semantic Inference generates additional semantic
relations by applying inference rules to the existing relations in order to facilitate the
comparison of paths between anchors across ontologies. These inference rules,
specific to this alignment, are listed in Table 1.

Table 1. Infence Rule

Relation Inference Rule

subClassOf
(?A rdfs:subClassOf ?B),(?B ?rdfs:subClassOf ?C) ->

(?A rdfs:subClassOf ?C)

TransitiveProperty
(?P rdf:type owl:TransitiveProperty),
(?A ?P ?B),(?B ?P ?C) ->(?A ?P ?C)

subPropertyOf
(?A rdfs:subPropertyOf ?B) ∧
(?B rdfs:subPropertyOf ?C) ->

(?A rdfs:subPropertyOf ?C)

disjointWith (?A owl:disjointWith ?B) ∧ (?X rdf:type ?C) ∧
(?Y rdf:type ?D) -> (?X owl:differentFrom ?Y)

inverseOf (?A owl:inverseOf ?B) ∧ (?A ?X ?Y) -> (?Y ?B ?X)

4 Experiment

This chapter explains the process of conducting tests by implementing a smart home
network to evaluate the functions and performance of the context awareness middleware
proposed in this paper. The server used for the home network service was IBM eServcer
X206, 2.8GHz, 512MB RAM, and it was operated with Windows Server 2003 using the

44 S. Lee

OSGi framework Knopflerfish 1.3.3 and HP Semantic web toolkit Jena2[8,9]. Fig 2
displays the home network environment implemented for the test.

Fig. 2. Prototype of Smart HomeNetwork

The test scenario involved creating context information that is generated when a
user comes into the house, and the information was delivered to the context awareness
service. The light control service is a context awareness service that automatically
turns on the light nearest to the user if the lighting is too dim. The light control service
uses the information acquired by the illumination intensity sensor to recognize the
brightness of each location. In order to assess the level of illumination in the house,
light sensors are installed in Room1, Room2 and LivingRoom.

The sensor in each location detects the light intensity and expresses it in 10 bits,
creating a value between 0 and 1023. The context is deduced to be "dim" if the value
is below 512, and "bright" otherwise. The light control service defines the
independent contexts of the "user location dim" and the "light must be turned on" as
in List 1.

List 1. The Rule for Context Inference

(?LightSensor locateIn ?place), (?LightSensorValue
bigger 512) -> (?place lightLevel "Bright")

(?LightSensor locateIn ?place), (?LightSensorValue
smaller 512) -> (?place lightLevel "Dim")

(?user locatedIn ?place), (?place lightLevel "Dim") ->
(?place needed "lighting")

 Ontology Based Context Alignment for Heterogeneous Context Aware Services 45

When the user "sglee" moves from location 1 to 2 in Fig 4, the RFID reader 3 reads
the user ID from the RFID tag attached to the user. The RFID reader delivers the data
to the RFID management service, which parses the corresponding data to forward the
user ID value to the middleware. Then the basic context generator creates the
information ("sglee" locatedIn "LivingRoom"). The generated basic context
information is delivered to the ontology deduction engine, as well as the light control
context service.

The illumination intensity in each room and the living room is regularly checked
using the sensors, and the values are delivered to the middleware. According to List 2,
the middleware generates the context "bright" for a sensor value acquired in each
location greater than 512 and "dim" otherwise. Fig 5 describes the process of
deducing the complex context information using the data obtained from the light
sensors.

The values acquired by the sensors were ("Room1" lightingValue 284), ("Room2"
lightingValue 653) and ("LivingRoom" lightingValue 327), which created the basic
contexts ("Room1" lightLevel "Dim"), ("Room2" lightLevel "Bright") and ("Livin-
gRoom" lightLevel "Dim"). The contexts are delivered to the deduction engine, which
used the knowledge ("sglee" locatedIn "LivingRoom"), (?user locatedIn ?place) and
(?place lightLevel "Dim") -> (?place needed "lighting") to deduce the complex con-
text information ("LivingRoomg" needed "lighting"). The deduced complex context is
delivered to the light control service that has registered the context through the event
broker.

Since the context awareness service can dynamically register the context ontology,
the middleware proposed in this paper has the ontology integration overhead in
addition to the time required for loading the ontology to the memory. As a result of
measuring the overhead, the integration time was not a significant burden compared
to the loading time as indicated in Fig 5. Moreover, the amount of increase in the
integration time was not substantial compared to the amount of increase of the domain
context ontology value and the developed context ontology value. Therefore, due to
the time required for integrating the context information, it can be suggested that the
middleware proposed in this study is not adequate for the real-time service platform,
but useful for general application services.

Fig. 3. Overhead of Merging Context Ontology

46 S. Lee

5 Conclusion

We specifically addressed the problem of adaptability of context management to an
ever-evolving world. This is achieved by providing distributed component based
architecture and by using semantic web technologies. Components enable the
addition, at any moment, of new devices that can provide information about the
context of applications. The use of RDF and OWL ensures interoperability between
components developed independently by taking advantage of the open character of
these technologies. Moreover, using ontology alignment modules allows dealing with
the necessary heterogeneity between components. The proposed approach relies on a
minimal commitment on basic technologies: RDF, OWL, and some identification
protocol. Functions and performance of the middleware were evaluated through the
test, and it was confirmed that the overhead of the proposed hierarchical context
ontology management model makes the middleware unfit for the hard real-time
ubiquitous computing environment. However, it was determined that the model can
be applied to the general ubiquitous computing environment. It can be concluded that
the ontology based context awareness middleware proposed in this paper can be
applied in the service gateway for various ubiquitous environments such as the home
network, telematics and smart office for providing context awareness services.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the
Korean Government(MOEHRD)" (KRF-2006- D00163).

References

1. Lee, S., Lee, J.: Dynamic Context Aware System for Ubiquitous Computing Environment.
In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, Springer,
Heidelberg (2006)

2. Hung, N.Q., Lee, S.Y., Hung, L.X.: A Middleware Framework for Context Acquisition in
Ubiquitous Computing Systems. In: Proceedings of the Second International Conference on
Computer Applications (2004)

3. Gu, T., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in Intelligent
Environments. In: Proceedings of Communication Networks and Distributed Systems
Modeling and Simulation Conference, pp. 270–275 (2004)

4. Euzenat, J., Pierson, J., Ramparany, F.: A contex information manager for pervasive
computing environments. In: Proc. 2nd ECAI workshop on contexts and ontologies (C&O),
Riva del Garda (IT), pp. 25–29 (2006)

5. Klyne, G., Carroll, J. (eds.): Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C Recommendation (2004), http://www.w3.org/TR/rdf-concepts

6. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language: Reference, W3C
Recommendation (2004), http://www.w3.org/TR/owl-ref

7. Seaborne, A.: RDQL — A Query Language for RDF, W3C Member submission (2004),
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

8. Open Services Gateway Initiative. http://www.osgi.org
9. Knopflerfish. http://www.knopflerfish.org

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 47–56, 2007.
© IFIP International Federation for Information Processing 2007

Community Computing Model Supporting Community
Situation Based Strict Cooperation and Conflict

Resolution*

Youna Jung, Jungtae Lee, and Minkoo Kim

Graduate School of Information and Communication Engineering, Ajou University,
Suwon, Republic of Korea, 443-749

{serazade,jungtae,minkoo}@ajou.ac.kr

Abstract. Community computing is a new computing environment where ubiq-
uitous services are provided by cooperation between existing smart object. In
these days, it is studied by many researchers but works on community comput-
ing are still at an early phase. To design and describe cooperation effectively, in
this paper, we propose the community situation based cooperation model. In
addition, we introduce conflict resolution scheme for community computing.
Consequently, we propose the community computing model supporting the
community situation based cooperation and conflicts resolution. Case studies
are also tried to examine the proposed community computing model.

1 Introduction

In recent years, ‘Community Computing’ has been suggested as a new technical envi-
ronment. For an instance, Jonathan Murray, Microsoft's chief technology officer for
the EMEA (Europe, Middle East and Africa) region, expressed his vision about com-
munity computing in InfoWorld magazine [1]. He said, “We are moving from a world
where we just have my own personal device that runs my own applications to a new
world where we are sharing other device’s computing capacity and resources”. Mi-
crosoft Company called such a new environment as community computing. In fact,
the idea is not totally new. By several projects such as PICO [2] and GAIA [3], com-
munity concept had been introduced. Yet despite these interests, a number of funda-
mental questions about community computing remained unanswered. In particular, a
formal model and development process for community computing system were not
well defined. In order to find an answer, we have researched on the model for com-
munity computing and a development process to generate a community computing
application system. As a progress, we proposed an early version of community com-
puting model and a development process using MDA approach [4] .

However, in the previous model, there is no cooperation model. At that time,
we didn’t have an idea to abstract cooperation, thus we just described a specific

* This research is supported by the ubiquitous Autonomic Computing and Network Project, the

Ministry of Information and Communication (MIC) 21st Century Frontier R&D Program in
Korea.

48 Y. Jung, J. Lee, and M. Kim

procedure of cooperation just like pseudo codes in protocol description part. Such
description style didn’t help to intuitively design cooperation of community at all. By
the difficulties in cooperation design, we have tried to find a cooperation model for
community computing. In addition, in the previous model, we assumed a conflict-free
circumstance but, in practice, conflicts are exists. Accordingly, we have also tried to
find a solution of conflicts.

In this paper, the major contribution is that we proposed the community situation
based cooperation model for community computing. By the cooperation model, each
member of a community cooperates with other members according to a community
situation. Additionally, we analyzed conflicts which can be happened in community
computing systems, and make up policies for conflict resolution. Using the coopera-
tion model and policies, we improve the previous community computing model.

The rest of the paper is organized as follows. In section 2, we introduce some re-
lated works, and then we propose the community situation based cooperation model
and conflicts resolution scheme in section 3. In Section 4, community computing
models supporting the community situation based cooperation model and conflicts
resolution scheme are proposed. Case studies are presented in section 5. Finally, sec-
tion 6 is dedicated to the conclusion and future works.

2 Related Works

2.1 Previous Community Computing Model

In our work, community computing is a computing technology to offer ubiquitous ser-
vices by exploiting the cooperation between smart objects. To design and develop a
community computing system effectively, we surveyed several existing models. In
particular, we concentrated on abstraction models for multi-agent systems such as
GAIA [3] because of agent’s flexible and autonomous problem solving behavior. How-
ever, the existing multi-agent based models focus on what agents are needed to satisfy
the requirements of a system, while community computing focuses on how to meet
requirements of a ubiquitous system using cooperation between given ubiquitous ob-
jects. In other middleware approach projects such as Active Space [5] and PICO [2], a
vision is similar with ours but there are no formal models. Therefore, we proposed a
community computing model [4] as an abstraction model for community computing
systems. In the previous community computing model, a community computing system
is abstracted as a society, and a society is composed of members and communities. A
community, a proactive organization consisting of members, is represented by its goals,
protocols, and necessary roles. A member is a ubiquitous object, which can play a cer-
tain role in a community. At the runtime, if a goal arises dynamically, ubiquitous objects
are selected for each role then a community is instantiated. After creation of a commu-
nity, each member cooperates with other members to attain a goal according to protocol
description. When the goal is finally achieved, the community is disorganized.

2.2 Existing Cooperation Models

In the previous community computing model, cooperation between members is con-
sidered as a predefined procedure. It means that a designer should know which task

 Community Computing Model 49

should be executed in which order. However, in case of a huge and complex coopera-
tion, it is not easy that a designer lay out a whole cooperation procedure in once.
Therefore, we considered a cooperation model should be necessary to intuitively
design the cooperation. To find an appropriate cooperation model, we surveyed exist-
ing cooperation models. In many systems, infrastructures, and cooperation models,
cooperation is used and described.

First of all, in 1997, a refined formal cooperation model for ARCHON was pro-
posed [6]. In this model, cooperation is represented just as a recipe, a set of prede-
fined tasks. AGDRSCOM [7] is an agent cooperation model which member agents
are able to adjust own cooperative tasks according to the changes of environment and
the feedbacks from other members. In AGDRSCOM, an idea of adaptive cooperation
is introduced but the detailed mean of adaption is not proposed. Cooperation is just
represented as a programming element in a skill description. In the cooperation model
of MAPFS [8], a cooperation process is also procedural described by actions and
instructions. In 2006, Ji Gao is proposed the hybrid cooperation using recipes, poli-
cies, and advertisements [9]. In this model, policy is the obligations and restrictions
that agents should comply to, and advertisement is the record of interests of other
agents. However, the fundamental cooperation process is also represented by a recipe.

In most cooperation models, as you can see, cooperation is described as a prede-
fined static pseudo program called as recipe, plan, or skill. In many systems, infra-
structures, and cooperation models, means of realizing cooperation were introduced
but the mean of designing cooperation itself was not concerned. Therefore, we arrived
at a decision that we needed a new cooperation model to design cooperation of com-
munity intuitively.

3 Community Situation Based Cooperation Model

In order to design cooperation of community, we proposed the community situation
based cooperation model as a new cooperation model, especially for community com-
puting [10]. The idea is that cooperation is executed according to community situa-
tion. If community’s situation is changed then tasks of each member are also changed.
That is, tasks which each member should perform are decided by the community
situations. At this time, the final situation of a community should be a goal achieve-
ment situation. Since the proposed cooperation model is based on the community
situations, we define the community situation first.

3.1 Community Situation Model

In order to define the community situations, we proposed the community situation
model. In this model, a community situation is determined by situations of specific
members. At this time, a member situation is decided by attribute values of the mem-
ber. The definition of a community situation is as follows.

In this version of community situation model, a community situation is represented
as a logical association of attributes. However, the expression power of the commu-
nity situation model can be improved. If the power of community situation model
then the cooperation model is also improved.

50 Y. Jung, J. Lee, and M. Kim

Definition 1. Community Situation Model

<community-situation>::= <situation-name> = <community-situation>
<community-situation>:: = <single-community-situation> | <conjunctive-community-situation> |

<disjunctive-community-situation>
<single-community-situation>::= [<quantifier>] <role-name>.<role-situation>
<quantifier>::= ∀ | ∃, <role-name>::=<string>, <role-situation>::=<member-situation>
<conjunctive-community-situation>::=(<community-situation>AND<community-situation>)
<disjunctive-community-situation>::=(<community-situation>OR<community-situation>)
<member-situation>::= <single-member-situation> | <conjunctive-member-situation> |

<disjunctive-member-situation>
<single-member-situation>::=<attribute>,<attribute>::=(<attribute-name> <operator><attribute-value>)
<attribute-name>::= <string> , <attribute-value>::= <value>
<operator>::= >| < | >= | <= | = |!= ,<value>::=<number>|<string>|<symbol>|TURE|FALSE
<conjunctive-member-situation>::=(<member-situation>AND<member-situation>)
<disjunctive-member-situation>::= (<member-situation> OR <member-situation>)

3.2 Community Situation Based Strict Cooperation Model

Using the proposed community situation model, we define the cooperation for com-
munity computing. Before the definition the community situation based cooperation
model, let you know some promises of this model.

Assumptions. The community situation based cooperation model is founded on fol-
lowing strong promises.

1) Certainty of community situation
2) All members of a community are aware of community situations and know own

tasks to do according to each community situation
3) In a community situation, each member can perform more tasks than one in se-

quential order
4) Although tasks of members are not completely finished in a community situa-

tion, community situation can be changed
5) Community situation is dynamically changed, but finally reached the situation of

goal achievement

Definition 2. Community Situation based Cooperation Model

<community-cooperation>::= <goal-name> = {<cooperation-block>}+

<cooperation- block >::=<community-situation>=>{<role-task>}+ ,<role-name>::=<string>
<role-task>::=<role-name>:{<role-action-name>}+,<role-action-name>::= <string>

When a member performs own actions in a certain community situation, conflicts
with other actions of the member or another member can occur. Such conflicting
actions may be executed to play another role for a different community or be not
finished in a previous community situation. In both case, we should resolve conflicts.

First of all, we defined that tasks of a member in a certain community situation are
executed by one thread, thus we do not need to worry about conflicts on a thread. Ac-
cordingly, what we should consider is conflicts between threads. These conflicts are
happened when a member cannot execute actions or when more than two members try
to execute conflicting actions simultaneously. To handle such conflicts, we classify
conflicting actions into two types, mutual exclusive conflict type and time dependent
conflict type. In case of the mutual exclusive conflict type, if a conflict occurs then one
among conflicting actions should be terminated. In case of the time dependent conflict

 Community Computing Model 51

type, one among conflicting actions should be executed first and then another action is
executed. For handling conflicts in runtime, a community manager has an action-
conflicts list about conflicts between own actions of a member or actions of different
members. The list represents types of action conflicts. At this time, conflicts between
same actions can be included in the list. For example, assume that a member performs
action a2 in community situation S1. Then a situation is changed to S2, although a2 is not
finished. After that, a situation is changed again to S3 and the member should perform a2
in a situation S3. However, a2 executed in previous situationS1 is still operating.

Definition 3. Action-conflicts List

<action-conflict-list-in-community>::= {<mutual-exclusive-action-conflicts-in-community> |
<time-dependent-action-conflicts-in-community>}*

<mutual-exclusive-action-conflicts-in-community-in-community>::= MEC(<role-name>.
<remained-action-name>,<role-name>.<killed-action-name>)

<time-dependent-action-conflicts-in-community-in-community> ::= TDC(<role-name>.
<precedent-action-name>,<role-name>.<following-action-name>)

<remained-action-name>::= <action-name> , <killed-action-name>::= <action-name>
<precedent-action-name>::=<action-name>,<following-action-name>::=<action-name>

<action-name>::= <string>

4 Community Computing Models with Community Situation
Based Strict Cooperation

In order to design the community computing system, we had proposed the community
computing model called as CCM. In addition, to systematically develop community
computing systems, we had also proposed a development process [4]. Since the proc-
ess is based on MDA (Model Driven Architecture) approach, we had generated more
detailed models than CCM, CIM-PI (Platform Independent Community Computing
Implementation Model) and CIM-PS (Platform Specific Community Computing Im-
plementation Model). Using the proposed models and development process, we could
create a community computing system fast and conveniently.

However, as we mentioned above, the previous models did not concern about coop-
eration model [4]. In those models, cooperation was just described like a procedural
pseudo codes. Although the previous models aimed to abstract a cooperation system, an
idea of cooperation was not involved. In order to make up the defect, we generated the
community situation based cooperation model [10]. Thus, in this paper, we applied the
cooperation model to the previous community computing models. As a result of that, we
propose the improved community computing models, the community situation based
community computing models. In this section, we introduce the community situation
based CCM, the community situation based CIM-PI, and the community situation based
CIM-PS. The differences from the previous models are as follows.

 Community situation based cooperation between members
 Conflict Resolution in a community computing system

4.1 The Community Situation Based Community Computing Model

The community computing model, called as CCM, is the most high-level abstraction
model for a community computing system. The objective of the CCM is to describe

52 Y. Jung, J. Lee, and M. Kim

the requirements and the boundary of a system. In order to do, a community comput-
ing system is represented as a society, and a society consists of community types and
member types. The major difference between the previous CCM and the community
situation based CCM is in the cooperation description part. In the improved CCM, a
cooperation of a community is represented by community situations and description
about each role’s tasks in a certain situation. In Fig.1, an example of the community
situation based CCM is shown.

Society COEX_Mall {
Community Type Description {

 Community Patrol_COEX{
Role Patrol_Robot : 1 ~ 10 {

 Attribute:POWER={ON|OFF};
LOCATION={location_type};MODE={BUZY|ORDINARY};

 Action:Area_Assign();Patrol();
 Cast : POWER=ON; LOCATION= IN.COEX_Mall;}

 Role Patrol_Manager : 1~ 2{
 Attribute:STATUS={ON DUTY| OFF DUTY};

LOCATION={location_type};
Action:Patrol_Management();

 Cast : STATUS=ON DUTY; LOCATION=IN.COEX_Mall;}
Role Guide : 1~ 5{ ... }

 Goals Patrol_COEX(Patrol_Robot, Patrol_Manager, Guide){
 PATROL_AREA_ASSIGN: Areas of All patrol_ robots,

guides, and patrol_manager is assinged
 PATROL_BEGIN: Start up a patrol service at COEX

PATROL_END: Shut up a patrol service at COEX, and
disorganize an instance of ‘Patrol_COEX’ community}

 Ontology : Patrol_COEX_Ontology; }
Community Find_Person{

 Role Patrol_Robot: 1 ~ 10 {
 Attribute:POWER={ON|OFF};
LOCATION={locaton_type};

Action: Area_Assign();Patrol();Broadcast_Info();
Find_Person();Guide_To();

Cast : POWER=ON; LOCATION= IN.COEX_Mall; }
Role Guidian_of_Lost_Person: 1 {
 Attribute:LOCATION={locaton_type};

CONTACT={OMD_ID};
Action:

Cast:LOCATION= IN.COEX_Mall; }
Role Guide : 1~ 5 {

 Attribute : STATUS={ON DUTY| OFF DUTY};
LOCATION={location_type};

Action:Patrol();Find_Person();Guide_To();Report_Police();
 Cast : STATUS=ON DUTY; LOCATION=IN.COEX_Mall;}

Role Salesman: 1~1000{ …}
Goals Find_a_lost_person(Patrol_Robot,

Guidian_of_Lost_Person, Guide, Salesman){
READ_PROFILE_OF_PERSON:Read a profile of a lost per-
son

 FIND_PERSON: Broadcast the profile, and try to find a
person

PERSON_FOUNDED : The person is founded
PERSON_NOT_FOUNDED : The person is founded}

Ontology : Patrol_COEX_Ontology; } }
Member Type Description {

Member Siociety_Member{
 Attribute : LOCATION={locaton_type};
 Cast : LOCATION= IN.COEX_Mall; } }

Fig. 1. An example of community situation based CCM

4.2 The Community Situation Based Platform Independent Community
Implementation Model Supporting Conflict Resolution

CIM-PI is a more detailed model than CCM. Its objective is to describe the implemen-
tation using given ubiquitous objects without knowledge of specific platforms. In order
to do, in CIM-PI, descriptions of society, community types, and member types are
more expanded and detailed. First of all, in the community type description, mapping
information between role and member types is added to represent which member types
can play which role. Secondly, description of cooperation is detailed. In particular,
tasks to be executed by a member shaped up as a sequence of actions of the member,
and the definition of community situations is also specified. In third, conditions of
community creation are described. To initiate a community instance, two ways are
allowed: a member requests an initiation to a society manager or a community man-
ager requests an initiation as a part of cooperation. Finally, policies are added to man-
age conflicts during the lifetime of a community. In the present version, member cast-
ing policy, member secession policy, and action conflicts list (see Definition.3) are
defined. The member casting policy represents a rule about member selection such as

 Community Computing Model 53

distant dependent casting or response-time dependent casting. In the member secession
policy, treatments for sudden secession of a member are specified. For examples, if a
member disappears, then we can initialize a cooperation process with a new member,
continue cooperation with a new, or terminate the cooperation. In the member type
description part, all member types are described and hierarchy of member types is also
defined using the extends keyword. In addition, member situations are specified as a
logical association of attribute’s values. Finally, policies for a member are also de-
scribed. When a member performs tasks to play one or more than one role, conflicts
between own tasks can occur. To resolve such conflicts, we define an action conflicts
list (see Definition.3) and represent it in member policy description. In society descrip-
tion, society policy is additionally described. In society policy description, precedence
of communities and exclusive communities are defined. When a society manager takes
more than one requests for community creation, these policies are used to select one. In
Fig.2, an example of the community situation based CIM-PI is shown.

Society COEX_Mall {
Community Type Description {
 Community Patrol_COEX{…………………}

Community Find_Person{
 Role Patrol_Robot: 1 ~ 10 { ………….}

Role-MemberType Mapping {
Patrol_Robot:ARGUS; Guidian_of_Lost_Person:
Human; Guide:Guide;Salesman:Human; }

Goals Find_a_lost_person(Patrol_Robot,Guidian_of_Lost_
Person, Guide, Resident)

{FIND_PERSON_REQUEST=>
Patrol_Robot : Read_Personal_Profile(); Broadcast_Info

(∀Patrol_Robot and ∀Guide and ∀Resident, “Find a
person”, profile);;

FIND_PERSON=>
Patrol_Robot : Find_Person(profile);
Guide : Find_Person(profile);
Salesman : Find_Person(profile);

PERSON_FOUNDED=>
Patrol_Robot and Guide and Salesman :

Announce(∀Patrol_Robot and ∀Guide and
∀Resident, “Person is founded”, location);
Guide_To(founded person, information office);;

PERSON_NOT_FOUNDED=>
 Patrol_Robot and Guide and Resident :
Announce(“Person isn’t founded”, ∀Patrol_Robot);;
Guide: Report_Police(“ lost person”, profile);;}

Community Situation {
FIND_PERSON_REQUEST={

Patrol_Robot.TAKE_REQUEST_FIND_PERSON};
FIND_PERSON={Patrol_Robot.FIND_PERSON};
PERSON_FOUNDED={∃(Patrol_Robot and Guide

and Resident.PERSON_FOUNDED};
PERSON_NOT_FOUNDED={NOT ∃Patrol_Robot.

PERSON_FOUNDED=YES) };}
Community Creation {
ByMember: {ARGUS.TAKE_REQUEST_FIND_PERSON;}

By Community: }
Community Policy {

Member Casting Policy {
Patrol_Robot: distant-dependent; Salesman: distant-

dependent; Guide: distance-dependent; }
Sudden Secession of Member {

Patrol _Robot: Continue with a new; Salesman: Continue
with a new; Guidian_of_Lost_Person: Initialize with a new;
Guide: Continue with a new; }

Action Conflicts List={ MEC(Report_Police(“ lost person”,
profile),Find_Person(profile)); }}

Ontology : Patrol_COEX_Ontology; } }
Member Type Description {
Member COEX_MallTIZEN {

 Attribute : LOCATION=IN.COEX_Mall; }
Member Animate Object extends COEX_MallTIZEN { ……...}
Member ARGUS extends Robot {

 Attribute : MODEL=STRING; FIND_PERSON={YES|NO};
TAKE_REQUEST_FIND_PERSON={YES|NO};
PERSON_FOUNDED={YES|NO};

Actions Area_Assign(COEX_Mall, Patrol_Robot);
Patrol(COEX_Mall); END_Patrol();
Read_Personal_Profile(); Broadcast_Info(
∀Patrol_Robot and ∀Guide and ∀Resident,
“Find a person”, profile); Find_Person(profile);
Announce(∀Patrol_Robot and ∀Guide and
∀Resident, “Person is founded”, location);
Guide_To(founded person, information office);
Announce(“Person is not founded”, ∀Patrol_Robot);

Member Situation {
TAKE_REQUEST_FIND_PERSON:

TAKE_REQUEST_FIND_PERSON=YES;
FIND_PERSON:FIND_PERSON:

FIND_PERSON:FIND_PERSON=YES;
PERSON_FOUNDED:PERSON_FOUNDED:

PERSON_FOUNDED:PERSON_FOUNDED=YES;}
Member Policy {

Exclusive Actions={ MEC(Patrol(COEX_Mall), END_Patrol_
Service()); } } } … }

Society Policy {
 Community Precedence {
 High_Priority: Find_Person

Medium_Priority: Patrol_COEX, Sell_Product
Low_Priority:}

Exclusive Community = { } } }

Fig. 2. An example of community situation based CIM-PI

54 Y. Jung, J. Lee, and M. Kim

4.3 The Community Situation Based Platform Specific Community
Implementation Model Supporting Conflict Resolution

In a community situation based CIM-PS, combines the description in the CIM-PI with
the details that specify how that system uses a particular platform. In improved CIM-
PS, descriptions about attribute acquisition, action mapping, and member configura-
tion are added. In attribute acquisition part, we describe where values of each attribute
derived from. The source of attribute values can be a kind of sensor or action. In ac-
tion mapping description, we describe how to realize actions of members. In case of
using existing programmed objects, we should make a connection between actions in
model and programmed actions in an existing object. On the other hand, in case that
we should program a ubiquitous member object, we use action names in models to
program a member. In member configuration part, components of each member are
described.

Society COEX_Mall {
Community Type Description { … }
Member Type Description { …
Member ARGUS extends Robot {

 Attribute : …
Actions …
Member Situation {……….…….}
Member Configuration={

Vision_Sonsor_v3; Samsung_Location_Sensor_v1;}
Attribute Acquisition {

TAKE_REQUEST_FIND_PERSON:Vision_Sonsor_v3;}
Action Mapping {

Area_Assign(COEX_Mall, Patrol_Robot):Set_patrol_
range(location); Patrol(COEX_Mall):CyberCap(patrol);
END_Patrol_Service():CyberCap(patrolstop);

Read_Personal_Profile():Read_RFID(person_RFID);
 Broadcast_Info(∀Patrol_Robot and ∀Guide and
∀Resident, “Find a person”, profile): BroadCast
(towhom, msg); Find_Person(profile):Search_Obj(Info);
Announce(∀Patrol_Robot and ∀Guide and
∀Resident, “Person is founded”, location):Notify
(towhom,msg);Guide_To(founded person, information
office):GuideServie(who,where);Announce(“Person is
not founded”, ∀Patrol_Robot):Notify(msg,towhom);}

Member Policy {
Exclusive Actions={

(Patrol(COEX_Mall), END_Patrol_Service()); } } }
…}

Society Policy { ... }

Fig. 3. An example of community situation based CIM-PS

5 Case Study

In a huge shopping mall, several robots exist. These robots have various functional-
ities such as move, vision sensing, alarm, voice recognition, information search, and
so on. At the ordinary time, each robot offers its own services such as guide service or
information presentation. Sometime, robots compose a community to achieve a com-
munity’s goal. Each robot can take multiple roles, depending on its ability.

Level-1 Cooperation: When a shopping mall is opened, a Patrol_COEX commu-
nity is initiated by casing all robots and guides. Area to patrol is assigned to all robots
and guides as soon as a community is created, then each robot and guide patrols as-
signed area. When a robot or guide cannot patrol because of too much load or sudden
interruptions, they request to reassign.

Level-2 Cooperation: When a robot is on patrol as a member of a Patrol_COEX
community, the robot is asked for finding a lost child by child’s mother. The robot
generates TAKE_REQUEST_FIND_PERSON member situation, and then requests a
creation of Find_Person community to a society manager. The society manager,
which supervises the COEX-Mall Community computing system, creates a commu-
nity manager for Find_Person community, and then the community manger initiates a

 Community Computing Model 55

Find_Person community by casting necessary members. The robot taking a request
sends child’s profile to all robots, guides, and salesman in COEX-Mall. After robots
get the profile, they start to find the child while patrolling. At this time, each robot
takes at least two roles in Patrol_COEX community and Find_Person community.

a) Community Situation based Cooperation for Patrol_COEX community

b) Community Situation based Cooperation for Find_Person community

Fig. 4. Community Situation based Cooperation for level-1 case and level-2 case

6 Conclusion

In this paper, we proposed the community situation based cooperation model and
conflict resolution scheme for community computing. Using the cooperation model
and policies, we improved the previous community computing model. In addition, to
examine the improved community computing model, we introduced case studies.
However, our proposal leaves space for further works as follows.

 Improvement of power of community situation based cooperation model and
situation model. – This version of community situation based cooperation
model is based on strict assumptions.

56 Y. Jung, J. Lee, and M. Kim

 Improvement of conflict resolution scheme
 Various case studies

References

1. Blau, J.: Microsoft: Community computing is on the way. InfoWorld Magazine (November
22, 2005), http://www.infoworld.com/article/05/11/22/HNcommunitycomputing_1.html

2. Kumar, M., et al.: PICO: A Middleware Framework for Pervasive Computing. Pervasive
Computing 1268-1536, 72–79 (2003)

3. Jennings, R., et al.: Developing Multiagent Systems: The Gaia Methodology. ACM Trans-
actions on Software Engineering and Methodology 12(3), 317–370 (2003)

4. Youna, J., Jungtae, L., Minkoo, K.: Multi-agent based Community Computing System De-
velopment with the Model Driven Architecture. In: Proc. of Fifth International Joint con-
ference on Autonomous Agents and Multiagent Systems, May 12, 2006, pp. 1329–1331
(2006)

5. Román, M., Campbell, R.H.: GAIA: Enabling Active Spaces. In: 9th ACM SIGOPS Euro-
pean Workshop, Kolding, Denmark, pp. 229–234 (2000)

6. Brazier, F.M.T., Jonker, C.M., et al.: Formalization of a cooperation model based on joint
intentions. In: Tambe, M., Müller, J., Wooldridge, M.J. (eds.) Intelligent Agents II - Agent
Theories, Architectures, and Languages. LNCS, vol. 1037, pp. 141–155. Springer, Heidel-
berg (1996)

7. Hua, C., Gao, J., et al.: AGDRSCOM: A complicated Dynamic Real-time Strong Coopera-
tion System Model. In: Proc. of the Second International Conf. on Machine Learning and
Cybernetics, pp. 318–323 (November 2003)

8. Perez, M.S., Sanchez, A., et al.: Cooperation Model of a Multiagent Parallel File System
for Clusters. In: Proc. of IEEE International Symposium on Cluster Computing and the
Grid, pp. 595–601 (2004)

9. Guo, H., Gao, J., et al.: Recipe, Policy and Self-Organizing: A Hybrid Collaboration Ap-
proach for Agent-based Cooperative Design. In: Proc. of the 10th International Conf. on
computer Supported Cooperative Work in Design (2006)

10. Jung, Y., Lee, J., Kim, M.: Community Situation based Strict Cooperation Model for Co-
operative Ubiquitous Systems. Journal of Convergence Information Technology 2(1)
(2007)

Advancements in

Dependable Time-Triggered Communication

Wilfried Steiner

TTTech Computertechnik AG
Vienna, Austria

wilfried.steiner@tttech.com

Abstract. When developing strategies for future research directions it
may be a wise decision to reflect on the development in the respective
area during the last few years. As to future applications of embedded
systems, we consider a concise solution for interconnecting embedded
systems to be one of their core requirements. In particular, we focus on
the development of dependable communication.

Our paper recapitulates progress in research and development of de-
pendable time-triggered communication protocols as done by the Insti-
tute for Computer Engineering at the Vienna University of Technology
and by TTTech Computertechnik AG over the last five years. We provide
an overview of the current situation and discuss the ongoing research and
development directions.

1 Introduction

Dependable communication infrastructures are required in various applications
that ensure the standards of our daily life. Such applications range from flight-
control systems in aircrafts to distributed control systems in nuclear power
plants. The basis of a dependable communication infrastructure is the com-
munication protocol and the properties that it provides. Determinism and pre-
dictability are desired properties for communication protocols as they support
the reasoning about the system during the development process as well as dur-
ing the application process of a respective system. Protocols that implement the
time-triggered paradigm provide determinism and predictability.

Time-triggered protocols are suitable for the x-by-wire market, for example
fly-by-wire in avionics or steer-by-wire in the automotive sector. While time-
triggered technology is used in the avionics market for quite some time, it is an
emerging technology for the automotive market and is about to hit the market
in form of FlexRayTM[Fle05]. Furthermore, as embedded systems are evolving
from stand-alone solutions to distributed embedded systems, there is a potential
for dependable distributed embedded systems in markets adjacent to the tradi-
tional safety-critical ones. Examples of future applications that require depend-
able communication are distributed implants, human robotics, or novel games.
Fault tolerance is a key mechanism in these examples. Assume a distributed

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 57–66, 2007.
c© IFIP International Federation for Information Processing 2007

wilfried.steiner@tttech.com

58 W. Steiner

implant that consists of a distributed embedded system with sensors and actua-
tors placed in several organs; it shall not happen, e.g., that a “stuck message”1

causes an overdose of adrenaline. Similar scenarios can easily be constructed for
human robotics and novel games, where corrupted communication may lead to
significant economic loss, or loss of fun respectively. At a glance, such thinking
may appear to be science fiction, and this might be true for the examples above.
However, a low-cost dependable communication infrastructure with accompany-
ing novel software technologies is an enabler for such applications.

Time-triggered protocols have been intensively studied over 25 years at the
Technical University of Vienna and at TTTech Computertechnik AG since its
establishment in 1998. We give an overview on time-triggered communication
in Section 2. It is a vision of TTTech to offer a product line of time-triggered
protocols that supports a wide range of dependable distributed embedded sys-
tems including the traditional safety-critical ones as well as emerging and future
systems. One step towards this goal is a layering of protocol services to make it
configurable to a customer’s needs. This approach has resulted in the Layered
Time-Triggered Protocol (LTTP), a TTP research derivative. We discuss LTTP
in Section 3. One particular fault-tolerance mechanism that has been studied
intensely over the last years are central guardian instances; we give an overview
of the central guardian concepts in Section 4. Ongoing research and development
is concerned with bridging the gap between the Ethernet world and dependable
time-triggered communication. This research trend is sketched in Section 5. This
paper concludes with Section 6.

2 Time-Triggered Communication

In a distributed system where each of the components has access to a local clock,
the states of the local clocks can be brought into agreement, that is, the clocks
can be synchronized. For this purpose there are two types of algorithms: clock-
synchronization algorithms and startup algorithms. Clock-synchronization algo-
rithmsareused tomaintain thequality of the synchronizationonce a certain thresh-
old is reached. The startup algorithm has to ensure that such a threshold is reached
withinanupper bound in time.This separationof the synchronizationproblem into
the subproblemsof startupandclock synchronization is not alwaysdone in the liter-
ature and there are clock-synchronization algorithms that solve both subproblems
at once. Many of these algorithms, however, either assume a reliable transmission
of messages between the nodes per se or are of a probabilistic nature.

Furthermore, in a computer system, there is no action that starts by itself.
An action needs a trigger to be executed. We can distinguish two basic types
of triggers: event-triggers and time-triggers. Event-triggers are external triggers
that are received by a component either via the communication channels or from
the environment. Time-triggers (are triggers that) arise when a clock, to which
the component has access to, has reached an action state. These action states
1 This is a message that is continually re-sent by a communication participant, e.g.

imposed by a faulty controller.

Advancements in Dependable Time-Triggered Communication 59

can either be defined a priori, and be therefore explicitly known to the system’s
designer, or can evolve from the execution of certain algorithms on a component.
An example for an a priori defined action state would be the start of a Task A:
schedule task A at time 12:00, where 12:00 is the action state of the component’s
clock. An example for an evolved action state would be the start of a Task B:
schedule Task B after Task A, where the action state evolves depending on the
execution time of Task A.

Synchronization of the local clocks of the components allows action states to be
defined throughout the distributed system, such that it is guaranteed that these
action states are reached within the precision Π , an off-line calculable parameter.
Hence, it is possible to implement synchronized time-triggers, that allow the com-
ponents to operate as a coordinated whole. Synchronized time-triggers can be used
for the communication strategy: we off-line specify the action states when a node
is allowed to access the shared medium. If all nodes adhere to this schedule, a fair
distribution of bandwidth is guaranteed. Faulty nodes that do not restrict their
sending behavior to the specification have to be blocked by additional guardian
instances. We call a communication strategy that is based on synchronized time-
triggers a time-triggered communication strategy, whereas communication strate-
gies that use unsynchronized (event- or time-) triggers are called event-triggered
communication strategies. The communication schedule for time-triggered com-
munication is generated off-line. The time it takes to process through the schedule
table once is called a TDMA round (Time-Division Multiple-Access).

A fine property of time-triggered communication is the time-triggered broad-
cast property that supports agreement algorithms.

From Reliable to Atomic to Time-Triggered Broadcast: A set of processes com-
municates by exchanging messages and each of these processes produces local
output based on the messages exchanged. Informally spoken, reliable broadcast
is a mechanism that guarantees that all processes generate the same unordered
set of messages as their local outputs.

The broadcast problem introduces two functional primitives: broadcast()
and deliver(). Each process uses the broadcast() primitive to distribute mes-
sages to all the other processes. Each process uses the deliver() function to
generate output. Thus, with progress of time, the deliver() primitive generates
a sequence of messages. A set of processes solves the reliable broadcast problem
if it provides [HT94]:

– Validity: if a correct process broadcasts m, it eventually delivers m.
– Agreement: if a correct process delivers m, all correct processes eventually

deliver m.
– Integrity: for any message m, every correct process delivers m at most once,

and only if m was previously broadcast by a correct sender.

Atomic broadcast is defined as reliable broadcast that fulfills the following
additional ordering property:

– Total Order: if correct processes p and q both deliver messages m and m′,
then p delivers m before m′ if and only if q delivers m before m′.

60 W. Steiner

Informally spoken, atomic broadcast guarantees that not only the set of mes-
sages is equal within the set of correct processes, but also the delivery order of
the messages.

The time-triggered broadcast makes the implementation of the broadcast()
primitive on a shared medium trivial: each node uses the shared medium in its
assigned time slot. Time-triggered broadcast even enhances the atomic broadcast
property in that the delivery order of messages is a priori known.

3 Layered Time-Triggered Protocol (LTTP)

The prime design goal of LTTP was a clean separation of the communication
layer from higher-layer mechanisms. A membership service is for example a
higher-layer mechanism. The encapsulation of the communication layer resulted
in a more robust protocol state machine including an enhanced fault-tolerant
startup algorithm and clique resolution algorithm.

The LTTP protocol distinguishes several protocol phases that can be grouped
as follows: the startup phases, which consists of the INIT, INTEGRATION,
and COLDSTART phase, the synchronized operation phase, which consists of
the SYNC phase, and the external synchronization phase, which consists of the
PAUSE SYNC and the EXTERNAL STARTUP phase. The phases are depicted
in Figure 1.

3.1 Protocol Startup

After power-on (that is, after the node is initialized) the node starts the IN-
TEGRATION phase. Each slot in the communication schedule is assigned to a
sending node and each message carries the identifier of its sender. Hence, the node
listens to the communication channels and has to identify, based on the messages

INIT

INTEGRATION

SYNC

COLDSTART

power-up

no sync set
detected

sync set
detected

regular
startup

integrated
to sync set

regular
restart

sync set
established

PAUSE
SYNC

EXTERNAL
STARTUP

external
startup

pause

continue external
restart

external
sync

Fig. 1. Protocol Phases

Advancements in Dependable Time-Triggered Communication 61

received, if there is a sufficient number of nodes communicating synchronously.
If such a set exists, the node integrates into this set and becomes synchronized.
If such a sufficient set does not exist, the node enters the COLDSTART phase.

In the COLDSTART phase, the node waits for coldstart signals that are used
as starting signal for schedule processing. Such coldstart signals are sent by
nodes when a local timer expires (only a subset of nodes may be configured to
send a coldstart signal). A node that receives a coldstart signal will start to
proceed through the schedule and reply in its assigned slot. The nodes are able
to acquire the number of nodes that react to the coldstart signal by counting
the replies. The COLDSTART phase ends when a sufficient set of nodes has
been synchronized. In general it may also happen that only a subset of nodes
in coldstart will reach synchronous operation. For this reason the LTTP startup
algorithm defines conditions for a re-transition to the INTEGRATION phase,
such that nodes that did not reach the sync phase are able to integrate to the
established synchronous communication.

In the SYNC phase the node has reached synchronous operation (but not
necessarily steady state). If synchronization is lost, the nodes restart the startup
process with the INTEGRATION phase.

The transitions between the different phases of the startup strategy can be
taken either by the expiration of timeouts or by the reception of a sufficiently
long sequence of messages per TDMA round. It is highly important that a faulty
node or channel cannot be able to spread such a sequence of messages (e.g. by
masquerading a number of different nodes) that will cause a non-faulty node to
take an incorrect transition between startup phases.

To speed up the startup process, LTTP allows using a dedicated TDMA
schedule during coldstart. This dedicated schedule may only consist of four slots
of minimum size. A more detailed discussion of the startup of time-triggered
communication is given in [SK06].

3.2 Synchronized Operation

In LTTP a single node may occupy more than one sending slot in the communica-
tion schedule. Furthermore, LTTP introduces the mechanism of “sender-dynamic
slots”. These slots are scheduled off-line but not statically assigned to a particu-
lar node. Instead, the nodes execute an arbitration protocol during run-time to
assign the sender-dynamic slots to a particular node. The information for this
arbitration protocol is transmitted with the messages in slots that are statically
assigned to the nodes. The arbitration protocol used is not part of the LTTP
specification; it could be, for example, a sophisticated agreement algorithm to
ensure fault-tolerant arbitration or a simple client-server algorithm.

3.3 External Synchronization

LTTP may be used as a sub-bus in a high-speed network. For such and sim-
ilar purposes LTTP is equipped with provisions to synchronize to external
sources. This external synchronization can be achieved in two ways: LTTP can

62 W. Steiner

be put into a PAUSE SYNC phase or into an EXTERNAL STARTUP phase.
In the PAUSE SYNC phase the communication is halted and operation is re-
sumed either after a given duration or upon an external event. In the EXTER-
NAL STARTUP phase LTTP awaits an external startup event upon which the
regular coldstart will be executed.

Also, these mechanisms support a global synchronization if several LTTP
systems (so called clusters) are connected together to form an LTTP multi-
cluster.

3.4 Clique Resolution Algorithms

A potential threat to time-triggered communication protocols is the establish-
ment of a cliques scenario. Cliques are then established, when two sets of disjoint
nodes are synchronized within their respective set but the two sets are unsyn-
chronized to each other. In our opinion an assumption that cliques will never
form is not acceptable for safety-critical systems as multiple transient failures or
faulty communication channels may cause their establishment. Hence, appropri-
ate algorithms to resolve cliques scenarios are required.

TTP uses a so-called clique avoidance algorithm: as the node cyclically pro-
ceeds through the communication schedule it classifies each message it receives
as correct or incorrect and increases a respective counter. When the node reaches
its sending slot in the TDMA round (in TTP each node occupies only one slot per
TDMA round) it checks the counters. The node detects cliques when the number
of incorrect received messages is higher than the number of correct messages.
Hence, this algorithm is based on the relative number of correct messages.

A drawback of this approach is that a node may not receive all incorrect
messages, as communication is performed via half-duplex communication links.
As a result, depending on the communication schedule configuration there is
a probability that cliques scenarios are not diagnosed. In LTTP we propose a
clique resolution algorithm that is not based on the relative number of correct
messages received, but on the absolute number [SPK06]. If the number of re-
ceived messages falls beyond an off-line calculable threshold for a given duration,
cliques are detected. The threshold is a function of either the number of nodes
in the system, or of a dedicated subset of nodes.

3.5 Formal Analysis of (L)TTP Services

Several services, such as the clock-synchronization service and the membership
service [Pfe03], have been formally verified by means of theorem proofing using
PVS. Rushby gives an overview of formal analysis activities in the time-triggered
architecture in [Rus02]. Lately, the TTP and the LTTP startup algorithms have
been subject to model-checking studies [SRSP04, SK06] using SAL2. Due to
the performance of the SAL model checker it was possible to assess the startup
algorithms by means of exhaustive failure simulation.

2 PVS and SAL are developed by SRI International.

Advancements in Dependable Time-Triggered Communication 63

4 The Central Guardian Concept

For the discussion of fault-tolerance methods we define fault-containments re-
gions (FCRs), that are regions that are impacted by a fault and fail as a whole.
In distributed embedded networks each node computer and each communication
channel forms such an FCR.

When multiple FCRs share a common resource, as in our case a shared broad-
cast channel, it is necessary to protect that shared resource via additional, in-
dependent FCRs. If such a protection mechanism is not implemented, a faulty
FCR bears the potential danger to monopolize the shared resource and to ren-
der it unusable for other, correct FCRs. Temple introduced the concept of “lo-
cal guardians” in [Tem99]: a node will not access a shared broadcast channel
directly but will communicate with a local guardian which may or may not re-
lay the send attempt to the shared broadcast channel, depending if the local
guardian classifies the sending attempt correct or faulty. To tolerate the fail-
ure of one local guardian or of one shared broadcast channel itself, the local
guardian, as well as the channel, have to be duplicated. This results in a number
of 2 ∗ n local guardians in a system of n nodes with two replicated channels.
To justify the independence argument of FCRs it is required to implement the
node and local guardians on separated silicon which makes the local guardian
solution economically unattractive. Indeed, the first implementations of the lo-
cal guardian concept (for TTP) placed the local guardians and the node on the
same chip, thus weakening the requirements on a FCR. Fault-injection studies
showed that this implementation of local guardians leads to error propagation
scenarios [ABST03].

With the movement from a bus topology to a star topology, the promising
concept of central guardians was introduced [BFJ+00]: instead of implement-
ing the guardian FCRs locally at the node’s side, the guardians are placed at
the hubs of the star network. The economic benefit of this solution is obvious,
instead of 2∗n local guardians only two central guardians are necessary in a two-
channel system for any number of nodes. The first proof of concept for central
guardians [BKS03] basically places a passive node, that is a node without hard-
ware units for message generation, at the hub that executes the same protocol as
the regular nodes. The hub controls the dataflow according to the passive node.
From a conceptual point of view, this solution is elegant: a node and the central
guardian temporally form a self-checking pair, that is, the central guardian is
able to transform the arbitrary behavior of a faulty node to a detectably-faulty
behavior (with respect to protocol execution). Thus, no semantically faulty mes-
sages will pass the central guardian and the fault tree of the system can be kept
at a minimum. In particular this first generation of central guardians required
following mechanisms:

– the guardian has to execute a semantic filter, that is, certain fields of a
messages are analyzed by the guardian and, if a semantic failure is detected,
the message is transformed into a syntactically faulty message, by truncation
of the message,

64 W. Steiner

– the centralized guardian instances have to use interlinks which are uni-
directional direct connections between the two centralized guardians, such
that a centralized guardian receives the messages transmitted on the respec-
tive other channel, and

– any one non-faulty guardian has to be powered on before any non-faulty
node starts to transmit messages.

Another central guardian strategy is a minimum strategy that aims at keeping
the state in a central guardian as small as possible. This strategy has certain
benefits for reasoning about the fault behavior of the central guardian itself,
since we have to argue that even a faulty central guardian will not create valid
messages. Such a minimum state strategy for a central guardian was selected
for the LTTP protocol. This second generation of central guardians allows dis-
missing the above listed requirements, although they may be implemented for
performance reasons.

5 Dependable Communication on Ethernet

There are several approaches to equip standard Ethernet with real-time capa-
bilities [Fel05]. Probably most notable beyond all is the IEEE activity in form
of the IEEE 1588 standard [IEE04]. IEEE 1588 specifies a clock synchronization
protocol on top of Ethernet.

An orthogonal approach to IEEE 1588 is Time-Triggered Ethernet (TTE)
[KAGS05]. TTE fundamentally distinguishes between foreground time-triggered
traffic and background event-triggered traffic, while both traffic classes conform
to the Ethernet frame format. Foreground traffic is scheduled a priori and pri-
oritized in the TTE switch. A prototype switch [Ste06] developed by the Vienna
University of Technology implements a “preemption” mechanism. This mecha-
nism will preempt ongoing transmission of event-triggered messages whenever
a time-triggered message has to be relayed. This mechanism provides a high
quality on transmission delay and transmission jitter of a time-triggered mes-
sage. Preempted event-triggered messages will be relayed after the time-triggered
message.

However, as IEEE 1588, as well as the synchronization protocol in TTE,
are master-slave based protocols, their fault-tolerance capabilities may not be
accurate for dependable communication. It is a research activity of TTTech to
design a fault-tolerant TTE. One possible solution is to incorporate the (L)TTP
services into TTE.

6 Conclusion

Time-triggered technology is successful for dependable communication in well-
established markets such as avionics, it is likely to be implemented in emerging
markets for dependable communication like, for example, the automotive market,
and it is promising and even an enabler for future markets. The LTTP protocol

Advancements in Dependable Time-Triggered Communication 65

together with the developed guardian instances provide the basis for a robust
dependable communication infrastructure and, hence, is suitable to a wide range
of applications. On the other side, TTTech is developing Ethernet-based time-
triggered protocols with a focus on dependability.

Acknowledgments

Many thanks to the colleagues from the Institute of Computer Engineering, for
their hospitality and discussions of many topics. This work was supported by
the European Project DECOS (IST-2-511764).

References

[ABST03] Ademaj, A., Bauer, G., Sivencrona, H., Torin, J.: Evaluation of fault han-
dling of the time-triggered architecture with bus and star topology. In:
Proc. of International Conference on Dependable Systems and Networks
(DSN 2003), San Francisco (June 2003)

[BFJ+00] Bauer, G., Frenning, T., Jonsson, A.K., Kopetz, H., Temple, C.: A central-
ized approach for avoiding the babbling-idiot failure in the time-triggered
architecture. In: ICDSN, New York (June 2000)

[BKS03] Bauer, G., Kopetz, H., Steiner, W.: The central guardian approach to en-
force fault isolation in a time-triggered system. In: Proc. of 6th Interna-
tional Symposium on Autonomous Decentralized Systems (ISADS 2003),
Italy, pp. 37–44 (April 2003)

[Fel05] Felser, M.: Real-time ethernet - industry prospective. Proceedings of the
IEEE 93, 1118–1129 (2005)

[Fle05] FlexRay Communications System - Protocol Specification - Version 2.1.
FlexRay Consortium (2005), Available at http://www.flexray.com

[HT94] Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425 (1994)

[IEE04] IEEE, INC. IEEE 1588 – Precision clock synchronization protocol for net-
worked measurement and control systems (2004)

[KAGS05] Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The time-
triggered ethernet (tte) design. In: 8th IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC), Seattle, Wash-
ington (May 2005)

[Pfe03] Pfeifer, H.: Formal Analysis of Fault-Tolerant Algorithms in the Time-
Triggered Architecture. PhD thesis, Universität Ulm (2003)

[Rus02] Rushby, J.: An Overview of Formal Verification for the Time-Triggered
Architecture. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS,
vol. 2469, pp. 83–105. Springer, Heidelberg (2002)

[SK06] Steiner, W., Kopetz, H.: The startup problem in fault-tolerant time-
triggered communication. In: International Conference on Dependable Sys-
tems and Networks (DSN 2006), (June 2006)

[SPK06] Steiner, W., Paulitsch, M., Kopetz, H.: The tta’s approach to resilience
after transient upsets. Real-Time Systems 32, 213–233 (2006)

http://www.flexray.com

66 W. Steiner

[SRSP04] Steiner, W., Rushby, J., Sorea, M., Pfeifer, H.: Model checking a fault-
tolerant startup algorithm: From design exploration to exhaustive fault
simulation. In: The International Conference on Dependable Systems and
Networks (DSN 2004) (June 2004)

[Ste06] Steinhammer, K.: Design of an FPGA-Based Time-Triggered Ethernet Sys-
tem. PhD thesis, Technische Universität Wien, Institut für Technische In-
formatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria (2006)

[Tem99] Temple, C.: Enforcing Error Containment in Distributed Time-Triggered
Systems: The Bus Guardian Approach. PhD thesis, Technische Univer-
sität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria (1999)

On Distributed Real-Time Scheduling in

Networked Embedded Systems in the Presence
of Crash Failures

Binoy Ravindran1, Jonathan S. Anderson1, and E. Douglas Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA
andersoj@vt.edu, binoy@vt.edu

2 The MITRE Corporation, Bedford, MA 01730, USA
jensen@mitre.org

Abstract. We consider the problem of scheduling distributable real-
time threads in networked embedded systems that operate under run-
time uncertainties including those on thread execution times, thread ar-
rivals, and node failure occurrences. We present a distributed scheduling
algorithm called CUA. We show that CUA satisfies thread time con-
straints in the presence of crash failures, is early-deciding, has an efficient
message complexity of O(fn) (where f is the number of crashes that ac-
tually occur and n is the number of nodes), and is time-optimal with
a time lower bound of O(D + fd + nk) (where D is the message delay
upper bound, d is the failure detection bound, and k is the maximum
number of threads). In crash-free runs, the algorithm constructs sched-
ules within O(D + nk), and yields optimal total utility if nodes are also
not overloaded. The algorithm is also “best-effort” in that a high impor-
tance thread that may arrive at any time has a very high likelihood for
feasible completion (in contrast to classical admission control algorithms
which favor feasible completion of admitted threads over admitting new
ones, irrespective of thread importance).

1 Introduction

In distributed systems, action and information timeliness is often end-to-end—
e.g., a causally dependent, multi-node, sensor to actuator sequential flow of ex-
ecution in networked embedded systems that control physical processes. Such
a causal flow of execution can be caused by a series of nested, remote method
invocations. It can also be caused by a series of chained, publication and sub-
scription events, caused due to topical data dependencies—e.g., publication of
topic A depends on subscription of topic B; publication of B, in turn, depends on
subscription of topic C, and so on. Designers and users of distributed systems,
networked embedded systems in particular, often need to dependably reason
about — i.e., specify, manage, and predict — end-to-end timeliness.

Many emerging networked embedded systems are dynamic in the sense that
they operate in environments with dynamically uncertain properties (e.g., [1]).
These uncertainties include transient and sustained resource overloads (due to
context-dependent activity execution times), arbitrary activity arrivals, and ar-
bitrary node failures. Reasoning about end-to-end timeliness is a very difficult

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 67–81, 2007.
c© IFIP International Federation for Information Processing 2007

68 B. Ravindran, J.S. Anderson, and E.D. Jensen

and unsolved problem in such dynamic uncertain systems. Another distinguish-
ing feature of motivating applications for this model (e.g., [1]) is their relatively
long activity execution time magnitudes—e.g., milliseconds to minutes. Despite
the uncertainties, such applications desire the strongest possible assurances on
end-to-end activity timeliness behavior.

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a control
or information flow requires a model of the flow’s locus in space and time that
can be reasoned about. Such a model facilitates reasoning about the contention
for resources that occur along the flow’s locus and resolving those contention to
optimize system-wide end-to-end timeliness. The distributable thread program-
ming abstraction which first appeared in the Alpha OS [2] and subsequently in
Mach 3.0 [3] (a subset), MK7.3 [4], Real-Time CORBA 1.2 [5], and Sun’s emerg-
ing Distributed Real-Time Specification for Java (DRTSJ) [6] directly provide
such a model as their first-class programming and scheduling abstraction. A dis-
tributable thread is a single thread of execution with a globally unique identity
that transparently extends and retracts through local and remote objects.

A distributable thread carries its execution context as it transits node bound-
aries, including its scheduling parameters (e.g., time constraints, execution time),
identity, and security credentials. The propagated thread context is intended to
be used by node schedulers for resolving all node-local resource contention among
distributable threads such as that for node’s physical (e.g., processor, I/O) and
logical (e.g., locks) resources, according to a discipline that provides application-
specific, acceptably optimal, system-wide end-to-end timeliness. Figure 1 shows
the execution of four distributable threads. We focus on distributable threads as
our end-to-end control flow/programming/scheduling abstraction, and hereafter,
refer to them as threads, except as necessary for clarity.

Fig. 1. Four Distributable Threads

When overloads
occur, meeting time
constraints of all
threads is impossi-
ble as the demand
exceeds the supply.
The urgency of a
thread is sometimes
orthogonal to the
relative importance
of the thread—-e.g.,
the most urgent
thread may be the
least important, and
vice versa; the most
urgent may be the
most important, and
vice versa. Hence when overloads occur, completing the most important threads
irrespective of thread urgency is desirable. Thus, a distinction has to be made

On Distributed Real-Time Scheduling in Networked Embedded Systems 69

between urgency and importance during overloads. (During underloads, such a
distinction generally need not be made, especially if all time constraints are dead-
lines, as optimal algorithms exist that can meet all deadlines—e.g., EDF [7].)

Deadlines cannot express both urgency and importance. Thus, we consider
the time/utility function (or TUF) timeliness model [8] that specifies the utility
of completing a thread as a function of that thread’s completion time. We specify
a deadline as a binary-valued, downward “step” shaped TUF; Figure 2 shows
examples. A thread’s TUF decouples its importance and urgency—urgency is
measured on the X-axis, and importance is denoted (by utility) on the Y-axis.

�
Time

�Utility

0

Fig. 2. Example Step TUF Time Constraints

When thread time con-
straints are expressed with
TUFs, the scheduling opti-
mality criteria are based on
maximizing accrued thread
utility—e.g., maximizing the
total thread accrued utility.
Such criteria are called util-
ity accrual (or UA) criteria,
and sequencing (scheduling, dispatching) algorithms that optimize UA criteria
are called UA sequencing algorithms (see [9] for example algorithms).

UA algorithms that maximize total utility under downward step TUFs
(e.g., [10,11]) default to EDF during underloads, since EDF satisfies all deadlines
during underloads. Consequently, they obtain the optimum total utility during
underloads. During overloads, they inherently favor more important threads over
less important ones (since more utility can be attained from the former), irre-
spective of thread urgency, and thus exhibit adaptive behavior and graceful time-
liness degradation. This behavior of UA algorithms is called “best-effort” [10]
in the sense that the algorithms strive their best to feasibly complete as many
high importance threads — as specified by the application through TUFs —
as possible.1 Consequently, high importance threads that arrive at any time al-
ways have a very high likelihood for feasible completion (irrespective of their
urgency). Note also that EDF’s optimal timeliness behavior is a special-case of
UA scheduling.
Contributions: Assured Thread Timeliness in the Presence of Fail-
ures. In this paper, we consider the problem of scheduling threads in the pres-
ence of the previously mentioned uncertainties, focusing particularly on (ar-
bitrary) node failures. Past efforts on thread scheduling (e.g., [2, 12, 13]) con-
sider a paradigm broadly called independent node scheduling, where threads are
scheduled at nodes using propagated thread scheduling parameters and without
any interaction with other nodes (thereby not considering node failures dur-
ing scheduling). Fault-management is separately addressed by thread integrity
protocols [14] that run concurrent to thread execution. Thread integrity protocols
detect failures of the thread abstraction, delivering failure-exception

1 Note that the term “best effort” as used in the context of networks actually is
intended to mean “least effort.”

70 B. Ravindran, J.S. Anderson, and E.D. Jensen

notifications [2, 13]. This approach avoids the overhead of inter-node commu-
nication, and is therefore message-efficient and tractable (solely from the thread
scheduling standpoint). However, the approach poses theoretical difficulties in es-
tablishing end-to-end timing assurances, due to the complex (and concurrent) in-
teraction between thread scheduling and thread fault-management mechanisms.

We consider instead collaborative scheduling, where nodes explicitly cooperate
to construct system-wide thread schedules, anticipating node failures. Of course,
doing so incurs message overhead costs, and thus raises fundamental questions
including a) what upper bounds can be established for such message costs, and
b) what are the consequent payoffs.

We answer these questions. We present an algorithm called Consensus-based
Utility accrual scheduling Algorithm (or CUA). The algorithm considers dis-
tributable threads that are subject to TUF time constraints. Threads may have
arbitrary arrival behaviors, may exhibit unbounded execution time behaviors
(causing node overloads), and may span nodes that are subject to arbitrary
crash failures. For such a model, we consider the scheduling objective of maxi-
mizing the total thread accrued utility.

CUA is a distributed algorithm that consists of a set of node schedulers that
cooperate to realize the algorithm’s logic. Node schedulers invoke themselves at
events of interest (e.g., thread arrival, failure-suspicion), construct local sched-
ules, broadcast schedules, and arrive at consensus on system-wide schedules,
despite failures. We show that CUA satisfies thread time constraints in the pres-
ence of crash failures, is early-deciding (i.e., its decision time is proportional
to the actual number of crashes), has an efficient message complexity of O(fn)
(where f is the number of crashes that actually occur and n is the number of
nodes), and is time-optimal with a time lower bound of O(D+fd+nk) (where D
is the message delay upper bound, d is the failure detection bound, and k is the
maximum number of threads). Note that early-deciding consensus algorithms in
the continuous-time synchronous model (where processes do not execute in lock-
step rounds) have an optimal time lower bound of O(D + fd) [15]. In crash-free
runs, CUA constructs schedules within O(D+nk), and yields optimal total util-
ity if nodes are also not overloaded. The algorithm also retains the fundamental
best-effort property of UA algorithms—i.e., a high importance thread that may
arrive at any time has a very high likelihood for feasible completion. To the best
of our knowledge, this is the first algorithm to provide these properties.

The rest of the paper is organized as follows: In Section 2, we discuss the
models of our work and state the algorithm objectives. Section 3 presents CUA.
We establish the algorithm’s properties in Section 4. We conclude the paper in
Section 5.

2 Models

2.1 Distributable Thread Abstraction

Threads execute in local and remote objects by location-independent invocations
and returns. A thread begins its execution by invoking an object operation. The

On Distributed Real-Time Scheduling in Networked Embedded Systems 71

object and the operation are specified when the thread is created. The portion
of a thread executing an object operation is called a thread segment. Thus, a
thread can be viewed as being composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is
called its head. The head of a thread is the only segment that is active. A thread
can also be viewed as being composed of a sequence of sections, where a section is
a maximal length sequence of contiguous thread segments on a node. A section’s
first segment results from an invocation from another node, and its last segment
performs a remote invocation. Further details of the thread model can be found
in [2, 5, 16].

Execution time estimates of the sections of a thread are assumed to be known
when the thread arrives. A section’s execution time estimate is the execution time
estimate of the contiguous set of thread segments that starts from the operation
of the object invoked on the node (i.e., the first thread segment executed on the
node) and ends with the first remote invocation made from the node. The time
estimate includes that of the section’s normal code and its exception handler
code, and can be violated at run-time (e.g., due to context dependence, causing
processor overloads).

The sequence of remote invocations and returns made by a thread can typi-
cally be estimated by analyzing the thread code (e.g., [17]). The total number
of sections of a thread is thus assumed to be known a-priori.

The application is thus comprised of a set of threads, denoted T = {T1, T2,
T3, . . .}. The set of sections of a thread Ti is denoted as [Si

1, S
i
2, . . . , S

i
k].

2.2 Timeliness Model

We specify the time constraint of each thread using a TUF. A thread Ti’s TUF
is denoted as Ui (t). A classical deadline is unit-valued—i.e., Ui(t) = {0, 1}, since
importance is not considered. Downward step TUFs generalize classical deadlines
where Ui(t) = {0, m}. We focus on downward step TUFs (e.g., Figure 2), and
denote the maximum, constant utility of a TUF Ui (t), simply as Ui. Each TUF
has an initial time Ii, which is the earliest time for which the TUF is defined,
and a termination time Xi, which, for a downward step TUF, is its discontinuity
point. Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

2.3 System and Failure Models

Our system and failure models follow that of [15]. We consider a system model
where a set of processing components, generically referred to as nodes, denoted
by the totally-ordered set Π = {1, 2, . . . , n}, are interconnected via a network.
We consider a single hop network model (e.g., a LAN), with nodes interconnected
through a hub or a switch. The system is assumed to be (partially) synchronous
in that there exists an upper bound D on the message delivery latency. A re-
liable message transmission protocol is assumed; thus messages are not lost or
duplicated. Node clocks are assumed to be perfectly synchronized, for simplicity
in presentation. The CUA algorithm, however, can be extended to clocks that
are nearly synchronized with bounded drift rates.

72 B. Ravindran, J.S. Anderson, and E.D. Jensen

As many as fmax nodes may crash arbitrarily. The actual number of node
crashes is denoted as f ≤ fmax. Nodes that do not crash are called correct.

Each node is assumed to be equipped with a perfect failure detector [18] that
provides a list of nodes that are deemed to have crashed. If a node q belongs to
such a list of node p, then node p is said to suspect node q. The failure detection
time [19] d ≤ D is assumed to be bounded. Similar to [15], for simplicity in
presentation, we assume that D is a multiple of d. Failure detectors are assumed
to be (a) accurate—i.e., a node suspects a node q only if q has previously crashed;
and (b) timely—i.e., if a node q crashes at time t, then every correct node
permanently suspects q within t + d.

2.4 Scheduling Objectives

Our primary objective is to design a thread scheduling algorithm that will max-
imize the total utility accrued by all the threads as much as possible. Further,
the algorithm must provide assurances on the satisfaction of thread termination
times in the presence of (up to fmax) crash failures. Moreover, the algorithm
must exhibit the best-effort property of UA algorithms (described in Section 1).

3 The CUA Algorithm

3.1 Rationale and Design

In the absence of crash failures, there is no compelling motivation for nodes to
collaborate for constructing a system-wide schedule.2 Thus, we consider crash
failures and first establish the premise for collaboration—i.e., why thread schedu-
ling in the presence of crash failures should consider node collaboration. We first
define the notion of a thread’s current head node and future head nodes :

Definition 1 (Current Head Node). The current head node of a thread Ti

is the node where Ti is currently executing (i.e., where Ti’s head is currently
located).

Definition 2 (Future Head Nodes). The future head nodes of a thread Ti

are those nodes where Ti will make remote invocations in the future.

The crash of a node p affects other nodes in the system in three possible ways:
(a) p may be the current head node of one or more threads; (b) p may be the
future head node of one or more threads; and (c) p may be the current and
future head node of one or more threads.

If p is only the current head node of one or more threads, then all nodes in the
system which are future head nodes of those threads are immediately affected,
since they can now release the processor time for scheduling those future heads
2 One motivation for such a collaboration would be to construct an optimized system-

wide schedule — one that can result in greater timeliness (e.g, total accrued utility)
than what would be possible without collaboration. We do not consider such a node
collaboration as that is outside the scope of this work.

On Distributed Real-Time Scheduling in Networked Embedded Systems 73

and use it for scheduling other threads. If p is only the future head node of one
or more threads, all nodes in the system which are (also) future head nodes of
those threads are affected, since they can now similarly release the processor
time for scheduling other threads. There may be a set of nodes which are not
future head nodes of p’s threads. Only those nodes are unaffected.

This implies that when a node p crashes, a system-wide decision must be
made (by all those nodes which are affected by p’s crash) regarding which set
of threads are eligible for execution in the system—referred to as an execution-
eligible thread set—and which are not. Furthermore, this decision must be made
in the presence of failures, since nodes may crash while that decision is being
made. We formulate this problem as a consensus problem [20] with the following
properties: (a) If a correct node decides an eligible thread set T , then some
correct node proposed T ; (b) Nodes (correct or not) do not decide different
execution-eligible sets (uniform agreement); (c) Every correct node eventually
decides (i.e., termination).

Observe that the first property is stronger than the uniform validity property
of the (uniform) consensus problem specification. Uniform validity states that
if a node decides a value, then some node previously proposed that value. For
the thread scheduling problem, this would mean that it would be possible for
correct nodes to decide on an execution-eligible thread set that was previously
proposed by a node, which later crashed. Consequently, this will result in an
invalid system-wide execution-eligible thread set. Thus, we qualify the uniform
validity property with correct.

Now that a premise for node collaboration is established, we need to determine
how a node can propose a set of threads that should be eligible for execution.
Since the task model is dynamic—i.e., when threads will be created is entirely ar-
bitrary and statically unknown, future scheduling events cannot be considered at
a scheduling event.3 Thus, the execution-eligible thread set must be constructed
solely exploiting the current system knowledge. Since the primary scheduling ob-
jective is to maximize the total thread accrued utility, and it may not be possible
to meet all thread termination times due to overloads, a reasonable heuristic for
determining the execution-eligible thread set is a “greedy” strategy: Favor “high
return” threads over low return ones, and complete as many of them as possible
before thread termination times.

The potential utility that can be accrued by executing a thread section on a
node defines a measure of that section’s “return on investment.” We measure
this using a metric called the Potential Utility Density (or PUD). On a node, a
thread section’s PUD measures the utility that can be accrued per unit time by
immediately executing the section on the node.

Thus, each node (that is a current head node for one or more threads) exam-
ines thread sections in its local ready queue for potential inclusion in a feasible
schedule for the node in the order of decreasing section PUDs. For each section,
the algorithm examines whether that section can be completed early enough,
allowing successive sections of the thread to also be completed early enough, to

3 A “scheduling event” is an event that invokes the scheduling algorithm.

74 B. Ravindran, J.S. Anderson, and E.D. Jensen

allow the entire thread to meet its termination time. We call this property, the
feasibility of a section. If the section is infeasible (due to schedule overload), it
is rejected. The process is repeated until all sections are examined, yielding a
local schedule of feasible sections.

To determine section feasibility, we assign termination times for each section
of a thread (derived from the thread’s termination time) in a way that allows
the thread’s termination time to be met if each of the section termination times
are met. The termination time that a section must meet to allow the thread to
meet its termination time is simply the thread termination time if the section
is the last section; otherwise, it is the latest start time of the section’s successor
section minus the communication delay upper bound. The latest start time of
a section is the section’s termination time minus its estimated execution time.
Thus, the section termination times of a thread Ti with k sections are given by:

Si
j .tt =

{
Ti.tt j = k

Si
j+1.tt − Si

j+1.ex − D 1 ≤ j ≤ k − 1
(1)

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt denotes Ti’s termination
time, and Si

j .ex denotes the estimated execution time of section Si
j .

Thus, the local schedule constructed by a node p is an ordered list of a subset
of sections in p’s ready queue that can be feasibly completed, and will likely re-
sult in high local accrued utility (due to the greedy nature of the PUD heuristic).
The set of threads, say Tp, of these sections included in p’s schedule is proposed
by p as those that are eligible for system-wide execution, from p’s standpoint.
However, not all threads in Tp may be eligible for system-wide execution, because
the current and/or future head nodes of some of those threads may crash. Con-
sequently, the set of threads that are eligible for system-wide execution is that
subset of threads with no absent sections from their respective current and/or
future head node schedules.

3.2 Algorithm Description

The CUA algorithm that we present is derived from Aguilera et. al ’s time-
optimal, early-deciding, uniform consensus algorithm in [15]. A pseudo-code de-
scription of CUA on each node i is shown in Algorithm 1.

The algorithm is invoked at a node i at the scheduling events including 1)
creation of a thread at node i and 2) inclusion of a node k into node i’s suspect
list by i’s failure detector.

When invoked, a node i first constructs the local section schedule by invoking
ConstructLocalSchedule() (line 3). This procedure accepts i’s (unordered)
local ready queue of sections σi

r and returns a schedule (an ordered list) σi. The
node then sends this schedule (σi, i) to all nodes (line 4). This message contains
a header that indicates that consensus will start within 2D time units of the
sender’s message transmission—i.e., one D for the sender’s message and one D
for the recipients to respond (line 5). Recipients are expected to immediately
respond by constructing their local section schedules and sending them to all

On Distributed Real-Time Scheduling in Networked Embedded Systems 75

Algorithm 1. CUA: Code for each node i

input: σi
r; output: σi; // σi

r: unordered ready queue of node i’s1:

sections; σi: schedule
Initialization: Σi = ∅; ωi = ∅; maxi = 0;2:

σi = ConstructLocalSchedule(σi
r);3:

send(σi, i) to all;4:

upon receive (σj , j) until 2D do // After time 2D, consensus begins5:

Σi = Σi ∪ σj ;6:

ωi = DetermineSystemWideFeasibleThreadSet(Σi);7:

upon receive (ωj , j) do8:

if j > maxi then maxi = j; ωi = ωj ;9:

at time (i − 1)d do10:

if suspect j for any j : 1 ≤ j ≤ i − 1 then11:

ωi = DetermineSystemWideFeasibleThreadSet(Σi\ σj);12:

send(ωi, i) to all;13:

at time (j − 1)d + D for every j : 1 ≤ j ≤ n do14:

if trust j then decide ωi;15:

UpdateSectionSet(ωi, σ
i
r);16:

σi = ConstructLocalSchedule(σi
r);17:

return σi;18:

nodes. When node i receives a schedule (σj , j), it includes that schedule into a
schedule set Σi (line 6). Thus, after 2D time units, all nodes have a schedule set
containing all schedules received.

A node i then determines its consensus decision (i.e., system-wide execution-
eligible thread set) by calling procedure DetermineSystemWideFeasible
ThreadSet(). This procedure accepts i’s schedule set Σi and determines that
subset of threads with no absent sections from their respective (current head
and/or future head) node schedules in Σi. Node i uses a variable ωi to maintain
its consensus decision. Node i now starts the consensus process.

The algorithm divides real-time in consecutive rounds of duration d each,
where node i’s round (or round i) corresponds to the time interval [(i − 1)d, id).
At the beginning of round i, node i checks whether it suspects any of the nodes
with a smaller node ID. If so, it sends (ωi, i) to all nodes (line 11). Note that for
i = 1, node i will send (σ1, 1) to all nodes (if i does not crash), since no nodes
have an ID lower than 1. Also, note that the messages sent in a round could be
received in a higher round since D > d.

Each node i maintains a variable maxi that contains the ID of the largest-ID
node from which it has received a consensus proposal (maxi is initialized to zero).
When a node i receives a proposed execution-eligible thread set (ωj , j) that is
sent from another node j with an ID that is larger than maxi (i.e., j > maxi),
then i updates its consensus decision to thread set ωj and maxi to j (line 9).

At times (j − 1)d + D for j = 1, . . . , n, node i is guaranteed to have received
potential consensus proposals from node j. Thus, at these times, i checks whether

76 B. Ravindran, J.S. Anderson, and E.D. Jensen

j has crashed; if not, i arrives at its consensus decision on the thread set ωi

(line 15).4

Node i then updates its ready queue σi
r by removing those sections whose

threads are absent in the consensus decision ωi. The updated ready queue is
used to construct a new local schedule σi, which is returned by the algorithm.
The head section of this schedule is subsequently dispatched for execution.

3.3 Constructing Section Schedules

We now describe the algorithm ConstructLocalSchedule(). To describe this
algorithm, we first define a few auxiliary functions. Since this algorithm is not
a distributed algorithm per se, we drop the suffix i from notations σi

r (input
unordered list) and σi (output schedule), and refer to them as σr and σ, re-
spectively. Similarly, sections are referred to as Si, for i = 1, 2, . . ., except when
reference to their distributable threads is needed.
• sortByPUD(σ) returns a schedule ordered by non-increasing section PUDs. If
two or more sections have the same PUD, then the section(s) with the largest
execution time estimate will appear before any others with the same PUD.

• Insert(Si,σ,I) inserts section Si in the ordered list σ at the position indi-
cated by index I; if entries in σ exists with the index I, Si is inserted before
them. After insertion, Si’s index in σ is I.

• Remove(Si,σ,I) removes section Si from ordered list σ at the position indi-
cated by index I; if Si is not present at the position in σ, the function takes no
action.

Algorithm 2. Algorithm ConstructLocalSchedule()

input: σr; output: σ;1:

Initialization: t := tcur, σ := ∅;2:

for each section Si ∈ σr do3:

if Si
j−1.tt + D + Si

j .ex > Si
j .tt then4:

// If j = 1, then Si
j−1.tt = 0

abort(Si);5:

else
Si.PUD = Ui (t + Si.ex) /Si.ex;6:

σtmp :=sortByPUD(σr);7:

for each section Si ∈ σtmp from head to tail do8:

if Si.PUD > 0 then9:

Insert(Si, σ, Si.tt);10:

if ScheduleFeasible(σ)=false then11:

Remove(Si, σ, Si.tt);12:

else break;13:

return σ;14:

4 If node i receives a proposed execution-eligible thread set (ωj , j) from another node
j at times (i − 1)d or (j − 1)d + D, we assume that the node executes line 8 before
it executes line 10 or line 14 (similar to [15]).

On Distributed Real-Time Scheduling in Networked Embedded Systems 77

Algorithm 2 describes the local section scheduling algorithm. When invoked at
time tcur, the algorithm first checks the feasibility of the sections. If the earliest
predicted completion time of a section is later than its termination time, it can be
aborted (line 4). Otherwise, the algorithm calculates the section’s PUD (line 6).

The sections are then sorted by their PUDs. In each step of the for -loop from
line 8 to 13, the section with the largest PUD is inserted into σ, if it can produce
a positive PUD. The schedule σ is maintained in the non-decreasing order of
section termination times. Thus, a section Si is inserted into σ at a position that
corresponds to Si’s termination time (Si.tt) in σ’s non-decreasing termination
time order.

After inserting a section Si, the schedule σ is tested for feasibility (line 11;
Algorithm 3). If σ becomes infeasible, Si is removed. After examining all sections,
the ordered list σ is returned.

Algorithm 3. Algorithm ScheduleFeasible()

input: σ; output: true or false;1:

Initialization: CumExecT ime = 0;2:

for each section Si
j ∈ σ do3:

CumExecT ime = CumExecT ime + Si
j−1.tt + D + Si

j .ex; // If4:

j = 1, then Si
j−1.tt = 0

if CumExecT ime > Si
j .tt then return false;5:

return true;6:

Algorithm 3 determines the feasibility of a schedule σ. A schedule σ is feasible
if the predicted completion time of each section Si in σ, denoted Si.ct, does not
exceed Si’s termination time Si.tt (line 5). Si.ct is the time at which Si is released
on its node plus the sum of the execution times of all sections that occur before Si

in σ and Si’s execution time Si.ex. Note that except for current thread head nodes,
Algorithm 1 is invoked before sections are actually released on future thread head
nodes. Thus, we calculate a section Si’s release time as the termination time of
Si’s predecessor (i.e., Si

j−1.tt) plus the message delay upper bound D, since that
is the latest time by which Si must be released on its node.

Algorithm 2 therefore seeks to include those sections in the schedule that are
likely to result in high total utility (due to the greedy nature of the PUD heuris-
tic). Further, since the invariant of schedule feasibility is preserved throughout
the examination of sections, the output schedule is always a feasible schedule.
Thus, during underloads, schedule σ will always be feasible in line 11 (Algo-
rithm 2), the algorithm will never reject a section, and will produce a schedule
which is the same as that produced by EDF (where deadlines are equal to section
termination times). Consequently, this schedule will meet all section termination
times during underloads.

During overloads, the algorithm will reject one or more sections to construct
a feasible schedule. Due to the algorithm’s greedy nature, the rejected sections

78 B. Ravindran, J.S. Anderson, and E.D. Jensen

are less likely to contribute a total utility that is larger than that contributed
by the accepted sections.
Asymptotic Complexity. The cost of Algorithm 2 is dominated by the for -loop
(line 8 to 13) which iterates at most k times for a ready queue with k sections.
The cost of this loop is dominated by Algorithm 3, which costs O(k) to test the
feasibility of a schedule with k sections. Thus, Algorithm 2’s asymptotic cost is
O(k2).

4 Algorithm Properties

We first describe CUA’s timeliness property under crash-free runs:

Theorem 1. If all nodes are underloaded and no nodes crash (i.e., fmax = 0),
CUA meets all thread termination times, yielding optimum total utility.

Proof. From the discussion in Section 3.3, if a node is underloaded, Algorithm 2
will meet all section termination times at the node. Thus, if all nodes are under-
loaded and fmax = 0, all section termination times are met. If all sections of a
thread meet their termination times, then the thread will meet its termination
time by virtue of Equation 1. Theorem follows.

Theorem 2. CUA achieves (uniform) consensus (i.e., uniform validity, uni-
form agreement, termination) on the system-wide execution-eligible thread set in
the presence of up to fmax failures.

Proof. This is self-evident from the algorithm description and follows from [15].

Theorem 3. CUA’s time complexity is O(D+fd+nk) and message complexity
is O(fn).

Proof. If the maximum number of sections at a node is k, then ConstructLocal
Schedule costs O(k2). Procedure DetermineSystemWideFeasibleThreadSet
will cost O(nk) to examine at most n schedules sent by n nodes, with each sched-
ule containing at most k sections. Thus, lines 3-7 of Algorithm 1 has an actual
time cost of 2D + δ1, where δ1 measures the actual cost of O(k2) + O(nk). These
steps will involve n messages, one for each schedule sent by a node in line 4.

Lines 8–15 has an actual time cost of D + fd and will involve (f + 1)n mes-
sages [15]. Line 12, executed at most f times adds computational cost O(fnk),
and UpdateSectionSet will remove at most k sections in its schedule, costing
O(k), and ConstructLocalSchedule costs O(k2), resulting in a combined actual
cost of a constant, say δ2.

Thus, Algorithm 1 has an actual time cost of 2D + δ1 + D + fd + δ2, or
3D+δ+fd, and will involve n+(f+1)n, or (f+2)n messages. The corresponding
asymptotic costs are O(D + fd + nk) and O(fn), respectively (for n ≥ k and
f ≥ 2). When f = fmax, the algorithm thus constructs schedules in at least
3D + δ + fmaxd time, or O(D + fmax(d + nk)). When fmax = 0 (i.e. crash-free),
the algorithm constructs schedules in time 3D + δ, or O(D + nk).

On Distributed Real-Time Scheduling in Networked Embedded Systems 79

From Theorems 2 and 3, we obtain the algorithm’s early-deciding property:

Theorem 4. CUA is a time-optimal, early-deciding algorithm that achieves
consensus on the system-wide execution-eligible thread set.

Proof. From Theorem 3, CUA decides in time proportional to f . From Theo-
rem 2, the algorithm achieves consensus on the system-wide execution-eligible
thread set. From [15], no early-deciding algorithm (in the continuous-time syn-
chronous model, where processes do not execute in lock-step rounds) has a time
bound lower than D + fd. Theorem follows.

We now establish CUA’s timeliness property in the presence of failures.

Theorem 5. If n − f nodes (i.e., correct nodes) are underloaded, then CUA
meets the termination times of all threads in its (consensus decision of)
execution-eligible thread set.

Proof. From Theorem 4, n − f nodes arrive at the same decision on the system-
wide execution-eligible thread set, say T . If these nodes are under-loaded, then
CUA meets the termination times of all threads in T , per Theorem 1.

To establish the algorithm’s best-effort property (Section 1), we first define the
concept of a Non Best-effort time Interval (or NBI):

Definition 3. Consider a distributable thread scheduling algorithm A. Let a
thread Ti be created at a node at a time t with the following properties: (a) Ti

and all threads in A’s execution-eligible thread set at time t are not feasible
(system-wide) at t, but Ti is feasible just by itself; and (b) Ti has the highest
PUD among all threads in A’s execution-eligible thread set at time t. Now, A’s
NBI, denoted NBIA, is defined as the duration of time that Ti will have to
wait after t, before it is included in A’s execution-eligible thread set. Thus, Ti is
assumed to be feasible at t + NBIA.

We now describe the NBI of CUA and other distributable thread scheduling
UA algorithms including DASA [11], LBESA [10], and AUA [13] under crash-
free runs. Note that DASA, LBESA, and AUA are thread scheduling algorithms
that belong to the independent node scheduling paradigm (i.e., they make their
scheduling decisions using propagated thread scheduling parameters and with-
out collaborating with other nodes). Since we focus on crash-free runs, the pres-
ence of a thread integrity protocol that these algorithms use for thread fault-
management can be ignored.

Theorem 6. Under crash-free runs (i.e., fmax = 0), the worst-case NBI of
CUA is 3D + δ, DASA’s and LBESA’s is δ, and that of AUA is +∞.

Proof. CUA will examine Ti at t, since the arrival of a new thread is a scheduling
event. Since Ti has the highest PUD and is feasible system-wide, the algorithm
will arrive at a consensus decision on an execution-eligible thread set that in-
cludes Ti in time 3D + δ when fmax = 0, per Theorems 2 and 3.

80 B. Ravindran, J.S. Anderson, and E.D. Jensen

DASA and LBESA will examine Ti at t (at the node where Ti was created),
since a thread arrival is also a scheduling event for them. Further, since Ti has the
highest PUD and is feasible, they will include Ti’s first section in their feasible
(local) schedules at t, yielding a worst-case NBI of δ, the time constant involved
for the algorithm to arrive at the local decision. This cost δ will be the same as
that of CUA, since DASA’s and LBESA’s asymptotic computational costs are
the same as that of CUA (i.e., O(k2)).

AUA will examine Ti at t, since a thread arrival at any time is also a scheduling
event under it. However, AUA is a TUF/UA algorithm in the classical admis-
sion control mould (e.g., [21]) and will reject Ti in favor of previously admitted
threads, yielding a worst-case NBI of +∞.

5 Conclusions and Future Work

We presented a distributed real-time scheduling algorithm called CUA. The al-
gorithm considers distributable threads with TUF time constraints, arbitrary
thread arrival behaviors, thread execution overrun behaviors causing overloads,
and arbitrary crash failures. We showed that CUA satisfies thread time con-
straints in the presence of crash failures, is early-deciding, has an efficient mes-
sage complexity of O(fn), and is time-optimal with a time lower bound of
O(D + fd + nk). In crash-free runs, the algorithm constructs schedules within
O(D + nk), and yields optimal total utility if nodes are also not overloaded.
We also showed that the algorithm has a tightly bounded non-best-effort time
interval, which implies that a high importance thread that may arrive at any
time has a very high likelihood for feasible completion.

Our work just scratched the surface of a very rich problem space, and so
many directions exist for immediate and long-term study. Example directions
include considering asynchronous models (e.g., [22,23]), allowing synchronization
dependencies between threads (e.g., due to mutually exclusive sharing of non-
processor resources), considering ad hoc network infrastructures (e.g., mobile,
wireless networks), and developing non-deterministic (e.g., probabilistic) timing
assurances.

References

1. CCRP: Network centric warfare.
http://www.dodccrp.org/ncwPages/ncwPage.html

2. Northcutt, J.D.: Mechanisms for Reliable Distributed Real-Time Operating Sys-
tems — The Alpha Kernel. Academic Press, London (1987)

3. Ford, B., Lepreau, J.: Evolving Mach 3.0 to a migrating thread model. In: Ford,
B., Lepreau, J. (eds.) USENIX Technical Conference, pp. 97–114 (1994)

4. The Open Group: MK7.3a Release Notes. The Open Group Research Institute,
Cambridge, Massachusetts (October 1998)

5. OMG: Real-time CORBA 2.0: Dynamic scheduling specification. Technical report,
Object Management Group (September 2001)

http://www.dodccrp.org/ncwPages/ncwPage.html

On Distributed Real-Time Scheduling in Networked Embedded Systems 81

6. Jensen, E.D., Wellings, A., Clark, R., Wells, D.: The distributed real-time spec-
ification for Java: A status report. In: Proceedings of The Embedded Systems
Conference (2002)

7. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics
Quaterly 21, 177–185 (1974)

8. Jensen, E.D., et al.: A time-driven scheduling model for real-time systems. In:
Jensen, E.D. (ed.) IEEE RTSS, pp. 112–122. IEEE Computer Society Press, Los
Alamitos (1985)

9. Ravindran, B., Jensen, E.D., Li, P.: On recent advances in time/utility function
real-time scheduling and resource management. In: IEEE ISORC, pp. 55–60. IEEE
Computer Society Press, Los Alamitos (2005)

10. Locke, C.D.: Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,
CMU (1986)

11. Clark, R.K.: Scheduling Dependent Real-Time Activities. PhD thesis, CMU (1990)
12. Kao, B., Garcia-Molina, H.: Deadline assignment in a distributed soft real-time

system. IEEE TPDS 8(12), 1268–1274 (1997)
13. Curley, E., Anderson, J.S., Ravindran, B., Jensen, E.D.: Recovering from dis-

tributable thread failures with assured timeliness in real-time distributed systems.
In: IEEE SRDS, pp. 267–276. IEEE Computer Society Press, Los Alamitos (2006)

14. Goldberg, J., Greenberg, I., et al.: Adaptive fault-resistant systems (chapter 5: Ad-
pative distributed thread integrity). Technical Report csl-95-02, SRI International
(January 1995), http://www.csl.sri.com/papers/sri-csl-95-02/

15. Aguilera, M.K., Lann, G.L., Toueg, S.: On the impact of fast failure detectors on
real-time fault-tolerant systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508,
pp. 354–370. Springer, Heidelberg (2002)

16. Anderson, J., Jensen, E.D.: The distributed real-time specification for Java: Status
report. In: JTRES (2006)

17. Maynard, D.P., Shipman, S.E.,:et al.: An example real-time command, control,
and battle management application for Alpha. Technical Report Archons Technical
Report 88121, CMU CS Dept (December 1988)

18. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

19. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE Transactions on Computers 51(5), 561–580 (2002)

20. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
21. Bestavros, A., Nagy, S.: Admission control and overload management for real-

time databases. In: Real-Time Database Systems: Issues and Applications, Kluwer
Academic Publishers, Dordrecht (1997)

22. Fetzer, C., Schmid, U., Susskraut, M.: On the possibility of consensus in asyn-
chronous systems with finite average response times. In: ICDCS ’05: Proceedings
of the 25th IEEE International Conference on Distributed Computing Systems
(ICDCS’05), pp. 271–280. IEEE Computer Society Press, Washington, DC (2005)

23. Hermant, J.F., Widder, J.: Implementing reliable distributed real-time systems
with the theta-model. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974, pp. 334–350. Springer, Heidelberg (2006)

http://www.csl.sri.com/papers/sri-csl-95-02/

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 82–92, 2007.
© IFIP International Federation for Information Processing 2007

Probabilistic Optimization and Assessment of Voting
Strategies for X-by-Wire Systems

Markus Kucera1 and Hans Mauser2

1 University of Applied Sciences, Regensburg
markus.kucera@informatik.fh-regensburg.de

2 Siemens AG, München
hans.mauser@siemens.com

Abstract. Signal voting of redundant sensor values and communication chan-
nels is of central importance in today’s X-by-wire systems. The required degree
of sensor redundancy, the type of redundancy, and finally the voting strategy
must be designed to meet the system's dependability requirements. These de-
sign decisions depend on an analysis of the probabilities and effects of all un-
derlying fault scenarios. Given a probabilistic fault model and a communication
model, the voting step can be formally stated as a maximum-likelihood estima-
tion of the correct input signal. With an example of an X-by-wire system we
show how GTEFT can be used to derive the failure probabilities of different
fault scenarios for various systems architectures and different voting strategies.
Thus the capability of GTEFT to support system development and system as-
sessment is demonstrated.

Keywords: Fault-tolerance, Dependability, Voting, Embedded System, Auto-
motive.

1 Introduction

The driving innovation force in today’s cars has become the area of Information
Technology. Powerful new vehicle systems like Brake-by-Wire, Steer-by-Wire, or
Park-Assistant are not viable without powerful functionality in software and electron-
ics [1]. This increase in functionality comes together with an increase in system
complexity.

Complexity is thus one major challenge to face when dealing with future embed-
ded systems.

The increasing ubiquitous use of embedded systems directs many applications into
an area where problems regarding human health and life emerge. This leads to the
topic of dependability and safety in particular. Safety has become a topic of special
importance in the automotive area, where system cost, penetration rates, and short in-
novation cycles are the driving factors.

Thus, meeting dependability requirements whilst meeting cost targets and devel-
opment schedule is the second major challenge to face in that area.

Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems 83

The idea to support dependability assessment by tools is not new. Many
approaches exist to evaluate dependability figures for distributed systems [7-10].
However, two main problems remain when dealing with above mentioned challenges:

(1) countering the state space explosion problem
(2) efficient integration into a product development cycle to allow for professional use

In [3] an approach is presented that synthesizes dynamic fault trees from UML Sys-
tem Models. The author’s main motivation to use UML as modelling and specifica-
tion language was to integrate into their sponsor’s development toolchain. In [4] an-
other approach is presented, that aims at efficient integration into the product
development cycle. For that purpose Matlab/Simulink is used for system modelling.
Both approaches provide semi-automatic fault tree synthesis for reliability assess-
ment. In [6] Grunske and Kaiser present an approach that offers the possibility for
automatic fault tree generation by providing a special Transformation Notation be-
tween interacting components. The state space explosion problem, however is not
countered following above presented approaches.

In [11] a method is presented that relieves the problem of state space explosion by
combining formal and informal techniques. Amari et al. [5] propose a method to ana-
lyze dynamic fault trees in order to find the best strategy for avoiding or minimizing
the state space explosion problem. The problem of efficient integration into the prod-
uct development cycle, however is not solved following these methods.

In contrast to these approaches, we presented GTEFT in [2]. GTEFT is an ap-
proach that solves both of above mentioned challenges. To do so, we combine simula-
tive and analytic techniques. GTEFT makes use of a COTS GUI (Matlab/Simulink)
for efficient integration into the product development cycle. For dependability evalua-
tion GTEFT makes use of classical Markov theory. The problem of state space explo-
sion is avoided by means of a dependability module that uses locality traversing.
GTEFT not only allows to derive reliability figures for a given system architecture
automatically. It also generates and analyses all failure sequences possible in a given
system. New system development or system optimisation is thus strongly supported.

Voting strategies are a central part of today’s safety related systems. In general,
voting strategies, and thus voting decisions, can be classified as exact, or probabilis-
tic. The distinction between probabilistic and exact voting decisions depends on the
underlying fault-model. If the fault-model contains complex faults like conspiracy
scenarios, then every voting strategy can be corrupted and exact voting decisions be-
come impossible.

For safety-related systems the question whether a voting strategy can guarantee ex-
act decisions for a reasonable fault-model is crucial.

On the other hand, the questions whether probabilistic voting decisions can be ap-
plied, and what error-probabilities are acceptable, depend on the system under inves-
tigation. In some cases probabilistic voting decisions are acceptable as a last resort to
make best-effort decisions in the presence of severe fault scenarios. If the system and
consequently the voter output has a safe state, it is advisable to vote ambiguous input
signal combinations to the safe-state signal.

84 M. Kucera and H. Mauser

In this paper we present a way to derive probabilistic voting strategies with
GTEFT. Given a probabilistic fault model and a communication model, the voting
step is formally stated as a maximum-likelihood estimation of the correct input signal.
This estimation can then be exploited in order to develop a suitable voting strategy.

2 Signal Voting

We show the usefulness of exhaustive fault-state-space enumeration in the context of
the generation and analysis of voting strategies. The necessity of voting arises in re-
dundant systems, when input signals are transmitted over several independent com-
munication channels. Ultimately, the redundant communication signals have to be
voted into one authoritative signal that drives an actuator.

We state the voting problem as a channel-decoding problem as follows:

source signal

channel 1

voter
VS

C1

C2

Ck

channel 2

channel k

A source signal S is generated by a sensor, by manual input or by an automated
control system and has to be transmitted to an actuator which reacts upon the value of
the signal. In order to achieve fault-tolerance, the source signal S is split and commu-
nicated redundantly over k independent communication channels. The outputs of
these channels are denoted C1 … Ck and are processed by a voter which generates an
output V. In the fault-free case all signals S, C1 … Ck and V agree. We assume that
faults can affect the communication channels, such that the voter input signals C1 …
Ck can differ from S. In this case the voter has to make its decision based on faulty
input data. The voter decision is correct if the value of the output signal V is identical
to S. A voting strategy is a function V(C1 , …, Ck) that maps all possible input signal
values to a voted output signal.

We classify the voting decisions for a given input signal combination C1 , …, Ck as
follows:

• exact voting decisions: The value of the source signal S can be inferred with
absolute certainty from the voter input. This means that no fault-combination
will cause the voting strategy to make a wrong decision.

• Probabilistic voting decisions: The combination of input signals does not
allow to infer the correct source signal with absolute certainty. Based on the
values of the input signals, however, the correct value of the source signal
can be reconstructed with a high probability. The decision involves an error-
probability which should be small.

Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems 85

Note that even in the case of probabilistic voting decisions, the voting strategy re-
mains a deterministic function.

The distinction between probabilistic and exact voting decisions depends on the
underlying fault-model. If the fault-model contains complex faults like conspiracy
scenarios between independent communication channels, then every voting strategy
can be corrupted and exact voting decisions become impossible. Conversely, by add-
ing redundant communication channels the voting strategy can be made more robust
to communication faults and more combinations of input signals can be voted by an
exact voting decision.

In the following we present a general approach that employs exhaustive fault-state-
space exploration to automatically generate voting strategies for a given system archi-
tecture. For every input-signal combination an optimal voting decision is found. Fur-
thermore, for every voting decision we derive whether the decision is exact or calcu-
late the conditional probability of the voting decision being correct given the correct
value of the source signal.

3 System Description

We present a simple system architecture as a case study for constructing and analyz-
ing the voting strategy. The example was chosen to be simple enough for an exhaus-
tive treatment, yet to contain the key elements and features of a real-world system.

Vcc2

Vcc1

switch1

switch2

switch3

connector1

connector2

cable11

cable12

cable13

cable21

cable22

cable23

system_bus

voter1

voter2

voter1

voter2

V1

V2

The system has a typical dual-channel architecture as is frequently employed in X-by-
wire applications. A switch unit generates the source signal from a mechanical input
by an array of three redundant switches. The switches have normally-closed (NC)
contacts, the switch unit has redundant power supply. The three redundant signals
from the switches are transmitted to two independent actuators, which react upon the
signals after a voting decision has been made. The input stages of the voters are as-
sumed to have pull-down resistors so that open input lines are read as logical 0. The
independent actuators also communicate over a system bus and transmit their individ-
ual input signal over the system bus to each other. Hence, the voter receives 6 input
signals: Three input signals S1, S2, S3 directly from the switch unit and three signals
R1, R2, R3 relayed from the peer voter.

86 M. Kucera and H. Mauser

For the system we consider the following fault model:

fault identifier fault description failure-rate
[fit]

vcc1_down
voltage supply from channel one
insufficient

10

vcc2_down
voltage supply from channel two
insufficient

10

switch1_stuck_open
the switch has always
disconnected terminals

4

switch1_stuck_closed
the switch has always
connected terminals

1

switch2_stuck_open … same for other switches 4
switch2_stuck_closed 1
switch3_stuck_open 4
switch3_stuck_closed 1

connector1_disconnected
the connector1 disconnects all
cables

5

connector2_disconnected
the connector2 disconnects all
cables

5

cable11_disconnected cable11 is open 5
cable12_disconnected cable12 is open 5
cable13_disconnected cable13 is open 5
cable21_disconnected cable21 is open 5
cable22_disconnected cable22 is open 5
cable23_disconnected cable23 is open 5

The failure rates are stated in fit, i.e. failures / 109 hours of operation. All faults are
assumed to be independent and to have exponential lifetime distributions. Obviously
stuck_open and stuck_closed failure modes are mutually exclusive.

Since the system architecture and the fault-model were simplified to allow a self-
contained and comprehensive presentation, we conclude with some comparative re-
marks on real-world applications:

Usually a sensor unit should have diverse sensors and generate dynamic signals
which can easily be checked for validity. The fault model for a real system must be de-
veloped systematically by an FMEA (failure mode and effect analysis) of the system
and all its components. We have omitted system-bus failures. Since the system-bus
communication will be protected by CRC-codes, communication errors will be detected
with a high probability. The voter would then have to process detectably unavailable
signals at its input. Though this poses no conceptual problem, it increases the set of pos-
sible input combinations. Shorted communication lines were also omitted.

4 Automatic Generation of Voting Strategies

In order to construct a voting strategy, we explore the failure-state-space exhaustively
and analyse how the different failure-scenarios affect the communication of the
source signal to the voter input. This allows to determine which failure combinations
can affect the communication in such a way that a given input signal combination
arrives at the voter.

Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems 87

We have presented efficient methods for enumerating the failure states and calcu-
lating their corresponding time-dependent probabilities in [2]. The method is based on
a depth-first exploration of all possible component-fault-sequences beginning from
the global intact state, where all components are intact.

Vcc1_down

Vcc2_down

switch1_stuck_open

switch1_stuck_closed

The diagram shows a part of the generated state space. Nodes represent failure states,
edges represent component faults and are labelled with the fault identifier. By replac-
ing the edge labels with the associated failure rates, the event graph can be analysed
as a Markov-Chain to calculate the state probabilities.

Brute-force attempts at exhaustive state-space exploration suffer from the problem
of state-space explosion. It is necessary to define reasonable truncation criteria where
the exploration of further fault-events is aborted. The following truncation criteria are
useful:

• If we reach a failure state where the continued operation of the system be-
comes impossible, we can truncate the depth-first search, because the system
will have to be repaired immediately and therefore will not encounter further
faults before the repair.

• It is reasonable to limit the length of considered fault-sequences. This is pos-
sible because long fault-sequences have small probabilities and can therefore
be neglected in the sense of a rare-event-approximation. Also to meet a
specified safety and integrity level it suffices to consider fault sequences up
to a required length.

With these truncation criteria it is possible to analyse a realistic fault model with sev-
eral hundred single component faults up to a reasonable search depth.

For the example model we have analyzed all fault-sequences of length up to three
and calculated their time-dependent probabilities. What we get from this analysis is a
set of fault scenarios F = {f1, f2, …, fn} and their associated probabilities P(f1), P(f2),
… P(fn). Since X-by-wire systems usually have to survive a given mission time with-
out repair, the probabilities P(fi) are calculated for the time at the end of the mission
assuming that all components were intact at the beginning of the mission and that
there was no repair during the mission. Reasonable mission times can be inspection
periods, maintenance periods or for non-safety-critical systems warranty periods. For
the purpose of this study we have chosen a mission time of 2 years of continued op-
eration.

88 M. Kucera and H. Mauser

Note that the correct procedures for calculating the probabilities P(fi) depend on the
system under investigation. Alternative methods and assumptions for calculating P(fi)
can be perfectly suited for other systems and do not affect the following procedure for
constructing voting strategies.

Given the set of considered fault scenarios F and the associated probabilities P(fi),
the voting strategy is constructed as described in the following pseudo code:

Initialize the following array data-structures to zero:
n[s, C1, …, Ck]
p[s, C1, …, Ck]
// traverse fault scenarios
For all fault scenarios f in F
 {
 For all values s of the source signal
 {
 Calculate the input signal combination
 (C1, …, Ck) to the voter, resulting from
 f and s.
 increment n[s, C1, …, Ck] by 1
 increment p[s, C1, …, Ck] by P(f)
 }
 }
// output voting strategy
For every input signal combination (C1, …, Ck)
 {
 if (0 < n[s, C1, …, Ck]
 and for all t != s: 0 == n[t, C1, …, Ck]
)
 {
 The exact voting decision is s
 }
 else if (for all t != s:
 p[t, C1, …, Ck] < p[s, C1, …, Ck]
)
 {
 The probabilistic voting decision is s
 }
 else
 {
 No voting decision possible
 }
 }

The values of the arrays can be readily interpreted:

• n[s, C1, …, Ck]
represents the number of considered fault scenarios that cause the input sig-
nal combination C1, …, Ck to appear at the voter input given the condition
that s is the correct input signal. This is used to make exact voting decision
by ruling out all possible source signal values but one.

Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems 89

• p[s, C1, …, Ck]

is the conditional probability that the input signal combination C1, …, Ck ap-
pears at the voter input given the condition that s is the correct input signal.
This is used to make probabilistic voting decisions by maximum likelihood
estimation of the true source signal value. This maximum likelihood decision
is optimal, if we make no a priori assumptions on the probability of the
source signal values.

The above procedure includes the possibility that for a given input combination C1,
…, Ck to the voter no well-justified voting decision can be made. This can be the case
if:

• The input combination C1, …, Ck does not arise for any source signal s and
any considered fault scenario f.

• The input combination C1, …, Ck is equally likely for different values of the
source signal. This can occur if the system architecture shows a certain de-
gree of symmetry.

If no voting decision can be made, we recommend to refine the fault model or to
set the voter output to a safe state for unresolvable voter inputs.

For the example system model we show the complete voting table. Since the voters
are symmetric their voting strategies will be identical up to the naming convention of
the input signals. The constructed voting table can easily be coded into software or
hardware for a real system implementation.

The analysis has been explicitly carried out for first-fault scenarios, double-fault
scenarios and triple-fault scenarios separately.

For the source signal the signal values 0 and 1 have the following interpretation:
0: button released, i.e. switches closed
1: button applied, i.e. switches open

For the communication signals si, ri the values 0 and 1 have the following interpre-
tation:

0: signal from switch unit connected to ground.
1: signal from switch unit connected to Vcc.

The following values are reported in the table:

n(0) corresponding to n[0, C1, …, Ck]
n(1) corresponding to n[1, C1, …, Ck]
p(0) corresponding to p[0, C1, …, Ck]
p(1) corresponding to p[1, C1, …, Ck]

The column ‘exact’ marks all exact voting decisions with the label ‘exact’ and all
probabilistic decisions with ‘-‘.

Note in interpreting the n(0), n(1) values that our implementation counts all permu-
tations of a fault sequence individually.

90 M. Kucera and H. Mauser

voter input single component fault scenarios double component fault scenarios triple component fault scenarios
s1 s2 s3 r1 r2 r3 V n(0) p(0) n(1) p(1) exact n(0) p(0) n(1) p(1) exact n(0) p(0) n(1) p(1) exact
0 0 0 0 0 0 0 1 0 13 1,26E-03 exact 4 3,83E-08 169 1,26E-03 - 178 3,84E-08 1975 1,26E-03 -
1 0 0 0 0 0 1 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
2 0 0 0 0 1 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
3 0 0 0 0 1 1 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
4 0 0 0 1 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
5 0 0 0 1 0 1 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
6 0 0 0 1 1 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
7 0 0 0 1 1 1 0 1 8,75E-05 0 exact 17 8,75E-05 0 exact 185 8,75E-05 0 exact
8 0 0 1 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
9 0 0 1 0 0 1 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -
10 0 0 1 0 1 0 0 0 0 0 0 6 5,37E-13 0 exact
11 0 0 1 0 1 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
12 0 0 1 1 0 0 0 0 0 0 0 6 5,37E-13 0 exact
13 0 0 1 1 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
14 0 0 1 1 1 0 0 0 0 0 0 6 6,71E-13 0 exact
15 0 0 1 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
16 0 1 0 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
17 0 1 0 0 0 1 0 0 0 0 0 6 5,37E-13 0 exact
18 0 1 0 0 1 0 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -
19 0 1 0 0 1 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
20 0 1 0 1 0 0 0 0 0 0 0 6 5,37E-13 0 exact
21 0 1 0 1 0 1 0 0 0 0 0 6 6,71E-13 0 exact
22 0 1 0 1 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
23 0 1 0 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
24 0 1 1 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
25 0 1 1 0 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
26 0 1 1 0 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
27 0 1 1 0 1 1 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
28 0 1 1 1 0 0 0 0 0 0 0 6 6,71E-13 0 exact
29 0 1 1 1 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
30 0 1 1 1 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
31 0 1 1 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
32 1 0 0 0 0 0 1 0 0 0 4 3,07E-09 exact 30 2,60E-12 106 3,07E-09 -
33 1 0 0 0 0 1 0 0 0 0 0 6 5,37E-13 0 exact
34 1 0 0 0 1 0 0 0 0 0 0 6 5,37E-13 0 exact
35 1 0 0 0 1 1 0 0 0 0 0 6 6,71E-13 0 exact
36 1 0 0 1 0 0 1 0 1 1,75E-05 exact 2 4,91E-09 17 1,75E-05 - 56 4,91E-09 179 1,75E-05 -
37 1 0 0 1 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
38 1 0 0 1 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
39 1 0 0 1 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
40 1 0 1 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
41 1 0 1 0 0 1 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
42 1 0 1 0 1 0 0 0 0 0 0 6 6,71E-13 0 exact
43 1 0 1 0 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
44 1 0 1 1 0 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
45 1 0 1 1 0 1 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
46 1 0 1 1 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
47 1 0 1 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
48 1 1 0 0 0 0 0 0 0 4 1,38E-08 0 exact 106 1,38E-08 6 2,68E-14 -
49 1 1 0 0 0 1 0 0 0 0 0 6 6,71E-13 0 exact
50 1 1 0 0 1 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
51 1 1 0 0 1 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
52 1 1 0 1 0 0 0 0 0 2 6,13E-09 0 exact 44 6,14E-09 6 2,68E-14 -
53 1 1 0 1 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
54 1 1 0 1 1 0 0 1 7,00E-05 0 exact 15 7,00E-05 2 3,07E-10 - 129 7,00E-05 32 3,07E-10 -
55 1 1 0 1 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
56 1 1 1 0 0 0 0 1 8,75E-05 0 exact 17 8,75E-05 0 exact 185 8,75E-05 0 exact
57 1 1 1 0 0 1 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
58 1 1 1 0 1 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
59 1 1 1 0 1 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
60 1 1 1 1 0 0 0 0 0 2 7,66E-09 0 exact 32 7,67E-09 0 exact
61 1 1 1 1 0 1 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
62 1 1 1 1 1 0 0 1 8,75E-05 0 exact 11 8,75E-05 0 exact 65 8,75E-05 0 exact
63 1 1 1 1 1 1 0 5 4,02E-04 0 exact 23 4,02E-04 0 exact 65 4,02E-04 6 5,37E-15 -

5 Analysis of the Voting Strategy

The derived voting strategy can make exact voting decisions for all single component
fault scenarios. This means that no single fault from our fault-model can defeat the
voting strategy.

In the columns for double component fault scenarios we find some input signal
combinations were the voting strategy cannot make exact decisions. This could be ex-
pected, since the degree of redundancy of our system is two with respect to power
supply and connectors and the degree of redundancy is three with respect to switches.

Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems 91

By probabilistic voting the voter can, however, make a best-effort decision for all in-
put signal combinations.

Note that the voting strategy makes exact decision, where a simple majority voter
would have failed: In line number 24 the majority of four input signals has value 0 in-
dicating that the button of the switch unit is applied. The exact voting result, however,
is 0, indicating a released button.

The columns for the triple component fault scenarios show that the voter can still
make exact decisions for half the input signal combinations.

The error probability of the derived voting strategy can be analyzed by summing
up the probability of all states were the voter makes wrong decisions for either value
of the source signal. For the example model the time-dependent error probabilities are
plotted in the following diagram. The voter output shows a bias towards the applied
switch position (voter output v = 1). Obviously there are more fault combination
which simulate an applied switch than a released switch. An inspection of the critical
fault sequences shows that identical stuck-at faults at two switches defeat the voting
strategy. In addition, the voter_stuck_at_1 error can also be caused by double faults in
the power supply (Vcc1_down, Vcc2_down) or in the two connectors (connec-
tor1_disconnected, connector2_disconnected).

Replacing the normally-closed switches by normally-open switches would allow to
shape the error probabilities.

Since the error-probabilities approach 0 for short mission times, the total failure
rate of the system can be kept acceptably low by enforcing short inspection and main-
tenance intervals to detect and remove first component faults.

1,0E-12

1,0E-11

1,0E-10

1,0E-09

1,0E-08

1,0E-07

1,0E-06

1,0E-05

0 2 4 6 8 10 12

operating time [years]

P(voter_stuck_at_1)

P(voter_stuck_at_0)

6 Conclusion

This paper presented a practical approach to develop and assess voting strategies that
make use of probabilistic voting decisions. For safety-related systems the question
whether a voting strategy can guarantee exact decisions for a reasonable fault-model
is crucial. In systems where probabilistic voting decisions are acceptable such
decisions could be used, e.g. as a last resort to make best-effort decisions in the pres-
ence of severe fault scenarios.

92 M. Kucera and H. Mauser

References

[1] Kucera, M.: Drive-By-Wire Applications for future vehicles (in German). 20. Tagung
Elektronik im Kraftfahrzeug, Haus der Technik, Essen (Juni 2000)

[2] Kucera, M., Mauser, H.: Semi-Automatic Reliability Assessment of Safety Related Em-
bedded Systems. In: Proceedings of the 18th IASTED International Conference on Paral-
lel and Distributed Computing and Systems, 13-15 November 2006, pp. 495–502 (2006)

[3] Pai, G.J., Dugan, J.B: Automatic synthesis of dynamic fault trees from UML system
models. In: Proceedings of the 13th International Symposium on Software Reliability En-
gineering, ISSRE 2002, 12-15 November 2002, pp. 243–254 (2002)

[4] Papadopoulos, Y., Grante, C.: Techniques and tools for automated safety analysis & deci-
sion support for redundancy allocation automotive systems. In: Proceedings of the 27th
Annual International Computer Software and Applications Conference, COMPSAC
2003, 3-6 November 2003, pp. 105–110 (2003)

[5] Amari, S., Dill, G., Howald, E.: A new approach to solve dynamic fault trees. In: Pro-
ceedings of the annual Reliability and Maintainability Symposium, 27-30 January 2003,
pp. 374–379 (2003)

[6] Grunske, L., Kaiser, B.: Automatic generation of analyzable failure propagation models
from component-level failure annotations. In: Fifth International Conference on Quality
Software (QSIC 2005), 19-20 September 2005, pp. 117–123 (2005)

[7] Johnson, A., Malek, M.: Survey of Software Tools for Evaluating Reliability, Availabil-
ity, and Serviceability. ACM Computing Surveys 20(4) (December 1988)

[8] Sheldon, Greiner, Benzinger: Specification, Safety and Reliability Analysis Using Sto-
chastic Petri Net Models. In: Proceedings of the 10th International Workshop on Software
Specification and Design (IWSSD’00), p. 123 (2000)

[9] Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic Programming for Struc-
tured Continuous Markov Decision Problems. In: Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pp. 154–161 (2004)

[10] Sheldon, F.T., Jerath, K.: Assessing the Effect of Failure Severity, Coincident Failures
and Usage-Profiles on the Reliability of Embedded Control Systems. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 826–833. Springer, Heidelberg
(2004)

[11] Karlsson, D., Eles, P., Peng, Z.: Validation Of Embedded Systems Using Formal Method
Aided Simulation. In: Proceedings of the 8th Euromicro Conference on Digital System
Design, 30 August-3 September 2005, pp. 196–199 (2005)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 93–104, 2007.
© IFIP International Federation for Information Processing 2007

Application of Safety Analyses in Model Driven
Development

Javier Fernández Briones, Miguel Ángel de Miguel, J.P. Silva, and Alejandro Alonso

Department of Telematics Engineering, Technical University of Madrid (UPM),
Ciudad Universitaria s/n, 28040 Madrid, Spain.

jfbriones@dit.upm.es

Abstract. Some high integrity software systems require the rigorous validation
of safety properties. Assessing whether software architectures are able to meet
these requirements is of great interest: to avoid the risk that the implementation
does not fulfill requirements due to a bad design, and, to reduce the
development cost of safety critical parts of the system. Safety analyses like
FMECA and FTA are two methods used during preliminary safety assessments.
We have implemented tools to automatically generate safety analyses from the
models of the architecture: a UML profile for safety, modeling languages to
express safety analyses, and a model transformation chain. Safety analysts can
use these tools to annotate the models, analyze the architecture, and recommend
system engineers mitigation means to apply for improving the architecture.

1 Introduction

Even though software already inundates many industries and human activities, there
is still interest in constructing, using complex software, more pervasive systems with
safety requirements. Some features have been requested to the development of such
systems, to highlight: a better reuse, new solutions for managing complexity, and
enhanced ways for undertaking safety concerns in complex software systems.

Component-based development and model-driven architecture (MDA) are two
relatively new methods for software development which tackle the problem of
reusability and complexity. With the former, software architectures are assembled
with components potentially from a variety of sources, written in different
programming languages and running on several platforms. The latter takes software
models as leitmotiv in a development process based on continuous model
transformations; converting representations of the structure and functionality of an
application into implementation models dependent of a specific platform.

Software analysis aims to provide information about the behavior of the software
during all phases of the development, whilst formal methods are of more application
during the implementation phase. Software safety analyses are an important requisite
in the stage of certification, but also, its use at the early phases of the development
claims to be a means for reducing costs, keeping the system assessed as safe. FMECA
(Failure Mode Effects and Criticality Analysis [8], [10]) and FTA (Fault Tree
Analysis [9], [10]) are two ways to analyze the safety and reliability of a system.

94 J.F. Briones et al.

Safety analysis models are classically created within a safety tool or just using an
office suite application, but they clearly depend on system elements which are usually
expressed in a development modeling language. The isolation of both approaches,
analysis and design, creates inconsistencies and duplicates efforts. We convincingly
consider that some safety analyses are subject of automation.
• Those that extensively use information stored in a uniform way by requiring that

safety characteristics are produced using a modeling language.
• Those where we learn from the results of the analysis (an organized table, a graph,

or some meaningful ciphers) more than from the process.
We are carrying out our work ([4], [5], [6], [7]) in the context of air navigation
systems (ANS) where a component and model-driven based development is suitable
and where safety needs are significant. Eurocontrol works to create regulatory
requirements (ESARR) and guidelines to improve the safety of air navigation. One of
these guidelines is the EATMP Safety Assessment Methodology (SAM [2]) which
does not address certification issues but prepares and supports a certification process
as intends to be a means of compliance to ESARR 4. In a cyclic and evolutionary
process like the one proposed by SAM, automation could be of great importance
given that the same safety analyses have to be reworked several times.

The purpose of our work is to aid safety and software engineers to find the quality
software architecture that best meets cost and safety concerns taking into
consideration the trade-off between them. We propose that safety and software teams
work with the same models, the ones of the model-driven approach, but now
including safety characteristics. Working with the same models improves the
communication between them by having the same vocabulary but also avoids the
need to keep model consistency. Safety engineers can see one or more “safety views”
of the architecture necessary for their analyses, while software engineers can work
with the same models they were using, but with the recommendations of the safety
engineers. Automatic safety analyses allow for the evaluation of the architecture at
zero-cost so that the safety team can propose means to eliminate or prevent hazards at
any time. Both teams will choose the architecture and the combination of mitigation
means that best fulfill safety constraints with the minimum cost. Due to the use of
software models as the starting point for the integration we get the extra benefit that
the relationship between models and code could be established.

This paper introduces the tools we developed to support safety analyses of
architectures. Further clarifications about safety are detailed in [7]. Section 2 gives an
overview about the use of safety analyses during the specification of the architecture
in a MDA. Section 3 describes how to create analyzable architectures by annotating
development models. Section 4 illustrates the languages for modeling FMECA and
FTA. The model transformation to create safety analysis models from annotations is
presented in section 5, whilst section 6 briefly shows the current implementation.

2 Application of Safety Analyses in Model-Driven Development

Safety engineers can support software engineers in the election of an architecture that
fulfils safety requirements with the minimum cost; and they can do it all along the

 Application of Safety Analyses in Model Driven Development 95

process of architecture specification. Performing safety analyses from the beginning
of the architecture specification has the following goals:

• Assess the safety of a system architecture form the beginning,
• Reduce the development cost of safety critical parts of the system.

Consequently, safety analyses proposed here do not have the (sometimes only)
objective traditional safety analyses have of demonstrating the assurance of a system
to a certification authority, even though they can prepare and support a certification
process. Safety analyses in this paper must be considered in the bounds of preliminary
safety assessments. This sort of assessments cope with the risk that system
implementations do not fulfill safety requirements because of a bad design, but they
can also be used to deal with the trade-off always found between safety and cost by
supporting the identification of the architecture which achieves the best balance.

The process starts after system engineers have modeled a prototype of the
architecture. Safety engineers can annotate this prototype with safety goals of the
system (safety objectives), restrictions the system has to fulfill (safety requirements),
ways some parts of the system can fail (failure modes), etc. They have to make the
annotations in a formal manner to allow a later export of data. Automatic generation
of safety analyses from the models of the architecture is the key of the process to
avoid building the safety analyses each time he wants to assess the last version of the
architecture. Safety analyses have to be presented in a way familiar to safety
engineers given that they can be used in documents for safety certification. Both,
system and safety engineers, can communicate using the same “documents”, the
models of the architecture, to propose improvements if the architecture does not fit
the requirements in terms of cost and safety. It is convenient that results of the
analyses are incorporated back into the architecture as, again, formal annotations.
This process can be automatic as well, but for the moment has not been implemented.
The whole process is a cyclic procedure that ends when the architecture is evaluated
as able to meet all the requirements (functional, non-functional, cost and safety).

2.1 Using MDA in the Process

Automatic generation of safety analyses from UML models requires the integration of at
least two tools: a modeling tool (where the architecture is expressed) and another tool used
to perform safety analyses. For many reasons, the best way to perform the integration is
with the support of MDA standards, processes, and guidelines. Fig. 1 shows Meta Object
Facility (MOF [12]) modeling stacks which represent the integration.

The architecture (Air Traffic Management models) is defined based on the UML
meta-model and a safety profile. On the other hand, the safety analysis models (Fault
Tree Analysis and Failure Modes, Effects, and Criticality Analysis) are based on a
safety analysis meta-model. Both meta-models can be expressed in MOF. Since we
are working with a component-based architecture, the instances of the system are
components in execution. In contrast, instances of safety analysis models are failures
of the system, if they unfortunately happen. A key transformation is necessary to
convert safety-annotated system models into safety analysis models. These two types
of models represent completely different concepts, hence its difficulty and

96 J.F. Briones et al.

Safety
analysis

meta-model

Safety
analysis

meta-model

Modelo
FTA /

FMECA

Modelo
FTA /

FMECA

FailuresFailures

MOFMOFMOFMOF

UML 1.4
meta-model

UML 1.4
meta-model

ATC UML
model

ATC UML
model

Execution
component
Execution

component

Safety
profile
Safety
profile

ATM UML
model

ATM UML
model

FTA /
FMECA
model

FTA /
FMECA
model

Safety
analysis

meta-model

Safety
analysis

meta-model

Modelo
FTA /

FMECA

Modelo
FTA /

FMECA

FailuresFailures

MOFMOFMOFMOF

UML 1.4
meta-model

UML 1.4
meta-model

ATC UML
model

ATC UML
model

Execution
component
Execution

component

Safety
profile
Safety
profile

ATM UML
model

ATM UML
model

FTA /
FMECA
model

FTA /
FMECA
model

Fig. 1. MDA Rationale

importance. Other transformations are required to adapt integration models to models
usable within the tools (modeling and safety).

3 Creation of Safe-Aware Architectures

The set of annotations we introduce in this section assumes: software architectures
based on components, models of the architecture that include the capabilities
supported in the system, each capability is supported by a set of logical components,
and each logical component is supported by a set of physical components.
Furthermore, we assume the existence of modeling facilities to support traceability
among previous elements.

To model safety concepts we have preferred to integrate safety properties in the
general description of software architecture rather than to create specific views or
models for the safety analyses. This enables us to readily relate software models and
safety properties. To support this approach we have reused standard profiles ([4],
[11]) and we have created a UML profile that directly represents safety concepts.

3.1 Safety Concepts

Safety concepts identified so far are pretty tailored to our aim of applying safety
analyses in a preliminary safety assessment like the one proposed by Eurocontrol. The
following are the main concepts we need for creating such safety analyses. Future
work will provide more general concepts to be able to apply other safety analyses to
software architectures, and thus serves as more general assistance.
• A safety objective is resulted from hazard analyses and defines a safety goal.

When the goal is broken a hazard occurs, the effects of which reveal a severity.
Indicators used to discern the severity of the effects are: exposure (exposure time,
and number of aircraft exposed), recovery (annunciation, detection, contingency
measures, and diagnosis), rate development of the hazardous condition, etc.

• A safe-aware capability is a software capability with safety objectives associated
or that can affect some of them indirectly.

• Safe-aware components represent logical and physical components that support
safe-aware capabilities. A safe-aware component has a software assurance level

 Application of Safety Analyses in Model Driven Development 97

(SWAL) used to establish the level of confidence that its implementation needs to
accomplish. A good level of confidence means a disciplined process that limit the
likelihood of development faults that could impact safety.

• A safety dependency is a safety-related relationship of cause-effect between two
model elements. They can be used to assert, as proposed in [7], that a safe-aware
component affects the safety of another safe safe-aware component, that a safe-
aware component affects the safety of a safe-aware capability or that a safe-aware
capability affects the safety of another safe-aware capability.

• Mitigation means definition. Mitigation means allows avoidance, detection,
propagation control or mitigation of failure effects. The definition of a mitigation
mean characterizes it independently of its application, according to: the phase
where it has to be applied (topic), the type of mitigation (failure control), and the
level where it has to be applied (application level).

• Mitigation means application. The application of mitigation means on safe-aware
components provides a way to reduce the risk considering component’s failure
modes and the particular mitigation mean applied. The combination of a specific
set of mitigation mean in a component produces a specific risk reduction.

4 Safety Analysis Meta-models

Two modeling languages have been defined so far: a FMECA and a FTA meta-
model. Models created based on them are agnostic to any specific implementation of
these types of analyses in a safety tool.

4.1 FMECA

Failure Modes, Effects, and Criticality Analysis is an inductive approach to system
design and reliability. It identifies each potential failure within a system or
manufacturing process and uses severity classifications to show potential hazards
associated with theses failures. There are 3 main elements in a FMECA analysis:

SystemFailureMode FunctionFailureModeSubsystemFailureMode

FunctionBlock

SubsystemBlock

Phrase

SystemBlock

SeverityCategory Fmec aSystem 0..n

+phrases

0..n0..n

+severityCategories

0..n

1 +mainBlock1

BlockData

SeverityCriticality

1+severity 1

Block
<<extends>>

<<extends>>

0..n

+blockCriticalities

0..n

0.. n

1

0.. n

+system 1

0..1 0..n

+parent

0..1

+children

0..n

1

+block Data

1

ModeData

FailureMode

<<extends>> <<extends>>

0..n

0.. n+causes

0..n

+effects

0.. n

<<extends>>

0..n
+modeCriticalities

0..n

0..n

+failureModes

0..n

+block
1+modeData 1

Fig. 2. FMECA safety analysis meta-model

98 J.F. Briones et al.

• FmecaSystem. FMECA is constructed as a hierarchy of blocks. FMECA system
holds all the properties global to the analysis and the main block of the system.

• A Block represents every component in the hierarchy. Blocks are specialized as
SystemBlock, SubsystemBlock, and FunctionBlock. This
specialization is done because the same parameters in different blocks can have
different meaning; i.e. a severity in a block can be input or result of the analysis.

• FailureMode. Each block can have associated several failure modes. These
failure modes can be primary or derived from a cause-effect relationship. Primary
failure modes are represented with the class FunctionFailureMode, while
derived ones are usually represented with SubsystemFailureMode. End-
effects are the last step in the process of derivation of failure modes and they are
represented with the class SystemFailureMode.

4.2 FTA

Fault Tree Analysis is used during the safety assessments to represent the logical
interaction and the probabilities of occurrence of component failures in a system. It
provides quantitative information (probability theory is used), and qualitative (in the
way of minimal cut sets: combinations of events leading to failure of the system). We
can recognize 3 main classes in the diagram: FtaSystem, Gate, and Event.
• FtaSystem. A FTA system holds all the properties global to the system. The first

thing to be done when starting a fault tree analysis is to define the hazard to be
analyzed, which is represented as the TopEvent.

• Gate. A gate is a logical function of some inputs. Typical logical functions are
AND, OR and VOTE. The output of a gate is a derived event of its inputs: either
PrimaryEvents or the output of other gates (DerivedEvent).

• Event. Main events in a fault tree analysis are the PrimaryEvents. Primary events
have associated a failure model. The most typical failure model is
RateFailureModel created from a constant failure and repair rate.

RateFailureModel

AndGate

OrGate

VoteGate

BasicEvent

FixedFailureModel

UndevelopedEvent

TopEvent

FtaSystem

1+topEvent 1

DerivedResult

Gate Event

1

0..n

+system

1

0..n

DerivedEvent

1
+result

1

+owner
1

+gate

1

0..n
+sources

0..n

Importance

0..n
+eventRanking

0..n

+owner

MinimalCutSet

0..n

+minimalCutSets

0..n

+owner

FailureModelCcfModel

PrimaryEvent

1

+event

1
1..n
+events
1..n

1+model 10..1
+ccfModel

0..1

UntypedFailureModel

Fig. 3. FTA safety analysis meta-model

 Application of Safety Analyses in Model Driven Development 99

5 Safety Analyses

There is no single way to perform a safety analysis from safety characteristics
identified such as hazards, failure modes, mitigation means, etc. Even two safety
analysts can perform FMECA or FTA in different ways according to their purposes,
contrasting with other fields like in real time system where the purpose is clear:
“make the system schedulable”. Our purposes for safety analyses, framed in a general
process of a preliminary safety assessment, are: to evaluate how an architecture can
cause some hazards to occur, to estimate whether the architecture can fulfill the safety
objectives of the system, to allocate SWALs to software components to accomplish
these objectives, and to discover mitigation means for preventing hazards to occur.

For the creation of safety analyses models from safety annotations in UML we
convert (Fig. 1) development models into safety analysis models. We designed this
transformation using a set of rules. Next subsections will describe succinctly how it
converts UML entities (system elements and safety annotations) into safety analysis
meta-models entities (for instance blocks and failure modes for FMECA and events
and gates for FTA).

5.1 FMECA Models Creation

Safe-aware capabilities and safe-aware components from system models shape the
structure of a FMECA model by constituting the FMECA blocks. A function block
can only represent a bottom-level safe-aware component (that one which does not
depend on any other). A top-level safe-aware capability (that one with at least one
safety objective associated directly) is represented by a top-level sub-system block.
The only way to include a mitigation mean in a FMECA model is in unison with the
safe-aware component it is affecting. A safety objective is an invariant that the system
must fulfill, so that when it is not fulfilled we identify a failure mode of the system
(the system block). In a preliminary safety assessment failure modes of safe-aware
components are hard to identify, and we use some common keywords like corruption,
loss, and error; even though other schemes are valid. In FMECA, a dependency
among blocks is a parent-child relationship whilst a dependency among failure modes
is a cause-effect relationship (limited from a child to its parent). In system models,
safe-aware elements are interrelated by means of safety dependencies which we use to
create the hierarchy of the analysis model. This makes necessary to replicate FMECA
model elements in some cases; for instance, when a safe-aware component affects two
safe-aware capabilities we create two blocks for the safe-aware component.

5.2 FTA Models Creation

FTA models should start by defining a hazard. As we said for FMECA, the non-
fulfillment of a safety objective constitutes a hazard. Consequently, it seems obvious
that a different FTA model has to be created for each safety objective in the system,
so we will end up with several FTA models for only one system. In FTA it can be
reasonable to create a FTA model from a lower-level hazard although this is not
supported by our FTA model generation. Primary events will represent the failure of a
bottom-level safe-aware component. The other important element in FTA, gates, will

100 J.F. Briones et al.

represent the failure of a higher level safe-aware component or capability. Since there
is not more information included in safety dependencies we must suppose the worst
case and use the OR gate; a gate will produce true if one of the components
supporting it fails. Mitigation means impede failure propagation in a degree according
to the risk reduction, so that they are represented as AND gate. Only those failure
modes, declared in the mitigation mean definition, will be mitigated.

5.3 Example

We will study a simple but comprehensive example with only one capability,
“Consult SFPL (System Flight Plan)”, by which an ATC controller request
information about a flight plan. This capability needs to fulfill a safety objective,
“SO_1: The probability of detected and undetected corruption for greater than 5
minutes shall be no greater than 10-5 per hour”. The capability is hypothetically
supported by a single component, “FDM (Flight Data Management)”. In order to
achieve the safety goal the safety engineers have allocated a mitigation mean to this
component “MM_1: Processing servers are replicated on different nodes”. Fig. 4
illustrates how, with the help of the safety profile, the constraint SO_1 is linked to the
capability Consult SFPL expressed as a use case. We represent the component as a
package annotated with the stereotype SafeAwareComponent. A constraint with
stereotype MMApplied indicates the application of MM_1.

The model transformation currently automates our particular proposal for the
construction of FMECA and FTA. Previous annotations constitute the input of the
transformation, whilst Fig. 4 shows the output for a FTA after been imported into a
safety (and graphical) tool. This analysis will assess the safety objective SO_1 which
is transformed into a TopEvent. “Consult SFPL” and “FDM” are mapped into
DerivedEvent resulted from OR gates, whereas “Error” and “Loss” failure modes of

Fig. 4. Development model and annotations on the left. FTA in the safety tool on the right.

 Application of Safety Analyses in Model Driven Development 101

FDM into BasicEvents. Since the failure mode “Corruption” has been mitigated, an
AND gate is used to create a reduction of the failure mode’s probability. This means
that the corruption of FDM will only show up at system level when both the failure
mode occurs and the mitigation mean does not impede its propagation.

This is a simple example with a few elements and thus one could easily create
manually the FTA within the safety tool. The potential of the automatic generation of
safety analyses becomes apparent when the system model grows or/and when there is
real benefit to maintain consistency between system models and safety analyses.
During validation we tested the analyses generation with a large safety model: 21
safe-aware capabilities, 19 safe-aware components, 5 mitigation mean definitions and
9 mitigation mean applications were found in a system model much larger. The
inherent evolutionary property of PSSA make of this environment an ideal test.

5.4 Results

The last step of the process would be the assessment of the analyses by the safety staff
within the safety tool. This tool will provide tables (FMECA), trees (FMECA) and
diagrams (FTA) depicting the models. Safety analysts can now inspect them to see
how the elements of the architecture related with safety work together. FMECA can
indicate the severity of function failure modes by setting the severity of system failure
modes. FTA can provide us the list of minimal cut sets, i.e. the combinations of
bottom-level failures leading to a hazard when happening together; we should
specially address combinations with only one element.

One of our final aspirations with the safety analyses is to allocate SWAL to safe-
aware components. Reducing the SWAL of a component means reducing the cost of
its development. Naturally it cannot be done arbitrarily and justification material has
to be provided, such as safety analyses and mitigation means. Allocating a SWAL to a
component does not imply calculating a failure rate for software; hence SWALs
cannot be used by safety assessment process as can hardware failure rates. In case of
hardware, we could map components’ SWAL to failure rates in safety analysis
models, and thus the safety tool could provide quantity results.

The methodology provided by Eurocontrol ([2], succinctly explained in [7]) strictly
forbids allocating a failure rate to the software and we have to assume that software
fails. Allocation of SWALs is accomplished by looking at the overall system design
in its operational environment. Therefore, it is considered as key to keep the link from
the safe-aware component to the end effect and its maximum tolerable frequency of
occurrence. Development models provide the link between a safe-aware component
and the hazard but not to the end effect, it can be easily obtained from other
documents though. We have worked on the safety analysis creation to provide
quantity results by automating some hand-made processes ([7]). Quantity values can
be used to derive SWALs.

6 Current Implementation Scenario

As previously mentioned, two tools had to be integrated (see Fig. 5): a UML
modeling tool and a safety tool. Current implementation uses Eclipse Modeling

102 J.F. Briones et al.

Framework (EMF [3]) as common framework: to create meta-models, instance
repositories, and to implement transformations. We use a UML modeling tool (it
could be either a UML 1.X tool or a UML 2.0 tool) to create ATM models, to define
and deploy profiles, and to export models to EMF. Finally, we also use FMECA and
FTA modules of a safety tool to perform analysis calculations, create reports, etc.

Safety
profile

Safety tool-
specific

metamodel

External
model

ExternalExternal
modelmodel

UML
meta-model

UML
model
UMLUML

modelmodel

Saf. tool-
specific
model

SafSaf. . tooltool--
specificspecific
modelmodel

Eclipse + EMF

Safety
analysis

meta-model

Safety
analysis
model

SafetySafety
analysisanalysis
modelmodel

T1T1 T2T2

Modeling
Tool

Safety
Tool

Fig. 5. Implementation Scenario

7 Related Work

Other approaches exist for integrating safety engineering into the software
development cycle. Most of them agree to highlight the benefits of applying safety
techniques early in the development cycle and the drawbacks of its appliance at code
level in large scale systems. Some of the approaches are based on development
models. [14] explores the features, within UML, applicable to the development of a
safety case for a product under development. After comparing formal methods and a
rigorous process, the paper pragmatically decides not to introduce truly formal
methods in the development cycle because of the additional complexity without
tangible benefit. However we demonstrate how to get some benefits in preliminary
safety assessments without affecting complexity.

Precisely modeling safety semantics is required to later analyze safety. The UML
profile for quality of service and fault tolerance [11] includes some notations for the
description of risk assessment, but it limits the scope to safety mitigation means and
fault tolerance. There are also similarities between our work and the UML profile
from SAE Architecture Analysis & Design Language (AADL) [13]. AADL is a
language used to design and analyze the software and hardware architecture of real-
time systems and their performance-critical characteristics. The UML profile for
AADL expresses AADL concepts in UML, whilst we directly express safety concepts
in UML. AADL integrates reliability and safety analysis methods, by equipping
components with reliability models, which are Markov chains that relate fault events
and error states. Jürjens [17] include safety requirements in the UML models for a
later analysis of requirement satisfaction. Some other work in York University [18]
present very useful concepts for expressing safety constraints using OCL.

Few (if any) safety standards utilize visual modeling techniques provided by UML,
so formal methods and safety analyses are necessary to fulfill standards. Pai and
Dugan propose UML extensions for the description of software redundancy,

 Application of Safety Analyses in Model Driven Development 103

reliability dependencies, and reconfigurations; they also tackle the transformation of
UML models into Fault-Tree Analysis (FTA) models [16]. These notations are useful
for the analysis of systems that mitigate risk with redundancy methods but they do not
consider other mitigation means. The extensions are used to annotate deployment
modeling elements and not architectural modeling elements such as components.
Other works use UML activity, sequence and state diagram to generate FTA [19].

8 Summary and Discussion

We think safety and software engineers can work together to complete the
specification of the software architecture with the tools presented in this paper.
Automatic safety analyses are fundamental to succeed since the architecture evolves
during this stage and safety analyses need to be reworked for each evolution,
nevertheless some potential issues may arise as a consequence of the way humans
interact with automation. For instance, safety analysts need to learn how to formalize
safety parameters in the architecture with the UML profile.

We consider that separation of safety and safety analysis modeling is a must. Some
safety analyses can be considered as different arrangements of elements from a well-
known safety vocabulary (hazard, fault, failure, failure propagation, etc.). Safety
analysis meta-models enable to model safety analyses. Our UML profile is a suitable
instrument to model safety, rather tailored to Eurocontrol although can be extended.

Modeling and characterizing safety vocabulary enables to transform safety models
into safety analysis models. The way we create the analyses can be fairly general to
an MDD development in the duty of evaluating high-level models; nevertheless, work
may be necessary to adapt the creation of safety analyses to our needs. Safety
engineers could assist in this transformation. Having safety analysis meta-models
independent of a specific tool offers us the possibility to change the safety tool with
less effort and knowledge of safety than if we directly map from the safety meta-
models to the safety tool.

Data for safety analyses could arise from system model elements, for instance
functional dependencies between components. Although it is not a trivial task it could
be automatically detected when a functional dependency is a safety dependency as
well. Two safety concepts could be seen as trivially considered in this work:
component failure modes and safety dependencies. Failure modes might be fully
described whilst token words used instead are only clues for their identification.
Depends-on relationships among components used here cannot be enough to find
mitigation means to stop propagation. Nevertheless these two concepts can be enough
for a preliminary safety assessment.

Acknowledgements. The work presented here has been co-funded by the European
Commission under the IST 6th FP 2002-2006 (MODELWARE project [1]), and by
the Spanish Ministry of Education (TIC2005-08665-C03). We would like to thank our
partners, especially Thales ATM. This paper reflects only the author’s views.

104 J.F. Briones et al.

References

1. Modelware Web Page: http://www.modelware-ist.org/
2. European Organization for the Safety of Air Navigation, Air Navigation Systems Safety

Assessment Methodology, http://www.eurocontrol.int
3. Budinsky, F., et al.: Eclipse Modeling Framework. Addison Wesley Professional (2003)
4. de Miguel, M., Pauly, B., Person, T., Briones, J.F.: Model-Based Integration of Safety

Analysis and Reliable Software Development," words. In: 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems WORDS, pp. 312–319.
IEEE Computer Society Press, Los Alamitos (2005)

5. Silva, J.P., de Miguel, M., Briones, J.F., Alonso, A.: Safety Metrics for the Analysis of
Software Architectures. In: Workshop on Visual Modeling for Software Intensive Systems
(VMSIS) at the 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE Computer Society Press, Los Alamitos (2005)

6. de Miguel, M., Briones, J.F., Silva, J.P., Alonso, A.: Model Based Integration of Safety
Analysis and Development. In: 9th IEEE International Symposium on Object and
component-oriented Real-time distributed Computing ISORC, IEEE Computer Society
Press, Los Alamitos (2006)

7. Briones, J.F., de Miguel, M., Silva, J.P., Alonso, A.: Integration of Safety Analysis and
Software Development Methods. In: 1st IET Conference on System Safety (June 2006)

8. MIL-STD-1629. A Military Standard, Procedures for Performing A Failure Mode, Effects
and Criticality Analysis (1980)

9. NUREG-0492. Fault Tree Handbook, U.S. Nuclear Regulatory Commission (1981)
10. Levenson, N.: Safeware: System Safety and Computers. Addison Wesley (1995)
11. Object Management Group. UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms, OMG document number ptc/2005-05-02
(2005)

12. Object Management Group. Meta Object Facility (MOF) Core Specification, OMG
document number formal/2006-01-01 (2006)

13. AADL. SAE Architecture Analysis & Design Language. http://www.aadl.info/
14. ARTiSAN Software Tools. Safety in the Loop (2002)
15. Khan, K., Han, J.: Composing Security-Aware Software. IEEE Software (January 2002)
16. Pai, G., Dugan, J.: Automatic Synthesis of Dynamic Fault Trees from UML System

Models. In: International Symposium on Software Reliable Engineering, IEEE Computer
Society, Los Alamitos (2002)

17. Jürjens, J.: Developing Safety-Critical Systems with UML. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) «UML» 2003 - The Unified Modeling Language. Modeling Languages
and Applications. LNCS, vol. 2863, Springer, Heidelberg (2003)

18. Conmy, P., Paige, R.: Using UML, OCL and MDA to support development of Modular
Avionics Systems. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) Workshop
on Critical Systems Development with UML at UML 2004. LNCS, vol. 3273, Springer,
Heidelberg (2004)

19. Towhidnejad, M., Wallace, D., Gallo, A.: Validation of Object Oriented Software Design
with Fault Tree Analysis. In: Software Engineering Workshop, 28th Annual NASA
Goddard, IEEE Computer Society Press, Los Alamitos (2003)

Mission Modes for Safety Critical Java

Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

Abstract. Java is now considered as a language for the domain of safety critical
applications. A restricted version of the Real-Time Specification for Java (RTSJ)
is currently under development within the Java Specification Request (JSR) 302.
The application model follows the Ravenscar Ada approach with a fixed number
of threads during the mission phase. This static approach simplifies certification
against safety critical standards such as DO-178B. In this paper we extend this re-
strictive model by mission modes. Mission modes are intended to cover different
modes of a real-time application during runtime without a complete restart. Mis-
sion modes are still simpler to analyze with respect to WCET and schedulability
than the full dynamic RTSJ model. Furthermore our approach to thread stopping
during a mode change provides a clean coordination between the runtime system
and the application threads.

1 Introduction

The Real-Time Specification for Java (RTSJ) [1] was a first and successful attempt to
enable Java based real-time application development. The RTSJ is a quite dynamic envi-
ronment reflecting the dynamic nature of Java and aimed at soft real-time applications.
Soon after the RTSJ was published, suggestions to restrict the RTSJ for high-integrity
applications have been proposed [2,3]. The restrictions are based on the Ravenscar pro-
file for Ada [4].

The basic idea of the proposed profiles is to divide the application into an initialization
phase and a mission phase. During initialization all threads are created and data struc-
tures for communication are allocated. In the mission phase a fixed number of threads are
scheduled. The profile disallows garbage collection to provide time predictable schedul-
ing of the real-time threads. Only a restricted version (no sharing between threads) of
scoped memory areas is allowed for simple dynamic memory management.

1.1 A Safety Critical Java Profile

The Java Specification Request (JSR) 302 builds on those profiles to define a standard
for safety critical Java [5]. The intention of this JSR is to provide a profile that supports
programming of applications that can be validated against safety critical standards such
as DO-178B level A [6]. In [7] we have defined a simple safety critical Java profile
based on the former work. Our extension includes, besides a more natural way to define
the scheduling requirements by deadlines instead of priorities, a clean way to shutdown
the application.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 105–113, 2007.
c© IFIP International Federation for Information Processing 2007

106 M. Schoeberl

package javax.safetycritical;

public abstract class PeriodicThread
extends RealtimeThread {

public PeriodicThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

public PeriodicThread(RelativeTime period)
}

public abstract class SporadicThread
extends RealtimeThread {

public SporadicThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

public SporadicThread(String event,
RelativeTime minInterarrival)

public void fire()
}

Fig. 1. Classes for periodic and sporadic real-time events

The profile contains periodic and sporadic threads. The periodic threads represent
the main application logic. Sporadic threads handle software and hardware events (i.e.
interrupts). Figure1 shows the simplified classes that represent periodic and sporadic
threads.

Both classes extend RealtimeThread (shown in Figure 2) that contains properties
common to periodic and sporadic threads. Note that RealtimeThread is not the RTSJ
version of a RealtimeThread. We do not inherit from java.lang.Thread to avoid prob-
lematic constructs (e.g. sleep()). Furthermore, our thread abstraction does not contain a
start() method. All threads are started together at mission start. We extend the profile in
this paper to start threads also on a mode change.

The run() method is different from an RTSJ or java.lang thread. It is abstract to
enforce overriding in a sub-class. Method run() has to return a boolean value. This
value indicates that a periodic task is ready for shutdown or for stopping during a mode
change.

In contrast to the RTSJ scheduling parameters are defined by time values (deadlines)
instead of priorities. Deadlines represent application requirements more natural than
priorities. An implementation on top of a priority based scheduler can map the dead-
lines to priority values by a deadline monotonic order [8]. This mapping is part of the
runtime system and does not have to be done by the application developer. The dis-
tinction between an initialization and a mission phase (with static threads) simplifies

Mission Modes for Safety Critical Java 107

package javax.safetycritical;

public abstract class RealtimeThread {

protected RealtimeThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

protected RealtimeThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

abstract protected boolean run();

protected boolean cleanup() {
return true;

}
}

Fig. 2. The base class for all schedulable entities

the generation of the mapping. The mapping is performed only once at the start of the
mission. Furthermore, the definition of deadlines as the main scheduling parameter al-
lows switching to an EDF scheduler in the middleware without changing the application
logic.

1.2 Mission Modes

Although a static approach to the development of safety critical applications simplifies
(or even enables) certification, the model of a single mission with a fixed number of
threads is quite restrictive. Safety critical applications often consist of different modes
during runtime, e.g. take off, cruse, and landing of an airplane. During those different
modes different tasks have to be performed. In this paper we evaluate different forms to
implement mode changes: At the application level, with dynamic thread creation, and
with static mission modes. The main idea is to provide a restricted form of dynamic
application change without the hard to analyze dynamic creation and stopping of real-
time threads. Just stopping a real-time task can be a dangerous action. We build on [7]
to enable a coordinated stopping of real-time tasks during a mode change.

2 Mode Changes

Several safety critical applications have different modes of operation. Imagine a part
of an avionic application: takeoff, cruse, and landing are typical modes where different
tasks are necessary. Several tasks will run during all modes and several are only needed
during a specific mode. When a mode change occurs the continuous tasks should not be
disturbed by the mode change.

108 M. Schoeberl

Tasks that are stopped shall have a chance to shutdown in a clean way, i.e. run till
all actuators are in a safe position. Furthermore the tasks shall be able to perform some
form of cleanup. In [7] we introduced the coordinated shutdown for the whole real-time
application. We use the proposed mechanism for the shutdown of threads that belong to
a specific mode in this proposal.

Switching between different modes does not only represent different tasks to be exe-
cuted but also reusing of resources. We can distinguish between CPU time and memory
resources that can be reused. With respect to reuse three forms of mode change frame-
works are possible:

1. Mode changes at the application level do not reuse memory; CPU budgets are
reused, but hard to analyze

2. Dynamic created threads can reuse memory with mission scoped memory and CPU
resources

3. Predefined modes do not reuse memory. CPU budgets are reused and simple to
analyze

2.1 Application Level

A simple form of mode changes can be implemented at the application level – a form of
poor man’s mode changes. All threads that are needed in all modes of the mission are
started. The actual application logic is only executed at the modes needed as following
example shows:

public void run() {

if (State.mode==State.TAKE_OFF) {
takeOffTask();

}
}

In this example the run() method represents a periodic task. This form fits well for the
static approach to start all threads during mission start. However, it leaves the handling
of different missions at the application programming and complicates clean mission
changes. Furthermore it complicates WCET analysis and incorporation of those WCET
values into schedulability analysis for different modes.

2.2 Dynamic Threads

A real-time system that allows dynamic creation of threads during the mission phase
can easily reuse CPU budgets and memory. This is the model that the RTSJ proposes.
However, this dynamic thread creation is hard to analyze and will hamper certification
of the safety critical application.

A more restrictive model will group threads belonging to missions or mission phases.
Those groups can share a scoped memory that can be recycled when all threads of
the group are not needed anymore. However, no coordinated shutdown of threads that
belong to a mission phase is part of the RTSJ framework.

Mission Modes for Safety Critical Java 109

2.3 Predefined Modes

Our approach is to define different mission modes at the initialization phase. All threads
are still created in this phase and no dynamic thread creation during mission phase is
necessary. Each mode contains the list of threads that have to run in this mode. There-
fore we can still build all the scheduling tables before the mission starts. The static
assignment of threads to mission modes also simplifies schedulability analysis.

We do not reuse any memory that is used for communication between threads for dif-
ferent modes. All those structures are still allocated at the initialization phase. However,
threads itself can use scoped memories for intermediate data structures during their ex-
ecution. We assume that the amount of memory that is used for thread communication
is not that high and we would gain little from reusing part of it for different modes.

3 Implementation

The different modes are represented by a simple class that contains the list of threads
belonging to the mode:

public class MissionMode {

public MissionMode(RealtimeThread rt[]) {
// immutable MissionMode object

}
}

Class MissionMode provides just the constructor with the list of real-time threads to
implement immutable mode objects. An immutable mode guarantees that the mode
cannot be changed at runtime.

The class RealtimeSystem represents the real-time runtime system and is shown in
Figure 3. Method start() performs the mission start. Compared to [7] it contains now
the mission mode as a parameter. That mode is the one which is used as the first one.
Method changeMod() performs the change to the new mission mode. Method stop()
performs shutdown of the whole real-time application.

3.1 Shutdown

Before we discuss mode changes we give a brief description of the shutdown process.
The same mechanism is used to shutdown individual threads for a mode change.

In [7] we provide an additional phase for the real-time application: Shutdown. This
phase is intended to provide a safe termination of the real-time system. All threads have
a chance to bring actuators into a safe position.

The shutdown phase is initiated similar to the start of the mission phase, by invok-
ing stop() from RealtimeSystem. However, we cannot simply stop all threads, but need a
form of cooperation. All real-time threads return a boolean value from the run() method.
This value indicates: I’m ready for a shutdown. When a thread is in a critical operation,
where a shutdown is not allowed, the thread just returns false to delay the shutdown

110 M. Schoeberl

package javax.safetycritical;

public class RealtimeSystem {

/**
* This class is uninstantiable.
*/
private RealtimeSystem()

public static void start(MissionMode m)

public static void changeMode(MissionMode m)

public static void stop()

public static boolean modeChangePending()

public static int currentTimeMicros()
}

Fig. 3. The representation of the real-time system with mission modes

process. The runtime system waits for all threads to be ready for shutdown before actu-
ally performing the shutdown.

During the shutdown the cleanup() method is scheduled periodically (with the same
period) instead of the run() method. The cleanup method itself also returns a boolean
value to signal shutdown finished with true. In that case the thread is not scheduled
anymore.

3.2 The Mode Change

When switching from mode A to mode B all threads that belong to both modes just
continue to be scheduled. Threads part of mode A and not part of mode B have to be
stopped. We reuse our approach to a clean shutdown of periodic threads, as described
before, to perform the mode change. All threads that have to be stopped go through the
same phases as during a shutdown. That means that the application logic of a single
thread does not need to be changed when extending the single mode profile to a multi-
mode system.

A current mode change can be queried by the application threads with RealtimeSys-
tem.modeChangePending(). An application task should query this state before perform-
ing a long lasting state change where the application thread cannot be stopped. This
query is not mandatory. However, it can help to perform the mode change in less time.

When all to-be-stopped threads have performed their cleanup function the threads
that are part of mode B and not part of mode A are added according to their release
parameters to the schedule table. As this table is known at the initialization phase it is
easily built in advance and this adding is just a switch between different tables. Per-
forming this switch is the last step in the mode change.

Mission Modes for Safety Critical Java 111

public class MissionExample {

static MissionMode modeTakeOff;
static MissionMode modeCruise;
static MissionMode modeLand;

public static void main(String[] args) {

PeriodicThread watchdog = new PeriodicThread(
new RelativeTime(1000, 0)) {

protected boolean run() {
// do the watchdog work
return true;

}
};

PeriodicThread takeoff = new PeriodicThread(
new RelativeTime(100, 0)) {

boolean finished;
protected boolean run() {

doWork();
if (finished) {

RealtimeSystem.changeMode(modeCruise);
}
return true;

}
protected boolean cleanup() {

// we need no cleanup as we triggered
// the mode change
return true;

}
private void doWork() {

// the periodic work
// sets finished to true when done

}
};

RealtimeThread mto [] = { watchdog, takeoff };
modeTakeOff = new MissionMode(mto);
RealtimeThread mcr [] = { watchdog, cruise };
modeCruise = new MissionMode(mcr);
RealtimeThread mld [] = { watchdog, land };
modeTakeOff = new MissionMode(mld);

RealtimeSystem.start(modeTakeOff);

}
}

Fig. 4. An example of an application with three mission modes

112 M. Schoeberl

3.3 An Example

Figure 4 shows a simple example using the mission modes. We define three modes:
takeoff, cruise, and landing. For each mode we have a periodic task that performs the
operation. Only thread takeoff is shown in the example. Furthermore, the task watchdog
is part of all three modes.

For each mode we create a MissionMode object and add all threads that belong to the
mission with the constructor during the initialization phase. The mission is started with
the takeoff mode with RealtimeSystem.start(modeTakeOff). When this phase is finished
a mode change is triggered by the takeoff thread with changeMode(modeCruise). Dur-
ing this mode change takeoff is stopped and cruise is started. The thread watchdog just
continues to run during the mode change and in the new mode.

4 Discussion

The example showed that the API for different application modes is quite simple and in-
tuitive to use. The proposed solution provides some form of dynamic application change
during runtime within the static framework for safety critical Java.

4.1 Analysis

The restricted form of dynamic application change with different modes simplifies
WCET and schedulability analysis. For each mode all threads that will be scheduled are
known in advance. During the mode change all not anymore used threads are stopped
first before new threads from the new mode are started. In that case we do not need
additional schedulability analysis for the mode changes.

During stopping of a thread the cleanup() method is invoked instead of the run()
method at the same period. We only have to use the larger WCET value from the two
methods for schedulability analysis.

The analysis of different modes is slightly more complex than the analysis of a single
mission phase. However, it is still simpler than fully dynamic thread creation in the
mission phase. We assume that the proposed modes provide enough dynamics in safety
critical applications without hampering certification.

4.2 Runtime Overhead

A runtime system that provides a single mission phase with statically created threads
can be implemented very efficient. During the start of the mission all relevant schedul-
ing parameters (e.g. priorities ordered deadline monotonic) can be calculated. As a re-
sult a single scheduling table can be built. As this table does not change during runtime
an efficient array instead of a list can be used. For a full dynamic system a list of threads
that can be changed during runtime has to be used. Therefore, scheduling decisions at
runtime are more complex.

The proposed approach of static modes is slightly more complex than the single
mission solution. However, as all modes and the resulting scheduling tables are known
before the mission start the tables can still be built in advance. At the end of the mode

Mission Modes for Safety Critical Java 113

change (when the new threads are released) just the scheduling table has to be set to
the precalculated one for the new mode. Scheduling decisions during runtime are as
complex as for the single mission system.

The mode change itself, with stopping some threads and scheduling their cleanup
method, is as complex as the shutdown process in the former proposal.

5 Conclusion

In this paper we have proposed an enhancement of safety critical Java to cover different
modes during the runtime of a real-time application. The intention is to keep the system
still simple in order to certify it according to standards such as DO-178B level A [6].
The WCET and schedulability analysis for a single mode is identical to the analysis of
a single mission. Our proposal for mode changes also includes a coordinated shutdown
of threads that are not used anymore in a new mode.

We believe that the slightly more complex analysis is outweighed by the benefits
from reusing CPU budgets for different modes and providing a simple framework for
the application to perform those mode changes. As a next step we will evaluate the
proposal with a real-world example. When this evaluation is positive we will suggest
this framework to the JSR 302 expert group for inclusion in the future standard of Safety
Critical Java Technology.

References

1. Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., Turnbull, M.: The Real-Time Speci-
fication for Java. Java Series. Addison-Wesley (June 2000)

2. Puschner, P., Wellings, A.J.: A profile for high integrity real-time Java programs. In: 4th IEEE
International Symposium on Object-oriented Real-time distributed Computing (ISORC),
IEEE Computer Society Press, Los Alamitos (2001)

3. Kwon, J., Wellings, A., King, S.: Ravenscar-Java: A high integrity profile for real-time Java.
In: Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande, pp. 131–140.
ACM Press, New York (2002)

4. Burns, A., Dobbing, B., Romanski, G.: The ravenscar tasking profile for high integrity real-
time programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, pp. 263–275.
Springer, Heidelberg (1998)

5. Java Expert Group: Java specification request JSR 302: Safety critical java technology. Avail-
able, at http://jcp.org/en/jsr/detail?id=302

6. RTCA/DO-178B: Software considerations in airborne systems and equipment certification
(December 1992)

7. Schoeberl, M., Sondergaard, H., Thomsen, B., Ravn, A.P.: A profile for safety critical java.
In: 10th IEEE International Symposium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2007), IEEE Computer Society Press, Los Alamitos (2007)

8. Audsley, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Hard real-time scheduling: The
deadline monotonic approach. In: Proceedings 8th IEEE Workshop on Real-Time Operating
Systems and Software, Atalanta, IEEE Computer Society Press, Los Alamitos (1991)

http://jcp.org/en/jsr/detail?id=302

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 114–124, 2007.
© IFIP International Federation for Information Processing 2007

Safety Property Analysis Techniques for Cooperating
Embedded Systems Using LTS

Woo Jin Lee1, Ho-Jun Kim1, and Heung Seok Chae2

1 EECS, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
woojin@knu.ac.kr, sisqo00@nate.com

2 Department of Computer Science and Engineering, Pusan National University,
30 Changjeon-dong, Keunjeong-gu, Busan, 609-735, South Korea

hschae@pusan.ac.kr

Abstract. Safety issues of cooperating embedded systems are very important
since they are closely related to our living. In this research, modeling
techniques and safety analysis techniques for cooperating embedded systems
are provided. Behaviors of embedded systems and safety properties are
described by Labeled Transition Systems (LTS). For convenient and effective
analysis, we provide a slicing method of the state space of a system according
to a property. Based on the slice models, we provided an equivalence algorithm
of LTS models and a compositional analysis technique of safety properties.

Keywords: safety property analysis, embedded system, LTS, slice model.

1 Introduction

Recently, cooperating embedded systems via internets have been widely used in our
lives. The main task of embedded software is to engage the physical world,
interacting directly with sensors and actuators in distributed processing nodes. Since
even a simple failure of software may lead to severe consequences, safety properties
of embedded software should be checked before delivery.

Various static analysis techniques have been proposed for verifying properties of
distributed systems, which include model checking [1], inequality-necessary
conditions analysis [2], data flow analysis [3,4], explicit state enumeration [5,6,7,8],
and compositional reachability analysis[9, 10]. Among these analysis techniques, our
approach focuses on compositional reachability analysis techniques, especially based
on property automata [10] due to its scalability.

In this paper, we propose an efficient approach to verifying safety properties of
cooperating embedded systems using Labeled Transition Systems (LTS). We
introduce a slice model concept for easily checking behavioral equivalence between a
system model and safety properties. After LTS models and safety properties are
transformed into slice models, respectively, safety analysis for each property is
performed in the incremental and iterative manner.

The remainder of the paper is organized as follows. Related works for LTS
modeling and compositional analysis techniques are described in Section 2. Section 3

 Safety Property Analysis Techniques 115

provides a description technique of system behaviors and safety properties by LTS.
Section 4 presents a slice model concept and an algorithm for checking equivalence
between two LTS models using slice models. In Section 5, a compositional safety
analysis technique and its procedure are described. Section 6 evaluates the generated
state space in the compositional safety analysis. Conclusion and future work appear in
Section 7.

2 Related Works

LTS computation model has been widely used for specifying and analyzing
distributed systems. To perform analysis based on LTS, it is necessary to construct the
whole behavior model from the specification of the primitive processes. The whole
behavior of the system can be described by the composite LTS which is constructed
by composing the LTS1, LTS2, …, and LTSn of its constituent processes. This
approach is generally known as reachability analysis. A major problem with
reachability analysis is that the search space involved can grow exponentially with the
increase in the number of concurrent processes.

To cope with this problem reduction techniques have been proposed by reducing
the search space. These reduction techniques can be categorized into two classes;
reduction by partial ordering and reduction by compositional minimization. In the
reduction techniques by partial ordering, the search space is reduced by excluding the
paths formed by the interleaving of the same set of transitions [6]. In techniques by
compositional minimization, also known as compositional reachability analysis, the
search space is reduced by compositionally constructing the composite LTS where
globally observable actions are abstracted out [9,11,12,13].

We will adopt and extend the compositional reachability analysis since it is
amenable to automation and can reflect the architecture of distributed software. In the
compositional safety analysis method [10], safety properties are described by state
machines, called a property automata, which is augmented with a special undefined
state (π). A property automata is automatically transformed to its corresponding
image property automata by adding the π state for capturing potential violation of
safety properties. For example, we want to check a safety property which an event
‘on’ should be followed by event ‘off’ in all cases. Fig. 1 (b) and (c) show examples
of a property automata and its image property automata, respectively.

1 2

on

d

(a) A System Model 1

1 2

on

off

(b) A Property Automata

1 2

on

off

(c) An Image Property Automata

π

onoff

3

c

4

off

e

Fig. 1. Examples of compositional safety analysis

116 W.J. Lee, H.-J. Kim, and H.S. Chae

Fig. 1 (a) shows a simplified system model, whose main behaviors include on c
 d*. In the example system, behaviors of the system do not have the safety property.

However, the violations of the safety property in the model are not detected by the
image property automata. For rigorously checking safety properties, the equivalence
checking between safety properties and the system model should be enforced.

3 Modeling System Behaviors and Properties

Suppose that we have a gas oven that can be remote-controlled at home or outside
using mobile devices. This remote control system may be useful for turning off the gas
oven when we forgot to turn it off at going outside or when we want to control the
oven remotely at home. However, it is unsafe to control a gas oven remotely since we
can not check its status such as gas leakage and inflammable materials on it.
Therefore, for safety, we need some complementary devices such as a flame detection
sensor, which can be monitoring the status of the gas oven. Fig. 2 shows the overall
structure of the gas oven that can be remote-controlled. Now, is the gas oven system
safe ?

Mobile Device

Home Gateway

Flame Detection Sensor

Gas Oven

Intranet

Internet / Wireless

Fig. 2. An example of remote-controlled gas oven system

Fig. 3 represents a block diagram of the remote-controlled gas oven system. For
simplicity, we abstractly describe only core components. The gas oven system is
composed of a gas oven controller, a valve controller, a flame sensor, a
communication media, and mobile devices.

Valve

Controller

Flame

Sensor

Gas Oven

Controller

Communication

Media

Mobile

Device

vCon = { von, voff }, fCon = { fd, not_fd }, gCon = { gon, goff }, cCon = { con, coff }

vCon

fCon

gCon cCon

Fig. 3. A block diagram of the remote-controlled gas oven system

 Safety Property Analysis Techniques 117

Each component of the block diagram is described by LTS. Fig. 4 shows the LTS
models of the remote-controlled gas oven system. Communicating channels
between components such as vCon and cCon are described by shared labels. In a
LTS, all the states are considered as accepting states. The parallel composition of
two LTS models, denoted by P || Q, models the synchronized behavior of shared
labels. Local events behave independently while the shared labels should be
synchronized.

Flame Sensor

Valve Controller

Gas Oven Controller

I
0

fd not_fd

von

voff

gon

goff

von

not_fd

goff

voff

voff

fd

Communication Media

con

gon

Mobile Device

con

coff

coff

goff

goff

V
0 V

1

C
1

C
2

C
0 M

0 M
1

O
0

O
1

O
2

O
3

O
4

Fig. 4. The LTS models of the gas oven system

Safety properties can be represented by a sequence of events or be related with
system states. And they can be described in positive form or negative form. In this
paper, we support a state-based property and an event-based property in both the
descriptions by extending property automata description technique [10]. Safety
properties are also represented by LTS. But, a safety property model has several
accepting states not all accepting ones. Followings are two types of safety properties:
a state-based one and an event-based one.

- State-based safety property: safety properties are described based on state
variables.
Safety Property 1 (SP1): When the valve controller component is in the
“V1” state, the event “con” must not be occurred (!(State(V1) con))

- Event-based safety property: safety properties are described as a sequence of
events.
Safety Property 2 (SP2): After a gas valve is opened, it should be closed
(von voff).

Fig. 5 represents the safety property models of SP1 and SP2. In the figure, double
circled states means the accepting states.

118 W.J. Lee, H.-J. Kim, and H.S. Chae

(b) SP2 : von voff

von voff

(a) Counter example of SP1
!(State(V1) con)

con

V1

Fig. 5. Examples of describing the safety properties

Analysis of safety properties is performed in two ways. Negative safety properties
can be checked whether the corresponding positive behaviors of the negative safety
property can be occurred in the system model or not. In the case of positive safety
properties, the behavior of a safety property should be always satisfied in the system
model. Therefore, the satisfaction of the safety property can be checked whether its
abstracted system behaviors are equivalent to behaviors of the property.

4 Slicing System Model Based on State Variables

It is not easy to compare two large LTS models. In order to simply compare the
structures of LTS models, we slice the LTS models by restructuring them in the
perspective of each state variable for effectively checking safety properties.

Definition 1. Slice models of LTS
A slice model of LTS is an LTS model that has only two boolean system states related
and their related transitions, which has only four types of transitions (00, 01, 10, 11).

Fig. 6 shows an example of representing a slice model in a graphical and a tabular
form, which represents the valve controller component shown in Fig. 4.

0

1

von voff

-11

voff10

von01

-00

state variable (Valve Controller)

Fig. 6. Graphical and tabular representations of the slice models

For transforming an LTS model into the slice models, the states in the LTS model
are represented by state variables. For each state variable, one or more slice models
can be generated. If a state variable has several enumerated values, it is represented by
several slice models. Followings show the steps for transforming a LTS model into
the slice models.

 Safety Property Analysis Techniques 119

Step 1: If there are the same labels in a LTS model, rename all the same transitions
for differentiating all the transitions. For example, the ‘voff’ transition that
appears severally in the gas oven controller component is renamed into voff1,
voff2, and voff3.

Step 2: For each transition in the LTS model, record the transition label in the each
pattern of changes for each state variable in the slice models. As shown in
Fig. 7, the ‘con’ transition from the state O0 to the state O1 is transformed
into the ‘10’ transition of S0, the ‘01’ transitions of S1, respectively.

Fig. 8 shows the slice models of the communication media component. There are
two state variables: GON(command on) and GOFF(command off). The
equivalence of an original LTS model and the composition of the slice models can
be easily checked. Since we assume that all the transitions in the LTS model are
different, there is one-to-one and onto mapping between two transition sets. The
transition information between the corresponding transitions is equivalent since
the transition rules preserve the transition information. The memory space for
representing slice models in the tabular form is equivalent to the original LTS
representation.

1 0

s
0
s

1

0 1

gon

-11

con10

gon01

-00

state variable (s
0
)

(a) (b)

-11

gon10

con01

-00

state variable (s
1
)

con

O
0

O1

Fig. 7. An example for transformation rules

con, gon

coff

goff

(b) slice model 1

coff, goff

con

gon

(c) slice model 2

con

gon

coff

goff

01 00 10

(a) The LTS model of communication media

Fig. 8. Two slice models of the communication media component

120 W.J. Lee, H.-J. Kim, and H.S. Chae

Fig. 9 shows simple reduction rules for slice models. The event which is always
occurred at any state can be reducible since it has no effects in enabling the other
events.

x

y

x

x

||

x

y

x

y

||

x

y

x

x

(a) reduction rule 1 of slice m odels (b) reduction rule 2 of slice m odels

Fig. 9. Reduction rules for the slice models

Checking equivalence of two finite state machines is generally not easy since it is
difficult to find the corresponding parts between different models. As shown in Fig.
10 (a) and (b), two finite state machines have the same equivalent behavior. But, their
structures are different. In the observation equivalence [15], the behavioral
equivalence of two systems is checked by composing the corresponding states. But,
this approach needs an additional space for recording the corresponding states
information. In the slice models, behavior equivalence is checked by comparing each
slice model in pair-wise manner. Fig. 10 (c) and (d) show the slice models of LTS2
model and its reduced model by sequentially applying reduction rules. We can easily
find out that the transformed slice models are the same.

a b

s0

s1

q0

q1 q2

q3

(a) LTS1 (b) LTS2

a

b

a

b

a
1
,

a
2

b
1
,

b
2

(c) Slice m odels of LTS2

b
1

b
2

a
1

a
2

(d) Reduced m odel

a b

Fig. 10. Checking equivalence of two LTS models

5 Compositional Verification of Safety Properties

For effective analysis, it is important to minimize the state space of a system model
by localizing and reducing features unrelated to the safety property. During making an
reduced model by the compositional approach, local transitions are abstracted by the
λ elimination rules of transformations from the λ−acceptor to the λ−free machine
[14]. Fig. 11 shows the overall procedure of our algorithm. In the start of analysis

 Safety Property Analysis Techniques 121

procedure, the system model and the safety property are composed since we need the
same reference points between two models for easily finding corresponding ones.
During reduction procedure, the state variables and transitions of the property model
are preserved.

Safety properties are categorized into a positive form and a negative form. Safety
analysis is differently performed according to its form. Followings are overall
explanation of two safety analysis approaches.

- Negative safety property: A safety property in the negative form describes
that a situation should not be occurred. For checking these properties, we
check whether the reversed positive situation is occurred in the system model
or not. If the situation occurs, the property is not satisfied.

- Positive safety property: A safety property in the positive form means that the
property should be always satisfied in the system model. In this case, we
check the equivalence of the property model and the abstracted system model
against the property model.

Main analysis procedure is performed on the slice models. Therefore, the reduced
system model and the property model are transformed to the slice models. Inclusion
of two models is decided by checking whether each slice model of the property model
is equivalent to the corresponding slice model of the system model. Equivalence of
two models is checked by the equivalence of all the corresponding slice models.

LTS

Components

LTS

Components

LTS

Components

Basic

Module

Slice

Models
Basic

Module

Basic

Module

Slice

Models

Safety

Property

Transformation

Inclusion or
Equivalence

Check

Reduced

Model
Transformation

Composition &

Reduction

Fig. 11. Safety analysis procedure of LTS models

Fig. 12 shows the analysis steps of the safety property (SP2) using the
compositional analysis technique. Fig. 12 (a) shows the abstract model of
(communication media || mobile device), called C1. Fig. 12 (b) represents the
composed model of C1 and the gas oven controller component. In Fig. 12 (b), local
transitions such as gon and goff are transformed into the λ transition and eliminated
by the λ−elimination rules [14] such as the λ−loop elimination and the λ−transition
reduction (q0 =λ=> qt –s->q1 q0 –s-> q1) to become the model shown in Fig. 12
(c). Through several composition and reduction steps, the final composed model C4 is

122 W.J. Lee, H.-J. Kim, and H.S. Chae

(b) C1 || GasOvenController

gon goff

(c) C2 = Abstraction of (b) (d) C4 = Abstraction of (C2 ||
ValveController || FlameDetectionSensor)

gon=>λ

goff=>λ

von

not_fd

voff

voff

fd

(a) C1 = Abstraction of
(CommMedia || MobileDevice)

von

not_fd

voff

fd

voff

λ

von voff λ von voff

(e) Safety Property 2 (SP2)

s
0

s
1

goff=>λ

goff=>λ

λ−loop

Fig. 12. Analysis steps of the safety property SP2

generated as shown in Fig. 12 (d). Finally, we compare the final model and the safety
property model after transforming into the slice models. In this example, we can
easily find their differences of two models. In the consequence of analysis, we
conclude that the safety property 2 is not satisfied in the system behavior due to the
modeling error in the gas oven controller.

6 State Space Evaluation of Slice Model Approach

In this section, we evaluate the state space for the slice models and the compositional
safety analysis. At first, we calculate the state space of the slice models. Let n and m
be the number of the states and transitions of a system, respectively. Since the number
of the slice models is dependent on the number of system states, it is calculated by
log2(n). For each slice model, there can be m transitions in 00, 01, 10, and 11 slots at
worst cases. Therefore, the slice model approach needs the state space of log2(n) * m
* 2 (bits for identifying 4 transition slots). This number is the same to that of the FSM
approach in which, for each transition, the source and destination states information
(log2(n)) should be recorded.

Next, we consider the state space for performing equivalence checking based on
the slice models. In the observational equivalence approach, additional state space
(the same or more size of the original model) is needed since the mapping information
between corresponding states in two models should be recorded, while the slice model
approach needs no additional space due to pair-wise comparison of each slice model.

Table 1 shows the generated state spaces for checking the safety property SP2. As
shown in Table 1, the compositional approach is more efficient than the FSM

 Safety Property Analysis Techniques 123

approach. Our compositional safety analysis method can fully utilize these merits of
the compositional approach.

Table 1. The generated analysis spaces for checking the safety property SP2

Compositional approach Approaches
Composed
models

State diagrams
(number of states and tr
ansitions)

Original
Models

Reduced Mo
dels

Reduction Rate
s (%)

C1 = S1 || S2 4 (4) 3 (4) 3 (2) 0.0 (50.0)
C2 = C1 || S3 10 (19) 5 (8) 3 (6) 40.0 (25.0)
C3 = C2 || S4 10 (19) 3 (6) 2 (3) 33.3 (50.0)
C4 = C3 || S5 14 (23) 2 (3) 2 (3) 0.0 (0.0)

Total 38 (65) 13 (21) 10 (14) 23.1 (33.3)

Legends: S1: Communication Media, S2: Mobile Device, S3: Gas Oven Controller, S4: Flame
Detection Sensor, S5: Valve Controller.

7 Conclusion and Future Work

Safety issues are very important in the embedded system literature. In this paper,
cooperating embedded systems such as the remote-controlled embedded system are
described and analyzed by LTS. For convenient and effective compositional analysis
of safety properties, we provide a slicing method of the system state space based on
the system property, which is obtained by restructuring the LTS model. Based on the
slice models, we provided an equivalence algorithm of LTS models and a
compositional analysis technique of safety properties.

Currently, we are developing a modeling and analysis tool that helps to describe
LTS models and to automatically partition a LTS model into the slice models. In
future work, we will add timing concepts in our analysis approach.

Acknowledgments. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by IITA (Institute of Information
Technology assessment).

References

1. McMillan, K.L.: Symbolic model checking. Kluwer Academic Publishers, Dordrecht
(1993)

2. Avrunin, G.S., et al.: Automated analysis of concurrent systems with the constrained
expression toolset. IEEE trans. software engineering 17(11), 1204–1222 (1991)

3. Cheung, S.C., Kramer, J.: Tractable dataflow analysis for distributed systems. IEEE trans.
software engineering 20(8), 579–593

124 W.J. Lee, H.-J. Kim, and H.S. Chae

4. Dwyer, M.B., Clarker, L.A.: Data flow analysis for verifying properties of concurrent
programs. In: Proc. of the 2nd ACM SIGSOFT Symposium on the foundation of software
engineering, pp. 62–75. ACM Press, New York (1994)

5. Cheung, S.C., Kramer, J.: Context constraints for compositional reachability analysis.
ACM trans. software engineering and methodology 5(4), 334–377 (1996)

6. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock
freedom and safety properties. In: Proc. of the 3rd international conference on computer
aided verification (1991)

7. Long, D., Clarke, L.: Task interaction graphs for concurrency analysis. In: Proc. of the
11th ICSE, pp. 44–52 (1989)

8. Valmari, A., et al.: Putting advanced reachability analysis techniques together: The ‘ARA’
tool. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993. LNCS, vol. 670, pp. 597–616.
Springer, Heidelberg (1993)

9. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra. In: Proc.
of ACM SIGSOFT, pp. 49–59 (1991)

10. Cheung, S.C., Kramer, J.: Checking Safety Properties using Compositional Reachability
Analysis. In: ACM TOSEM, pp. 49–78 (1999)

11. Malhotra, J., et al.: A tool for hierarchical design and simulation of concurrent systems. In:
Proc. of the BCS-FACS workshop on specification and verification of concurrent systems,
pp. 140–152 (1988)

12. Sabnani, K.K., et al.: An algorithmic procedure for checking safety properties of protocols.
IEEE trans. communication 37(9), 940–948 (1989)

13. Tai, K.C., Koppol, P.V.: An incremental approach to reachability analysis of distributed
programs. In: Proc. of the 7th international workshop on software specification and design,
pp. 141–150 (1993)

14. Denning, P.J., et al.: Machines, Languages, and Computation. Prentice-Hall, Englewood
Cliffs (1978)

15. Milber, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

Testing Embedded Control Systems with TTCN-3
An Overview on TTCN-3 Continuous

Ina Schieferdecker1,2 and Jürgen Großmann1

1 Technical University Berlin, Franklinstr. 28/29, D-10623 Berlin
2 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin

Abstract. TTCN-3 has gained increasing significance in recent years.
Originally developed to fit the needs for testing software-based applica-
tions and systems in the telecommunication industry, TTCN-3 has shown
its applicability to a wide range of other industrial domains in the mean
time. TTCN-3 provides platform-independent, universal and powerful
concepts to describe tests — especially for discrete, interactive systems
— on different levels of abstraction. However, TTCN-3 addresses systems
with discrete input and output characteristics only. In the automotive
industry — as well as in other industries that deal with highly complex
software-based control systems — this is not sufficient. Control systems
often interact with their environment trough sensors and actuators us-
ing continuous signals. A test environment that adequately supports the
specification, execution and evaluation of tests for embedded control sys-
tems has to provide concepts to handle this kind of signals. Moreover it
has to support the test engineer with suitable abstractions that ease
signal specification and signal evaluation.

1 Introduction

Embedded systems play an ever increasing role for the realization of complex
control functions in many industrial domains — resulting in a big variety of re-
quirements with respect to their functionality and reliability. Especially software-
based control systems have specific characteristics, which — at least in their
combination — are unique: they are typically embedded, interact with the envi-
ronment using sensors and actuators, supervise discrete control flows, obtain and
process simple and complex structured data, communicate over different bus sys-
tems and have to meet high safety and real time requirements. While different,
model-based development processes and methods for embedded systems exist,
a generally recognized test technology for the analysis and evaluation of these
systems, which lead to qualitatively high-quality, safe and reliable systems, is
missing. Such a test technology has to address the different aspects of embedded
systems and it has to enable the testing of discrete behaviors for the communi-
cation sequences, continuous behaviors for the regulation sequences, and hybrid
(i.e. combinations of discrete and continuous) behaviors for the control sequence
in interaction with sensors/actuators, with other system components and the
user.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 125–136, 2007.
c© IFIP International Federation for Information Processing 2007

126 I. Schieferdecker and J. Großmann

TTCN-3 provides a standardized test environment that was originally tailored
to satisfy the requirements of testing systems in the telecommunication industry,
including also embedded systems. In order to use however the full potential of
TTCN-3 to test embedded systems also, it needs to be extended. This paper
presents concepts especially dedicated to the testing of embedded, hybrid control
systems in the automotive domain.

We start with the overall definition of requirements for an integrated test
environment that is viable for the automotive domain in section 2. Section 3
provides the respective TTCN-3 integration and section 4 presents an example
application as a proof of concepts. A summary concludes the paper.

2 Testing Automotive Control Systems

Test processes in the automotive industry are tool-intensive and affected by
technologically heterogeneous test infrastructures. The established test tools
from e.g. dSPACE [1], Vector [2], MBtech [3] etc. are highly specialized, rely
on proprietary languages and technologies and are closed in respect to porta-
bility, extension and integration. In recent years the application of model-based
specifications in development and the establishment of powerful code generators
have led the development process to be noticeably more effective, automated,
and reaching a higher level of abstraction. Due to the availability of executable
models, tests and analytical methods can be applied early and integrated into
subsequent development steps. The positive effects — early error detection and
early bug fixing — are obvious.

Nevertheless, model based approaches have to be integrated into existing de-
velopment processes and combined with existing methods and tools. Hence, in
the industrial practice an embedded control system has to pass several test levels
such as Model-in-the-Loop- (MIL), Software-in-the-Loop- (SIL) and Hardware-
in-the-Loop- (HIL) tests. Normally, different test systems are used for this pur-
pose and almost each test system has its individual requirements on methods,
languages and concepts. Moreover the whole development process is highly dis-
tributed and fragmented. The OEM, i.e. the system integrator and solution
provider, is responsible for specification and integration whereas software and
hardware of the control systems are normally provided by different suppliers.

However, to keep the whole development and test process efficient and man-
ageable, the definition of an integrated and seamless approach is required. Such
an approach especially addresses the subjects of test exchange, autonomy of
infrastructure, methods, and platforms and the reuse of tests. The basis consti-
tutes a domain specific test language, that is executable and that unifies tests
of communicating, software-based systems in all of the automotive subdomains
(telematics, power train, body electronics etc.), and that unifies the test infras-
tructure as well as the definition and documentation of tests.

TTCN-3 has the potential to serve as such a testing middleware. It provides
concepts for local and distributed and for platform- and technology-independent
testing. A TTCN-3 based test solution can be adapted to concrete testing

Testing Embedded Control Systems with TTCN-3 127

environments and to concrete systems to be tested by means of an open test exe-
cution environment with well-defined interfaces for adaptation. However as men-
tioned before: while the testing of discrete controls is well understood and available
in TTCN-3 [4], concepts for specification-based testing of continuous controls and
for the relation between discrete and the continuous system parts are not. TTCN-3
lacks especially concepts for specifying tests for continuous and hybrid behavior.

3 Continuous TTCN-3

To enhance the core language to the requirements of testing continuous behavior
we introduce1:

– the notions of streams, stream ports and stream variables,
– the notions of time represented by a global clock and its sampling in test

behaviors, and
– the definition of control flow structures to support the guided provisioning and

evaluation of continuous behaviors (in combination with discrete behaviors).

3.1 Type Definitions

TTCN-3 provides a complex type system to define data structures and the struc-
tured assembly of testing components. To interact with the environment, TTCN-
3 uses the notion of ports and distinguishes different communication character-
istics for ports. To support continuous system testing we supplement TTCN-3
with so called stream ports. A stream port is a named variable with a history
that — unlike message-based and procedure-based ports — receives a value at
every step defined by the sample time. We are able to access current values and
the history of a stream by using the operators @ and []. With x_1@timevalue we
access the allocation of x_1 at a certain point in time and with x_1[i] we access
the ith value written to x_1. Example stream port type definitions and their
usage in component type definitions for stream ports are shown in listing 1.1.

Listing 1.1. TTCN-3 Stream Port Definition

type port FloatOut stream {out f loat }
type port FloatIn stream { in f loat }

type component MyComponent {
5port FloatOut x_1 , x_2 , x_3 ;

port FloatIn y_1 , y_2 , y_3 ;
}

In addition to stream ports we also allow the definition of stream variables and
stream constants. Whereas a port represents a connection to the outside world,
stream variables and constants are the in memory representation of streams.
Listing 1.2 shows the declaration of stream variables and constants and the
definition of their respective types.
1 We already presented parts of the approach shown below in previous articles [5,6].

128 I. Schieferdecker and J. Großmann

Listing 1.2. Stream Variables and Constants

type stream of f loat FStrm ;
type stream of boolean BStrm ;

3
var FloatStrm myStrm_1 ;

const FStrm referenceStrm_1 (t) :={1 . 0} ; // 1.0 f o r a l l t
const FStrm referenceStrm_2 (t):={ s i n (t) } ; // s inus o f t

8const BStrm referenceStrm_3 (t):={ t >10.0 ? true : fa l se } ;
// t rue f o r a l l t l a r g e r 10.0 , o therwi se f a l s e

Besides the basic access operators we additionally provide arithmetic opera-
tions on streams. We allow to calculate with streams (e.g. myStrm_1+myStrm_2),
to directly compare streams (e.g. myStrm_1>reference) and the assignments of
streams to other streams and stream ports (e.g. x_1:=myStrm_1).

3.2 Control Flow Structure for Continuous Behavior

TTCN-3 is a computational language. Test behavior is defined by computational
algorithms that typically assign messages to ports. The evaluation at ports is re-
alized using statements that obey the TTCN-3 snapshot semantics [4,7]. Whereas
the snapshot semantics provide means for a pseudo parallel evaluation of ports,
there is no notion of simultaneous stimulation and sampled evaluation on ports.

The carry-until-statement serves as an environment that provides a local time
property t, sampling, and enables pseudo simultaneous stimulation and evalua-
tion. Listing 1.3 shows the base structure of the carry-until construct.

Listing 1.3. Carry Until Construct

carry name_1{
statement_1 ;
statement_2

}
5until {

[] event_1 {statement_3 }
[] event_2 {statement_4 ; repeat}

}

10carry name_2{
statement_3

}
until {

[] event_3 {statement_5 ; name_1()}
15[] event_4 {statement_6 ; goto name_1}

}

The statements enclosed by the carry block are executed iteratively, once at
every step defined by the sampling rate. This repeats as long as no event is
triggered in the until block. When events are triggered, the execution of the

Testing Embedded Control Systems with TTCN-3 129

carry block is stopped and the statement block that is defined in conjunction
with the triggered event specification is executed.

The carry-until construct can be named (similar to functions and test cases
in TTCN-3). The name may be used as a label, so that it may serve as a des-
tination for goto statements. This provides the ability for more complex control
flow specifications (see listing 1.3). The concise semantics of carry-until are best
explained using terms of existing TTCN-3 statements. Listing 1.4 shows the
mapping result of the first carry-until-statement defined in listing 1.3.

Listing 1.4. Carry Until Mapped to TTCN-3 Constructs

label :=cu_name_1 ;
var boolean cont inue := true ;
var f loat t :=0;

4timer step ;
do {

step . start (sample_rate) ;
statement_1 ;
statement_2 ;

9alt {
[] event_1 {

statement_3 ;
cont inue := fa l se ;

}
14[] event_2 { statement_4 ; }

}
step . timeout () ;
t := t+sample_rate ;

} while cont inue ;

We can use the carry-until construct to realize equation systems with TTCN-
3. We are able to simultaneously assign new values to stream ports. Usually this
is done inside the carry part by using the assignment operator (e.g. port@t:=2*t
or port@t:=var@(t-10) etc.). We can also evaluate ports. The latter is done inside
the until part by using compare operations (e.g. []port@t>var@t). The symbol t
represents the current execution time and is updated according to the definition
in listing 1.4. For the evaluation of inputs at ports we consider delayed effective-
ness, i.e. each assignment to an output port is available for input not before the
next iteration. This condition holds if for every t, the values of the output ports
are defined by use of the values of the input ports for t′ ≤ t and by use of the
values of the output ports for t′ < t only. For more details on the power and
expressiveness of the carry-until construct see [5,6].

3.3 Construction of Streams

Themost elementary formof a streamdefinition is givenbyan expression over time.
The expression my contain a property called t to express time progress. The prop-
erty t represents the local time of a stream (it starts with the value 0.0 whenever a

130 I. Schieferdecker and J. Großmann

stream is started). For stream expressions,we use the full range of TTCN-3 expres-
sions including the use of variables, functions and the newly introduced concepts
defined above (e.g. streams and stream access operators). Listing 1.5 presents the
definition of a constant integer stream and of two time dependant float streams.

Listing 1.5. Simple Streams

myFirstStrm :=4;
mySecondStrm:= s in (t)+100.0 ;
myThirdStrm:=mySecondStrm@ (t −10 .0)∗4 .0 ;

Furthermore, we allow the part-wise definition of streams. In principle, this
is similar to the definition of 〈mk〉 by use of an TTCN-3 array (see listing 3.3).
Concerning the large amount of data normally necessary to represent a sampled
signal, this approach is not feasible for signals with a significant length. To
forgo the explicit specification of each individual value, we enable the definition
of larger structures called substreams here. To define substreams we use the
range expression — normally used to express template values in TTCN-3 —
to address a multitude of numeric or time-related index values. For example,
myStrm@(0..100):=4 denotes the assignment of the value 4 to the first 101 time
steps (and indices) of stream m̈yStrm.̈

Part-wise Definition of Streams

myFirstStrm :={1 ,2 ,45 ,66 ,223} ;
// f i n i t e stream wi th 5 va l u e s
mySecondStrm:={

@(0 . . 1 0 0) := s in (t)∗100 .0 ,
5@(100 . . 2 000) :=4.0 ,

@(2 0 0 0 . . in f in i ty) :=4.0+ s in (t /20 .0)}
// i n f i n i t e stream wi th 3 phases
myThirdStrm:={

[0 . . 1 0 0] := s in (t)∗100 .0 ,
10[1 0 0 . . 2 0 0 0] :=4.0 ,

[2 0 0 0 . . in f in i ty] :=4.0+ s in (t /20 .0)}
// the same as mySecondStrm only i f the sampl ing ra te i s 1

In order to concatenate multiple stream assignments into one individual
stream we use the shorthand notation for ranges presented in listing 3.3.

3.4 Stream Templates

In TTCN-3, especially for the definition of reference values, the use of templates
is encouraged. A template describes a pattern that is used to characterize values.
An arbitrary value is either matched by a template or not. We extend the notion
of streams to include also streams of template matches, where every match or
mismatch is represented by a Boolean true or false. Besides for numerical val-
ues, TTCN-3 encourages the use of templates for values of each type: for base
types as well as for user defined types. We apply the notion of templates to

Testing Embedded Control Systems with TTCN-3 131

streams, but restrict it to stream templates for numerical streams and to the
definition of upper and lower ranges for the stream value only. More complex
stream templates will be subject to further research.

A stream template defines a pattern that characterizes a stream or a multi-
tude of streams. The most elementary stream template is an individual stream
itself (see listing 3.4). Such a template matches only if the stream that serves as
template definition is exactly the same as the one the template is compared with.

Stream Templates
type stream of f loat FS ;
template FS t_1:=100.0∗ t ;

3template FS t_2 := (1 0 0 . 0 . . 2 0 0 . 0) ;
template FS t_3:=(s i n (t)+100.0

. . s i n (t) −100.0) ;

Similar to scalar value templates for numerical types (e.g. float, integer),
we allow the definition of stream templates that denote the upper and lower
bounds for numerical streams. Listing 3.4 presents example stream templates.
The template t_1 is defined by a stream itself, template t_2 is defined by a range
with the constant lower bound 100.0 and the constant upper bound 200, and
template t_3 uses dynamic evolving boundaries defined by stream expressions.

Moreover, ranges — especially in the field of signal processing — are often used
to indicate tolerances, either as a fixed value tolerance or a relative (percentage)
value tolerance. To express tolerances explicitly, we introduce an additional syn-
tactical construct for range definitions. With (strmval|tol) we denote a range
with a fixed value tolerance tol and with (strmval|tol%> we express percentage
value tolerances tol%. Example template definitions are shown in listing 1.6 and
their application is shown in section 4.

Listing 1.6. Tolerance Templates
template FS t_4 := (1 0 0 . 0 | 5 . 0) ;
template FS t_5 :=((s i n (t)+100.0) |5%) ;
template FS t_6:=(template1 , (4 . 0 | 4%)) ;

In order to apply stream templates on streams received via stream ports,
we use the match operator already known in TTCN-3. A match expression can
either be applied to a complete stream (e.g match(t_2, strmval)) or to single
values on a certain point in time (e.g.
(match(t_2@t,strmval@t)). For usage within the carry-until construct, we propose
x_2.match(t_2) as a shorthand to apply the current template value of t_2 to the
current value at a stream port x_2.

4 Case Study

In order to demonstrate the usage of the introduced concepts and to show their
applicability to automotive test tasks, we provide a small case study that repre-
sents a TTCN-3 realization for testing an Adaptive Cruise Control (ACC[8]).

132 I. Schieferdecker and J. Großmann

7
M_Mot_b

6
d_rel

5
alert

4
d_des

3
accMode

2
v_Des

1
v_acc1

v_Ziel

v_Fzg

d_rel

v_rel

Ziel

target detection

v_act

PedalPositions

DesiredTorques

PedalFlags

pedal interpretation

FzgDaten

DesiredTorques Stellgroessen

manual

Environment

FzgDaten

ZielDaten

WunschMomente

PedalFlags

BedienhebelStellung

AbstandsFaktor

Sollgeschwindigkeit

Stellgroessen

TempomatFlag

v_Soll

FahrerWarnung

TempomatModus

d_soll

ACC

6
v_des

5

4

3

2

1
v_target

phi_Brake

<T_des_Drive, T_des_Brake>

LeverPos

d_rel

Ziel

<AccPedal, BrakePedal>

DistFactor

<TempomatFlag>phi_Acc

v_rel

<i_ges, n_Mot, a_Fzg, v_Fzg, Gang_i>

Fig. 1. Simulink Model of an Adaptive Cruise Control

4.1 The System Under Test

An ACC is a cruise control that automatically detects vehicles running ahead
and — in the case of a slow vehicle ahead (the target) — it adjusts the actual
speed (v_acc) so that a safe distance to the detected vehicle is guaranteed (the
distance control mode). When there is no vehicle ahead, an ACC works like
any other cruise control (the velocity control mode). Today there are different
variants of ACC’s available. We use a simplified example here (see Figure 1)
that does not match the requirements of a real product but that is sufficient to
demonstrate the new features that we have introduced for TTCN-3.

The ACC consists of three major parts. The ACC-control unit provides the
main functional behavior. It is responsible to calculate the desired velocity
(v_soll), the destination distance to the vehicle ahead (d_des) and it provides
a warning signal to inform the driver when the safe distance is violated. The
ACC-control is supplemented by the target detection unit that preprocess sen-
sor information on the velocity of the vehicle ahead (v_target) and the pedal
interpretation unit that preprocess the driver’s input (phi_brake, phi_gas). For
testing purposes we use the test interface specified in table 1.

Table 1. ACC Test Interface

symbol dir unit datatype

v_target in m/s double
phi_gas in % double
leverpos in - enumeration
v_des out m/s double
d_des out m/s double
accMode out - boolean
v_acc out m/s double

Testing Embedded Control Systems with TTCN-3 133

4.2 The Informal Test Specification

In this example we test the changeover between distance control mode — when
there is a slow vehicle ahead — and velocity control mode — without any vehicle
ahead. This forms one of the more complex tasks of an ACC and can be tested
by the following test behavior (for a similar test specification see [8]).

1. Init: Accelerate the vehicle phi_gas:=100 until velocity v_acc rises to more
than 40 m/s. Than switch on the cruise control leverpos:=HOLD_ACC.

2. Activate ACC: Now, we introduce a vehicle ahead by setting the target
velocity to phi_target:=35+sin(t) m/s. The initial distance d_init:=90 m is
set using the parameter interface that is out of scope here. The ACC should
switch to distance control mode after a few seconds. The safe distance to the
vehicle ahead can be calculated with v_acc/2*df. The symbol df represents
a distance factor that is set to the value of 2 here.

3. Accelerate Target: To test whether the ACC switches back to velocity
control mode, we accelerate the target vehicle using a smooth ramp. The
ACC should now adjust the actual velocity according to the vehicle ahead
as long as the velocity excess 40 m/s. We allow a tolerance of 10% here.
Afterwards, the ACC should switch back to velocity control mode.

4.3 The TTCN-3 Test Specification

We use TTCN-3 and the concepts specified in section 3 on page 127 to imple-
ment the test case. We start with the specification of the test system architecture
and the test interface. Please note that TTCN-3 uses a test system centric per-
spective, i.e. system inputs are declared as outputs here and system outputs as
inputs. We declare continuous stream ports to cover the velocity (v_des, d_des,
v_target), the pedal output (phi_gas), and the input of the actual acc status
(accMode). To set the lever position we choose a port with a message based
communication characteristics.

Listing 1.7. Test Architecture

type port FloatOut stream {out f loat } ;
type port FloatIn stream { in f loat } ;
type port BoolIn stream { in boolean } ;

5type enumerated Lever { MIDDLE, HOLD_ACC,
HOLD_DEC, OFF } ;

type port LeverOut message
{ out Lever } ;

10
type component ACCTester {

port FloatOut v_target , phi_gas ;
port FloatIn v_des , d_des , v_acc ;
port BoolIn accMode ;

15port LeverOut l e v e rpo s ;
}

134 I. Schieferdecker and J. Großmann

After the definition of the structural setup, we define constant values and
streams that are used for the stimulation of the system later on.

Listing 1.8. Constants and Stream Constants used during Stimulation

type stream of f loat FS ;
const integer INIT_SPEED:=40;
const integer INIT_T_SPEED:=35;

4const integer KICKDOWN:=100;
const integer TIMEOUT:=20000;

const FS target_speed :=INIT_T_SPEED+s in (t) ;
const FS acce l e rat e_s low := t /1000 . 0 ;

For the evaluation of system behavior we define stream templates. The tem-
plate s_dist_fail covers an essential safety requirement. The desired distance
shall never under-run the minimal safety distance. The template v_des_fail will
be used later on to monitor the destination velocity in proportion to the velocity
of the target.

Listing 1.9. Template Definitions

template FS s_d i s t_ fa i l (integer df ,
f loat v e l):=

complement(v e l /2∗ df . . in f in i ty) ;

5template FS v_acc_fai l (f loat v e l):=
complement(v e l |10%);

Similar to the altstep-construct already available in TTCN-3, we use the
untilstep-construct to define reusable evaluation statements that are activated
as defaults and so applied to multiple carry-until statements in the follow-
ing.

Listing 1.10. Definition of an Untilstep

un t i l s t e p tout_and_safety runs on ACCTester {
[] d_des . match@t(s_d i s t_ fa i l (df , v_acc@t)){

setverdict (f a i l)}
4[] t>TIMEOUT {

setverdict (f a i l)}
}

Now we are able to define the test case itself. We start with the init phase
and activate the ACC when INIT_SPEED is reached.

Testing Embedded Control Systems with TTCN-3 135

Listing 1.11. The Test Case Definition

testcase ACC_Mode_Test () runs on ACCTester
setverdict (pass) ;
var integer df :=2;

5carry i n i t {
phi_gas@t :=KICKDOWN;

}
until {

[] v_acc@t>INIT_SPEED{
10l ev e rpo s . send (ON)

}
}

. . .

In the following we activate the untilstep defined in listing 1.10. This guaran-
tees the detection of safe distance violation and timeouts. For test behavior we
use carry-until to introduce the vehicle ahead (v_target:=target_speed@t). We
also check for the beginning of the distance control mode ([]acc_mode@t==true).

Listing 1.12. Test ACC Mode Activation

var default sa f e ty_de fau l t :=
activate (tout_and_safety) ;

carry act ivate_acc {
5v_target@t := target_speed@t ;

}
until {

[] acc_mode@t==true {} ;
}

10. . .

In the end, we check whether the ACC holds the correct velocity during the
acceleration of the target and switches back to velocity control mode when the
destination velocity is reached again.

Listing 1.13. Test ACC Mode Deactivation

carry ac c e l e r a t e_ta rg e t {
v_target:=v_target@t+acce lerate_slow@t ;

}
until {

5[] acc_mode==fa l se {}
[] v_acc@t .match(v_acc_fai l (v_target@t))

{ setverdict (f a i l)}
}
deactivate (sa f e ty_de fau l t) ;

10}// t e s t c a s e

136 I. Schieferdecker and J. Großmann

Occurring errors were detected during test execution and logged using the
setverdict(fail) statement. After the test execution we are able to obtain the
test result by examining the verdict value provided by the test case.

5 Summary and Conclusions

This paper reviews the general requirements for a test technology for embed-
ded systems, which use both discrete signals (i.e. asynchronous message-based
or synchronous procedure-based ones) and continuous flows (i.e. streams). It
compares the requirements with the only standardized test specification and im-
plementation language TTCN-3 (the Testing and Test Control Notation [4]).
While TTCN-3 offers the majority of test concepts, it has limitations for testing
systems with continuous aspects.

Hence, this paper introduces basic concepts and means to handle continuous
real world data in digital environments. Therefore, we introduce streams that
can be created, calculated and examined by means of continuous and poten-
tially discretized data. Moreover, TTCN-3 is being extended with the concepts
of stream-based ports, sampling, equation systems, and additional control flow
structures to be able to express continuous behavior. The paper demonstrates
the feasibility of the approach by providing a small example. In future work,
the concepts will be completed, implemented and applied to real case studies
in the field of automotive software engineering and the development of ECUs
(electronic control units).

References

1. dSpace AG: Web pages of the dSpace corporation (2005)
2. Vector Informatik GmbH: Web pages of the Vector Informatik GmbH (2007)
3. MBtech Group: Web pages of the MBtech Group (2007)
4. ETSI: ES 201 873-1 V3.1.1: Methods for Testing and Specification (MTS). The

Testing and Test Control Notation Version 3, Part 1: TTCN-3 Core Language (2005)
5. Schieferdecker, I., Großmann, J.: Testing of Embedded Control Systems with Conti-

nous Signals. In: 2nd Dagstuhl-Workshop MBEES 2007: Model based Development
of Embedded Systems (2006)

6. Schieferdecker, I., Großmann, J., Bringmann, E.: Continuous TTCN-3: Testing of
embedded control systems. In: 3rd International ICSE workshop on Software Engi-
neering for Automotive Systems (2006)

7. International Organization for Standardization: Information technology - Open sys-
tems interconnection — Conformance testing methodology and framework - Part
3: The Tree and Tabular combined Notation (TTCN), ISO/IEC 9646-3, 2nd edn.
(1998)

8. Conrad, M.: Modell-basierter Test eingebetteter Software im Automobil. PhD thesis,
TU-Berlin (2004)

Cross-Platform Verification Framework for
Embedded Systems�

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner

Institut für Technische Informatik
Technische Universität Wien

Treitlstrasse 3/182-1
1040 Vienna, Austria

{ingo, raimund, bernhard, peter}@vmars.tuwien.ac.at

Abstract. Many innovations in the automotive sector involve complex elec-
tronics and embedded software systems. Testing techniques are one of the key
methodologies for detecting faults in such embedded systems.

In this paper, a novel cross-platform verification framework including auto-
mated test-case generation by model checking is introduced. Comparing the ex-
ecution behavior of a program instance running on a certain platform to the exe-
cution behavior of the same program running on a different platform we denote
cross-platform verification. The framework supports various types of coverage
criteria. It turned out that end-to-end testing is of high importance due to defects
occurring on the actual target platform for the first time.

Additionally, formal verification can be applied for checking requirements re-
sulting from the specification using the same model generation mechanism that
is used for test data generation. Due to a novel self-assessment mechanism, the
confidence into the formal models is increased significantly.

We provide a case study for the Motorola embedded controller HCS12 that is
heavily used by the automotive industry. We perform structural tests on indus-
trial code patterns using a wide-spread industrial compiler. Using our technique,
we found two severe compiler defects that have been corrected in subsequent
releases.

1 Introduction

The last years have seen significant advances in electronic control systems. Such sys-
tems replace more and more conventional control systems. Driven by the increased
flexibility resulting from the use of microprocessors in control systems, increasing func-
tionality is integrated into electronic control units (ECUs) causing higher complexity of
the control applications. This causes an increase in the number of safety-critical elec-
tronic control systems. Safety-criticality means that a failure of such systems may result
in catastrophic consequences [1].

� This work has been partially supported by the FIT-IT research project “Systematic test case
generation for safety-critical distributed embedded real time systems with different SIL levels
(TeDES)” and the FWF research project “Compiler-Support for Timing Analysis” (CoSTA).

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 137–148, 2007.
c© IFIP International Federation for Information Processing 2007

138 I. Wenzel et al.

For instance, the automotive industry is one of the key drivers pushing these devel-
opments. Today, new cars contain about 80 ECUs. According to current figures of the
Austrian automobile association ÖAMTC, about 27% of all car breakdowns are directly
related to defects of car electrics and electronics [2].

Thus, the correct operation of safety-critical systems has to be ensured. This confi-
dence is established by validation and verification [3,4]. Validation denotes checking the
specification, verification refers to whether a system fulfills given requirements. Within
verification, testing is a method for getting evidence of the absence of faults.

High-level development tools like Matlab/Simulink1 supporting model-based de-
velopment help shortening product cycles. Especially code generators boost software
development cycles for embedded systems. In such development environments C-
code targeting specialized embedded hardware is generated automatically from Mat-
lab/Simulink models.

Input to the verification framework is C-source code performing a specified func-
tion in the embedded system. This source code is compiled for the target platform and
expected to behave according to its specification. The notion of the cross-platform ver-
ification framework allows to verify embedded systems software by comparing the ex-
ecution of the software on the target platform with an alternative execution platform
(denoted as host platform). To allow an semantics-equivalent execution of software, it
is necessary to transform the program for proper operation on the host platform.

1.1 Contribution

First, the notion of cross-platform verification is introduced. Target-specific C-code is
parsed and platform-semantics-equivalent models are generated that are used for test-
data generation. These models can also be used for formal verification purposes.

Second, a verification framework has been developed. Instrumented test files are
produced and it is checked whether the generated test data fulfill their purpose in the
execution scenario.

Third, cross-platform checks using the actual system-under-test allow to determine
if the target implementation operates semantically equivalent to the generated test data
of the reference implementation. This increases the confidence in the generated models.
We found out that this novel self-assessment mechanism helps to identify severe errors
within the system development processes. This mechanism allows strengthening the
confidence in the overall framework.

Fourth, using this method we found two severe bugs in a widely used commercial
cross-platform compiler. For legal reasons, the company name is not published.

1.2 Structure of This Paper

The paper is structured as follows: First, basic concepts including verification, test-
ing, model checking and platform behavior are introduced (Section 3). Then, individual
patterns used in testing are formulated and composed into the novel concept of cross-
platform verification (Section 4). In Section 5, the implementation of the cross-platform
verification framework is presented. Subsequently, we present experimental results

1 http://www.mathworks.com

http://www.mathworks.com

Cross-Platform Verification Framework for Embedded Systems 139

exercising the framework for an embedded system (Section 6). Finally, Section 7 con-
cludes this paper.

2 Related Work

To the best of our knowlegde there is no scientific research that addresses cross-platform
verification as a tool to verify a program instance running on a certain platform by
comparing its behavior with another program instance running on a different platform.

A research area related to our approach is test case generation using formal methods,
which is an active area of research. Chlipala et al. [5] describe how to test reachability
using the model checker BLAST. Rayadurgam et al. [6] have worked on generating test
of MC/DC coverage using model checkers to comply with the standard DO-178B [4].
The use of model checking to create test cases for mutation testing is described by
Ammann et al. [7]. Hamon et al. present results on using the model checker SAL to
generate tests for complete state and transition coverage of Stateflow models [8].

3 Basic Concepts

Verification denotes the process of checking whether a system fulfills given properties
called verification conditions [1]. Some people consider testing and verification as alter-
native strategies for increasing the dependability of computer systems. However, in the
following, a classification of verification techniques is presented that is based on work
of Laprie et al. [1]. The highest level classification criterion is whether the system is
exercised or not. If a system is verified without actually executing it, this is called static
verification. When a system is verified by executing it, this is referred to as dynamic
verification

If static verification is based on analyzing the code itself, we distinguish between
static analysis (inspections, walk-through, abstract interpretation, etc.) and theorem
proving. If verification is performed on a model of the system behavior (whereby the
model usually is a state transition system represented by finite or infinite state au-
tomata), this is called model checking [9].

When using dynamic verification, the system is exercised by providing inputs to the
system. These inputs can be symbolic in case of symbolic execution or concrete in case
of testing.

The cross-platform verification framework is designed for supporting testing and
model checking. Thus, in the following, these two techniques are introduced.

4 Cross-Platform Verification

In this section we introduce the basic verification patterns that are instantiated within
our verification framework. Most of these patterns are already used in practice; however,
due to the lack of a conceptional description in research literature the respective key
concepts are formulated explicitly.

Beside these patterns, functional equivalence between two different platforms is re-
quired in order to ensure that the target semantics are equivalent to the host semantics.

140 I. Wenzel et al.

Especially, this is required for the formal model that is automatically built and used
within the framework.

Subsequently, the combination of the concepts of remote testing, cross-platform test-
ing, reference-platform testing, formal verification, and functional equivalence leads to
our cross-platform verification framework is outlined in detail.

4.1 Remote Testing

A scenario where the test-control software and the software under test run on different
components is called remote testing.

When testing embedded systems, the component of the embedded system to be tested
is called target; the component where the testing control software runs is called host.
When testing embedded software using automatic test data generation, the host and tar-
get are typically different components, i.e., forming a remote testing scenario. Remote
testing is used in this case due to resource limitations at the target.

In case of our verification framework we verify the automatically generated test data
in a first step on the host where it is generated. In order to verify the correctness of the
generated test data, it is verified in a first step on the host where it is generated. Then,
in the next step the verified test data are converted and sent to the target platform. This
technique increases the confidence of test data significantly. It ensures that the test data
fulfills exactly its purpose.

4.2 Cross-Platform Testing

Cross-platform testing aims at performing tests on two or more different platforms with
semantically equivalent code and test data.

The concept of cross-platform testing is shown in Figure 1(a). The software is tested
on platform 1 and 2, using the same test cases. The intended output of the test cases
may need to be transformed differently for platform 1 and 2 to compute the test verdict.

Cross-platform testing has to be used to verify safety-critical systems in the case
that important parts of the system are computed with diversity on either hardware or
software level.

4.3 Reference Platform Testing

Reference platform testing is a technique to achieve automatic test verdicts even if only
input test data instead of complete test cases are available. The input test data are pro-
cessed on two different components, where one of it is typically called reference plat-
form.

HW OS Legacy

Binary1

Verdict1 (==)

HW1, OS1, Legacy1

Test Cases

Verdict2 (==)

HW2, OS2, Legacy2

Binary2

(a) Cross-platform testing.

Binary1

HW1, OS1, Legacy1

Input Data

Output Data1

Verdict (==)

HW2, OS2, Legacy2

Binary2
Output Data2

(b) Reference-platform testing.

Fig. 1. Cross-platform vs. reference-platform testing

Cross-Platform Verification Framework for Embedded Systems 141

As shown in Figure 1(b), the test data are applied on both components and the test
verdict is obtained by comparing the observed output of both components.

If the two components provide different execution platforms, it is in general neces-
sary to transform the program code of the reference platform to obtain the same intended
behavior as of the other platform.

4.4 Functional Equivalence Between Two Platforms

When doing cross-platform verification, one has to keep in mind that the program se-
mantics may include properties not only of the target hardware, but also of a program
transformer, e.g., a C compiler. In case of the ANSI C programming language, the
program semantics of a sequential C program does not even completely describe the
program behavior in the value domain [10]. We call a sequential program’s semantics
of the value domain functional semantics.

Thus, verifying a platform by comparing its behavior in the value domain with a
reference platform has the problem that both platforms may behave differently.

Our way to resolve this is to transform the program before executing it on the refer-
ence platform (B), such that it exhibits the same functional semantics on the reference
platform as on the target platform (A) (functional equivalence between platforms).

4.5 Verification of Embedded Systems

Our verification framework [11] allows to analyze embedded software both, by testing
and formal verification. It allows to dynamically test the program and to formally ver-
ify the software using the identically generated models. The key idea is that the test
data required for testing are generated by model checking. To do this, a formal model
of the program is required as input to the model checker. When this model has been
built, it can be used for the test data generation using model checking and for formal
verification. Thus, in the framework two platforms are supported: the host platform
involving the model for the model checker and the target platform (the embedded sys-
tem). The test data that have been generated using model checking are subsequently
used to exercise the program running on the target hardware. During these test runs,
it is checked whether the test data produce correct results (both, test data and results
have to be transformed to ensure functional equivalence between the platforms). One of
the core contributions of this framework is that this way of using the formal model in-
creases the confidence in the model. If any faults are observed within these executions,
the reasons have to be investigated: the cause can be located within the framework
(i.e., erroneous model transformation) or within the execution platform (i.e., hardware,
compiler). Thus, the presented framework forms a kind of intelligent self-assessment
mechanism helping to create correct formal models and to ensure the correctness of the
applied transformations.

Testing Framework. Besides the above mentioned formal model representing the core
of the verification framework, reference platform testing is supported. The transformed
target program can be executed on the host which yields execution traces. These traces
are recorded and compared to executions performed on the target hardware. It is also
possible to use test data generated by model checking to exercise the transformed target

142 I. Wenzel et al.

program on the host in order to obtain a preflight check of the generated data. On the
first glance, this may look a little bit strange, however, in practical use it turned out that
each of these components is very useful.

Formal Verification. As we use a formal model of the software under test, it is pos-
sible to use the same model for formal verification. We can extract this formal model
directly from the software. However, formal verification is not sufficient to ensure cor-
rect behavior of the software. This is because the behavior of a component is defined
by the software as well as its execution platform and it is practically infeasible to model
and analyze the PSS of the execution platform in full detail.

However, we have to model the PSS at least partially, since as introduced in Sec-
tion 4.4, the PIS of ANSI C source programs in general is not enough to get the behavior
of the software in the value domain.

5 Cross-Platform Verification Framework

The verification framework uses model-based testing to generate test cases. Since we
use model checking for our test case generation, it is relatively easy to derive test cases
that feature a specific coverage criteria. As with conventional testing, using such a
framework does not permit to apply the ideal testing metrics of path coverage. And
of course, achieving even more comprehensive coverage like state coverage is far from
feasible. In practice, coverage-based testing is reduced to coverage metrics that cover
local structures of the control flow graph, e.g., statement coverage or branch coverage.

Our testing framework provides additional flexibility as it allows us to decompose
the program into segments of parametric size and achieve path coverage within each
of these segments. The verification based on such a segmentation is used to verify the
execution platforms of our measurement-based WCET analysis [12].

As a feature of our framework, we utilize the same formal model for both, formal
verification and testing. The key drivers for the architecture of our verification framework
are:

1. Automated test data generation: Test data should be generated completely auto-
matically. We use bounded model checking for this purpose.

2. Extendability: The extension to new test cases (formal verification and cross-
platform testing) as well as to new target platforms should be easily possible. This
flexibility is achieved by using ANSI-C as language for applications subject to test.

3. Cross-platform testing: Due to faults in the build environment or hardware con-
figuration, end-to-end testing is necessary even for unit testing.

5.1 Overview

In Figure 2 the architecture of the framework is illustrated. The big gray shaded back-
ground arrows show processing that is performed completely automatically by the
framework. There are no user interactions required. Following, we present an overview
about each step performed by the framework.

The C-code passed to our tool is strongly dependent on the actually used target plat-
form.

Cross-Platform Verification Framework for Embedded Systems 143

Requirements

Test Cases

Specification

C-Code

Automated
Coding

HW1, OS1, Legacy1 HW2, OS2, Legacy2

Binary1 Binary2

Build
Environment2

Model

Generation

Test Case
Specification

Verdict

C-Code
Extraction

Semantically equivalent
transformation

Build
Environment1

Fig. 2. Verification framework

Thus, in the first step the code for the target platform is transformed to a semantically
equivalent C-code for the host platform. The transformed code is used as a ”reference
implementation” for testing hardware and compiler effects.

Further, from this C-code we extract models with respect to the test case specifica-
tion, i.e., depending on the actual test case specification modifications are automatically
applied to the source code (e.g., adding additional constraints from the specification re-
quired by the test case).

These modified source codes are passed to the CBMC model checker [13]. The
model checker generates the desired test data by deriving a counter-example. Failures
occuring in this step indicate possible contradictions in the test case specification. For
instance, when generating data for simple C1 coverage (basic block coverage), test data
can always be provided as long as the code is reachable. Whenever no test data can be
found, the program may contain unreachable code.

Finally, the resulting test data and reference results are delivered to the execution
environments. This is a two phase process: first the sample data is issued to the host
platform to verify the generated test data. Usually this process finishes successfully.
Then in the second step, the respectively converted test data is provided to the target
platform execution environment. Finally, the results calculated on the target platform
are compared with the results on the host platform, resulting in a final verdict.

Section 5.2 outlines the process of code transformation in more detail. Section 5.3
explains the test data generation process.

5.2 Code Transformation

A code transformation is performed to generate code for the host platform with exactly
the same behavior like the original code on the target platform. For applications written

144 I. Wenzel et al.

in C the conversion mainly affects integer data types since floating point numbers are
defined according to the IEC 60559 single, double, and extended format. The size and
the binary layout of the integer types are hardware and software (operating system and
compiler) dependent. In addition the C Standard does not define whether a “char” is the
same as a “signed char” or an “unsigned char”.

To be able to generate code on the host platform that is equivalent to a given piece
of code on the target platform we need the knowledge of the individual value ranges of
the integer data types. This knowledge is used to generate a mapping of data types
so that for each of the integer types min(typeTARGET) = min(typeHOST) and
max(typeTARGET) = max(typeHOST). If there is no equivalent data type on the host
platform for a specific data type used on the target platform, no semantically equivalent
code transformation can be performed. Type casts can be transformed in the same way.

Signed integer types need special consideration. It has to be ensured that these types
are treated in the same way on the target platform and on the host platform. The behavior
of some arithmetic and binary operators is not defined in the ISO standard, i.e., it is not
specified within the PIS. Therefore −1 � 1 might be 0, but using a different compiler
or hardware platform it might be 0x40.

The behavior of bit fields is undefined. The ISO standard does not state if an im-
plementation has to restrict variable values to fit the width given in the declaration. If
a is declared as “struct { unsigned int a : 3; }” then a should be in the
range from zero to seven. The ISO standard does not describe the behavior for the case
that a value outside this range is assigned to a. The same behavior on the target platform
and on the host platform has to be ensured.

There are some compiler or platform specific extensions like #pragma directives
or near or far modifiers, whose influence on the code semantic has to be examined
individually. Modifiers like near or far that influence neither data types nor control
flow can be expected to conserve the semantics of the application.

Target-specific hardware has to be available or to be emulated on the host platform
if it is used in the examined application. If neither is possible, then no semantically
equivalent code transformation can be performed.

When a code transformation is performed the target platform code is parsed into a
syntax tree. Based on this tree, the host platform code is generated. However, integer
types have to be modified according to the rules given above. If there are any constructs
that cannot be converted safely, the transformation has to stop with an error message.

Figure 3 shows the code on the target platform (with a word size of 16 bit) and the
semantically equivalent code generated for the i386 platform. In this case the transfor-
mation from the target to the host architecture has been accomplished by converting the
int data type on the target to the short data type on the host.

5.3 Test Data Generation

The target platform code cannot only be transformed into semantics-equivalent code
for the host platform. It is used to generate a semantics-equivalent application model
that can be used with a model checker. The complexity of this task depends on the
model checker syntax and semantics. For model checkers like CBMC [13], which uses

Cross-Platform Verification Framework for Embedded Systems 145

1 i n t max (i n t a , i n t b)
2 {
3 i n t max ;
4 i f (a>b) {
5 max = a ;
6 } e l s e {
7 max = b ;
8 }
9 return max ;

10 }

1 sho rt max (sho rt a , sho rt b)
2 {
3 sho rt max ;
4 i f (a>b) {
5 max = a ;
6 } e l s e {
7 max = b ;
8 }
9 return max ;

10 }

Fig. 3. Target code vs. host code

models specified in C, the implementation effort is much lower compared to other
model checkers like SAL, whose input language strongly differs from C.

In the described testing framework, model checking is performed within an external
module which allows to use either CBMC or SAL depending on the size and complexity
of the examined application. Since model checkers often use exact math in contrast to
C which uses residue classes for arithmetic operations, the behavior of C arithmetic
operations has to be simulated on this model checkers.

For this purpose, we implemented two different model checking backends for our
framework. One for the symbolic model checker SAL and another one for the ANSI-C
model checker CBMC [13]. In case of the SAL backend the C-code is converted to
semantics-equivalent code of the model checker input language.

Depending on the selected coverage criteria, different models are generated. Cur-
rently, branch coverage (C1) and path coverage (C2) for program segments is supported.
The detailed model generation mechanism is described in [11]. The generated test data
are stored in a XML repository.

5.4 Communication and Test Data Representation

As already described, differences in the platform-specific semantics have to be con-
sidered when transforming the programs between platforms. We decided to choose the
host platform as base platform.

Test data are stored platform independent in XML repositories, the respective values
are represented as logical integer numbers. When test data is exchanged across platform
boundaries, the corresponding transformations are carried out completely automatically
by the framework, which has to be aware of the host and the target platform properties.
Important properties are the data size and layout which may be either big or little endian.

An important issue is, where the data conversion from XML to platform specific bi-
nary values takes place. Since the targets are likely limited in resources the conversions
are performed on the host. The host automatically generates stubs for the target that
receive the platform specific test data via a RS232 or USB link, writes the data to the
variables (local variables are also placed within the stub) and executes the target code.
The stub traces the program execution using callback functions and writes the results
back to the host where they are checked for correctness.

6 Experiments

In this section we describe the setup of our experiments. We perform cross-platform
testing for selected applications.

146 I. Wenzel et al.

In order to show the cross-platform testing mechanism, we decided to perform basic
block coverage cross-platform testing. In this experiment, the generated and verified
test data is used for structural tests on a Motorola HCS12 evaluation board with its
respective build environment (using the commercial C compiler).

As benchmark sample we used three C-code files (like before each containing one
function that is subject to our test). Function F5 is a simple demo function, function F11
and F12 contain industrial code.

We summarized the results in Figure 4. When applying structural basic block cover-
age test to the more complex applications we got very surprising results.

Function Name In
d

u
st

ri
al

 c
o

d
e

L
in

es
 o

f
co

d
e

B

as
ic

 b
lo

ck
s

B

as
ic

 b
lo

ck
s

re
ac

h
ab

le

C
o

m
p

le
xi

ty
 (

p

at
h

s)

T
es

td
at

a
g

en
er

at
io

n
 (

m
)

T
ar

g
et

 v
er

if
ic

at
io

n
 (

m
)

T
o

ta
l (

m
)

T
im

e
/ b

as
ic

 b
lo

ck
 (

m
)

 #
 B

as
ic

 b
lo

ck
s

re
ac

h
ed

co

rr
ec

tl
y

 C
o

rr
ec

tn
es

s
%

E
rr

o
r

re
as

o
n

Function F5 no 46 30 30 72 1,2 2,8 4,0 0,13 30 100% None

Function F11 yes 274 54 54 97 4,5 5,3 9,8 0,18 54 100% None

Function F12 yes 1150 171 165 1,90E+11 124,7 21,5 146,2 0,85 159 96% Compiler defect

ResultTesting TimeCharacteristics

Fig. 4. Experimental Results

1 ty pedef s i g ned sho rt i n t T INT16 ;
2 ty pedef s i g ned l o ng i n t T INT32 ;
3
4 T INT32 i n 3 2 ;
5
6 v o i d t e s t (v o i d) {
7 T INT32 Aux S32 ;
8
9 Aux S32 = (T INT16) ((T INT32) i n 3 2 / (T INT16) 3) ;

10
11 / / Aux S32 = ((T INT32) i n 3 2 / (T INT16) 3) ;
12 / / Aux S32 = (T INT16) Aux S32 ;
13 }
14
15 v o i d my frame (v o i d) {
16 i n 3 2 = 0 x8000001E ; / / −2147483618
17 t e s t () ;
18 }

Listing 1.1. Code for defect D1

1 ty pedef s i g ned sho rt T INT16 ;
2 ty pedef s i g ned l o ng T INT32 ;
3
4 v o l a t i l e T INT32 t ;
5 v o l a t i l e T INT32 t 1 ;
6 v o l a t i l e T INT32 c1 ;
7
8 v o i d t e s t 2 (v o i d) {
9 t 1 = (T INT32) ((T INT16) ((T INT32) c1 /

10 ((T INT16) 0 x4000))) ;
11
12 t = (T INT32) ((T INT16) ((T INT32)0 x8001)) ;
13 }
14
15 v o i d i n g o t e s t (v o i d) {
16 c1 = 0 x20007FFF ;
17 t e s t 2 () ;
18 }

Listing 1.2. Code for defect D2

First, there is some difference between the number of basic blocks and the number of
reachable basic blocks. With basic blocks that are proved by the model checker being
not reachable there may seem to be something wrong. However, the reason for this is
that code generators assign fixed values to some parameters. Thus, there is some code
that cannot be executed at runtime. Second, when cross-platform testing is applied
some basic blocks could not be reached correctly as on the reference platform where
test data have been already verified. The reason for this problem turned out to be some
compiler defect. We found 3 other industrial applications where similar compiler errors
occurred.

Cross-Platform Verification Framework for Embedded Systems 147

Due to the fact that the code of function F12 (respectively the other industrial appli-
cations) is proprietary and it is hard to see the defect, we constructed smaller examples
D1 and D2 showing these problems.

Defect D1 is illustrated in Listing 1.1. The calculation of the variable Aux S32
should result in 0x00005560 on both platforms. However, on the HCS12 platform it
yields 0xFFFF8000 (using version 4.6a of the compiler). When the statement is rewrit-
ten in an alternative form as shown at lines 11 and 12 in Listing 1.1, the computed
result is correct. After we reported this bug to the compiler manufacturer, the bug was
committed and few weeks later a version was provided having this bug fixed.

However, after installing the new compiler version and re-running the tests, we found
another problem referred to as D2. The simplified example code is depicted in List-
ing 1.2. In the correct case the calculation of t1 and t yields 0xFFFF8001. However,
on the HCS12 platform t1 yields 0x00008001 and t equals 0xFFFF8001. In line 9 the
division results in the intermediary result 0x00008001. It seems that in this expression
the cast to INT16 is simply omitted by the compiler (although all optimizations are
disabled). A few weeks after the second bug has been submitted to the manufacturer, a
corrected version has been delivered where no further faults have been detected.

7 Summary and Conclusion

We introduced the notion of cross-platform verification for embedded systems. Based
on a target source code, a semantics-equivalent model is generated for a host computer.
By model checking, respective test data are generated that are self-checked on the host.
As practice has shown, this self-check is very useful to verify whether the test data (and
the models behind) are correct (self assessment mechanism). Then, these data are used
to exercise the actual execution platform and the results are compared with those on the
host computer (reference platform testing). Due to our experience, it is highly important
to include the whole execution platform involving the compiler, linker, target loader, and
the hardware itself to exhaustively test embedded systems (end-to-end testing).

The model generation mechanism that is used for test data generation can be also
used for formal verification. This has the advantage that the confidence into the models
is increased as the same mechanisms are used. From our experience, the joint use of
formal models and test data obtained from them seems promising.

In the future, we plan to add new platforms and so – by platform diversification
– more faults can be detected in execution platforms. Further, it is easily possible to
extend the framework to support other coverage criteria.

In our experiments, we have shown that by using this method even compiler faults
can be detected.

Acknowledgments. Our tool uses the CBMC model checker developed by Daniel
Kroening and Edmund Clarke at Carnegie Mellon University. Further, we use the SAL
model checker developed by Leonardo Demura at SRI Labs.

148 I. Wenzel et al.

References

1. Laprie, J.C., Randell, B.: Basic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secur. Comput. (Fellow-Algirdas Avizienis and Senior Member-
Carl Landwehr) 1(1), 11–33 (2004)

2. Lackner, K.: Bordelektronik im Zwielicht Economy Austria - Printausgabe (25 August 2006)
3. Commission, I.E.: Functional safety of electrical / electronic / programmable electronic

safety-related systems. IEC standard 61508 (1998)
4. Software considerations in airborne systems and equipment certification. RTCA/DO-178B

(1992)
5. Beyer, D., Chlipala, A.J., Henzinger, T., Jhala, R., Majumdar, R.: Generating tests from coun-

terexamples. In: Proc. 26th International Conference on Software Engineering (ICSE), Ed-
inburgh, Scotland, UK, pp. 326–335. IEEE Computer Society Press, Los Alamitos (2004)

6. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using model check-
ers. In: Proc. 8th IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems (ECBS ’01), IEEE Computer Society Press, Washington, DC (2001)

7. Ammann, P., Black, P.E., Majurski, W.: Using model checking to generate tests from spec-
ifications. In: Proc. 2nd IEEE International Conference on Formal Engineering Methods,
Brisbane, Queensland, Australia, pp. 46–54. IEEE Computer Society Press, Los Alamitos
(1998)

8. Hamon, G., deMoura, L., Rushby, J.: Generating efficient test sets with a model checker. In:
2nd International Conference on Software Engineering and Formal Methods, Beijing, China,
pp. 261–270. IEEE Computer Society Press, Los Alamitos (2004)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
10. Koenig, A.: C Traps and Pitfalls. Addison-Wesley, Reading (1988)
11. Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD thesis,

Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria (2006)

12. Wenzel, I., Rieder, B., Kirner, R., Puschner, P.: Automatic timing model generation by CFG
partitioning and model checking. In: Design, Automation and Test in Europe, 2005. Proceed-
ings, pp. 606–611 (2005)

13. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a reference. In:
Proceedings of ASP-DAC 2003, pp. 308–311. IEEE Computer Society Press, Los Alamitos
(2003)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 149–158, 2007.
© IFIP International Federation for Information Processing 2007

Experimental Analysis on Time-Triggered Power
Consumption Measurement with DVS-Enabled Multiple

Power Domain Platform

Songah Chae1, Doo-Hyun Kim1,*, Changhee Jung2, Duk-Kyun Woo2,
and Chaedeok Lim2

1 Embedded S/W and Sensor (Essens) Lab.
Konkuk University, Seoul, Korea

{sachae, doohyun}@konkuk.ac.kr
2 Embedded S/W Research Division, ETRI, Taejon, Korea

{chjung, dkwu, cdlim}@etri.re.kr

Abstract. Recently, the battery and low-power H/W technologies for mobile
and wearable computing devices have been advanced rapidly. But on the other
hand the computation and communication demands of the embedded
applications are increasing more rapidly. Therefore, the application developers
are still required to develop their codes to utilize the available energy as
efficient as possible. The provision of software power measurement with
reasonable accuracy, consistency and low overhead is an indispensable factor
for software power engineering. In this paper, we present a time-triggered
mechanism for providing energy consumption profiles in the level of C
functions. The similar mechanisms have already been introduced at the previous
researches such as PowerScope and ePRO. Instead, we, in this paper, introduce
our efforts to extend these researches to incorporate power domains and
DVS(Dynamic Voltage Scaling), then interpret these mechanisms as the view
of time-triggered approach for better understanding to the relationships among
timer interrupt, context switching, DAQ triggering, multi-channel DAQ delay,
and etc. From our experimental results, we could conclude that the time-
triggered approach for the function level energy measurement properly worked
with low overheads and produced consistent energy consumption profiles on
the DVS-applied program codes running upon the platforms supporting
multiple power domains.

Keywords: Embedded Software, Power Consumption Measurement, Dynamic
Voltage Scaling.

1 Introduction

Power aware computing is becoming fundamentally important with the proliferation
of portable, battery operated systems, such as PDA, cellular phones, MP3 player,

* Corresponding author: New Millennium Hall 1203, School of Internet and Multimedia

Engineering, Konkuk University, Kwangjin-Gu, Seoul, 143-701, Korea.

150 S. Chae et al.

PMP(Portable Media Player), and etc. In order to support the low power management,
there has been variety of research areas in wide levels of spectrum including compiler,
OS, system architecture, microprocessor, circuit and other H/W component as well as
power consuming applications. Among these areas, the microprocessors have been
mainly focused on providing low power functionalities such as DVS(Dynamic Voltage
Scaling) and DFS(Dynamic Frequency Scaling). For example, Intel’s PXA27x
processor family is providing six power modes for enabling more efficient power
management than the previous XScale processor family. Although such low-power
H/W and battery technologies have been recently advanced rapidly, the computation
and communication demands of such embedded applications are increasing more
rapidly. Therefore, the application developers are still required to develop their codes
to utilize the available energy as efficient as possible; consequently, the provision of
software power measurement with reasonable accuracy, consistency and low overhead
is an indispensable factor for software power engineering.

In this paper, we present a time-triggered mechanism for providing energy
consumption profiles in the level of C functions of the applications using dynamic
voltage scaling. The time-triggered mechanism uses periodic timer interrupts for
activating DAQ(Data Acquisition) instrument, which is installed outside of the target
device, to acquire the power from the concerned power domains such as processor
core and memory. In addition, the timer interrupt handler records the instruction
counter at the same moment. The stored trail of power and instruction counters is
combined by referencing symbol table, generated at the compile time, to produce
accumulated energy for each function in the application codes.

The similar mechanisms were already introduced at the previous researches such as
PowerScope[7] and ePRO[9]. Instead, we, in this paper, introduce our efforts to
extend these researches to incorporate power domains and DVS, then interpret these
mechanisms as the view of time-triggered approach for better understanding to the
relationships among timer interrupts, context switching, DAQ triggering, multi-
channel DAQ delay, and etc. We also present our experimental results as an
experimental validation of these time-triggered approaches in the presence of power
domain and DVS.

The chapter 2 will provide background for the power estimation of software and
introduce related researches and our own efforts. The chapter 3 will be focused on
introducing our facilitations for the domain-wise power measurement of DVS-related
applications. The section 4 will present our experimental results with our
interpretation in the view of consistency and overhead. The section 4 will conclude
this paper with suggestions for further research directions such as imposing our
efforts into other time-triggered engines like TMO (Time-triggered and Message-
triggered Object) [3].

2 Backgrounds and Related Works

2.1 Power Consumption of Software

According to the elaborated research results [1], while the instruction level current
consumption in SA-1100 has a variation of about 38%, the variation of the current

 Experimental Analysis on Time-Triggered Power Consumption Measurement 151

consumption in programs is much less, that is, 8% in maximum. This means that the
current consumption depends on the operating voltage and frequency of the processor
rather than a piece of code. But, as mentioned in [1], it might be significant in
datapath dominated processors.

Also, the microprocessors have been mainly focused on providing low power
functionalities with such as DVS and DFS. There is a quadratic dependency on the
voltage with power consumption. This means that halving the voltage reduces the
power consumption to one-fourth its original value. Meanwhile, reducing the power
to one-fourth its original value only halves the maximum frequency since the
maximum frequency is roughly linear in the voltage [2]. Thus, if the codes run at
different frequency and different voltage by using DVS capabilities in certain
situations, then the same codes lead different power consumptions.

In addition, the Intel PXA27x, for example, provides ten power domains such as
VCC_CORE, VCC_MEM, VCC_LCD, and etc, as well as it allows DVM(Dynamic
Voltage Management). In conjunction with PMIC(Power Manage Integrated Circuit),
it provides six power modes such as IDLE, DEEP IDLE, and STANBY modes of
which each mode requires different levels of voltage in each power domain[4-7]. So,
the behavior of codes can also significantly affect the usage of power by changing
power modes. Accordingly, it is necessary to allow application software developers to
analyze the power consuming behavior of his/her program codes in details in the
presence of DVS and power domains as well as in the view of the whole behaviors.

2.2 Software Power Measurement Tool

Software power measurement tool is the indispensable factor in leading application
software developers to develop their software with the awareness on the power
consumption. For this purpose, the tools are required to support several key factors
such as the accuracy, consistency, low overhead, usability as well as DVS and power
domains. The accuracy is supposed to depend on various aspects such as the usage of
instrumental equipments for DAQ, the delay and jitter engaged with the channel
multiplexing in DAQ instrument, and timer interrupt regularity.

The consistency is also important factor to the developers in the process of power
optimization. The tools have to provide dependable measurements by providing
consistent results with reasonable minor ratio of deviations for the same codes and
same situations even in case of using time-sharing and multi-tasking platforms. The
low overhead requirement is also important since some part of power measurement
mechanism potentially intervenes the execution of the concerned application. As a
sort of software engineering tools, the power measurement tool has interactions with
users, i.e., software developers, hence, is necessarily required to provide decent
multilateral views with proper presentation schemes.

2.3 Related Works

There were several research works related to this paper, including PowerScope[8],
SES[9], ePRO[10], Arun[11] and Esto[12]. PowerScope[8] uses digital multimeter

152 S. Chae et al.

for DAQ with the support of triggering from OS running in the target system. It does
not need to impose extra hardware into the target system. PowerScope maps energy
consumption acquired from the external multimeter to program structure to determine
the energy consumption of different procedures within a program. SES [9] collects
energy consumption data in cycle-by-cycle resolution and maps the data into program
structure to provide higher accuracy and resolution. But, SES needs extra acquisition
module with measurement circuit, profile controller and acquisition memory, and
hence, it may not be applied to ordinary target systems not equipped with the
modules.

While it uses similar techniques used in PowerScope and SES, the ePRO [10] does
not need extra instrumentation like SES and provides performance profiling as well as
energy profiling. As its experimental target system, ePRO uses a commercial toolbox
using PAX255 which enables performance profiling by using PMU(Performance
Monitoring Uint) provided at architecture level. These previous research works gave
many inspirations and technical details to our works. However, those are not dealing
with the situations using DVS, nor considering simultaneous acquisitions from
separate multiple power domains. The work from Arun Thomas[11] deals with DVS
in their measurement platform. But it measures only the power of the overall laptop
system with extra external circuits, and does not support function level energy profile.

Esto [12] is a visual IDE(Integrated Development Environment), based on Eclipse
3.0, for the embedded applications running on Qplus Embedded Linux[12]. It
supports optimization techniques by transforming loop structure of source code, such
as loop distribution, loop interchanging, loop unrolling, and scalarization. This paper
is related to enable Esto to provide energy profiling, using Intel Mainstone [4] as a
primary target toolbox with DVS and power domains.

3 Time-Triggered Power Measurement

3.1 Architectural Mechanism

As illustrated in Figure 1 and Figure 2, our system consists of target system, host
system and DAQ board with a connector block. For the DAQ, we use NI-PCI-
6251[13] that can be plugged into PCI slot of the host system. The connector block,
SCC-2345[14], enables connections between NI-PCI-6251 and pins from power
domains in the target system microprocessor, PXA270A. The NI-PCI-6251 provides
simultaneous acquisitions from multiple power domains through channels. For the
target system, we use the Intel Mainstone toolbox [4-7] installed with Qplus
embedded Linux [12] enhanced with kernel level low power management module,
called Harmonia. By using the Harmonia API, application program codes can change
the frequency of the processor properly according to the situations of execution. Then,
the Harmonia maps the requested frequency to the proper voltage. The host system is
just normal desktop Linux computer installed with the device driver for the NI-PCI-
6251.

 Experimental Analysis on Time-Triggered Power Consumption Measurement 153

Fig. 1. Overall Architecture of Target System and DAQ facilitation

Simultaneously with
the start of target
application, the timer
starts to generate timer
interrupt to activate its
corresponding ISR
(Interrupt Service
Routine). For our
experiment, the timer
interrupt interval was set-
up with 2ms. Whenever
the timer ISR is activated,
it generates external
signal through GPIO for
invoking NI-PCI-6251 to
acquire voltages from
each concerned power
domain through the SC-
2345 connector block. In
addition, the ISR also
records program counter
(PC) of the application
process that has been
suspended due to the
timer interrupt. These
records are used for
deriving function level
energy consumption
profiles later at the host
system.

The Intel Mainstone toolbox provides pairs of two outer pins of each power
domain. Among these two pins of a pair, one is to get voltage drops, V1, of the

Fig. 2. Overall Architecture of Host System

Fig. 3. Schematic around header for Core (excerpted from [5])

154 S. Chae et al.

corresponding power domain by measure across the sense resistor, senseR , the other is

to get the ground voltage, V2, of the domain (see Figure 3 for schematics). Thus, the
power consumption of the corresponding power domain at this very moment is

calculated as () 21 VRVP sense ×= . In case of Intel Maintone board, the senseR for

PXA270 core domain is 0.1 ohm as shown in Figure 3.

3.2 Software Energy Measurement

As depicted in Figure 4, the function level energy measurement is performed by the
interval-based energy approximation. This approximation assumes that the power

consumptions at every moment in a period tΔ are equally iP which is acquired at a

single moment during the period. Thus, the energy consumption iE during an

interval tΔ is obtained by tii PE Δ×= . In fact, the iP is acquired at the time when

the ISR generates the external signal, and the timer interrupt interval forms tΔ .

1 2
)(

21

Trail of power in
a power domain
(e.g., processor)

Distribute Ei

by <PCi, PIDi>

[Ei, PCi, PIDi]
Function

Table with
PC ranges

Compiler

App. Program
Codes(C)

Func_1() Func_2() Func_n()

E1

+
E3E2 Ek…

Accumulate Ei

to each function
bucket

…

1 2
)(

21

Trail of power in
a power domain
(e.g., processor)

Distribute Ei

by <PCi, PIDi>

[Ei, PCi, PIDi]
Function

Table with
PC ranges

Compiler

App. Program
Codes(C)

Func_1() Func_2() Func_n()

E1

+
E3E2 Ek…

Accumulate Ei

to each function
bucket

…

Fig. 4. Overall Mechanism for Function Level Energy Measurement

Each iE is also accompanied with the PC at the time when the application process

is interrupted. By using both of this PC and the function table generated at compile

time, each iE can be indexed and accumulated to the energy bucket corresponding to

the function in the application program codes.

 Experimental Analysis on Time-Triggered Power Consumption Measurement 155

In the course of this indexing process, we have another assumption that the process
in attention does not suffer any significant interventions from other processes. This
assumption sounds quite unrealistic, but we could get quite consistent experimental
data by simply not executing other processes during the measurement.

The above two assumptions necessarily affect the accuracy and consistency of the
measurement. At first, the granularity of timer interrupt intervals mainly affects the
density of the data acquisitions and eventually does the accuracy of the interval-based
approximation. In fact, the regularity of timer interval is related to both of the
accuracy and consistency of the measurement. It is true that the drifting of the timer
interrupt intervals is rarely avoidable in time-sharing system, and if it goes over a
reasonable range, then the accuracy can not be guaranteed. And also, if the
irregularity happens, then the results of each measurement become inconsistent and
consequently not dependable.

3.3 Timing Analysis

Another important view
point related the
accuracy and
consistency is the
racing situation
between the DAQ
instrument and the
target system.
Immediately after the
target system releases a
external signal through
GPIO, the target system
continues remained
works for finishing ISR
and returning to the

interrupted process. On the other hand, once the DAQ gets the signal from the target
system, the DAQ starts off with scanning the channels. Fundamentally the time
needed for a single acquisition should be negligible. But, in case when the DAQ
instrument is required to perform multiple acquisitions from multiple channels, then it

has to do multiplexing among channels, which takes relatively a while, i.e. mΔ ,

compared to the speed of the target system processor. The SC-2345 and NI-DAQ-

6251 need around 10 microseconds for acquiring both the 1V and 2V by multiplexing

[13, 14]. Although these two values are from the different channel, these should be

used simultaneously to get the single value of () 21 VRVP sense ×= . Thus, it takes at

least the time for multiplexing delay in acquiring a single digital value P at a single
moment. Therefore, as shown in Figure 5, there may exist a racing situation between

cΔ and dΔ . In case of cd ΔΔ ≥ , the measurement loses its validation since the DAQ

instrument only acquires the power that the ISR uses. But, normally, the situation is

Fig. 5. Timing relationship diagram

156 S. Chae et al.

cd ΔΔ < since the mΔ which holds the most part of cΔ is usually in the range of

microseconds, while the processor takes at most few nanoseconds1 for dΔ .

4 Experimental Analysis

Figure 6 shows that the variance among measurements was insignificant when we
repeated the same experiment ten times with the same program codes. The standard
deviations were 1.03 mJ for 104MHz mode and 1.38mJ for 416MHz mode. This
program simply performs a loop of integer multiplications ten million times with

different frequencies. In addition, the overhead, da ΔΔ + , mainly induced by the ISR

for timer interrupt was only 0.3% which is relatively insignificant.

DVS Consistency Test

900

950

1000

1050

1100

1150

1200

1250

1 2 3 4 5 6 7 8 9 10

Frequencies(MHz)

En
er

gy
 C

on
su

m
pt

io
n(

m
J)

416 364 312 286
156 104

H.264 Decoder(JM 7.6)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

on
su

m
pt

io
n(

m
J)

start_macroblock itrans

init_macroblock get_block

decode_one_macroblock GetStrength

Edgeloop

Fig. 6. Energy Consumption for same
operations with different DVS

Fig. 7. Energy Consumption of major functions
in H.264 Decoder (JM 7.6)

Figure 7 shows our experimental results when we applied our measurements to the
JM Ver. 7.4, the open source S/W for H.264 decoder[15, 16]. Seeing the figure, it is
consistent and clear that the meaningful functions in the decoder such as get_block(),
GetStrength(), and decode_one_block() consume more energy than others like
start_macroblock() which only initiates decoding of one block.

1 The 624 MHz PXA270 is reported to perform 800 MIPS (http://en.wikipedia.org/wiki/

Intel_XScale).

 Experimental Analysis on Time-Triggered Power Consumption Measurement 157

Figure 8 shows the results when
we applied DVS into the
init_macroblock() function so it is
executed at 104MHz, 286MHz, and
416MHz modes. It also shows
consistently that the same codes can
consume more energy when
executed with higher frequency, and
vice versa. These two experiments
on the H.264 decoder imply that it
would be effective to elaborate upon
the get_block() and change the
power modes properly according to
the picture types like I, P, B as the
previous works [17]. This
implication is also meaningful in
that the time-triggered approach for
the function level energy
measurement properly works and
gives consistent energy
consumption profiles on the DVS-
applied program codes running
upon the platforms supporting
multiple power domains.

5 Conclusions

The provision of software power measurement with reasonable accuracy, consistency
and low overhead is indispensable factors for software power engineering. In this
paper, we presented the time-triggered mechanism for providing energy consumption
profiles in the level of C functions. The similar mechanisms were already introduced
at the previous researches such as PowerScope and ePRO[8-11]. Instead, we
introduced our efforts to extend these researches to incorporate the platform
capabilities such as power domains and DVS, and interpreted these mechanisms as
the view of time-triggered approach for better understanding to the relationships
among timer interrupts, context switching, DAQ triggering, multi-channel DAQ
delay, and etc. From our experiments, we could conclude that the time-triggered
approach for the function level energy measurement properly worked with low
overheads and produced consistent energy consumption profiles on the DVS-applied
program codes running upon the platforms supporting multiple power domains.

Fundamentally, the time-triggered approach depends on the timer interrupts, thus,
this approach can be imposed into or integrated with other time-triggered systems
such as TMO [3]. The TMO uses clock interrupts for scheduling and dispatching the
processor to SpM’s and SvM’s in TMO objects. If we add our time-triggered energy
measurement mechanism into the clock interrupt hander of the TMO engine, then we
might expect that the energy consumption behaviors of TMO objects can be analyzed
in the level of SpM and SvM. This work is remained as our further research direction.

H.264 Decoder(JM 7.6) :
init_macroblock()

40

45

50

55

60

65

70

75

80

85

1 2 3 4 5

Frequencies
(MHz)

En
er

gy
 C

on
su

m
pt

io
n(

m
J)

104
286
416
DVS(X)

Fig. 8. Power Consumption of init_macroblock()
with different DVSs

158 S. Chae et al.

Acknowledgement. This paper was partially supported by ETRI, ITRC project from
MIC, Korea, and Seoul R&BD Program in 2007.

References

1. Sinha, A., Ickes, N., Chandrakasan, A.P.: Instruction Level and Operating System
Profiling for Energy Exposed Software. IEEE Tr. on VLSI Systems 11(6), 1044–1057
(2003)

2. Mudge, T.: Power: A First-class Architectural Design Constraint. Computer, 52–58 (2001)
3. Kim, K.H., Ishida, M., Liu, J.Q.: An Efficient Middleware Architecture Supporting Time-

Triggered Message-Triggered Objects and an NT-based Implementation. In: Proc. ISORC
’99, St. Malo, France, pp. 54–63 (May 1999)

4. Intel PXA27x Processor Developer’s Kit, User’s Guide, Rev. 4.001 (April 2004)
5. Intel PXA27x Processor Developer’s Kit, Schematics, Rev. 4.001 (April 2004)
6. Intel PXA27x Processor Family Power Requirements, Application Note (2004)
7. Intel PXA27x Processor DVK PMIC(LDO) Card (2004)
8. Flinn, J., Satyanarayanan, M.: Managing Battery Lifetime with Energy-Aware Adaptation.

ACM Tr. on Computer Systems 22(2), 137–179 (2004)
9. Shin, D., Shim, H., Joo, Y., Yun, H.-S., Kim, J., Chang, N.: Energy-Monitoring Tool for

Low-Power Embedded Programs. IEEE Design and Test of Computers (July-August 2002)
10. Baek, W., Kim, Y.-J., Kim, J.: ePRO: A Tool for Energy and Performance Profiling for

Embedded Applications. In: Proc. of ISOCC’04, pp. 372–375 (October 2004)
11. Thomas, A.: A Measurement Platform for DVS Algorithm Development and Analysis.

TCC 402, Unversity of Virginia (2003)
12. Qplus, Electronics and Telecommunications Research Institute. http://qplus.or.kr/english/
13. Series, D.M: User Manual - NI 622x, NI 625x, and NI 628x Devices, National Instruments

Corp (2006). http://www.ni.com/pdf/manuals/371022g.pdf
14. SCC-AI Series Isolated Analog Input Modules, User Guide, National Instrument Corp.

http://www.ni.com/pdf/manuals/371066c.pdf
15. H.264/AVC Reference Software. http://iphome.hhi.de/suehring/tml/
16. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC

Video Coding Standard. IEEE Tr. On Circuits and Systems for Vider Technology 13(7),
560–576 (2003)

17. Choi, K.W., Dantu, K., Cheng, W.C., Pedram, M.: Frame-Based Dynamic Voltage and
Frequency Scaling for a MPEG Decoder. In: Proc. of 2002 IEEE/ACM Int’l conference on
Computer-aided design, San Jose, CA, pp. 732–737 (2002)

A Framework for Hardware-in-the-Loop Testing

of an Integrated Architecture

Martin Schlager1, Roman Obermaisser2, and Wilfried Elmenreich2

1 TTTech Computertechnik AG
Schoenbrunner Strasse 7, 1040 Vienna, Austria

martin.schlager@tttech.com
2 Vienna University of Technology

Treitlstrasse 3, 1040 Vienna, Austria
{romano,wil}@vmars.tuwien.ac.at

Abstract. In this paper we present a distributed Hardware-in-the-Loop
(HiL) simulation approach that supports the verification and valida-
tion activities in an integrated architecture as recently developed in
DECOS (Dependable Embedded COmponents and Systems), an inte-
grated project within the Sixth Framework Programme of the European
Commission. Focusing on the interconnection between the simulated en-
vironment and the Integrated System Under Test (ISUT), our approach
involves the concept of a Smart Virtual Transducer (SVT) that replaces
the physical transducers of the ISUT without a probe effect on the ISUT.
Our approach enables a complexity reduction for setting up an HiL sim-
ulation and supports a well-designed scalable interface to an integrated
architecture. Furthermore, we support non-intrusive, deterministic in-
teraction between the environment simulation system and the ISUT in
order to guarantee reproducible test-runs. We show an exemplary appli-
cation of the proposed concept by tailoring the generic components of the
proposed simulation approach to an automotive park assistant system.

1 Introduction

The increasing number of electronic functions in future automobiles requires a
change from the traditional ”one function – one Electronic Control Unit (ECU)”
concept to integrated architectures that support bundling several functions in
one ECU. Such an integrated system architecture must provide means to handle
the complexity of distributed applications while supporting efficient integration
of functions into the shared hardware.

An example for an integrated system architecture is the DECOS Integrated
Architecture [1], which builds upon the validated architectural services of a time-
triggered core architecture. A distributed time-triggered computer system pro-
vides a physical network as a shared resource for the communication activi-
ties of more than one application subsystem. Other integrated architectures are
AUTOSAR [2] and IMA [3].

Integrated architectures pose also a challenge to the HiL test procedure, a
standard method for testing of an embedded controller before its deployment [4].

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 159–170, 2007.
c© IFIP International Federation for Information Processing 2007

160 M. Schlager, R. Obermaisser, and W. Elmenreich

HiL simulation is a technique where parts of a real system are replaced by
a simulation, i. e., a mathematical model of these real system parts [5]. HiL
simulation offers increased realism of the simulation because access to hardware
features is provided that would not be available in a pure software simulation. In
an integrated system, applying the HiL test procedure requires finding adequate
interfaces between the simulator and the ISUT.

In this paper we present a distributed HiL simulation approach for the DECOS
Integrated Architecture. The interaction between the simulated environment and
the ISUT involves the concept of an SVT [6] that replaces the physical transduc-
ers of the ISUT without a probe effect on the ISUT. Thus, an ISUT as part of an
integrated architecture can be connected to the HiL simulator in a non-intrusive
way. Each SVT communicates with other components of a distributed environ-
ment simulator via a standardized time-triggered digital interface. Furthermore,
an SVT emulates a transducer-specific interface. The proposed concept enables
a complexity reduction for setting up a HiL simulation and supports a well-
designed scalable interface to an integrated architecture.

The rest of the paper is structured as follows: Section 2 reviews related work
in the area of HiL simulation. Section 3 describes structure and features of the
integrated system architecture that is used in our approach. Section 4 elaborates
on the architecture of the environmental simulation system and discusses the im-
plications on reproducibility of simulation results. We present a case study based
on an exemplary prototype application in Section 5. The paper is concluded in
Section 6.

2 Related Work

HiL simulation involves physical hardware components, i. e., nodes, of a real-
time system. Hence, HiL simulation requires the construction of an environment
simulator in order to emulate the environment of these nodes [7]. In case only a
subset of nodes of a distributed real-time system exists, non-existing nodes must
be simulated by a cluster simulator as discussed in [8,9,10].

HiL simulators are constructed for a wide range of different applications. For
instance in [11], real-time HiL simulation of vehicle and mobile robots is proposed
to avoid extensive formal analysis of these systems. In the traffic control domain,
system integrators are confronted with frequent changes of signal timing plans
implemented in traffic controllers. These signal timing plans are provided by
sub-suppliers as closed Intellectual Property (IP) software modules. Hence, HiL
simulation is proposed in order to fine-tune these signal timing plans while at
the same time protecting the IP of the individual sub-suppliers [12].

Commercially available HiL simulation systems range from simple simulators
that target at testing a single ECU to complex simulators that are capable of
testing large distributed real-time systems. DSP Builder [13] by Altera1 and
Tanto2 Test by Hitex2 are examples for simple HiL simulators, where a single
1 http://www.altera.com
2 http://www.hitex.de

A Framework for Hardware-in-the-Loop Testing 161

hardware target (i. e., an FPGA, or a single ECU) is directly connected to a
development PC that executes an environment simulation.

Several vendors offer solutions for more complex HiL simulators. Regarding
such complex HiL simulators, we can basically distinguish between monolithic
and distributed HiL simulators.

A modular, component-based, monolithic HiL simulator, uses a single device
that is configured to offer all required interfaces for a particular SUT. Mono-
litic HiL simulators are offered for instance by dSpace3 (Simulator Mid-Size,
Simulator Full-Size), The Mathworks4 (xPC Target [14]), National Instruments5

(LabVIEW), and Pi Technology6 (Pi Autosim). These simulator products can
be equipped with a range of modular I/O boards and processor boards in order
to be tailored to a particular HiL simulation system. I/O hardware solutions
include analog and digital I/O, CAN, PWM, dynamic signals, motion control,
image acquisition as well as FPGA modules.

In contrast to a monolitic HiL simulator, a distributed HiL simulator consists
of several interacting nodes that are capable of executing a distributed simulation
model. Each of these nodes can be equipped with application-specific I/O hard-
ware. Distributed HiL simulators are provided by Applied Dynamics International
(ADI)7 (ADI rtX simulator), Opal-RT8 (RT-LAB), and RTDS Technologies9

(RTDS Simulator). These distributed simulators interact either by the exchange
of data that is visible at the interfaces of the SUT (emulated electronic interfaces),
or by the exchange of data that is part of the simulation model and that is not visi-
ble at the SUT’s interfaces (virtual interfaces) [15]. Communication via the virtual
interfaces, i. e., interaction between different nodes of a distributed simulator is ei-
ther realized by the implementation of an event-triggeredprotocol (e. g., Ethernet,
SCRAMNet, FireWire, or INFINIBAND) or by a common communication back-
plane as for the RTDS Simulator, that links all processing nodes in parallel.

Although all HiL simulators are designed for real-time execution of a simu-
lation model, the existing solutions lack a scalable approach for deterministic
interaction between HiL simulator components. Moreover, none of the existing
solutions target at HiL simulation in an integrated architecture.

3 Integrated System

Many large applications (e. g., in the automotive or aerospace domain) consist of
a number of nearly independent application systems. We call such an application
subsystem a Distributed Application Subsystem (DAS). A DAS provides a major
part of the overall application and is composed of smaller functional elements

3 http://www.dspace.com
4 http://www.mathworks.com
5 http://www.ni.com
6 http://www.pitechnology.com
7 http://www.adi.com
8 http://www.opal-rt.com
9 http://www.rtds.com

162 M. Schlager, R. Obermaisser, and W. Elmenreich

called jobs. In the automotive domain, the powertrain subsystem, the comfort
subsystem, and the multimedia subsystem are examples for DASs. Examples of
DASs in a present-day avionic application are the cabin pressurization system,
the fly-by-wire system, and the in-flight entertainment system.

The proposed framework for HiL simulation is designed for integrated ar-
chitectures, i. e., a single distributed computer system serves as the execution
platform for multiple DASs. Each node computer of the distributed computer
system contains jobs of one or more DASs (cf. Figure 1). Likewise, the commu-
nication network that interconnects the node computers serves the transport of
messages between jobs of more than one DAS.

In the following, we will discuss the structural elements of the DECOS ar-
chitecture (i. e., network, nodes, environment), because this system architecture
will be used for the construction of the framework for HiL simulation.

3.1 Communication Network

The communication network of the integrated architecture executes a time-
triggered protocol (e. g., TTP [16], FlexRay [17]). The rationale behind choosing
a time-triggered communication protocol is the suitability for ultra-dependable
systems [18]. Time-triggered communication protocols are characterized by a
guaranteed message transport with low jitter, error containment between node
computers, and a fault-tolerant distributed global clock service.

3.2 Node Computers

A node computer provides an execution environment for multiple collocated jobs
of one or more DASs as shown in Figure 1. Each job implements a part of the

Node 2

Job 1.2 Job 3.2 Job 4.1

Node 1

Job 2.1 Job 1.1 Job 3.1

Node 3

Job 2.2 Job 1.3 Job 4.2 Job 2.3 Job 3.3 Job 4.3

TT Communication Controller TT Communication Controller

TT Communication Controller

DECOS MW

TT Communication Controller Jobs of DAS 1

Jobs of DAS 2

Jobs of DAS 3

Jobs of DAS 4

High-Level Architectural Services
(e.g., Diagnosis, Encapsulation,
Virtual Networks, Gateways)

Core Services of Time-Triggered
Physical Network:

Time-Triggered Transport
of Messages
Fault-Tolerant Clock
Synchronization
Strong Fault Isolation

Node 4

Local I/O

Fieldbus FieldbusLocal I/O Local I/O

Local I/O

Local I/OLocal I/O

POS DECOS MWPOS

DECOS MWPOSDECOS MW POS

POS = Partitioning Operating System

DECOS MW = DECOS Middleware

Fig. 1. Distributed System in the DECOS System Architecture

A Framework for Hardware-in-the-Loop Testing 163

application functionality and is within the responsibility of a single organiza-
tional entity (e. g., a specific supplier).

The allocation of computational resources (e. g., memory, CPU time) to jobs
occurs using a partitioning operating system with support for fault isolation
and modular certification [19,20]. The partitioning operating system implements
mechanisms for spatial and temporal partitioning in order to encapsulate the
individual jobs. The scheduling of jobs needs to ensure that a timing failure of
a job, such as a worst-case execution time violation, does not affect the CPU
time available to other jobs. In analogy, the spatial partitioning mechanisms
of the partitioning operating system enforce memory protection between jobs
(e. g., with a memory management unit).

The interaction with other jobs occurs through the services provided by the
DECOS middleware. The DECOS middleware offers high-level architectural ser-
vices, which serve as a baseline for the development of applications. These ser-
vices constitute the interface for the jobs to the underlying platform. Among the
high-level services are gateway services, virtual network services, encapsulation
services, and error detection services. On top of the time-triggered physical net-
work, different kinds of virtual networks are established and each type of virtual
network can exhibit multiple instantiations. Gateway services selectively redirect
messages between virtual networks and resolve differences with respect to oper-
ational properties and naming. The encapsulation services control the visibility
of exchanged messages and ensure spatial and temporal partitioning for virtual
networks in order to obtain error containment.

Below the DECOS middleware, each node computer in Figure 1 contains
the communication controller. The communication controller executes a time-
triggered communication protocol as required for accessing the network. It pro-
vides so-called core architectural services (i. e., time-triggered transport of mes-
sages, fault-tolerant clock synchronization, strong fault isolation), which are used
as the basis for the implementation of the high-level architectural services in the
DECOS middleware.

The rationale for distinguishing between core architectural services and high-
level architectural services is the ability to exploit existing time-triggered com-
munication protocols for the construction of an integrated architecture. For ex-
ample, it has been demonstrated by formal analysis [21] and experiments [22]
that the Time-Triggered Protocol (TTP) is appropriate for the implementation
of applications in the highest criticality class in the aerospace domain according
to RTCA DO-178 B Level A.

3.3 Input/Output

In order to perform integration tests that involve the interaction between a
given distributed computer system and its environment, the framework needs to
simulate the physical surroundings of the computer system, i. e., the controlled
object(s) and the operator. In a real-world system, the interaction between the
computer system and the environment occurs via transducers, i. e., sensors and
actuators. These transducers can either be connected directly or interfaced via

164 M. Schlager, R. Obermaisser, and W. Elmenreich

a fieldbus. The latter approach simplifies the installation from a logical and a
physical point of view and is extendable but might introduce higher cost and
increased latency of sensory information and actuator control values.

4 Environmental Simulation

4.1 Simulator Architecture

HiL simulation of an ISUT involves a simulation of the environment of this ISUT
by means of an environment simulator. The environment simulator is linked to
the ISUT via the ISUTs Controlled Object Interface (COI) [23] which can either
be a standardized digital transducer interface or an arbitrary transducer-specific
interface (e. g., an analog interface).

In the following we introduce a development approach with generic compo-
nents that can be tailored to establish the coupling between an HiL simulator
and a specific ISUT. Hence, we separate between those components that emu-
late the COI, e. g., via a 4-15mA interface, a fieldbus, or direct I/O, and those
components that are used to execute part of a distributed simulation model but
do not directly interact with the ISUT.

Following this separation, our HiL simulation framework involves a distrib-
uted environment simulator consisting of a set of Frontend Simulation Compo-
nents (FSCs) that control the physical interaction between the environment sim-
ulation and the ISUT, as well as a set of Backend Simulation Components (BSCs)
that are used to execute (part of) the environment simulation model. Addition-
ally, a time-sync master component is employed in the HiL simulation frame-
work. The time-sync master component is part of the environment simulator,
i. e., it triggers the individual FSCs and BSCs according to a pre-defined sched-
ule. Furthermore, the time-sync master is a (passive) member of the ISUT, i. e., it

Fig. 2. HiL Simulation with an Integrated System

A Framework for Hardware-in-the-Loop Testing 165

synchronizes its time-base with the time-base of the ISUT. Hence, the time-sync
master establishes synchronism between the ISUT and the environment simula-
tor without a probe effect with respect to the ISUTs execution.

As depicted in figure 2, the interaction of nodes of an ISUT with their environ-
ment is realized via an arbitrary transducer interface including value/time-depen
dent analog and/or digital direct I/O as well as standardized fieldbus interfaces.
An FSC connects to nodes of the integrated system for the purpose of interacting
with these nodes via a particular transducer interface. FSCs and BSCs collectively
execute the distributed simulation model of the environment of the ISUT.

An FSC requires updates of simulation values that are provided by one or
several BSCs. Based on these simulation values, the FSC determines the I/O
signal that is to be provided to the ISUT. Both the control logic that calculates
the required I/O signal based on the simulation values and the physical wiring
are part of the FSC. Thus, a change in the interface specification of the ISUT
directly affects the FSC, but not necessarily the BSC as long as the FSCs can
be provided with simulation values in time.

The availability of separate FSCs in an HiL simulation is particularly advan-
tageous when it comes to incremental testing of an integrated system. Starting
with a single node, a stepwise inclusion of jobs of the integrated system in the
HiL simulation is required. At each step, the environment model of the real-time
system is simulated (by BSCs) and the coupling between this simulation and
the actual ISUT is established with FSCs. With separate FSCs it is possible to
scale the HiL simulation from a small ISUT (e. g., a single node with only one
job) up to a complete integrated system by adding additional FSCs as required.

FSCs of the environment simulator are realized by SVTs (cf. Figure 3). An
SVT implements two interfaces – a standardized digital interface to a time-
triggered transducer network (e. g., the Smart Transducer Interface of the Ob-
ject Management Group [24]) and a transducer-specific interface. The digital
interface is used to interact with the BSCs and with other SVTs (i. e., FSCs).
The transducer-specific interface resembles the interface of a sensor or actuator
element for coupling the SVT with direct I/O of the ISUT. Furthermore, an
SVT can implement a certain fieldbus interface. In that case, the SVT would act
as a gateway between the environment simulator and a fieldbus of the ISUT.

An SVT consists of a processor core, memory, a UART, as well as the digital
and analog I/O necessary to emulate a specific transducer of the ISUT. The

Fig. 3. Smart Virtual Transducer (SVT)

166 M. Schlager, R. Obermaisser, and W. Elmenreich

prototype given in figure 3 includes an Atmel ATMega168 microcontroller and
an Analog Devices 8-Bit DA converter (AD5330).

4.2 Reproducibility of Simulation Results

Deterministic interaction between the environment simulator (i. e., network of
FSCs and BSCs) and the respective ISUT is important in order to guarantee
reproducible results of an HiL simulation run. Thereby, deterministic interaction
relates to the functional (i. e., message value or signal size) and the temporal
domain (i. e., instant of interaction).

In order to achieve reproducible results in our proposed architecture, the
following requirements have to be fulfilled:

1. The HiL simulator must share a common time base with the ISUT and have
a priori knowledge about the time when a sensor is read or an actuator is
set by the ISUT.

2. The values exchanged across interfaces between HiL simulator and ISUT
must be deterministic.

3. The ISUT and the HiL simulator may not exhibit intrinsic sources of inde-
terminism, e. g., by suffering from race conditions.

The proposed architecture can satisfy the first requirement by sharing its
existing global timebase with the HiL simulator. Furthermore, the DECOS ar-
chitecture supports a time-triggered action model the allows the prediction of
the instants of accessing a sensor’s or actuator’s value.

The second requirement depends on the employed interfaces. While the digi-
talization of a pure analog value, e. g., by an ADC, always constitutes a possible
source of indeterminism, a DAC – ADC system may behave deterministically,
when (i) there is no sampling while the current value is changing to a new one
and (ii) each value generated by the DAC can be interpreted by the ADC in
a non-ambiguous way. (i) is already solved by the synchronization mechanisms
and the temporal determinism of our architecture while (ii) in general requires
a careful design of the analog path. For sensor types with only few detection
results, e. g., a binary on/off detector, (ii) can be easily fulfilled.

Regarding the HiL simulator, we can establish deterministic behavior due
to the usage of a time-triggered communication and execution scheme. Deter-
ministic construction of the ISUT lies outside the sphere of control of the HiL
simulator and requires a deterministic architecture. Our proposed case study
builds on a time-triggered architecture that avoids sources of indeterminism by
design and thus fully satisfies the third requirement.

5 Case Study

5.1 Exemplary Application Using the Integrated Architecture

The case study used to exemplify the HiL simulation environment includes two
automotive DASs (which are part of a larger automotive electronic system):

A Framework for Hardware-in-the-Loop Testing 167

Fig. 4. Exemplary Integrated System with Environmental Simulation

– Multimedia DAS. Today’s luxury cars contain multimedia functionality
such as DVD players, high-end audio systems, and GPS navigation systems.
In addition, voice control and hands-free speaker phones relieve the driver
of concentrating on multimedia devices instead of traffic.

– Park assist DAS. This DAS implements a parking aid with ultra-sonic
sensors. In case a threshold for a minimum distance is exceeded, the DAS
produces an acoustic alarm signal. Therefore, the park assist DAS encom-
passes four jobs reading inputs from ultra-sonic distance sensors. In addition,
the DAS contains an obstacle detector job, which reads the distance mea-
surements from the four other jobs and determines whether an alarm signal
should be produced. In this case, the acoustic alarm signal is transferred via
a gateway to the speaker jobs of the multimedia DAS.

Figure 4 depicts a possible realization of these DASs using the DECOS archi-
tecture. Each node computer hosts multiple jobs, which can belong to different
DASs (such as the multimedia or park assist DAS).

5.2 Exemplary Environmental Simulation

In the scope of the case study we exemplarily focused on two kinds of transduc-
ers, namely ultra-sonic sensors for distance measurement of the park assist DAS
and loudspeakers of the multimedia DAS. Hence, the interaction between the en-
vironment simulation and the integrated system (i. e., the ISUT) across the COI
involves SVTs that emulate the behavior of an ultra-sonic sensor as well as SVTs
that capture and process the signals provided by the audio system jobs of the ISUT.

As depicted in figure 4, the setup of the environment simulation system ad-
ditionally involves an FSC that receives the actual vehicle speed from the ISUT
(i. e., FE vehicle speed) and a master node that controls the operation of the
involved SVTs (i. e., Master) and that synchronizes the time-base of the envi-
ronment simulation to the time-base of the ISUT.

Within the prototypical realization of the environment simulation system, we
use TTP/A [25] to interconnect the deployed SVTs. The time-triggered field-

168 M. Schlager, R. Obermaisser, and W. Elmenreich

bus protocol TTP/A is an implementation of the OMG ST interface standard,
including the time-triggered transport service. TTP/A is a round-based master
slave protocol where multiple nodes of a TTP/A cluster arbitrate a shared bus
according to a time division multiple access (TDMA) scheme.

In the current implementation we prototypically realized an SVT with a sim-
plified interaction pattern that consists of digital samples for acoustic pressure.
This SVT can be used to emulate a loudspeaker of the multimedia DAS. For the
ultra-sonic sensors we realized SVTs that emulate a Polaroid 6500 series sonar
ranging transducer [26].

6 Conclusion

In this paper we outlined a distributed HiL simulator that consists of FSCs and
BSCs that are interlinked by a standardized digital transducer interface, e. g., the
OMG STI. For the realization of the FSCs we propose to use SVTs that replace
the physical transducers of the ISUT.

Besides showing an exemplary application of the proposed concept in the au-
tomotive domain, we discussed the prerequisites to achieve reproducible results
in our proposed architecture.

Our approach supports the verification and validation activities in an inte-
grated architecture, e. g., DECOS, IMA, AUTOSAR and supports deterministic
interaction between an HiL simulator and an ISUT in order to guarantee re-
producible test results. Moreover, this approach offers the possibility to test
an integrated system at the physical interface. Hence, it is possible to perform
non-intrusive (black box) tests which is particularly important for an integrated
system where different vendors provide closed IP software or hardware/software
components.

Acknowledgments

This work has been supported in part by the European IST project ARTIST2
under project No. IST-004527, the European IST project DECOS under project
No. IST-511764, and DOC [doktorandenprogramm der österreichischen

akademie der wissenschaften]. We would like to thank Bernhard Wenzl for
proofreading an earlier version of this paper.

References

1. Obermaisser, R., Peti, P., Huber, B., El Salloum, C.: DECOS: An integrated time-
triggered architecture. e&i journal (Journal of the Austrian professional institution
for electrical and information engineering) 3 (March 2006)

2. AUTOSAR GbR. AUTOSAR - Technical Overview V2.0.1 (June 2006)
3. Aeronautical Radio Incorporated (ARINC), Annapolis, MD, USA. ARINC Speci-

fication 651: Design Guide for Integrated Modular Avionics (November 1991)

A Framework for Hardware-in-the-Loop Testing 169

4. National Instruments Corporation. LabVIEW FPGA in hardware-in-the-loop sim-
ulation applications, (July 2003)

5. Wu, X., Lentijo, S., Deshmuk, A., Monti, A., Ponci, F.: Design and implementation
of a power-hardware-in-the-loop interface: a nonlinear load case study. In: Applied
Power Electronics Conference and Exposition (APEC) 2005, pp. 1332–1338. IEEE
Computer Society Press, Los Alamitos (2005)

6. Schlager, M., Elmenreich, W., Wenzel, I.: Interface design for hardware-in-the-loop
simulation. In: Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE’06), Montréal, Canada, pp. 1554–1559 (July 2006)

7. Schütz, W.: Testing distributed real-time systems: An overview. Research Report
12/1995, Technische Universität Wien, Institut für Technische Informatik, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria (1995)

8. Fleisch, W., Ringle, T., Belschner, R.: Simulation of application software for a TTP
real-time subsystem. In: European Simulation Multiconference (ESM), Istanbul,
Turkey (June 1997)

9. Galla, T.: Cluster Simulation in Time-Triggered Real-Time Systems. PhD the-
sis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria (1999)

10. Schlager, M.: A simulation architecture for time-triggered transducer networks. In:
Proceedings of the First Workshop on Intelligent Solutions for Embedded Systems
(WISES’03), Vienna, Austria, pp. 39–49 (June 2003)

11. Papp, Z., Dorrepaal, M., Verburg, D.J.: Distributed hardware-in-the-loop simu-
lator for autonomous continuous dynamical systems with spatially constrained
interactions. In: Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, Nice, France (April 2003)

12. Li, Z., Kyte, M., Johnson, B.: Hardware-in-the-loop real-time simulation interface
software design. In: Proceedings of the IEEE Intelligent Transportation Systems
Conference, Washington, D.C., USA, pp. 1012–1017 (October 2004)

13. Altera Corporation. DSP Builder - user guide (April 2006), Available at
www.altera.com

14. Burns, D.J., Rodriguez, A.A.: Hardware-in-the-loop control system development
using MATLAB and xPC. Report, Department of Electrical Engineering, Center
for System Science and Engineering, Arizona State University (May 2002)

15. Applied Dynamics International. Distributed HIL simulation (2005), Available at
www.adi.com

16. TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vienna, Austria.
Time-Triggered Protocol TTP/C - High Level Specification Document (July 2002)

17. FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpora-
tion, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG.
FlexRay Communications System Protocol Specification 2.1 (May 2005)

18. Suri, N., Walter, C.J., Hugue, M.M.: Advances In Ultra-Dependable Distributed
Systems. ch. 1. IEEE Computer Society Press, Los Alamitos (1995)

19. Schlager, M., Herzner, W., Wolf, A., Gründonner, O., Rosenblattl, M., Erkinger,
E.: Encapsulating application subsystems using the DECOS core OS. In: Górski,
J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 386–397. Springer, Heidelberg
(2006)

20. Huber, B., Peti, P., Obermaisser, R., El Salloum, C.: Using RTAI/LXRT for par-
titioning in a prototype implementation of the DECOS architecture. In: Proc. of
the Third Int. Workshop on Intelligent Solutions in Embedded Systems (2005)

www.altera.com
www.adi.com

170 M. Schlager, R. Obermaisser, and W. Elmenreich

21. Rushby, J.: An overview of formal verification for the time-triggered architecture.
In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 83–105.
Springer, Heidelberg (2002)

22. Ademaj, A., Sivencrona, H., Bauer, G., Torin, J.: Evaluation of fault handling of the
time-triggered architecture with bus and star topology. In: Proc. of Int. Conference
on Dependable Systems and Networks, pp. 123–132 (2003)

23. Kopetz, H., Fuchs, E., Millinger, D., Nossa, R.: An interface as a design object.
In: 2nd IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC ’99), 2-5 May 1999, IEEE Computer Society Press, Los Alami-
tos (1999)

24. OMG. Smart Transducers Interface. Specification ptc/2002-05-01, Object Man-
agement Group, (May 2002). Available at http://www.omg.org/.

25. Kopetz, H., Holzmann, M., Elmenreich, W.: A universal smart transducer interface:
TTP/A. International Journal of Computer System Science & Engineering 16(2),
71–77 (2001)

26. Wirz, B.: Technical specifications for 600 series instrument grade electrostatic
transducer (1997), Available at
controls.ae.gatech.edu/gtar/electronics/6500.pdf

http://www.omg.org/
controls.ae.gatech.edu/gtar/electronics/6500.pdf

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 171–180, 2007.
© IFIP International Federation for Information Processing 2007

An Embedded Integration Prototyping System
Based on Component Technique

Youngjin Jung1, Jeongbae Lee1, Jinbaek Kwon1,
Keewook Rim1, and Sangyoung Cho2

1 Department of Computer Science, Graduate School, Sunmoon University,
Kalsan-ri, Tangjeong-myeon, Asan-si, ChungNam, 336-840, Korea

2 Department of Computer Science and Engineering, Hankuk University of Foreign Studies,
89, Wangsan-ri Mohyun, Yongin-si, Kyounggi-do, 449-791, Korea

yjjung.kr@gmail.com, {jblee, jbkwon, rim}@sunmoon.ac.kr,
sycho@san.hufs.ac.kr

Abstract. Nowadays in the development of embedded system, cutting-edge
embedded system products are quickly disappearing from the markets because
of their short product development period which shortens the product life cycle.
Therefore, strengthening its competitiveness and minimizing its development
cost can be said to be one of the most important factors. For this motive, an
Embedded Integration Prototyping (IP) system based on Component Technique
was designed and implemented through this paper. The system is composed of
Physical Prototyping (PP) providing the environment in which the product can
be tested by using Actuator(Motor), Sensor and reusable Blocks, and Virtual
Prototyping (VP) in which visual test on the product can be carried out by ap-
plying various components and libraries based on technique related to the com-
puter. And, IP System was built in order to mutually compensate for drawbacks
latent in both of physical and virtual prototyping environment by making use of
component module. The module will be able to enhance the product competi-
tiveness, through spending less time in developing kinds of the component
owning almost same features, using it again for different embedded system
products, and accordingly minimizing spent cost and time for developing the
component.

Keywords: Component, Embedded System, Integration Prototyping (IP),
Physical Prototyping (PP), Virtual Prototyping(VP), Simulation.

1 Introduction

The Embedded System has been widely used in a diversity of industry fields includ-
ing military affairs, aerospace, information appliance, etc. In general, it is the compli-
cated combination of hardware and software equipped with unique operation envi-
ronment, independent architecture, special interface, and so on. And, because embed-
ded products applying latest technology have short life and development cycle for
them, they are disappearing from the market in fast speed, after their launch into the
market.

172 Y. Jung et al.

As result of these reasons, prototyping technology used for developing embedded
system product was needed to strengthen its competitiveness, with lessening the cost
to be spent for initial development stage, as well as applying Time-to-Market shorter
than before [1]. And, any problematic matters or errors possibly to take place at built-
in function and hardware after product’s launching into the market can be found in
advance by using prototyping technology and applying it in the product‘s features and
function from the stage of designing hardware. Besides, such found errors can be
immediately modified at found time points to carry out test on them again. Like this,
prototyping technology enables product to have higher level of reliability and per-
formance until its launch by gradually repeating these series of process. Prototyping
technology already known until present includes: PP in whose technology real em-
bedded system built in factory automation system, vending machine, washing ma-
chine, mobile phone, etc is tested and produced by using Embedded System Prototyp-
ing Suit (ESPS)[2]; VP in whose technology using computer-related technology 3D
model product can be visually created by providing libraries and various components;
IP under currently active research in whose technology physical and virtual prototyp-
ing can be integrated. But, PP technology can’t support diverse components and li-
braries to closely control small-sized appliances built with embedded system. On the
other hand, VP technology can’t support practical test environment for embedded
system, even if it is possible for the system to execute virtual simulation with using
computer technology. IP system at current times is implemented to give and receive
only simple data, by using communication technology between physical and virtual
prototyping. Besides, to be troublesome, it needs additional tasks initializing and
declaring data set up in actuator and sensor to let the system operate.

To solve these problems, Component-based IP system was designed and developed
at this paper in order to make it easier and promptly to reuse actuator and sensor built
in currently developed IP system to different embedded systems. This system set up
Double Rock Spin (DRS) system built in embedded system as its target, and con-
structed PP environment using ESPS, while it made use of RapidPLUS[3] tool visu-
ally providing 3D object to carry out simulation, and constructed VP environment.
The remainder of this paper is structured as follows. In the next section, we discuss
related works on embedded system prototyping. In section 3, we describe the design
of our integration prototyping component system. Section 4 presents the implementa-
tion of integration prototyping component system for DRS, and section 5 provides a
final discussion on our work and plans for future research.

2 Related Works

2.1 Physical Prototyping

A Prototype is miniature or real sized model product made during product develop-
ment prior to production. A prototype is applied to test product’s appearance and
performance before its launch, and belongs to the part of production. As computer
technology is developing in recent days, the process in which testable prototype equal
to real product is created by applying advanced visual and engineering technology
based on computer is called “Prototyping” [4-6]. PP can produce and test practically

 An Embedded Integration Prototyping System Based on Component Technique 173

embedded product such as model of factory automation system or vending machine.
To do so, PP supports operation environment similar to target model, by modifying
real-time operation system, Real-Time(RT) Linux kernel and producing board and
device driver for turning the product into drive. And, it can be applied as a tool of
promoting mutual understanding among professional developers in various fields
required due to the characteristic of embedded system in order to work together and to
invent efficient solution to settle problems. Using PP allows hardware and software
developers to carry out respective tasks at the same time in the middle of development
stage, and allows problems possibly occurring (if software may be applied) to be
directly communicated to hardware developer in order to solve them, as well as al-
lowing developers to improve in their mutual understanding. In addition, it guarantees
end product’s quality from its development stage. This PP enables smooth communi-
cation among developers, together with lessening cost, and thus has merit in product’s
price competitiveness, whereas it can strengthen ability of coping with any faults in
hardware found at the stage of developing software. But, PP environment can not
completely support various components or fully controlling libraries of small infor-
mation appliance product equipped with embedded system program, unlike VP envi-
ronment can do. Lots of development tools have been studied and developed, as im-
portance has been put on this PP concept in recent years.

2.2 Virtual Prototyping

VP using computer technology provides varied components and libraries. It supports
visually simulating real product with visual 3D modeling on the computer in order to
allow for the convenience in design modification and full control. Accordingly, with
technology development and application expansion related to computer, engineers
currently make use of VP technology in developing complicated systems. Current
physical prototype needs new prototype in order to change product’s appearance and
adding another function, but virtual prototype can easily change design by using mod-
eling method on GUI on condition that the design still exists on the computer. And it
also can add new function without difficulty, because a function is linked to appear-
ance expressed in formal specifications. But, it can not guarantee certainty of correct
simulation in embedded system environment, because it adopts visual simulation with
sense of sight using computer technology. VP like this is utilized in developing appli-
ance, designing car audio system, building visual factory, designing airport’s control
system, other validation field, etc, and is expected to enhance productivity by devel-
oping product through it in most of production realm, afterwards. Tools of developing
it includes RapidPLUS, ASADAL[7], Rahpsody[8] and Virtio-made Virito[9].

3 The Design of Integration Prototyping Component System

This section explains the architecture built up in component-based IP system to be
applied to various embedded system fields. Because this component module exists in
the middle of physical and virtual prototyping environment, it can add, delete, or
modify actuator and sensor component’s data and property set through TCP/IP
Socket. Data values set in component module and API(Application Programming

174 Y. Jung et al.

Interface) already produced for actuator and sensor are used in PP environment. User-
Defined Object (UDO) and RapidPLUS are used to be applied to values set in com-
ponent module in VP environment. Fig. 1 shows the architecture of component-based
IP system.

Fig. 1. The Architecture of IP Component System

3.1 The Design of Physical Prototyping

This section explains architecture of PP environment required for IP component sys-
tem. This system constructed simulating environment turning actuator and sensor into
operate, by using ESPI-API and data set in Component Module. Fig. 2 below dis-
plays the architecture of device driver and API for controlling several SMC(Sensor
Motor Controll) devices. Each SMC device driver acts like real-time task for operat-
ing each device in RTLinux environment. This device drivers control sensor and mo-
tor to operating via I/O port, Interrupt and DMA to be assigned to each oneself. Also,
each device driver communicate with user layer, higher-layer via RT-FIFO. And
SMC API has Application Programming Interface for using easier device driver of
user application.

Fig. 2. The Architecture of Device Driver and API

 An Embedded Integration Prototyping System Based on Component Technique 175

Fig.3 describes the role of device driver and API for PP. In user level, ESPS-API
carries out its role in connecting RT-Task and Linux process. RT-Task in RT kernel
carries out its role as device driver. RT-FIFO is needed as method of communicating
to this device driver. ESPS-API existing in kernel level executes its communication to
RT-Task, by internally using FIFO. ESPS-API was developed so that user could eas-
ily control LEGO board. ESPS-API can directly call LEGO device’s driver task from
kernel level. It is available for precise control, but has difficulty in programming.

Fig. 3. The Role of Deice Driver and API for PP

3.2 The Design of Virtual Prototyping

This section explains the construction of VP environment, by using RapidPLUS - tool
available for simulating embedded system product on User Interface (UI). Target
product is designed with RapidPLUS, as the process steps below.
① Placement: Place various objects provided for the appearance of targeted embed-
ded system product, dependent on the Layout.
② Design: Use objects to create Product appearance, and then design Mode, Transi-
tion, Trigger, Activity, etc to turn product into work.
③ As final step, use prototype provided in VP environment to test former process and
simulate product with debugged errors and problems.

Fig.4 expresses the relationship between application and UDO for constructing VP
component to be built in IP component system. It is possible to create/control actuator
and sensor in PP environment by setting up component in VP environment using UDO.

Fig. 4. The Relationship between Application and UDO

176 Y. Jung et al.

• Exported Functions: Sole function usable from other application
• Events: UDO reports its status change to parent application.
• Properties: Some types of data on object held.
• Messages: Able to send message to both of UDO and parent application by defining

its structure type.

3.3 The Design of Component Module

This section describes component module connecting physical respective PP and VP
components designed as above. Fig. 5 shows the design of component module be-
tween PP and VP. Component module for actuator and sensor was designed by using
PP and VP constructed in former clause. Component module is organized by each
class including actuator, sensor, and SensorMotor Component, as shown in class
diagram in Fig. 5. The Class is composed of:

• Actuator Class: Holds properties related to actuator channel number, direction, and
speed;

• Sensor Class: Sensor channel number and direction;
• SensorMotor Component Class: Holds objects of Actuator and Sensor Class.

This system was designed to create and control components in PP and VP environ-
ment, by using three classes set up in component module.

Fig. 5. The Design of Component Module between PP and VP

Fig. 6 describes the architecture of sensor and actuator’s component for IP system.
This component has property for changing specific status(channel, dir and speed) of
sensor and actuators and interface(sm_stop, sm_start, sm_pause, sm_restart, and set
motor, and so on) for setting/getting status of the component between physical and
virtual environment. And it has event for setting sensor and actuator’s status or using
or calling some information from outside.

Also, component module classes require data specification for connecting between
PP and VP. This data specification is shown in Table 1. The data specification is clas-
sified by Component, Function and Property for Actuator and Sensor.

 An Embedded Integration Prototyping System Based on Component Technique 177

Fig. 6. The Architecture of Sensor and Actuator for IP System

Table 1. The Data Specification of Component Module for IP System

Type Factor Definition
Component Actuator/Sensor Select Actuator/Sensor Component

Initialize Initialize properties of Actuator and Sensor
Start/Stop Set up Start/Stop Function

Function

Order Set up Auto/Manual Mode
Num Set up Actuator/Sensor’s Channel

Dir Set up Actuator/Sensor’s Direction

Property

Speed - Set up Actuator’s Speed

4 The Test and Evaluation of Integration Prototyping Component
System

This section describe the implementation of PP and VP for setting up targeted product
as DRS among embedded system products, and implementation of IP component
system through designing component-based system. We also describe the results
using component-based IP System in this section. Fig. 7 shows the test scenario for

Fig. 7. The Test Scenario

178 Y. Jung et al.

component-based IP System. Above all, we select component to be used and compo-
nent’s channel number (①-Selection). After that, we connect to PP and VP each using
socket communication for the selected components and then set up direction and
speed (②-Setup). Lastly, we operate function such as initialize, start, stop, and pause
(③-Operation).

4.1 System Test

(1) Physical Prototyping Side
Fig. 8 below displays PP for DRS already developed toward IP component system. In
this PP, four actuators are used, and they are operated by ESPS–API. Actuators in-
cluded here works so that DRS can revolve inward and outward. And sensors are used
to control work of the above defined motors.

Fig. 8. The DRS PP

(2) Virtual Prototyping Side
For DRS, VP can more easily and faster implements UI than PP, by realizing it with
using computer technology. Besides, it can test functions like almost real product, and
can easily find and modify problems. Fig. 9 describes functions of Actuator and Sen-
sor Component UI and shows that actuator and sensor components of VP environ-
ment required for the system are selected and setup. In this system, we use channel
number 1, 2 for Actuator and Sensor respectively. Because each of these components
has its own individual property and data, it is needless to create component again, for
other embedded system products. Furthermore, it will be able to lessen time and cost
to be spent in producing embedded system product, because it reuses components.

Fig. 9. Selection (left) and Setup (right) Actuator and Sensor Component UI

 An Embedded Integration Prototyping System Based on Component Technique 179

4.2 Evaluation

Table 2 below defines value, property and function of used actuator and sensor com-
ponent in IP System. We use two motors and two sensors to handle the motor work in
this system. And this system initializes value of defined actuator and sensor compo-
nent’s property. It also defines Start/Stop/Pause functions about work of the system
and function of order operation such as Auto and Manual Mode.

Table 2. The Used Simulation Data in IP System

Type Factor Descriptions (Value)
Sensor Select Sensor Component Component
Motor Select Motor Component

Initialize Initialize values of the above Actuator and Sensor (4)
Start/Stop Set up Start/Stop (1/2)

Function

Order Set up Manual Mode (2)
Num Set up available Sensor/Motor’s Channel(1,2/1,2)
Dir Set up selected Sensor/Motor’s Direction (0,1)

Property

Speed Set up selected Motor’s Speed (0x0, …., 0xF)

The result of simulated data shows that components implemented between PP side
and VP side are synchronized. And we can simulate fast and easily component-based
IP system to handle operation and change direction and speed of selected component
using setting Actuator and Sensor components.

5 Conclusion and Future Studies

Previously, IP system was an interlocking system to simulate target product in virtual and
physical environment. In developing embedded system, strengthening its competitive-
ness and minimizing its development cost can be said to be one of the most important
factors. For this motive, Component-based IP System was designed and implemented
through this paper. Implementing component-based system using sensor and actuator
that is highly reusable could make it possible to easily and fast implement IP systems
for various embedded system products. Reliable embedded system products pertinent
to Time-to-Market will be able to be launched into markets, by applying component-
based IP system. In addition to it, it will make contribution to strengthening product
competitiveness, too.

Implemented component-based IP system will be made in formal specification to ex-
pand its application to more industry fields, and debugger finding and then modifying
any errors will be additionally developed, afterwards. And, further studying the method
of assessing functionality built in embedded system product is for future study plan.

Acknowledgment. This study was supported by the Ministry of Information and
Communication of Korea under the Information Technology Research Center Support
Program supervised by the Institute of Information Technology Assessment (IITA-
2006-C1090-0603-0020).

180 Y. Jung et al.

References

1. Gaver, B., Dunne, T., Pacenti, E.: Cultural Probes. Interactions 6(1), 21–29 (1997)
2. ESPS, http://www.artsystem.co.kr
3. RapidPLUS, http://www.e-sim.com
4. Song, J.-H.: Institute of Information Technology Assenssment. Korea Information Science

Society, 23, 7–11(Dig. 9th Annual Conf. Magn. Jpn. p. 301 (1982)) ISSN 1229-6821
5. Lawson, B.: How Designers Think. Architectural Press (1997)
6. SONY, AIBO, http://www.sony.net/Products/aibo/
7. ASADAL, http://selab.postech.ac.kr/realtime/public_html/
8. Rhapsody, http://www.ilogix.com
9. Virtio, http://www.virtio.com

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 181–191, 2007.
© IFIP International Federation for Information Processing 2007

TMO Structuring of a Networked System for
Seamless Streaming and Tiled Display of

High-Definition Movies

Sheng Liu1, K.H. (Kane) Kim1, Sung-Jin Kim1, Zhen Zhang1,

Jongho Nang2, Ki-Seok Choi
2
, and Yongbin Kang3

1 Dream Lab, EECS dept., University of California, Irvine
Irvine,CA 92697, USA

{shengl, khkim, sungjink, zhen}@uci.edu
2 Sogang University, Seoul, Korea
{jhnang}@sogang.ac.kr

3 Institute for Graphic Interface, Seoul, Korea

Abstract. This paper presents a global-time based approach for realizing high-
definition video streaming and highly synchronous tiled display on multiple
PC-oriented display nodes. The challenge is to minimize distortion of the
temporal relationship among the fragments of video frames played across the
display devices. The distortion arises due to the jitter in message transmission
delay and the considerably autonomous operations of display nodes. The
global-time based coordination approach looked promising as a cost-effective
approach for facilitating highly synchronous tiled display and minimizing the
collisions between data transmission activities and tile preparation and display
activities. The Time-triggered Message-triggered Object (TMO) programming
tool-kit, which enables construction of scalable distributed real-time computing
programs in the form of networks of high-level, easily analyzable, real-time
objects was used because it facilitates efficient practice of the global-time based
approach. The results of an experimentation of the approach are also presented.

Keywords: real time, global time, multimedia, HD video streaming, tiled
display, jitter, TMO, time triggered, message, object, middleware, distributed,
programming, intra-stream synchronization.

1 Introduction

The approach of utilizing PCs, each equipped with a display device, to achieve a large
tiled display of a very high-resolution image has been gaining popularity in the past
decade. Initially, systems capable of tiled display of static images were built but
lately, attempts to handle video-movies started. Video frames forming a movie need
to be streamed in timely manners and displayed across multiple display nodes in
sufficiently synchronous manners. To achieve high-level quality of services (QoSs),
high-precision synchronizations of video streams across multiple display nodes is

182 S. Liu et al.

important. More precisely, the accurate maintenance of the temporal relationship
among media units (MUs) such as audio packets and segments of video frames
without the loss of RT performance is required [1, 2, 16]. In other worlds, all
segments from the same video frame must be displayed “with a high degree of
synchrony”, i.e., as closely in the time domain as possible. Each video frame,
composed of the tile-segments, and corresponding audio packets must also be
presented with a high degree of synchrony. Another challenge is to reduce the
amount of efforts for designing and implementing the complex application that
performs RT video streaming from the source such as a camera, Internet, and a hard
disk to the multiple display nodes and high-quality tiled display of a movie.

In this paper, the principle of global-time-based coordination of distributed actions
(TCoDA) [14] is exploited to form a fundamental and promising approach for meeting
the aforementioned QoS (quality-of-service) requirements. As an approach for
significantly reducing the design and implementation efforts from that required under
the widely practiced low-level programming schemes involving manipulations of
threads, thread-priorities, and sockets, the Time-triggered Message-triggered Object
(TMO) programming scheme was adopted. The scheme backed by an appropriate
tool-set (http://dream.eng.uci.edu/TMOdownload/), facilitates easy practice of object
and component-oriented (OCO) real-time (RT) distributed programming [3, 5, 6, 7,
8, 9].

To make this paper self-contained, a brief overview of the TMO programming
scheme and DirectShow are introduced in Section 2. The TCoDA-based approach for
realizing high-quality real-time video streaming services over a tiled display system is
discussed in Section 3. The TMO-based implementation for achieving the minimal
loss of the temporal relationship among the video data units at all sink nodes are
presented in Section 4. Performance measurements discussed in Section 5 have shown
that TCoDA is a fundamental and promising approach for distributed real-time
multimedia computing. The paper concludes in Section 6.

2 Backgroud

2.1 TMO Scheme

TMO is a natural, syntactically minor, and semantically powerful extension of
conventional object structure. As depicted in Fig. 1, the basic TMO structure consists
of four parts:

ODS-sec: Object-data-store section. This section contains the data-container
variables shared among methods of a TMO. Variables are grouped into ODS
segments (ODSSs) which are the units that can be locked for exclusive use by a TMO
method in execution. Access rights of TMO methods for ODSSs are explicitly
specified and the execution engine analyzes them to exploit maximal concurrency.

EAC-sec: Environment access capability section. These “gate objects” provide
efficient call-paths to remote object methods, real-time multicast and memory
replication channels (RMMCs) (Kim et al. 2005), and I/O device interfaces.

SpM-sec: Spontaneous method section. These are time-triggered methods that
become alive at specified times.

 TMO Structuring of a Networked System 183

Fig. 1. Basic TMO Structure ([5])

SvM-sec: Service method section. These provide service methods which can be
called by other TMOs.

Major features are
summarized below.

1) Distributed
computing component:
The TMO is a distri-buted
computing com-ponent
and thus TMOs distri-
buted over multiple nodes
may interact via remote
method calls. To
maximize the concurrency
in execution of client
methods in one node and
server methods in the
same node or different
nodes, client methods are
allowed to make non-
blocking service requests
to service methods. In
addition, TMOs can
interact by exchange of

messages over Real-time Multicast and Memory-Replication Channels (RMMCs) [12]. In
any place within a TMO, all time references are global time references except where
specified explicitly and differenetly.
2) Clear separation between two types of methods: The TMO may contain two

types of methods, time triggered (TT) methods (spontaneous methods or SpMs),
which are clearly separated from the conventional service methods (SvMs). The
SpM executions are triggered when the RT clock reaches time values determined
at the design time. On the contrary, SvM executions are triggered by calls from
clients that are transmitted by the execution engine in the form of service request
messages. Moreover, actions to be taken at real times, which can be determined
at the design time, can appear only in SpMs.

Triggering times for SpMs must be fully specified as constants during the
design time. Those RT constants as well as related guaranteed completion
times (GCTs) of the SpM appear in the first clause of an SpM specification
called the autonomous activation condition (AAC) section. An example of an
AAC is “for t = from 10 am to 10:50 am every 30 min start-during (t , t + 5
min) finish-by t +10 min” which has the same effect as {“start-during (10 am,
10:05 am) finish-by 10:10 am”, “start-during (10:30 am, 10:35 am) finish-by
10:40 am”}.

Executions of SpMs cannot be disturbed by the executions of SvMs because
of the execution rule adopted and called the basic concurrency constraint (BCC).

184 S. Liu et al.

2.2 RMMC

In the TMO programming model, the RMMC scheme is an alternative to the remote
method invocation for facilitating interactions among TMOs. Use of RMMCs tends
to lead to better efficiency than the use of traditional remote method invocations does
in many applications, especially in the area of distributed multimedia applications
which involve frequent delivery of the same data to more than two participants
housed in different nodes.

In order for methods in a TMO to send and receive messages over RMMCs, the
TMO must contain access gates for the RMMCs in its ODS, i.e., as its data members.
For example, "access gates" for two RMMCs, RMMC1 and RMMC2, can be declared
as data members of each of the three remotely cooperating RT objects, TMO1, TMO2,
and TMO3, during the design time. Once TMO1 sends a message over RMMC1, then
the message will be delivered to the buffer allocated inside the execution engines for
each of the three RT objects. Later during their execution, certain methods in TMO2
and TMO3 can pick up those messages by sending the requests through their RMMC1
gates to their execution engines. An RMMC can be implemented over point-to-point
networks as well as over broadcast-enabled bus networks.

2.3 Non-Blocking Buffer (NBB)

The NBB mechanism [18] facilitates communication of event messages from a
producer to a consumer without causing any party to experience blocking. Therefore,
its application scope includes all conceivable producer-consumer situations.
Experiments involving application of this mechanism in building middleware as well
as real-time application software confirmed the usefulness of the NBB mechanism.

The producer thread, PROD, owns the circular buffer and can write into the buffer
at any time without experiencing blocking and thus is a non-blocking writer of the
buffer. There are also two counters: the update counter (UC) and the acknowledgment
counter (AC), also called the ack-counter. The two counters are used in ways which
ensure that PROD and CONS always access different slots in the circular buffer.

2.4 Direct Show

DirectShow is a multimedia application library produced by Microsoft. It provides a
set of APIs which defines various operations for multimedia tasks. Within the
framework of DirectShow, the processing of a multimedia task can be divided into a
set of steps such as reading the media source, encode/decode, and playback. Each of
these steps can be accomplished by a module called a filter. Filters can be connected
together through their “input/output” pins so as to form a filter graph that can perform
a target multimedia task.

3 Global-Time-Based Approach for HD Video Streaming and
Tiled Display

A tiled display system [4, 15, 17] is a cost-effective approach for realizing a large
display wall. The combined resolution of a tiled display can easily surpass the

 TMO Structuring of a Networked System 185

resolution of a HD video stream. To utilize a tiled display as an RT HD video stream
display, the underlying software system must be able to control the graphic display
output of each node to be synchronized so that the user experience a temporally
consistent and contextually unified video stream.

Due to the jitters in the network, each video frame in a stream may arrive or may be
picked up in different nodes at different times. Also the decompression time taken may
be different in different display nodes. Such discrepancies among display nodes may
introduce out-of-sync display of different segment of the same video frame. One may
make all display nodes wait for a sync message after each decompression process and
update the display screen upon receiving the message. However this sync message may
arrive or may be picked up in different nodes at a noticeably different times.

With the presence of the global time base of a sub-millisecond precision, one can
explain the TCoDA [14], i.e., design all display nodes to render their parts of the
video frame at the same instance of global time, e.g., at the target display time = video
frame generation + display delay constant. Different applications of the approach
have been studied and proof-of-concept systems have been developed [10, 11, 13].

4 TMO-Based HD Tiled Display System

4.1 System Architecture

A high-definition video streaming
service on a tiled display system
consists of one master node and
multiple worker nodes, all of
which are connected through a
LAN. The function of the master
node is to retrieve encoded
multimedia data from a media
source and stream them to the
workers with playback timing
information embedded. It also
takes the responsibility of audio
stream playback. The function of
a worker is to receive encoded
video frames from the
communication channel, decode
them, and display its assigned

tile-segments of video frame that are located on the basis of its unique Worker ID
(WID). Fig. 2 illustrates the system architecture.

4.2 Design of the Master Node

The master node includes two software modules: the master filter graph and the
master TMO, which are shown in Fig. 3. The master filter graph is an application
program built by interconnecting DirectShow library module provided by Microsoft.
Each library module is called a filter. This application runs whenever TMOSM

Fig. 2. Architecture of a Tiled Display System

186 S. Liu et al.

running at the top priority-level yields a time-slice of the machine to non-TMO
software, which occurs every 3rd time-slice arrives. In the master filer graph, a built-in
source filter is used for retrieving compressed audio packets and video frames from a
media source. Such a media source can be a media file in the local disk or an URL
containing a media stream. In the case of audio packets, they are forwarded by the
source filter to a local audio decoder filter for decoding since the audio stream will be
played back in the master node. A customized grabber filter is used to grab
uncompressed audio packets out of the master filter graph and put them into an output
queue. Another grabber filter is used to pull compressed video frames out of the
master filter graph into a separate output queue. Inside a grabber filter, a callback
function is invoked whenever a media frame becomes available from the output pin of
an upstream filter. The audio grabber filter is connected to the upstream audio
decoder filter to grab uncompressed audio packets for local playback while the video
grabber filter is directly connected to the source filter to grab compressed video
frames for multicast delivery. The output pin of each grabber filter is connected with
the input pin of a customized flow control filter, which controls the retrieving speed of
the source filter (e.g. 30 frames per second); otherwise, the source filter reads media
units from the media source as quickly as possible, which necessitates a large buffer
to hold all retrieved media data before they can be played back or delivered to worker
nodes.

Fig. 3. System Components

Another software module in the master node is the Master TMO, which handles the
task of playing back the audio stream and multicasting video stream to all worker
nodes. Audio packets and video frames are obtained from the grabber filters in the
maser filter graph and need to be picked up by the SpMs in the Master TMO. The
grabber filters and the SpMs run in the different thread contexts. An NBB is used to
let the grabber filters deposit media data and let the Master TMO SpMs in non-
blocking manners. Each NBB is wrapped as a special ODSS in the Master TMO, and

 TMO Structuring of a Networked System 187

its handle is sent to the master filter graph during the system initialization. Two types
of ODSS’s, namely AudioPacketODSS and VideoStreamODSS are constructed. The
audio grabber filter, as the writer of the audio NBB, inserts uncompressed audio
packets into AudioPacketODSS. Similarly, VideoStreamODSS encapsulates an NBB
for holding compressed video frames supplied by the video grabber filter.

Besides two ODSS’s, the Master TMO contains three SpMs. Audio SpM is used to
playback the audio stream. It periodically reads an uncompressed audio packet from
AudioPacketODSS and plays it back through Win32 DirectSound APIs. Since an
audio packet is played back at the target instant of global time at the beginning of
each round of Audio SpM, the intra-stream synchronization jitter is minimized.

Send SpM periodically reads a video frame out of VideoStreamODSS and
multicasts it to all workers. In our design, its iteration rate is set to be the same as the
frame rate of the media stream being rendered. For example, it runs every 33ms, which
means it sends 30 video frames per second. To facilitate video frames to all workers, a
video streaming RMMC is constructed. A gate to this RMMC is instantiated during the
initialization of the Master TMO. When Send SpM obtains a video frame, it invokes
RMMC API Announce() to multicast it out. Since the sizes of compressed video
frames are not a constant while an RMMC requires each packet be of fixed size, a
video frame needs to be packetized into RMMC packets before being sent out.

The third SpM, Control SpM, runs at the lowest frequency to take user’s
commands and multicast corresponding control messages, such as “PLAY” and
“STOP”, to all workers.

4.3 Design of Worker Nodes

Receive SpM in a worker node receives RMMC packets from the video streaming
RMMC by calling RMMC API NonBlockingReceiver(), and assembles them if they
belong to the same video frame. Then, a complete video frame is inserted into
VideoStreamODSS, which is of the NBB type.

Video frames in VideoStreamODSS are read by a customized source filter, NBB
Reader Source Filter, in the worker filter graph. Its output pin is connected to the input
pin of the video decoder filter. After being decoded, an uncompressed video frame is
sent to the video grabber filter. Through the callback function inside the video grabber
filter, an uncompressed video frame, the part of a video frame corresponding to the
worker’s WID, is inserted into the VideoFrameODSS which is of the NBB type. A null
render filter is added at the end of the worker filter graph by being connected to the
output pin of the video grabber filter to complete the connection of the worker filter
graph. Note that there is no need to use a flow control filter on the worker side since
the master node has already controlled the media delivery rate.

Similar to Audio SpM, Video SpM periodically gets a video-fame-fragment from
VideoFrameODSS and invokes Win32 DirectDraw API to play it back.

4.4 Synchronous Play of the Video Stream in All Worker Nodes

Synchronous play of video stream in all worker nodes is subject to two requirements:

• The play of the video stream starts with a minimal deviation in the time
dimension in all worker nodes.

188 S. Liu et al.

• Video frames are played back with the same rate in all worker nodes.

As mentioned in Section 4.3, periodical executions of Video SpMs in the Worker
TMOs meet the second requirement.

Both the master and workers start with certain internal initialization such as
starting TMO engine, filter graph construction, initialization of audio/video devices,
and registration of SpM and the TMO.

Once these internal initializations are done, Control SpM in the master node
waits for user’s inputs. After selecting a media source, the user inputs a “PLAY”
command. When Control SpM receives this command, it sends a “Play” message to
all worker nodes through a control RMMC. Thereafter, it starts the master filter
graph and cosequentially, video frames are fetched from the media source and sent
to worker nodes through the video streaming RMMC. When a worker node
receives the “Play” message through Receive SpM, it starts the worker filter graph
and begins to receive video frames from the master node, decode, and buffer them,
but not play them back. The purpose for buffering is obvious, to smooth the
transmission jitter. The “Play” message also contains an Initial Play Time (IPT) to
dictate a moment at which all workers shall begin video playback. The value of
IPT is saved into the CMD_ODSS in the worker TMO. Video SpM reads its value
from the CMD_ODSS and compares it with the current time at the beginning of
each round. If IPT is larger than the current time, it fetches the first video frame
from VideoFrameODSS to start play.

One critical point is that the Master TMO needs to choose an appropriate IPT
before sending out the “PLAY” message so that the Video SpMs on all workers may
begin video-playback with a minimal deviation in the time dimension. It means that at
least one frame-fragment should be available in the buffer within VideoFrameODSS
when IPT arrives. Hence, the duration D from the moment at which a “PLAY”
commend is issued, which is denoted as T, to IPT should be no less than the duration
from T to the time at which the first frame-fragment is deposited into the buffer
within VideoFrameODSS. To tolerate transmission jitters of video frames, D can be
increased so that several video frame-fragments buffer within VideoFrameODSS
when IPT arrives although it will accompany the cost of larger latency.

IPT = T + D

To play the first frame-fragment exactly on IPT, one straightforward approach is to
let Video SpM continuously compare the current time with IPT. When IPT arrives,
the first frame-fragment is played back. However, this polling approach needs to
occupy and consume CPU resource extensively only for the time comparisons. A
more cost-effecitive approach is to set IPT to the earliest starting time (EST) of the
earliest iteration of Video SpM that starts after (T + D) and then to check at the
beginning of each iteration of Video SpM if IPT is already past or not. If so, the first
frame-fragment will be played immediately. Otherwise, no playback will occur during
the current iteration of Video SpM. IPT is thus:

IPT = EST + {ceiling[(T + D) / P]} * P .

where P is the period of Video SpM. In each of the subsequent iterations, a video-
frame-fragment is again played at the beginning.

 TMO Structuring of a Networked System 189

Video Streaming Latency

0
50

100
150
200
250

0 500 1000 1500 2000 2500

Frame Index

L
at

e
nc

y
(m

s)

5 Performance Measurement

We ran our tiled display on a 3x3 LCD array. The configuration of each node is,
Pentium 2.4G CPU, 512M memory, and Windows XP SP2 OS. Fig. 4 gives a
snapshot of our demo.

Two performance attributes
were measured. We first
measured the difference of
playback time across all worker
nodes. In particular, a
timestamp is taken each time
DirectDraw is about to be
called to display a video-frame-
fragment. Then the playback
time difference for each video
frame is the maximum
difference across all workers.
Fig. 5 shows the difference
which can be regarded as a
measure of how well the
workers are synchronized in
playing the video. From the
figure we can see that,

workers’ playback times can be pretty well synchronized for the given application.
The playback time difference was mostly less than 8ms and did not exceed.

We also measured the latency from the time when a video frame was first extracted
from the media source by the master node to the time when a fragment of the video
frame was played back by a worker node. On the master node side, a timestamp is

 Fig. 5. Playback Time Difference Fig. 6. Transmission Latency of Video Stream

Fig. 4. Snapshot of Tiled Display on LCD Array

190 S. Liu et al.

taken whenever a video frame is grabbed by the video grabber filter. On the other
hand, for the worker node, a timestamp is taken every time a video-frame-fragment is
to be drawn on the screen. The difference of the two timestamps corresponding to the
same video frame can be seen as the delay for processing the video frame in the
system. Fig. 6 shows that the latency is about the same for different cases of video
frames despite the fact that frames of different sizes may take different amount of
time in transmission and decoding.

6 Conclusion

Through construction of a global-time-based TMO network, a high-quality high-
definition tiled display system was realized. This application case is one
demonstration of the global-time-based coordination of distributed actions (TCoDA)
as a fundamental and promising approach for distributed multimedia applications. It
was also a demonstration that the TMO scheme and its tool-kit enabling relatively
easy high-level programming of manipulations of global time-stamps and timely
processing of video and other multimedia data reduce the amount of efforts for design
and implementation of complex distributed multimedia applications. Our performance
measurements have indicated that the TCoDA approach realizes the minimal play
jitter in streaming and play of video data.

Acknowledgment

The work reported here was supported in part by the NSF under Grant Numbers 03-
26606 (ITR) and 05-24050 (CNS) and under Cooperative Agreement ANI-0225642
to the University of California, San Diego for "The OptIPuter". No part of this paper
represents the views and opinions of any of the sponsors mentioned above.

References

1. Ayars, J., et al.: Synchronized Multimedia Integration Language (SMIL 2.0). W3C
Recommendation (2001), http://www.w3.org/TR/2001/REC-smil20-20010807

2. Blakowski, G., Steinmetz, R.: A Media Synchronization Survey: Reference Model,
Specification, and Case Studies. IEEE Journal of selected areas in communications 14(1),
5–35 (1996)

3. Gimenez, G., Kim, K.H.: A Windows CE Implementation of a Middleware Architecture
Supporting Time-Triggered Message Triggered Objects. In: Proc. IEEE CS Computer
Software & Applications Conf. Chicago, IL, pp. 181–189 (2001)

4. HIPerWall, http://hiperwall.calit2.uci.edu
5. Kim, K.H.: Object Structures for Real-Time Systems and Simulators. IEEE

Computer 30(8), 62–70 (1997)
6. Kim, K.H., Ishida, M., Liu, J.: An Efficient Middleware Architecture Supporting Time-

Triggered Message-Triggered Objects and an NT-based Implementation. In: 2nd IEEE CS
Int’l Symp. on Object-Oriented Real-time Distributed Computing, St. Malo, France, pp.
54–63 (1999)

 TMO Structuring of a Networked System 191

7. Kim, K.H.: APIs Enabling High-Level Real-Time Distributed Object Programming. IEEE
Computer, 72–80 (2000)

8. Kim, K.H., Liu, J.Q., Miyazaki, H., Shokri, E.H.: A CORBA Service Middleware
Enabling High-Level Real-Time Object Programming. In: IEEE CS 5th Int’l Symp. on
Autonomous Decentralized Systems, Dallas, pp. 327–335. IEEE Computer Society Press,
Los Alamitos (2001)

9. Kim, K.H.: Commanding and Reactive Control of Peripherals in the TMO Programming
Scheme. In: 5th IEEE CS Int’l Symp. on Object-Oriented Real-time Distributed
Computing, Crystal City, VA, pp. 448–456. IEEE Computer Society Press, Los Alamitos
(2002)

10. Kim, S., Kuester, F., Kim, K.H.: A Global-timestamp-based Approach to Construct a Real-
time Distributed Tiled Display System. In: EIST-2005, pp. 548–554 (2005)

11. Kim, S., Kuester, F., Kim, K.H.: A Global timestamp-based Approach to Enhanced Data
Consistency and Fairness in Collaborative Virtual Environments. ACM Multimedia
System 10(3), 220–229 (2003)

12. Kim, K.H, Li, Y., Liu, S., Kim, M.H., Kim, D-H.: RMMC Programming Model and
Support Execution Engine in the TMO Programming Scheme. In: 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pp. 34–43 (2005)

13. Kim, K.H., Liu, S., Kim, M.H., Kim, D.-H.: A Global-Time-Based Approach for High-
Quality Real-Time Video Streaming Services. In: 7th IEEE Int’l Symp. on Multimedia,
Irvine, CA, pp. 802–810 (2005)

14. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Dordrecht (1997)

15. Renambot, L. and Rao, A.and Singh, R. and Jeong, B. and Krishnaprasad,N. and
Vishwanath, V. and Chandrasekhar, V. and Schwarz, N. and Spale, A. and Zhang, C. and
Goldman, G. and Leigh, J. and Johnson, A.: SAGE: the Scalable Adaptive Graphics
Environment. In: Proceedings of the Workshop on Advanced Collaborative Environments
(2004)

16. Steinmetz, R., Engler, C.: Human Perception of Media Synchronization. Technical Report
43.9310, IBM European Networking Center Heidelberg, Heidelberg, Germany (1993)

17. Wallace, G., Anshus, O.J., Bi, P., Chen, H., Chen, Y., Clark, D., Cook, P., Finkelstein, A.,
Funkhouser, T., Gupta, A., Hibbs, M., Li, K., Liu, Z., Samanta, R., Sukthankar, R.,
Troyanskaya, O.: Tools and Applications for Large-scale Display Walls. Computer
Graphics and Applications 25, 24–33 (2005)

18. Kim, K.H., Clomenares, J., Rim, K.: Efficient Adaptations of the Non-blocking Buffer for
event Message Communication. In: 10th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, Santorini Island, Greece (2007)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 192–201, 2007.
© IFIP International Federation for Information Processing 2007

Design and Experimental Validation of UAV Control
System Software Based on the TMO Structuring Scheme

Hansol Park1, Moon Hae Kim1, Chun-Hyon Chang1, Keechon Kim1,
Jung-Guk Kim2, and Doo-Hyun Kim1,*

1 Computer Science Department, Konkuk University, Seoul, Korea
{parkhs, mhkim, chchang, kckim, doohyun}@konkuk.ac.kr

2 Hankuk University of Foreign studies, Korea
jgkim@hufs.ac.kr

Abstract. The technologies for designing and validating computer-control sys-
tems subject to challenging timing and reliability requirements have been ad-
vancing slowly. One such type of systems are unmanned aerial vehicle (UAV)
control systems. The functional complexity of UAV control systems is steadily
increasing. Enabling the design of such complex systems in easily understand-
able forms that are amenable to rigorous analysis is a highly desirable goal. In
this paper, we discuss our experimental application of the Time-triggered Mes-
sage-triggered Object (TMO) structuring scheme to the design of a UAV con-
trol system. The TMO scheme enables high-level structuring together with de-
sign-time guaranteeing of accurate timings of various critical control actions
with significantly smaller efforts than those required when using lower-level
structuring schemes based on direct programming of threads, UDP invocations,
etc. An experimental 2-step validation of a UAV control system is also dis-
cussed. The first step was to validate the system by use of an environment
simulator and then real flight tests were involved only in the second step.

1 Introduction

The technologies for designing and validating computer-control systems subject to
challenging timing and reliability requirements have been advancing slowly. One
such type of systems are unmanned aerial vehicle (UAV) control systems. Enabling
the design of such systems in easily understandable forms that are amenable to rigor-
ous analysis is a highly desirable goal. [5, 6, 8, 10]

The TMO (Time-triggered Message-triggered Object) model formalized earlier by
Kim and his collaborators [1, 2] has been found to be a sound real-time object model
that can be used for various types of hard and soft real-time distributed computing
applications. With the TMO model, both functional and timing behaviors of a system
can be specified in explicit and natural easy-to-understand forms.

To support execution of TMOs, several engines have been developed in the form
of middleware layered on a few widely used OS platforms. Representative cases are
TMOSM [3, also see http://dream.eng.uci.edu] on MS Windows XP Windows CE,

* Corresponding Author: New Millennium Hall 1203, School of Internet and Multimedia Engineering,

Konkuk University, Kwangjin-Gu, Seoul, 143-701, Korea.

 Design and Experimental Validation of UAV Control System Software 193

and Linux, LTMOS [4] on Linux, and Konkuk TMOSM/Linux on Linux. In the
work reported in this paper, we used TMOSM/Linux made by Konkuk University.

In this paper, we propose a TMO-based high-level design and implementation
method for the real-time embedded software parts of UAV control systems. The main
goal here is to improve the software engineering productivity and the software reli-
ability to a significant extent. Improvements are sought for in various phases of engi-
neering UAV control software such as design, implementation, and testing.

Our UAV control system was validated by use of an environment simulator in the
first step. Real flight tests were involved only in the second step. FlightGear was used
a virtual flight environment, named Hardware-In-the-Loop (HIL) system, of which
components can be replaced by actual hardware without rendering the remainder of
the simulator inoperable [7].

In Section 2, as backgrounds, the basic structure of the TMO model, the type of
UAVs considered, and the features of FlightGear are described briefly. In Section 3,
we present the design of an UAV control system based on the TMO model. In Section
4, our implementation and flight simulation are described. Finally, in Section 5, we
conclude with a suggestion for future works.

2 Backgrounds

2.1 TMO Structuring Scheme

We use the TMO model as a fundamental building-block and TMOSM (TMO Support
Middleware) as the execution engine for our experiments [2, 3]. TMO is a natural, syntac-
tically minor, and semantically powerful extension of the conventional object(s) [2]. Espe-
cially, TMO is a high-level real-time computing object. Member functions (i.e., methods)
are executed within specified windows in the domain of global time. Such timing re-
quirements are specified in natural intuitive forms with no esoteric styles imposed.

As depicted in Fig. 1, the basic TMO structure consists of four parts; 1) Spontane-
ous Method (SpM): A time-triggered (TT) method which is triggered when the real-
time clock reaches specific values determined at design time and specified in AAC
(Autonomous Activation Condition) as the time-windows for execution. 2) Method
(SvM): A method similar to the conventional service method which is triggered by
service request messages from clients. 3) Object Data Store (ODS): The set of data
members which may be partitioned into ODS segments (ODSSs), each of which is a
basic unit of storage that can be exclusively accessed by a certain TMO method at any
given time or shared among executions concurrent of TMO methods (SpMs or SvMs).
4) Environment Access Capability (EAC): A list of entry points to remote object
methods, logical communication channels, and I/O device interfaces.

2.2 Unmanned Aerial Vehicle (UAV) Control System

An unmanned aerial vehicle (UAV) is an aircraft with no onboard pilot. UAVs can be
remote controlled aircrafts (e.g. flown by a pilot at a ground control station), or
aircrafts that can fly autonomously with pre-programmed flight plans or dynamically
adaptive control systems. Although the UAV control system consists of many
components, there are two main components: 1) a ground station component which

194 H. Park et al.

provides telemetry feedback to
the operator and allows him/her
to control the aircraft, and 2) an
on-board flight system
component of the vehicle.

In a UAV, the flight system
component (embedded controller)
operates some sensors for sensing
attitude and position and uses the
data in controlling the pose of the
UAV on the flight. In our experi-
mental UAV, a gyroscope and a
GPS were used to enable precise
navigation. In the ground, the
operator can monitor the current
states of the UAV and issue com-
mands to the running UAV via the
ground station component. The

ground station component and the UAV flight system component must be connected via
communication channels so that they may monitor and command each other.

Our UAV discussed in this paper is designed to fly autonomously with the autopi-
lot. This autopilot requires precise timing of sensor operations. If the timing is badly
missed, the UAV would be endangered.

2.3 FlightGear Flight Simulator Project

FlightGear is an open-source flight simulator project which provides flight simulators
running on Windows, Linux and Mac platforms. The goal of the FlightGear project is to
create a sophisticated flight simulator framework for use in research or academic envi-
ronments, for the development and pursuit of other interesting flight simulation ideas, as
well as for an end-user application. FlightGear provides a multitude of features as follows:

- High Degree of Freedom: FlightGear is open-source.
- Cross Platform: FlightGear runs on many different operating systems.
- Multiple Flight Dynamic Models: Three primary flight dynamics models

(FDMs), LarcSim, JSBSim and yasim, are available.
- Moderate Hardware Requirements: Commercial-off-the-shelf (COTS) personal

computer components are sufficient for running FlightGear.
- Extensibility: FlightGear can run a simple simulation on a single laptop or drive

a sophisticated, realistic, immersive, multi-screen simulation.
- Network Access: A wide variety of external interfaces are available.

3 Experimental System Design and Implementation

3.1 Hardware Architecture

As depicted in Figure 2, the UAV control system consists of a Flight System compo-
nent, a Ground Station component, and a Communication component. The Flight

Fig. 1. Structure of TMO model (courtesy of [2, 3])

 Design and Experimental Validation of UAV Control System Software 195

System component has three parts, embedded controller, sensors, and actuators. In this
project, an RF-Ethernet communication device which used radio frequency for Ethernet
protocol was used as the communication component. Flight simulator was set to gener-
ate all kinds of sensor data and receive actuator signals for virtual flight control.

3.1.1 Flight System
(1) Sensors
A gyroscope and a GPS receiver were used as the sensors of Flight System. The gyro-
scope was used to provide attitude data. The gyroscope was set to generate roll, pitch,
and yaw data and sends the data to the Embedded Controller, which was connected to
the gyroscope via a serial port. The GPS receiver was used to produce geometric
location data periodically. The GPS provided NMEA standard location data via a
serial port for the Embedded Controller in the Flight System.

(2) Actuator
A Servo-Actuator that was an
actuator of servo motors con-
trolled by PWM (Pulse Width
Modulation) signals in the
Flight System was assembled
by us. The Servo-Actuator
was designed to receive
servo-control data from the
Embedded Controller via a
serial port and convert the
data to PWM signals and use
the signals to control directly-
connected servo motors. At-
mel’s Atmega128 chip was
used for the Servo-Actuator
and the converting software

was newly developed.
(3) Embedded Controller
The Embedded Controller was built using an ARM-based small computer system.
This small computer system has a 400 MHz XScale processor, and 64MB of
RAM. An extended Serial I/O board is installed in the Embedded Controller to
provide four serial ports needed to communicate with the gyroscope and GPS
devices. A 64MB built-in NAND flash serves as non-volatile storage and suffices
to keep embedded Linux kernel 2.4.18 and UAV controller software based on
TMOSM/Linux.

3.1.2 Ground Station
Ground Station is a kind of control unit which monitors the state of the UAV and
provides a flight-path to the Embedded Controller in the Flight System. Ground Sta-
tion supports GUI for monitoring and sends location data which include a flight-path
to the UAV. Ground Station uses the RF-Ethernet device for communicating with the
UAV.

Fig. 2. Constitution of UAV Control System

196 H. Park et al.

3.2 Modeling of a UAV Control System Based on TMO Model

As depicted in Fig. 2, the Embedded Controller in the Flight System is connected to
Sensor Module, Servo Actuator, and Ground Station. In this section, we present the
TMO-structured design of our UAV control system.

3.2.1 UAV TMO : A TMO-Structured Design of the Embedded Controller

The UAV TMO is a design of
the Embedded Controller
object in the Flight System.
As depicted Figure 3, the
UAV TMO has
AHRS(Attitude and Heading
Reference Systems) SpM and
GPS SpM because AHRS
and GPS produce sensor data
at different rates. The func-
tional requirements for each
SpM and SvM in the UAV
TMO are defined in Table 1.

Table 1. Functional requirements of UAV TMO

Method Name Functions Deadline

AHRS SpM

1. Acquire AHRS packets from gyroscope every 40ms
2. Analyze and parse the AHRS packet and write parsed atti-

tude data to AHRS ODSS
3. Read AHRS data, GPS data, and command data from each

ODSS.
4. If GPS data and Command data are empty (initial condition),

just use AHRS data.
5. If the current GPS data are not found, produce such data via

extrapolation (because GPS internal clock is slower than
AHRS).

6. Find flight-path from command data and compare it with the
current GPS data.

7. Calculate actuator control signals using PID algorithm to
follow given flight-path.

8. Write AHRS, GPS and actuator control data to PWM(Pulse
Width Modulation) ODSS.

20ms

GPS SpM
1. Acquire GPS packets every 250ms
2. Analyze and parse the GPs packet and write parsed geomet-

ric position data to GPS ODSS
20ms

GCU SpM
1. Read the status data from PWM ODSS every 100ms
2. Send the status data to the Ground Station TMO using a Gate

in EAC
10ms

Mission SvM
1. Receive command data from Ground Station TMO
2. Write the command data to COMMAND ODSS

10ms

Fig. 3. Design of the UAV TMO

 Design and Experimental Validation of UAV Control System Software 197

3.2.2 Ground Station TMO

Ground Station TMO in-
cludes Display SpM and
Display SvM for monitoring
and Mission SvM for mis-
sion planning as depicted in
Fig. 4. The functional re-
quirements for Ground
Station TMO are defined in
Table 2.

Table 2. Functional requirements of Ground Station TMO

Method Name Functions Deadline

Display SpM
1. Read all data of the UAV from the UAV State ODSS and

Command ODSS every 40ms
2. Send all data to the user application for display

10ms

Mission SvM
1. Read command data which include waypoints of the UAV

from the call parameters supplied by the user application
2. Send the data to the UAV TMO in Flight System

10ms

Display SvM
1. Receive the status data of the UAV from Flight System
2. Write the data to UAV State ODSS

10ms

Fig. 5. Interaction of the UAV TMO with the Ground Station TMO

Fig. 5 depicts interactions including data flows between UAV TMO and Ground
Station TMO. GCU SpM in UAV TMO requests a service to Display SvM in Ground
Station TMO for displaying UAV status data, while Mission SvM in Ground Station
TMO requests a service to Mission SvM in UAV TMO for accepting command data.

Fig. 4. Design of the Ground Station TMO

198 H. Park et al.

3.3 Implementation

For our experimental im-
plementation of a UAV
control system, 25Hz gyro-
scope, 4Hz GPS, XScale-
based Embedded Controller,
and AVR-based Actuator
were used to compose the
Flight System. PID algo-
rithm was used in our
autonomous UAV control
system. We used a general-

purpose laptop computer as the Ground Station for monitoring the status of the UAV.
Fig. 6 presents the hardware structure of the implemented UAV control system. The
TMO-structured real-time computing software in both Flight System and Ground
Station turned out to be remarkably easier to read, analyze, and maintain in compari-
son to the initial version of the software that had been designed 4 years ago and com-
posed of threads, sockets, and thread-priorities.

4 Validation

4.1 Step 1: Test with an Environment Simulator

In our experiments, we deployed a hardware-in-the-loop simulator (HILS) centered
around FlightGear and depicted in Fig. 7(a). In HILS, a Bridge TMO converts a state
data packet coming out of FlightGear to a packet of Sensors (Gyroscope, GPS) in the
format that can be accepted by UAV TMO without any further conversion. Moreover,
it converts a control signal coming out of UAV TMO to a control packet that can be
accepted by FlightGear. We tested roll, altitude, and heading stabilizer control of our
UAV control system on the HILS. Fig. 7(b) shows the results. The desired control
references are displayed as dotted lines and the actual responses of the embedded
controller in the UAV are displayed as bold lines. These response data were obtained
while the UAV in simulation changed the altitude and heading into the direction to-
ward the destination. Fig. 7(b) has three different graphs which show changes in the
stabilizer of roll, altitude, and heading. When the UAV has to change heading direc-
tion toward the destination (See Fig. 7(b)-c), roll and pitch (altitude stabilizer) values
will also be changed until heading is set in the direction toward the destination (See
Fig. 7(b)-a, b). During this period, the UAV encounters an unstable situation, and the
embedded controller should adjust the attitude of the UAV for stable flight. The re-
sults of each stabilizer control indicate that the actual response data obtained are close
to the desired references for stable flight. By comparing the figures, we can conclude
that the exhibited behavior of the simulated Flight System is close to the desired ref-
erences. These results attest to the accuracy of our embedded control system imple-
mented with the TMO structuring techniques and tools and the usefulness of the
hardware-in-the-loop simulator.

Fig. 6. UAV control system architecture

 Design and Experimental Validation of UAV Control System Software 199

(a)

(b)

Fig. 7. Hardware-in-the-loop simulator and Flight Simulation output

4.2 Step 2: Real Flight Test

Fig. 8. UAV flight test in Korea on 18 June 2006

200 H. Park et al.

On 18 June 2006, we tested our UAV in a field in Korea as shown in the pictures in
Fig. 9. Our Flight System communicated with the Ground Station via RF-Ethernet.
The Flight System could control the UAV using the roll, altitude, and heading stabi-
lizer for approximately 45min. However, unpredictable winds occasionally created
dangerous situations in which the Flight System lost the stability for short periods.

5 Conclusion and Future Work

In this paper, we presented our experimental application of the TMO structuring
scheme to the design and implementation of a UAV control system. The Flight Sys-
tem and the Ground Station were designed by application of the TMO scheme and
implemented with TMOSM/Linux. We tested our UAV control system by means of
timing behavior analysis, flight simulation, and real flight tests. We could confirm a
reasonable-level performance of roll, altitude, and heading stabilizer control from
flight simulations. Finally, we could confirm a reasonable-level performance during
the test flight of 45min in a real flight environment. Therefore, these experimental
research results clearly indicate the promising nature of the TMO structuring scheme
in design and implementation of challenging real-time distributed computing software
such as those needed in UAV control systems. The advantages of the TMO scheme
over conventional low-level programming approaches involving composition of soft-
ware with threads, sockets, and thread-priorities seem quite significant. Among sev-
eral areas in which the UAV control system could be improved, fault-tolerance in
UAV control systems is an item of top-priority to us for tackling in the near future
research.

Acknowledgements. This research was conducted at the Software Research Center of
Konkuk University headed by Moon-Hae Kim and supported by the MIC (Ministry of
Information and Communication), Korea, under the University ITRC (Information
Technology Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment).

References

1. Kim, K.H.: Object Structures for Real-Time Systems and Simulators, pp. 62–70. IEEE
Computer Society Press, Los Alamitos (1997)

2. Kim, K.H.: APIs for Real-Time Distributed Object Programming, pp. 72–80. IEEE Com-
puter Society Press, Los Alamitos (2000)

3. Kim, K.H., Ishida, M., Liu, J.: An Efficient Middleware Architecture Supporting Time-
Triggered Message-Triggered Objects and an NT-based Implementation. In: ISORC, pp.
54–63 (1999)

4. Kim, H.J., Park, S.H., Kim, J.G., Kim, M.H.: TMO-Linux: A Linux-based Real-time Op-
erating System Supporting Execution of TMOs. In: ISORC (2002)

5. Koo, T.J., Liebman, J., Ma, C., Sastry, S.: Hierarchical approach for design of multi-
vehicle multi-modal embedded software. In: Henzinger, T.A., Kirsch, C.M. (eds.)
EMSOFT 2001. LNCS, vol. 2211, Springer, Heidelberg (2001)

 Design and Experimental Validation of UAV Control System Software 201

6. Koo, T.J., Liebman, J., Ma, C., Horowitz, B., Sangiovanni-Vincentelli, A., Sastry, S.: Plat-
form-based embedded software design and system integration for autonomous vehicles.
Proceedings of the IEEE 91(1), 198–211 (2003)

7. Sorton, E.F., Hammaker, S.: Simulated flight Testing of an Autonomous Unmanned Aerial
Vehicle Using FlightGear. Institute for Scientific Research Inc., Fairmont, WV AIAA-
2005-7083

8. Ippolito, C.: QSS Group, Inc., NASA Ames Research Center, An Autonomous Autopilot
Control System Design for Small-Scale UAVs. Internal Report of CMIL in University of
Carnegie Mellon: EAV-20051016

9. Lee, E.A.: Embedded Software – An Agenda for Research. UCB ERL Memorandum
M99/63 in University of California at Berkeley

10. Matczynski, M.J.: A Distributed Embedded Software Architecture for Multiple Unmanned
Aerial Vehicles. Master thesis, EECS, MI

Lifestyle Ubiquitous Gaming:

Computer Games Making Daily Lives Fun

Eiji Tokunaga, Masaaki Ayabe, Hiroaki Kimura, and Tatsuo Nakajima

Department of Information and Computer Science, Waseda University
3-4-1 Okubo Shinjuku Tokyo 169-8555, Japan

Tel&Fax:+81-3-5286-3185
{eitoku,ayabe,hiraoki,tatsuo}@dcl.info.waseda.ac.jp

Abstract. We propose a novel computer gaming style in which users can
enjoy games through their daily lives without paying too much attention
and time for the games, we call it lifestyle ubiquitous gaming. Lifestyle
ubiquitous games track human daily activities implicitly and incorporate
the tracked activities in their game logics. Then they represent decorated
and virtualized those activities on ambient displays. We believe that
this gaming style enables not only making their boring and messy daily
tasks fun but improving their lazy lifestyle and customs. In this paper,
we describe our lifestyle ubiquitous gaming concept and framework, and
then we show our two case studies implementing distinguishing scenarios.

1 Introduction

Recent computer game technologies enable us to play games anytime, anywhere
and with anyone. The latest portable/non-portable game consoles have signifi-
cant computing resources and network capabilities, and a lot of games are pro-
vided on the cellphone market. On the other hand, the purpose of playing com-
puter games is becoming diverse and expanding. The positive effects of games
are being explored in both of academic and industrial research. This is not only
for entertainment but also for communication, education, health, business and
even military.

In this way it is broadening the consumer base, however, there are still many
ordinary people who cannot play computer games even they love playing games.
Because current computer games have three significant negative factors to be
played by non-gamers: 1) Most of current games require a lot of time to enjoy
so that busy people cannot enjoy enough. In particular, massively multiplayer
online games require a large amount of time to sufficiently enjoy in their virtual
world. 2) Resent games are not only just too hard to enjoy, but also that requires
unignorable physical work and psychological barrier to start playing them. We
have to turn on the TV and game console, then switch the TV input to which
the console is connected to play ordinary console games. Online games might
require additional work. Even for mobile games, players must carry slightly heavy
mobile game consoles and find appropriate places to play just games. 3) Playing
computer games is still considered as socially disgraceful by certain people, even

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 202–212, 2007.
c© IFIP International Federation for Information Processing 2007

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun 203

by players themselves. Some of Japanese female gamers like to play games using
cell phones because other people cannot recognize they are playing computer
games. But, it is still slightly strange that a person is giving a steady look into
the display of her cell phone, and intensely pushing some buttons.

Therefore, we propose a novel computer gaming style in which gaming features
are integrated into our daily lives seamlessly by using sensing technologies. The
games extract real-time context and history of everyday activities such as cooking
and cleaning. Then, the extracted daily activities are decorated with gaming
features and represented in ambient style. Players do no have to be very conscious
of how they are and other people are fairly ignorant of what they are doing there.
They do not have to take time for games into account, just do daily activities
augmented with fun games. They can enjoy and enhance their daily lives by
gaming effects with very little efforts. In other words, it makes possible to learn
by games for not science or physics but our daily lives. We describe one possible
future scenario as follows.

SensPet: Eiji loves to play computer games very much but he is too busy to
play recent Hollywood movie-like large-scale games. Nowadays, he is a huge fun
of SensPet that is an online virtual fuss-free pet game. SensPet provides a virtual
pet that is a virtual counter part of Eiji’s daily life. Surrounding sensors in his
home or mobile phone is sensing his daily activities, and then extracted contexts
automatically influence the growth of his pet. If he cleans his room often, his pet
house is always clean and his pet grows up elegant. If he buys fancy clothes, his pet
is dressed up and grows up smart. Unlike other virtual pet games that require too
much investment to breed, SensPet does not require much time and high skills to
enjoy but exciting. If he is smart with daily activities, his pet grows up smart. He
is strongly motivated to do the best for his daily life. The vender of SensPet will
provide the next version of SensPet that is “SensCity” for intellectual people. . .

We call this kind of gaming style lifestyle ubiquitous gaimng. We believe that
it enables not only making their boring and messy daily tasks fun but improving
their lazy lifestyle and customs. Exploring this novel gaming style leads to es-
tablish new outpost for gaming industries. The rest of this paper is structured as
follows. Section 2 describes the conceptual framework of lifestyle ubiquitous gam-
ing. We built two lifestyle ubiquitous games on the framework as case studies.
Section 3 describes the design and implementation of the case studies. Section
4 discusses some issues and expected exit. Section 5 shows related work and
Section 6 concludes this paper with future work.

2 Lifestyle Ubiquitous Gaming Framework

Fig. 1 shows the overview of lifestyle ubiquitous gaming conceptual framework.
This framework consists of four stages: lifestyle tracking, sensor analysis, game
logic, lifestyle presentation enclosing human daily activities. These stages transit
as a cycle as shown in the figure. We describe about the characteristic of each
stage and human daily activities to be used in lifestyle ubiquitous gaming as
follows.

204 E. Tokunaga et al.

Daily Activity

Cleaning

Saving Hygiene

Cooking
Accelarometer

Accelarometer

R F I D

Pressure sensor

Lifestyle Tracking

Just use

Sensor
Analysis

Context
"Bill is toothbrushing"

Context
"The trash box is full"

Context
"Doraemon no.12 is in

the bookshelf"

Aggregate

Game Logic

A toothbrushing should be
done everyday.

The Toothbrush Game

A room should be
always clean.

The Cleaning Game

A bookshelf should be
always in order.

The Bookshelf Game
Event Notification Extraction

Lifestyle Presentation

Ambient
Clues

Hint

Monarisa
gets older.

A virtual aquarium
becomes abundant.

A teddy bear
dances.

Fig. 1. Lifestyle ubiquitous gaming conceptual framework overview

Lifestyle tracking: In lifestyle ubiquitous gaming, players basically just use daily
objects such as a toothbrush, a bookshelf and a kitchen knife in their regular
daily lives. Their daily activities using the daily objects are tracked implicitly
by sensors embedded in the daily objects[7]. The tracked data is passed to the
next stages that use them as input events on the gaming world. In this way,
players do not have to very conscious of playing games, and it is very easy to
play lifestyle ubiquitous games for even non-gamers such as elderly people.

Sensor analysis: Each tracked data extracted from embedded sensors is often too
fine-grained to use in game logics. This stage analyzes the tracked data into con-
texts that are highly abstracted activity information such as “Alice is brushing
her teeth” and “The Art of Computer Programming is in the bookshelf”.

Game logic: In this stage, goals/idempotents of lifestyle ubiquitous gaming such
as making cooking fun and motivating daily cleaning are incorporated with an-
alyzed contexts in game logics. For example, a logic motivating daily cleaning
one’s own room stores cleaning contexts of player’s rooms daily and defines the
states of their rooms such as “Alice’s room is clean”, “Bob’s room is dirty” or
“Carol’s room is not so clean even she often cleans her room”. It decides what
kind of gaming representation would be shown for making their each cleaning
activity fun and motivating them. Then it generates hints for achieving the
goal/idempotent.

Lifestyle presentation: Unlike in the case of ordinary computer games, too bling-
ing and bright representation would be annoying and disturbing in lifestyle ubiq-
uitous gaming style. In this stage, the hints generated in the game logic stage
are represented through daily representation objects such as a fine art, an aquar-
ium and a teddy bear. These objects provide ambient clues to achieve goals of
the games in restrained ways that do not require too much time and attention to

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun 205

understand. Those goals also mean, in other words, improving players’ lives and
making their custom better.

2.1 Human Daily Activities

Currently, we have selected four human daily activities to be augmented with
games: cleaning, hygiene, saving, cooking. We considered possibilities for im-
provement about the activity and technological implementability to track them.

Cleaning activities: Although cleaning our living environments is necessary to
live healthfully, it is boring task for many people. If we can augment the cleaning
task with gaming, people who are lazy for cleaning might be decrease. Even for
the people who are not lazy, the game would make a part of their daily lives
amusing. We can know how clean a room is using dust sensors and movements
of cleaners and sweepers.

Hygiene activities: Hygiene activities like tooth brushing and hand washing are
obviously quite important for healthy daily lives. But, children and even adults
often lazy for doing such hygiene activities. We would like to encourage the
continuation of them by presenting the use of hygiene things such as toothbrushes
and hand soaps in a virtual gaming world. We can know by whom and when the
toothbrushes are used by attaching accelerometers to them[6]. We assume that
users will not choose the wrong toothbrush.

Cooking activities Cooking and eating well-balanced meals is one of the most
significant ingredients to improve our quality of life. However, managing the
balance is not so easy for ordinary people, and its continuation is even more
difficult. If we can build a game in which cooking well-balanced meals is con-
nected to positive feedbacks, it might increase mothers motivation to cook well
and encourage children to eat wel-balanced meals.

Resource saving activities Saving resources like electricity and water leads to
save our money and help natural resources on the earth. But the respective
resource saving activities in our daily lives, such as turning off rights and appli-
ances regularly is often very hard to be aware as actually be connected to save
resources. If a game can show how the saving activity effects to the overall goal
and the total amount of saved resources in a fun way, they might continue to
save resources without patience.

3 Case Studies

We built prototype games based on the described conceptual framework to con-
firm feasibility and effectivity of our lifestyle ubiquitous gaming concept. Cur-
rently, we have built two games one is for a kind of hygiene activities: toothbrush-
ing, the another one is for a kind of cleaning activities: arranging a bookshelf.

206 E. Tokunaga et al.

Daily Activity Lifestyle TrackingLifestyle Presentation

1.Players should toothbrush

everyday.
2.Players should toothbrush

for 5 minutes.
3.Players should toothbrush

in a right way.

Game Logic Sensor Analysis
Context
User ID

Context
Time

Context
A pattern of

toothbrushing

Fishes dance.

A new kind of fish
is born.

Fishes die.

Cookie

Hints
"Current user state"

Cookie ID

3-axis
Acceleration

Bluetooth

Fig. 2. Toothbrushing connected to breeding tropical fish

3.1 A Virtual Aquarium Improving Toothbrushing Activity

The daily activity in Fig. 2 shows a player toothbrushing, which is a kind of
hygiene activities, in front of a virtual aquarium displayed on a micro pc. This
game is based on three rules that are players should tooth brush everyday, play-
ers should toothbrush for 5 minutes and players should toothbrush in a right
way. It tracks toothbrushing activity and provides immediate feedback for en-
couraging toothbrushing in sufficient time, and gradual feedback for encouraging
continuance of everyday toothbrushing in a right way.

Fig. 3. Dancing fish and wiping rag while
player’s toothbrushing

Fig. 4. A spawned egg after player’s well-
regulated toothbrushing

Immediate feedback: When a player starts toothbrushing, fish in the aquarium
dance happily and a rag starts wiping a moss-covered window (Fig. 3). Then,
while s/he continues to brush in sufficient time, their dance changes into more

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun 207

1.Books should be

aligned.

2.Books should be

read.

Daily Activity Lifestyle Tracking

Game Logic

Lifestyle Presentation

Sensor AnalysisContext
Position

Context
Direction

Context
Book ID

A
R
T
o
o
l
k
i
t

Video
Tracking

Hints
"What is wrong"

Mona Lisa gets older.

Mona Lisa is
taken pieces apart.

Fig. 5. Mona Lisa breaks up when some books are taken off for a while. She gets older
when the bookshelf in a long while.

elegant and the window becomes clean. At last he stops toothbrushing, then fish
stop dancing and start to school slowly again.

Gradual feedback If a player succeeded to brush both in morning and night, one
of the fish blows an egg in at midnight. The egg hardly catches out initially. If
s/he could continue to brush everyday, the incubation ratio increases. If s/he
could toothbrush in a right way, such as brushing both of upper and lower teeth,
a rare kind of fish might be born (Fig. 4).

Implementation: Fig. 2 shows the overall architecture of this game based on our
framework. The toothbrushing activity is tracked by Cookie sensor[12] that is a
bluetooth-enabled coin-size sensor node having several kinds of sensors inside.
This game uses a 3-axis accelerometer in it. One Cookie is attached to a tooth-
brush and the sensor analysis module analyzes accelerometer data while a player
is toothbrushing. Each Cookie has own unique ID that is used as user ID in this
game. Toothbrushing time is recognized by monitoring the difference between
maximum and minimum acceleration. Toothbrushing pattern is recognized by
monitoring the direction of bristles. Bluetooth connection, context acquisition
and event notification are managed by our context acquisition framework[4].

3.2 A Virtual Fine Art Improving Book Arrangement Activity

The second case study is a game encouraging book arrangement activity in a
personal bookshelf, which is a kind of cleaning activities. This game is based

208 E. Tokunaga et al.

Fig. 6. Partly dropped
Mona Lisa indicating
some books are not in the
bookshelf

Fig. 7. Broken Mona Lisa
indicating books are not in
order

Fig. 8. Old Mona Lisa in-
dicating no books are read
recently

on two rules that are Books should be arranged and aligned correctly and Books
should be read at least once a weak or some span. It tracks the state of books
in a bookshelf and provides immediate feedback for encouraging book arrange-
ment and gradual feedback for encouraging reading books. These feedback are
represented on a virtual fine art mounted near the bookshelf.

Immediate feedback: When a book is taken off for a while, a piece of Mona Lisa
is also taken off. If books are not aligned correctly, the pieces of Mona Lisa are
also aligned awkwardly. While the books are arranged correctly in the bookshelf,
she smiles peacefully (Fig. 6, 7).

Gradual feedback: If non of the books are not read for a long while, she gets older
slowly. Then, when one of the books is read, she gets back her youth and smile.
Too old Mona Lisa indicates the books on the bookshelf should be replaced with
other ones (Fig. 8).

Implementation: Fig. 5 shows the overall architecture similar in the first one.
The positions of books are tracked by using of ARToolkit[10] that is a software
library implementing visual tag recognition. A video camera deployed in front
of a bookshelf captures visual tags attached to each book. Then, the analysis
module calculates their positions, directions, and IDs and notifies them to the
game logic. The logic gives hints including information of missing or unaligned
books and unread books to the presentation module implemented using Flash.

4 Discussion and Future Work

In this section, we describe some discussions and future work given through
designing and implementing prototype games described in case studies.

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun 209

Immediate feedback vs gradual feedback: We believe lifestyle ubiquitous games
should have both of immediate and gradual feedback as described in our case
studies. Immediate feedback is useful for notifying players the state of current
tracking and making the moment of activities fun. Gradual feedback is appro-
priate for presenting them the history of tracked activities and encouraging the
continuance of daily activities. We expect to observe players’ behavior within
each feedback result and prospect about relationship between them.

Direct vs indirect metaphor mapping: In our current case studies, the presenta-
tions like an aquarium and a fine art have few relevance with the actual activities
like toothbrushing and book arrangement. That is because we thought if it is di-
rectly connected like the toothbrushing game shows deformed bad teeth, players
who are lazy for toothbrushing might not be interested in it. However, that tooth-
brushing game encourages players who are already interested in toothbrushing
more. We expect to build another game that presentation metaphor is directly
mapped to the activity and prospect the difference.

User studies: We still have not conducted any formal user studies. We believe
that we have to answer two questions: (1) Is it fun or not? How people accept
or reject our gaming concept? (2) Can these games really encourage boring daily
activities? For answering the first question, we expect to use think aloud tech-
nique and interview with short-term experiments. For the second one, we expect
to conduct long-term experiments with following steps. At first, we observe sub-
jects doing particular activities without games several days. Then, we deploy
games in their home and observe changes in the activities several days. At last,
we remove the games and continue to observe changes. Each observation can be
easily done by using sensors embedded in daily objects.

Networking lifestyle ubiquitous gaming: Our prototype games are all stand-alone
programs. It is because we thought that it was appropriate to explore lifestyle
ubiquitous gaming with building simple games at first step. We identify that
networking features can make our games much more fun. For example, competi-
tion of virtual aquariums’ daily snapshots would make players more competitive.
Daily activities on the Web such as blogging and social networking services could
be easily integrated with lifestyle ubiquitous gaming like BlogPet[11].

Expected limitations of lifestyle ubiquitous gaming: The final question that we
have to explore is “Can lifestyle ubiquitous games become current Hollywood-
like large-scale game alternatives?” We expect that even if we could achieve
making quite attractive gaming world around lifestyle ubiquitous games, they
can hardly become the alternatives for hard core gamers who truly love to play
large scale games. But, we can see large movements in which ordinary people
leave large scale console games to simple and convenient mobile games around
in many parts of the world. We believe that exploring this research makes new
alternatives for people who is hesitative about playing computer games.

210 E. Tokunaga et al.

5 Related Work

Digital Game-Based Learning[14] discussed how learners have changed, how
games teach and why they work. [3] and [1] described about serious games that
are computer and video games that are intended not only entertain users, but
have additional purposes such as education and training. As these books shows,
the positive effects of games on learning, training, exercising, and medical things
are being explored in recent years. However, how integrating gaming features
into daily activities effects is not explored.

Several recent gaming projects so-called pervasive gaming[13] have exploited
the possibility to combine the world of the game with the physical world. Pirates!
[2] allows players to move around in the physical domain and are presented with
location dependent games on their PDAs equipped with simple short-range radio
frequency proximity sensors. Can You See Me Now?[5] combines a game of tag
in a real city in online game-play in a virtual game area by connecting online
players’ home computers to real runners’ handheld computers. These games
show positive possibilities and ways to integrate computer games into physical
domain, but still they require complicated configuration settings and significant
time to enjoy.

FantasyA and SenToy[9] represent an affective control toy. SenToy is a doll
including several sensors wirelessly connected to a PC. By using gestures of the
doll, it allows players to manipulate the emotions of a synthetic character in the
computer game, FantasyA. Physical user interfaces embedded within everyday
objects like a SenToy doll would make it easy to entry virtual gaming worlds.
But, doll gestures are probably not appropriate for adults and not related to
daily activities. We believe that if we can embedded same kind of physical user
interfaces of computer games into more common daily activities, that would
make more intuitive and easy-to-entry virtual gaming worlds.

Informative art project[8] explores information visualization techniques that
use art as inspiration for both their appearance and their role in our surround-
ings. Its information presentations disappear into the background and enable
people to be notified information without too much attention. Lifestyle presen-
tation in lifestyle ubiquitous gaming is a bit similar to informative art in terms
of embedding information visualization in daily objects. But our idea includes
purposeful movements like making boring tasks fun rather than just showing
information.

6 Conclusion

In this paper, we showed a concept and case studies of lifestyle ubiquitous gam-
ing that is a novel computer gaming style embedded in our daily lives. It makes
boring daily activities fun and does not require too much attention and time
to play. We believe this novel gaming idea can inspire the current game indus-
try and open up new breakthroughs. But, currently this research is in the very
early stage so that we still could not verify the effectiveness and feasibility. We

Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun 211

are planning to do practical and long-term user studies and build more games
exploring the other daily activities: cooking and resource saving.

Acknowledgement

This work is greatly supported by the Microsoft Institute for Japanese Academic
Research Collaboration (IJARC) with universities. The authors would like to
thank Ying-Qing Xu and Hajime Wada. The prototype games were developed
by several students in our laboratory. The authors would like to thank Keisuke
Hayashi, Yuri Kuno, Teruhide Kusaka, Hanae Suzuki, Chihiro Takayama and
Keita Yamada.

References

1. Bergeron, B.: Developing Serious Games. Charles River Media (2006)

2. Björk, S., Falk, J., Hansson, R., Ljungstrand, P.: Pirates! using the physical world
as a game board. In: Interact 2001, IFIP TC.13 Conference On Human-Computer
Interaction, Tokyo, Japan (July 2001)

3. Chen, S.: Serious Games: Games That Educate, Train, and Info. Course Technology
(2005)

4. Nakajima, T., Kawsar, F., Fujinami, K.: Prottoy: A middleware for sentient en-
vironment. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds.)
EUC 2005. LNCS, vol. 3824, Springer, Heidelberg (2005)

5. Flintham, M., Benford, S., Anastasi, R., Hemmings, T., Crabtree, A., Greenhalgh,
C., Tandavanitj, N., Adams, M., Row-Farr, J.: here on-line meets on the streets: ex-
periences with mobile mixed reality games. In: CHI ’03. Proceedings of the SIGCHI
conference on Human factors in computing systems, Ft. Lauderdale, Florida, USA,
ACM Press, New York (2003)

6. Fujinami, K., Kawsar, F., Nakajima, T.: Awaremirror: A personalized display using
a mirror. In: The 3rd International Conference on Pervasive Computing, Munich,
Germany (May 2005)

7. Fujinami, K., Nakajima, T.: Sentient artefacts: Acquiring user’s context through
daily objects. In: The 2nd International Workshop on Ubiquitous Intelligence and
Smart Worlds, Nagasaki, Japan (December 2005)

8. Holmquist, L.E., Skog, T.: Informative art: information visualization in everyday
environments. In: GRAPHITE ’03. Proceedings of the 1st international conference
on Computer graphics and interactive techniques in Australasia and South East
Asia, Melbourne, Australia (2003)

9. Höök, K., Bullock, A., Paiva, A., Vala, M., Chaves, R., Prada, R.: Fantasya and
sentoy. In: CHI ’03. CHI ’03 extended abstracts on Human factors in computing
systems, Ft. Lauderdale, Florida, USA, ACM Press, New York (2003)

10. Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based
augmented reality conferencing system. In: IWAR 99. Proceedings of the 2nd In-
ternational Workshop on Augmented Reality, San Francisco, USA (October 1999)

11. KDDI CORPORATION and WORK@ INC. BlogPet. http://www.blogpet.net/,
Last checked: (July 24, 2006)

http://www.blogpet.net/

212 E. Tokunaga et al.

12. Kimura, H., Tokunaga, E., Okuda, Y., Nakajima, T.: Cookieflavors: easy building
blocks for wireless tangible input. In: CHI ’06. CHI ’06 extended abstracts on
Human factors in computing systems, Montréal, Québec, Canada (2006)

13. Magerkurth, C., Cheook, A.D., Mandryk, R.L., Nilsen, T.: Pervasive games: Bring-
ing computer entertainment back to the real world. ACM Computers in Entertain-
ment 3(3) (2005)

14. Prensky, M.: Digital Game-Based Learning. McGraw-Hill Companies, New York
(2000)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 213–222, 2007.
© IFIP International Federation for Information Processing 2007

Speech Recognition System Using DHMMs Based on
Ubiquitous Environment

Jong-Hun Kim1, Un-Gu Kang2, Kee-Wook Rim3, and Jung-Hyun Lee1

1 Department of Computer Science & Engineering Inha University
Yonghyun-dong, Nam-gu, Incheon, Korea

jhkim@hci.inha.ac.kr, jhlee@inha.ac.kr
2 Department of Information Technology Gachon University of Medicine and Science

Yeonsu-dong, Yeonsu-ku, Incheon, Korea
ugkang@gachon.ac.kr

3 Department of Computer and Information Science
Sun Moon University, Chung-Nam, Korea

rim@sunmoon.ac.kr

Abstract. Most commercialized speech recognition systems that have a large
capacity and high recognition rates are a type of speaker dependent isolated
word recognition systems. In order to extend the scope of recognition, it is nec-
essary to increase the number of words that are to be searched. However, it
shows a problem that exhibits a decrease in the system performance according
to the increase in the number of words. This paper defines the context informa-
tion that affects speech recognition in a ubiquitous environment to solve such a
problem and designs a new speech recognition system that demonstrates better
performances than the existing system by establishing a word model domain of
a speech recognition system.

1 Introduction

The necessity of the interface between humans and machines according to the devel-
opment of information and communication technologies is required. In particular,
speech recognition technologies are necessary to satisfy the natural communication
between various devices in ubiquitous environments and most easy interfaces. These
speech recognition technologies extract the linguistic information and sound informa-
tion included in the voice between humans and save the extracted information to
transfer it to machine by applying proper practices in order to understand the meaning
included in this information.

Types in speech recognition have been developed as an isolated word recognition
method that recognizes separately spoken words, continuous pronunciation recogni-
tion method that recognizes continuous pronunciations, and voice understanding that
recognizes conversational sounds. The final goal of these speech recognition tech-
nologies is to understand every voice in all environments. However, the high per-
formance commercial system is mainly represented as a speaker dependant isolated
word system.

214 J.-H. Kim et al.

Representative commercial speech recognition systems are Voice Scribe 1000
Dragon Dictate by Dragon System, Voice Command by IBM, and Speech Command
by Texas Instruments. These systems are speaker dependant isolated word recogni-
tions systems and able to recognize about 1000 words. These systems show certain
significant decreases in their performances, such as recognition speed and rate, ac-
cording to the increase in words.

Therefore, this paper attempts to design a speech recognition system (SRS) using
user’s context information in speech recognition services. The factors that affect the
performance of a speech recognition system will be configured as context information
and determined using Ontology. Information can be obtained using the noise meas-
urement, Radio Frequency Identification (RFID) Tag, and RFID Reader, and then
accurate context information can be recognized using Ontology Database and infer-
ence engine. The system proposed in this study is designed based on Open Service
Gateway Initiative (OSGi), which is a type of ubiquitous middlewares, in order to
obtain real-time context information and provide the obtained information to applica-
tions. Also, the speech recognition algorithm used in this system is a Hidden Markov
Models (HMMs) in which this algorithm overcomes the disadvantage in an isolated
word speech recognition system and increases the performance by configuring a
HMM Domain according to the context. In the results of the test for the user who
registered in the system, it showed a high speech recognition rate in a home network
system.

2 OSGi

Open Service Gateway Initiative (OSGi) is an organization that establishes standards
on the transmission of multi-services that independently home networks and informa-
tion domestic appliances through access networks by defining network technology
and common open architecture structures. OSGi was founded on March 1999, con-
sisted of 15 businesses, and was expanded to include more than 50 software, hard-
ware, and service provider companies.

OSGi is a nonprofit organization that not only defines the API between middle-
wares and application programs but also plays a role in the separation between speci-
fied application programs and middlewares. Standards established by OSGi provide
dynamic services for devices with small capacity memories using the platform inde-
pendence of Java and network mobility of execution codes. In particular, it is an open
architecture network technology that can support various network techniques, such as
Bluetooth, Home Audio/Video Interoperability (HAVi), Home Phoneline Networking
Alliance (PNA), Home Radio Frequency (RF), Universal Serial Bus (USB), Video
Electronics Standards Association (VESA), and other networks. It also provides man-
agement and connection functions for most products. These include set-top boxes,
cable modems, routers, warning systems, power management systems, domestic ap-
pliances, and PCs, in which the Java based gateway consists of Java environments,
service frameworks, device access management functions, and log services that in-
clude the connection technology for these elements when access and new services are
required. The OSGi service platform displayed in Fig. 1 consists of the OSGi frame-
work and standard services.

 Speech Recognition System Using DHMMs Based on Ubiquitous Environment 215

Three major entities of the OSGi are Service, Bundle, and Framework. Service
includes Java interfaces that perform specific functions, actually implements objects,
and is a component that is accessed through a predefined service interface. A single
application can be configured through the cooperation of several services and is able
to request services during run-time. Bundle is a functional distribution unit that pro-
vides services. Framework is an execution environment that manages the life cycle of
the Bundle. Bundle is a service set and a component unit that uses the service regis-
tered in service registries. The implementation of Service can be performed physi-
cally, distributed, and sent to the Framework through the Bundle in logical units.
Bundle exists as JAR files. A JAR file includes more than one service implementation
object, resource files, and manifest files. The manifest file represents the service pro-
vided by each Bundle and other services that are used to implement Bundle. Finally,
Bundle can be implemented or terminated using the Start and Stop function in the
Framework.

Fig. 1. The Overview of OSGi

3 Domain-Separated Hidden Markov Models (DHMMs)

A pattern recognition method is generally used for speech recognition and is classi-
fied as a Dynamic Time Warping (DTW) method that uses a template-based pattern
matching and Hidden Markov Model (HMM) method employing a statistical pattern
recognition method. HMM is an algorithm that was founded on mathematics. It was
introduced in the field of speech signal processing in 1975 and widely applied from
isolated word recognition to the spontaneous speech recognition. This algorithm can
be classified as a learning and recognition process under the assumption that the time
series pattern in speech feature vectors is modeled after the Markov process. In addi-
tion, a method that is combined with the HMM is widely used at the present time due
to the increase in the amount of calculations even though neural network based meth-
ods are also used in speech recognition.

This study applies an HMM that uses a speech recognition algorithm as a pattern
recognition method according to the domain. The Baum-welch method is used as a

216 J.-H. Kim et al.

learning method for the HMM. In addition, probability for the HMM is calculated
using a Vitervi algorithm.

3.1 HMM Topology

The parameters used in the HMM consist of the transition probability between states,
output probability subordinated to states, and initial presence probability of states.
The parameter of the HMM can be simply expressed as Eq. (1).

, ,A Bλ π=< > (1)

A : State-transition probability distribution

 B : Observation symbol probability distribution

 π : Initial state distribution

This study applied a modified Bakis model that included five different states as il-
lustrated in Fig. 2 in order to express Eq. (1). The major characteristics of the HMM
model topology can be determined as five STATEs, First-Order-Markov Chain
model, and self migration potential and next state potential probability for each
STATE. The last STATE is a DUMMY STATE that has no transition probability in
which each STATE has 512 OBSERVATION SYMBOL probabilities.

1 2 3 4 5

Initial State

Fig. 2. HMM Topology

Fig. 3 illustrates the internal probability of the “aljip” HMM, a type of computer
application words.

Fig. 3. Five States and 512 Observation Symbols of HMM

 Speech Recognition System Using DHMMs Based on Ubiquitous Environment 217

3.2 HMM Domain

3.2.1 Context Information Domain
This study configured the HMM domain according to speaker information, utterance
location, and used objects. Speaker information and location were verified using
RFID sensors installed in user devices and in the home. The state information domain
was configured according to the space (Balcony, Bathroom, Bedroom, Guestroom,
Kitchen) in the home where detailed configurations were performed in accordance
with applied objects (Computer, Television, Radio, Refrigerator, Washing machine,
Electric Lamp). State information on the speaker and noise in the Context Manager
and Service Manager were transmitted to the Speech Recognition Manager.

3.2.2 Observation Sequence Domain
The speech recognition prototype implemented in this study was based on a word
model. The length of the observation sequence produced by the length of the utter-
ance changed because the word model shows the same utterance unit and recognition
unit. Therefore, the recognition rate decreased in the application that had HMM to-
pology similar to the isolated word that registered different utterance lengths. Fur-
thermore, recognition speed exhibited a decrease due to the increase in the number of
recognition words. The system used in this study configured the domain according to
the length of the observation sequence and selected the domain from the HMM of the
objective domain using the length information of the observation sequence from the
input speech signal.

3.2.3 Syllable Number Domain
This study configured a state information domain, observation sequence domain, and
domain for the number of syllables in order to improve the performance of the speech
recognition system. Vowels in speech showed a periodical property different from the
consonants. Thus, it is possible to improve the performance of the speech recognition
system using the domain for the number of syllables through a reliable detection proc-
ess for vowels. In addition, it is possible to develop a speech recognition system ac-
cording to the unit of phonemes. The number of syllables can be produced by the
analysis of the frequency of isolated words and formant feature extraction data.

4 Speech Recognition System Design

This chapter designed and implemented the speech recognition system (SRS) that was
able to recognize correct speech by estimating context information in a Java-based
OSGi framework using the context definition.

Fig. 4 presents the diagram of the overall system. The SRS designed in this paper
analyzed and suggested various data transferred from context recognition sensors and
established it as information to recognize correct speech through a recognition proc-
ess. In order to perform this process, the SRS consisted of a Context Manager, Service
Manager, and Speech Recognition Manager.

218 J.-H. Kim et al.

The system proposed in this study used an ontology inferencer Jena 2.0 and devel-
oped an OSGi gateway using the Knopflerfish 1.3.3, an open architecture source pro-
ject which implemented a service framework.

4.1 Context Manager

The configuration of context information for the speech recognition system (SRS)
consists of user information (sex, age), noise, object, and location information.

User information, nosie, object and location information can be predefined as on-
tology, and data can be input from sensors. Noise data can be transferred using an
OSGi framework and communication from a noise measurement device used in real-
time Zigbee communication. User information, use object and location information
can be traced using an RFID Tag which is attached to a user.

Table 1 presents the definition of context information as different spaces, such as
class 2 for sex, class 5 for age, class 3 for noise, class 6 for object and class 6 for
location information, in order to build an ontology model.

In particular, the service area is limited to homes, and the users’ location is limited
to the Balcony, Bathroom, Bedroom, Guestroom, Kitchen, and Livingroom.

Table 1. Configuration and Definition of Context Information

Sex Age Noise Object Location

class num. class Num.(dB) class class class

0~7 Infant
8~11 Child

20~39 Low
Ma-
le

12~17
Young Adul

t
18~61 Adult

40~59 Normal
Fem-a

le 62~ Old Adult 60~ High

Computer
Television

Radio
Refrigerator

Washing machine
Electric Lamp

Balcony
Bathroom
Bedroom

Guestroom
Kitchen

Livingroom

The context of the SRS based on the context information used in this study is de-

fined as Web Ontology Language (OWL) that is used on a Semantic Web in order to
configure and express exact contexts and various relationships.

The Context Manager transfered data generated by events to a context analyzer and
that data was transfered to an OWL inference engine. The OWL inference engine
transferred data received from the context manager to the Service Manager in which
data was transformed as information using an OWL inferencer including OWL ontol-
ogy object database.

4.2 Service Manager

The Service Manager consisted of a Bundle Service that provided speech recognition
service as a bundle in a Simple Object Access Protocol (SOAP) Service, OSGi
framework installed device in order to transfer information received from the OWL
inference engine to the SRS, and an Application and Bundle Manager Service that
supported the management of the mobility of bundles.

 Speech Recognition System Using DHMMs Based on Ubiquitous Environment 219

4.3 Speech Recognition Manager

A speech recognition manager extracts observation sequences from the feature ex-
tracted voice data and produces the optimum state sequence and probability value by
applying a Viterbi algorithm in the HMM. The HMM that has the largest probability
value in such obtained probability values will be applied to recognize voices. This
system improves the search speed and recognition rate of the HMM according to the
position that is the context information of HMMs and applied objects.

Fig. 4. The Speech Recognition System Using Context Information

5 System Evaluation

In order to test the efficiency of the speech recognition system proposed in this paper,
the test was applied using 50 words that were usually used to control computers and
electronic appliances and recorded in a normal housed hold by three speakers. The
data was sampled by 16kHz and transferred as 16bits using an A/D converter.

The accuracy of the HMM and recognition algorithm was tested on 25 words used
in computer applications. Fig. 5 shows the selection of the word that exhibited the
highest probability among 25 sample words by applying an observation sequence
from the observation sequence used to test the HMM. Fig. 6 illustrates the difference
in recognition rates of the conventional Hidden Markov Models (HMMs) and Do-
main-separated Hidden Markov Models (DHMMs).

220 J.-H. Kim et al.

Fig. 5. Model Recognition Application for Selection of the HMMs

�

Fig. 6. Speech Recognition Rate of HMM and DHMM

6 Conclusions

Commercial isolated word speech recognition systems used to control the existing
application or electronic appliances demonstrate high recognition rates in a limited
environment because these systems use only speaker’s voices. This was due to the
fact that it can’t identify the state of utterances and utterance goals of the user. In
addition, the searching time of word models will increase, if the number of subject
words increased due to the use of a word model. Also, it represents a low recognition
rate due to the increase in the number of words.

This study obtains personal information of utterances in a ubiquitous environment
and designs a speech recognition system that improves the performance of such a
system by investigating utterance goals through the position and applied device. Thus,
the context information of utterances was configured in accordance with sex, age,

 Speech Recognition System Using DHMMs Based on Ubiquitous Environment 221

noise, applied object, and position and defined as Ontology. This system configured a
word model domain according to the position and object in order to recognize proper
information for the applied context information. The actively obtained context infor-
mation in an OSGi based context recognition manager becomes important informa-
tion in the selection of a word model domain to recognize voices. In the results of the
performance test for the system proposed in this study, it demonstrated a high recog-
nition rate in all positions in a home network environment.

It is necessary to precisely model the given context using various sensors in order
to accurately verify the intention of utterances and apply it to a voice recognition
system in future. Also, it is necessary to develop a system that has no limitations in
noise environments, sex, and age by adding a model, which defines noises, sex, and
age.

Acknowledgement

This research was supported by the Ministry of Information and Communication
(MIC), Korea, under the Information Technology Research Center (ITRC) support
program supervised by the Institute of Information Technology Assessment (IITA).

References

1. Dobrev, P., Famolari, D., Kurzke, C., Miller, B.A.: Device and Service Discovery in Home
Networks with OSG. IEEE Communications Magazine 40(8), 86–92 (2002)

2. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Application in Speech
Recognition. Proc., IEEE, 77(2), 257–286 (1989)

3. Rabiner, L.R., Levinson, S.E., Sondhi, M.M: On the Application of Vector Quantization
and Hidden Markov Models to Speaker Independent, Isolated Word Recognition. The Bell
System technical Jounal 62(4) (1983)

4. Weiser, M.: The Computer for the Twenty-first Century. Scientific American 265(3), 94–
104 (1991)

5. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Application: From the Laboratory to
the Marketplace. IEEE Personal Communication, 58–64 (1997)

6. Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.: A Self-organizing Sensor Network. In: the
Proceedings of the 37 Allerton Conference on Communication, Control, and Computing,
Monticello, Illinois (September 1999)

7. Bellavista, P., Corradi, A., Stefanelli, C.: Mobile Agent Middleware for Mobile Comput-
ing. IEEE Computer 34(3) (March 2001)

8. Liu, T., Martonosi, M.: Impala: A Middleware System for Managing Autonomic, Parallel
Sensor Systems. In: ACM SIGPLAN Symp. Principles and Practice of Parallel Program-
ming (June 2003)

9. Romer, K., Schoch, T., Mattern, F., Dubendorfer, T.: Smart Identification Frameworks for
Ubiquitous Computing Application. In: IEEE International Conference on Pervasive Com-
puting and Communication, IEEE Computer Society Press, Los Alamitos (2003)

10. W3C. Web Ontology Language, http://www.w3.org/2004/OWL/
11. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: UbiComp 1at Interna-

tional Workshop on Advanced Context Modelling, Reasoning and Management, Notting-
ham, pp. 34–41 (2004)

222 J.-H. Kim et al.

12. Chen, H., Finin, T.: An Ontology for Context-aware Pervasive Computing Environments.
The Knowledge Engineering Review archive 18(3), 197–207 (2003)

13. Chen, H.: An Intelligent Broker Architecture for Pervasive Context-aware Systems. PhD
thesis, University of Maryland, Baltimore County (2004)

14. Rodriuez, M., Favela, J.: A Framework for Supporting Autonomous Agents in Ubiquitous
Computing Environments. In: CICESE, Ensenada, Mexico (2002)

15. Carroll, J.J., Reynolds, D.: Jena: Implementing the Semantic Web. Recommendations HP
Labs, Bristol UK (2005)

16. JADE, Jave Agent Development Framework, http://jade.tilab.com/
17. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. ACM

Transactions on Information Systems 10, 91–102 (1992)
18. Gu, T., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in Intelligent Envi-

ronments. In: Proceedings of Communication Networks and Distributed Systems Model-
ing and Simulation Conference, pp. 270–275 (2004)

19. Bagci, F., Schick, H., Petzold, J., Trumler, W., Ungerer, T.: Support of Reflective Mobile
Agents in a Smart Office Environment. In: Proceedings of the 18th International Confer-
ence on Architecture of Computing Systems, pp. 79–92 (2005)

20. Dermatas, E., Fakotakis, N., Kokkinakis, G.: Fast Endpoint Detection Algorithm for Iso-
lated Word Recognition in Office Environment. In: Proc., ICASSP-91, Toronto (April
1991)

21. Lee, S., Lee, S., Lim, K., Lee, J.: The Design of Webservices Framework Support Ontol-
ogy Based Dynamic Service Composition. In: Lee, G.G., Yamada, A., Meng, H., Myaeng,
S.-H. (eds.) AIRS 2005. LNCS, vol. 3689, pp. 721–726. Springer, Heidelberg (2005)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 223–232, 2007.
© IFIP International Federation for Information Processing 2007

Healthcare Information Management System in Home
Environment

Chang-Sun Shin1, Su-Chong Joo2, and Chang-Won Jeong2

1 School of Information and Communication Engineering, Sunchon National University, Korea
csshin@sunchon.ac.kr

2 School of Electrical, Electronic and Information Engineering, Wonkwang University, Korea
{scjoo, mediblue}@wonkwang.ac.kr

Abstract. The distributed object group framework (DOGF) enables easier
integration of distributed objects to healthcare home applications. This paper
describes a healthcare information management system for supporting
healthcare home services based on DOGF. The system architecture consists of
healthcare database management tool, framework, sensor manager and physical
elements such as sensors, devices and appliances. The focus of this paper is on
the design and construction of a database system in a framework to support
home healthcare services. Healthcare information is organized using database
schemes based on the specific types of data collected from various typed-
sensors. The database constructed from this information for the purpose of
home healthcare services is divided into the base information that uses the real
schemes and the context based information that uses the view schemes. To
verify the practical use of the healthcare information management system
proposed in this paper, we created a prototype healthcare home monitoring
service using information, emergency call, and home appliance control. The
result of the experimental evaluation shows the comparison of the execution
service time of the base information and the context based information in our
simulated scenario of a home healthcare application.

Keywords: Healthcare Information Management, Distributed Object Group
Framework, Healthcare Home Service.

1 Introduction

Ubiquitous computing strives to develop application environments able to
transparently deal with the mobility and interactions of both users and devices.
Current research in ubiquitous computing focuses on building infrastructures for
managing active spaces, connecting new devices, or building useful applications to
improve functionality [1]. But these researches lack of an integrated management of
information which is a very important technology in healthcare field, especially for a
ubiquitous home healthcare environment. Since existing healthcare information
system is usually constructed independently, there is no interconnection to support
total business area such as doctor, nurse, patient and environments. That is, the
current focus of healthcare information management is still on patient records. Also, a

224 C.-S. Shin, S.-C. Joo, and C.-W. Jeong

large number of healthcare related applications are available that effectively support
specific needs but are isolated or incompatible. Ad hoc solutions to interface various
components are expensive and time-consuming because systems use different
platforms, programming languages and data formats [2]. In this context the paper
introduces the healthcare information management system that supports integrated
management of information such as environments, personal health and location based
on healthcare home environment. We describe how to design and construct the
database scheme for the management of the healthcare information system. Our
system is based on the distributed object group framework (DOGF) that enables easy
integration of distributed objects to healthcare home applications [3, 4]. We used the
timer-triggered message-triggered Object (TMO) scheme and TMO Support
Middleware (TMOSM) for interactions between distributed applications. To verify
the practical use of the healthcare information management system proposed in this
paper, we present a home healthcare monitoring service prototype consisting of
emergency call, appliance control, and so on designed for the living space of an
elderly person living alone. Also, we present the experimental results comparing the
execution time of the base information and the context based information service.

The rest of the paper is organized as follows. The next section describes the
architecture of the healthcare information management system. Section 3 presents the
database for healthcare application services based on home environments. Section 4
describes the system procedure and the GUI of the healthcare management tool and
sensor manager process for stream data from sensors. We present a prototype of the
healthcare home services using the healthcare database and the result of the
evaluation. Finally, the last section describes the conclusion and future works.

2 Healthcare Information Management System

2.1 System Architecture

Our system uses the object group management for domain grouping in DOGF. The
needs of a home healthcare environment are considered. The system consists of
related services such as location tracking service, healthcare information and
supporting service. To facilitate information collection and sharing in this
environment, we adopted the TMO scheme and TMOSM [5] into the development
environment of the system that we implemented. The architecture of the system is
shown in Figure 1 and is organized in five layers. The physical layer contains
hardware infrastructures such as various sensors, devices, machines etc. The
healthcare database consists of classification of sensor nodes, collected data from the
sensors and user profile data including health indicators, service information and
access right privileges as information for security, and view information for
supporting the service applications. The framework layer contains components of
DOGF to support a logical single view of the system environment by grouping them.
That is, the group manager API supports the execution of application of appropriate
healthcare home services in an upper layer by using the input information obtained
from the individual or grouped physical devices through the sensor manger in the
lower layer. The tool layer consists of distributed programming developing-tool
(DPD-Tool) [6] and healthcare database management tool (HDM-Tool).

 Healthcare Information Management System in Home Environment 225

Sensor, Devices, Information, their groups

Location Tracking
Sensor Group

Health Information
Collect Sensor Group

Home Environment
Information Sensor/

Device GroupPhysical
elements

…

Healthcare Database

SensorNode
Information

SensorData
Information

UserProfile
Information

Service
Information

View
Information

AccessRight
Information

Operating System & Communication Network

DOGF

Group
Applications

TMOSM

Group
Manager

Security Dynamic
Binder

Real
Time

Manager

Infor.
Repository

Server
Program
Developing
Module

Tool Layer

Mobile
Proxy

Context
Provider

Database

Scheduler
Database
Management
System
(DBMS)

Sensor Manager

Health Information
Service

T

M

O

Titrating Environment
Supporting Service

T

M

O

T

M

O

T

M

O

Client
Program
Developing
Module

Object Group
Administrator Module

Program Editor

Location
Tracking
Service

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

T

M

O

Healthcare
Database
Management
Tool

DPD-Tool

Fig. 1. The architecture for Healthcare Information Management System

2.2 The Interaction of System Components

The functionality of the proposed system is illustrated in Figure 1. We defined the
interaction of components which include the distributed application, database, sensors
and components of framework.

Fig. 2. Process of Grouping Distributed Objects for Healthcare Home Service

226 C.-S. Shin, S.-C. Joo, and C.-W. Jeong

Figure 2 show the process of grouping distributed objects by the group manager
object. Also, it provides the interaction of distributed application using APIs and
service object references to support collecting real time information from the sensor
manager. The security service is provided through security object that handles the
access right information of clients through the healthcare database. When a service
object is replicated, a dynamic binder object provides the reference of the service
object using a binding algorithm. A distributed application obtains real time
information from sensor nodes through service object reference which enables a
connection to healthcare database. And, the interaction of distributed objects provides
the results for the requested service through the framework components.

3 Healthcare Database

The healthcare database is constructed by using this information to support the home
healthcare services which are classified into the base information which uses real
schemes and the context based information which uses view schemes. The base
information includes low data obtained from physical sensors which are generally
relevant such as location, personal health, environment, and the user profile. And, the
context based information that is produced and fused by using the based information.
This context based information might be obtained using various view schemes
according to the requirements of a particular healthcare application service. In Figure
3, the base information scheme consists of 14 tables.

Fig. 3. Healthcare Base Information Scheme

 Healthcare Information Management System in Home Environment 227

Figure 4 shows the context based information scheme for healthcare applications.
It used the healthcare applications which enable to easily apply the services.

Fig. 4. Healthcare Context Information Scheme

The context based information constructed using materialized view is saved to
service schema and managed using the view scheme. This approach allows server and
client program developers to develop healthcare application much faster. The
healthcare management tool provides the user interface for managing information
directly from healthcare database which is described in the next section.

Fig. 5. Context Based Information Using Materialized View Table

4 Procedure for Healthcare Information Management System

In this section, we present the procedure of our system which consists of three main
processes: 1) collection of healthcare information by the sensor manager,

228 C.-S. Shin, S.-C. Joo, and C.-W. Jeong

2) management of information by the healthcare database management tool and
3) development of a healthcare application.

4.1 Collection of Healthcare Information

In order to collect the healthcare information, we developed a sensor manager that is
capable of supporting integrated collection of stream data from various sensors. Our
sensor manager is similar to a mediator wrapper approach for heterogeneous sensor
data management. The sensor manager assumes a role of a local query translator and
the query processor for the database. It provides an integrated input stream data
process to handle the different types of sensors. The procedures of both stream data
process and local query process are described in Figure 6. Figure 7 is the result of
stream data process by sensor manager according to the setting information and
period information. It includes the received stream data from the sensor, other sensor
specific information and collected and processed into an insert query in the database.

Fig. 6. Context Based Information Using Materialized View Table

Fig. 7. Execute Results of Stream Data Process by Sensor Manager

 Healthcare Information Management System in Home Environment 229

Typically, sensors are physically distributed in different locations in different
rooms of a building. They are heterogeneous in various ways to handle the diverse
types of data such as temperature, localization, luminosity; they have various
capacities of computing and storage such as different rates of data delivery (e.g. two
measurements per second, a measurement by occurrence of an event) etc. In the
current work, we classify according to period of different rates of data delivery. The
period information of sensor is managed by the database which controls one or more
sensor stream data. The associated methods are matched with the specific to a sensor
stream data to enable easier manipulation.

4.2 Management of Healthcare Information

The healthcare database management tool (HDMT) handles the management of the
healthcare information through an interface to the healthcare database. This includes
the database creation and management tasks such as to display the DB List and table
data, the query execution by SQL and search of plan by user, write SQL, dictionary
information management, and so on. In addition, it provides the functions to handle
context based information to generate the view tables. We implemented the user
interface using a GUI-window screening panel according to these functions. The
panel consists of five-tabbed display with for Table, Query, DB information and
Context based information for management of healthcare database.

Figure 8 shows the execution screens for database management in HDMT. The
figure shows are results corresponding to given commands such as user written SQL
statements, table properties and interface buttons. Data from various sources must be

Device_Name All_Data All_Data

Query

Execution

Search plan for SQL

DB information Creating of Context based information

Device_Name All_Data All_DataDevice_Name All_Data All_Data

Query

Execution

Search plan for SQL

DB information Creating of Context based information

Fig. 8. GUI for Healthcare Database Management Tool

230 C.-S. Shin, S.-C. Joo, and C.-W. Jeong

stored in and retrieved from DBMS, because it must always be possible to use data on
the basis of diverse criteria. HDMT manages the collected information using ordinary
DBMS and provides the upper layers convenient means to access it.

4.3 Executing Results of Healthcare Home Service

To verify the practical use of the proposed system, we show a prototype of a home
healthcare monitoring service using information (classified as either base or context
based information), emergency call, home appliance control. In this section we
describe the results of our evaluation. Figure 9 shows the relationship of the
distributed applications with TMO objects and healthcare database.

Fig. 9. Interaction of TMOs, Healthcare Database, Applications

Each TMO is assigned a specific role in the healthcare database. The
Environ_TMO requests the environment information in healthcare database via
Database_connect_TMO. The Database_connect_TMO handles the requested
messages of each TMO and sends the result value to application. In the same manner,
the Health_TMO, the Location_TMO also have a same function for requesting
functions to healthcare database.

Home Auto Control

Monitoring

Emergency Call

Fig. 10. Physical Environment for Healthcare Home Services

 Healthcare Information Management System in Home Environment 231

Figure 10 shows the physical environments for healthcare home services reflecting
a real world scenario. It is based on elements shown in Figure 9. From these
environments, we verify the functionality of the healthcare home services we
designed and constructed. The home healthcare services are provided through home
healthcare monitoring devices which enable location tracking, health and environment
information for home resident, emergency call as SMS using cell phone and home
appliance control based on health, location, standard information specified by user for
environments of home such as fan, light, air-conditioner, etc.

We analyzed the service time within which the base information and the context
based information is able to process a request and reply with the result in the home
healthcare services. Figure 11 shows the average service time.

620

640

660

680

700

720

740

760

780

location health environment

Services

s
e
rv
ic
e
 t
im
e
(
m
s
)

base information

context based information

Fig. 11. Average Service Time

The result obtained from this experiment in shown in the graph. For location
service the service time difference is 37.4ms; for the health information service, it is
49.5ms; and for home auto control service it is 20.3ms. This evaluation result shows
that the context based information could provide a more responsive service for home
healthcare.

5 Conclusions and Future Works

Existing healthcare information systems are constructed independently without
considering integrated management. The current focus of healthcare information
management is still on patient records. A large number of healthcare related
applications effectively support specific needs but are isolated or incompatible. And
interfaces are expensive and time-consuming because systems use different platforms,
programming languages and data formats. To solve this problem we proposed a
healthcare information management system. Our research focused on the design of
healthcare information management system and the development of a health database
based on the framework for supporting home healthcare service. We verified that
healthcare related information supporting healthcare home services and the context

232 C.-S. Shin, S.-C. Joo, and C.-W. Jeong

based information showed better performance than base information at providing the
home healthcare services.

Our future work will focus on the applications of different environments for
ubiquitous healthcare service and on improving the functionality of our system. We
will also address the relevant security issues in the context of this work.

Acknowledgments. This research was supported by the MIC(Ministry of Information
and Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Assessment)" (IITA-2006-(C1090-0603-0047)).

References

1. Rodriguez, M., Favela, J., Gonzalez, V., Munoz, M.: Agent Based Mobile Collaboration
and Information Access in a Healthcare Environment. In: Proceedings of Workshop of E-
Health: Applications of Computing Science in Medicine and Health Care, Cuernavaca,
Mexico, pp. 970–936 (December 2003) ISBN: 970-36-0118-9

2. Spyrou, S.S., Bamidis, P., Chouvarda, I., Gogou, G., Tryfon, S.M., Maglaveras, N.:
Healthcare information standards: comparison of the approaches. Health Informatics
Journal 8, 14–19 (2002)

3. Shin, C.-S., Jeong, C.-W., Joo, S.-C.: Construction of Distributed Object Group Framework
and Its Execution Analysis Using Distributed Application Simulation. In: Yang, L.T., Guo,
M., Gao, G.R., Jha, N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 724–733. Springer,
Heidelberg (2004)

4. Shin, C.-S., Lee, C.-S., Joo, S.-C.: Healthcare Home service System Based on Distributed
Object Group Framework. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar,
D., Laganà, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3983, pp. 798–807.
Springer, Heidelberg (2006)

5. Kim, K.H., Ishida, M., Liu, J.: An Efficient Middleware Architecture Supporting Time-
triggered Message-triggered Objects and an NT-based Implementation. In: ISORC’99.
Proceedings of the IEEE CS 2nd International Symposium on Object-oriented Real-time
distributed Computing, pp. 54–63. IEEE Computer Society Press, Los Alamitos (1999)

6. Jeong, C.-W., Kim, D.-S., Lee, G.-Y., Joo, S.-C.: Distributed Programming Developing
Tool Based on Distributed Object Group Framework. In: Gavrilova, M., Gervasi, O.,
Kumar, V., Tan, C.J.K., Taniar, D., Laganà, A., Mun, Y., Choo, H. (eds.) ICCSA 2006.
LNCS, vol. 3983, pp. 853–863. Springer, Heidelberg (2006)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 233–242, 2007.
© IFIP International Federation for Information Processing 2007

Effective Appliance Selection by Complementary
Context Feeding in Smart Home System

Taek Lee, Jiyong Park, and Hoh Peter In*

Department of Computer Science and Engineering, Korea University,
Seoul, 136-713, Republic of Korea

{comtaek, jayyp, hoh_in}@korea.ac.kr

Abstract. Smart Home System (SHS) is one of popular applications in
ubiquitous computing, which provides convenient services for a user with user-
friendly intelligent system interfaces. Among them, voice recognition is a
popular interface. However, voice command statements given by users are often
too unclear and incomplete for the devices in SHS to understand the original
user intention. So, the devices become complicated and have no idea about
whether to work or not. Therefore, we should make sure the proximate selection
for the devices which will be eventually targeted and operated following user
intention. In this paper, we propose an effective method to make a decision in
electing a promising target device among candidates by taking advantage of
complementary context feeding around user environment in SHS even with
initial incomplete interface information. The proposed method is based on
Bayes theorem using the way of empirical statistic inference.

Keywords: Smart home, Situation-aware computing, HCI, Bayes Theorem.

1 Introduction

Ubiquitous computing has a motto to inject intelligent functionality into all of the
objects in environment so that they can deliver any service useful and convenient to a
user by making the objects collaborating organically with each other. In the similar
manner, Smart Home System, which is our prototype application, aims to maximize
user convenience by supporting the home appliances in working intelligently
satisfying user service requirements. Thus, even for heterogeneous appliances, it
should be always guaranteed for them to collaborate and deliver eventually user-
friendly services to a user without any confusion in their running conditions. Under
our definition, intelligent functionality means that with the minimum interaction costs
a user can be served with high satisfaction level originally required. To implement
such intelligence, Human Computer Interaction researches, especially multimodal
interface area [10], have been getting matured so far. Among them, speech
recognition area has been significantly developing since the past decades so that many
of commercial products supporting a voice command recognition function have been

* Corresponding author.

234 T. Lee, J. Park, and H.P. In

emerged to market. However, regardless of its attractiveness, voice recognition
interface is not so popularly used in practical system implementation. The reason is
not because of its technical unstableness but because of the following reasons.

 Users often use incomplete syntax of voice command statement. Assuming

easy working, users tend to consciously or unconsciously use incorrect voice
command structures instead of giving complete syntax of commands to a
machine. If such commands are given to SHS, we can not expect the
appliances to work correctly. For instance, if a voice command not having any
explicit target just like ‘Turn On!’ is given, the system becomes very
complicated whether to turn on an audio or to turn on a lamp.

 Users sometimes use commands not reserved in system manual. We can not
expect that users will always give the system a command statement consisting
only of reserved words in system instruction manual.

Therefore, for better understanding, SHS requests more clear and complete interface
expression from user. If impossible to expect it from a user, SHS needs other
alternative hint information to catch the point of user intention. In this paper, we will
take advantage of user contextual information aggregated in running environment to
complement the poor primary interface information (i.e. an incomplete voice
command). The proposed SHS has ability to train and improve itself by updating a
knowledge database. Our proposed method is based on Bayes theory, which plays an
important role in understanding user intention with incomplete interface information.
When it works, it uses statistics of context (or situation) information stored in the
knowledge database.

Basically, intelligent functionality of appliances depends on the system
environment deployed. Thus, it is necessary to train and optimize them for user-
friendly services. To do so, our proposed SHS identifies the context attributes of
situation information relevant to user preferences and then interprets them as a user
intention to activate an appliance targeted.

The rest of the paper is organized as follows: Section 2 explains the overview of
Smart Home System and Section 3 presents our proposed appliance selection method
based on Bayes theorem. Section 4 shows evaluation results of an experiment to
which our proposed method was applied. Section 5 introduces related work and the
pros and cons of our approach. Finally, we conclude the paper in Section 6.

2 Situation Awareness in Smart Home System

SHS uses user contexts gathered from system environment to complement the
incomplete primary interface information (i.e. voice command). To do so, we need to
extract more high level of situation information from several of the user-related
contexts which are just clues embedding less of implication in their nature. In this
section, first of all, we perceive the difference of context and situation, and then give
an idea about how to utilize their different definitions and apply them to materializing
SHS.

 Effective Appliance Selection by Complementary Context Feeding 235

2.1 Situation Awareness

Situation is a set of past context attributes and/or actions of individual devices which
are relevant to determine future device actions. Context is any instantaneous,
detectable, and relevant condition of the environment or the device. Situation aware
interface definition language (SA-IDL [4], [5]) is a tool to materialize and utilize the
situation awareness concept. SA-IDL consists of context tuple, action tuple and
derived context as Table 1 [6].

Table 1. SA-IDL Model

Action := (Time, Device, State, StateValue)
Context := (Timestamp, Device, State, StateValue)
A := {x | x is an Action }
C := {x | x is a Context }
DerivedContext := P(C) → {true, false }
Situation := (DerivedContext, P(C), A)

DerivedContext is a kind of function to determine whether a given context set holds
or not in the application environment eventually resulting in true or false. In section 3,
we propose a detail method which can be used in implementing the concept of
DerivedContext function.

2.2 Appliance Selection Using Situation Awareness

To complement an incomplete primary interface (i.e. a voice command given by a
user), we propose a prototype, Smart Home System (Fig. 1) using not only explicit
primary interface information but also context information just like playing a role of
additional implicit complementary interfaces.

C1 C2 C3 Cm

Situation

Analyzer

Situation Information
(including action to take)User

Explicit Primary Interface (Voice Command)

User Environment Boundary

Implicit Complementary Interface
(Context Information)

Historical

Situation DB

Smart Home System Boundary

Interface

Recognizer

…

A3A2A1 An
…

Appliance

Manager

Fig. 1. Overview of Smart Home System

Firstly, Interface Recognizer interprets a given voice command and pass the
recognized but not now dependable information to Situation Analyzer. Situation
Analyzer produces an Action Tuple including a target appliance of information and its
action to take. Situation Analyzer conducts reasoning process with the primary

236 T. Lee, J. Park, and H.P. In

interface information passed by Interface Recognizer, context information gathered
from user environment, and statistic information extracted from Historical Situation
DB. Appliance Manager receives the Action Tuple from Situation Analyzer. Finally,
Appliance Manager distributes a control message to the corresponding appliance
supposed to work.

3 The Proposed Appliance Selection Method

We call the appliances being on standby, namely, candidates because they will be
potentially designated as targets by an Action Tuple come from Situation Analyzer.
Therefore, Situation Analyzer is responsible for making a decision of which candidate
must be elected with some justification. In this section, we present a solution
approach based on Bayes theorem.

3.1 Selection Problem Interpretation Using Bayes Theorem

When primary interface information, a voice command, is given from a user in SHS,
appliance candidates likely to be selected are temporary determined. Let us define the
n candidates with set A = { a1, a2, a3, …, an }, where the element ai is a binary random
variable whose value is ‘on’ or ‘off’. Hence, P(ai=’on’) means the probability of that
the i th appliance will work in SHS when a voice command is given. Context set C
consists of Context Tuple elements like C = { c1, c2, c3, …, cm }. They can be observed
and captured from user environment. Ultimately, in a given selection problem, all of
what we have to do for finding a solution is to select a particular ai making k and the
conditional probability P(ai=’on’ | C) maximized in a solution set S like (1).

}))|''((|{ ConaPkmaximizeAaS ii =+∈∃= (1)

The constant k means the average success rate of the voice recognition technology
used in SHS. Therefore, we don’t try to improve k because it is out of focus in this
paper. Therefore, we are just supposed to find ai making P(ai=’on’ | C) maximized.
For that, we use Bayes theorem, the equation below (2). We newly infer P(ai=’on’ |
C) by considering initial prior probability which can be easily calculated by referring
to the empirical knowledge in Historical Situation DB.

)''(
)(

)''|(
)|''(onaP

CP

onaCP
ConaP i

i
i =⋅=== (2)

By the way, if the Context Tuple elements in a set C are independently occurred,
the equation (2) can be translated to the equation (3) as follows.

)(

)''|()''(

)|''(1

CP

onacPonaP

ConaP

m

j
iji

i

∏
=

==
== (3)

To find a solution ai making P(ai=’on’ | C) maximized, we have to compare all of
the right-handed side of the equation (3) for ∀ai ∈ A. The denominator P(C) is a
common factor in the comparison so that it plays a role as a fixed constant and

 Effective Appliance Selection by Complementary Context Feeding 237

doesn’t influence the prioritization procedure. Therefore, the problem we want to
solve is conclusively simplified to the question about how to find the ai making the
numerator part of the equation (3) maximized. The answer is explained in the next sub
section with taking a practical example.

3.2 Selection Problem Resolution

Table 2 is a piece of training data used in our SHS prototype. Thus, we can assume set
A and C are respectively set A = {‘audio’, ‘heater’, ‘cooler’, ‘stove’, ‘lamp’} and set
C = {‘user tracking’, ‘time’, ‘temperature’} in Table 2. The more variant and
plentiful training data are given, the more Situation Analyzer is trained well and work
effectively in inferring some situation.

Table 2. Samples of fifteen records in Historical Situation DB

Primary
Interface

Historical User Context Set
associated with Situation

Derived Target & Action
Information Tid

PI:voice c1:tracking c2:time c3:temperature Target Action
1 bed→bed morning 10℃ a1:audio play classic
2 door→heater afternoon -8℃ a2:heater run in high
3 bed→kitchen morning 33℃ a4:stove -

4 bed→bed morning 40℃ a3:cooler run in high

5 door→heater afternoon 10℃ a2:heater -

6 door→cooler afternoon 30℃ a1:audio play dance

7 door→heater afternoon 45℃ a3:cooler -

8 door→cooler night 57℃ a3:cooler sleep mode

9 table→bed night 23℃ a1:audio play jazz

10 door→cooler afternoon 29℃ a5:lamp -

11 bed→bed morning -10℃ a2:heater -

12 door→kitchen night 5℃ a5:lamp lamp door

13 bed→kitchen afternoon 12℃ a4:stove -

14 table→cooler morning 38℃ a3:cooler -

15

Turn On!

door→table night 20℃ a5:lamp lamp table

To solve the equation (1) dealing with selecting problem of our interesting target
appliance, first of all, we have to identify which contexts are helpful and related to our
problem solving and then know the conditional probability P(C | ai=’on’) before
calculating P(ai=’on’ | C). When calculating P(C | ai=’on’), if the element values of
the set C are categorical attributes, we can calculate P(C | ai=’on’) by just counting
the number of cases holding the condition ai=’on’. However, if the element values are
continuous attributes and they follow the normal distribution, we can utilize the
Gaussian distribution PDF whose parameters are μ and σ like the equation (4) below.

2

2

2

)(

exp
2

1
)|(ij

ijjc

ij

ij aAcCP
σ

μ

πσ

−
−

=== (4)

238 T. Lee, J. Park, and H.P. In

The variables that we have to know in the equation (4) are just μij (the average of
the cj element values for a given particular ai) and σij

2 (the variance of the element
values).

For instance, under the assumption of Table 2, if the current context information
captured from a user is C={c1=’door→cooler’, c2=’afternoon’, c3=’43℃’}, each
equation (3) value of candidate appliances can be eventually calculated as following
Table 3.

Table 3. Conditional probabilities that each appliance will be targeted for a given C

P(a1='on' | C) = (P(C | a1='on') / P(C)) * P(a1='on') = 0.000408375*α*0.2 = 0.0816*10-3*α
P(a2='on' | C) = (P(C | a2='on') / P(C)) * P(a2='on') = 0*α*0.2 = 0
P(a3='on' | C) = (P(C | a3='on') / P(C)) * P(a3='on') = 0.00284375*α*0.27 = 0.76781*10-3*α
P(a4='on' | C) = (P(C | a4='on') / P(C)) * P(a4='on') = 0*α*0.13 = 0
P(a5='on' | C) = (P(C | a5='on') / P(C)) * P(a5='on') = 0.00042471*α*0.2 = 0.0849*10-3*α

In Table 3, α means 1/P(C). If we compare each one with one other probability value,
the priority order is as follows.

a3 = 0.76781*10-3*α > a5 = 0.0849*10-3*α > a1 = 0.0816*10-3*α > a2 > a4

Conclusively, it has been discovered that our interesting final solution is a3 since

a3=0.7678125*10-3*α has the highest value than the others. The zero cases of a2 and
a4 happened because no matched situation data was in Table 2 (i.e. Historical
Situation DB). To avoid zero probability calculation, we can use the way of Laplace
Correction [2]. In the same manner with the calculation procedure for selecting a
target so far, inferring an action to take for given contexts can be conducted as well.

Coming back to the system viewpoint of working flow, we can see that the final
result inferred is reformed to Situation Tuple format as explained in the section 2.1
and then delivered to Appliance Manager.

4 Experiment and Evaluation of the Proposed Method

4.1 Experiment Environments

We applied our proposed method, Bayes Theorem Approach (BTA), to implementing
Situation Analyzer in Fig. 1. Through the experiment, we aimed at testing the
validation of BTA and appealing its effectiveness by comparing it with a popular
existing approach, Rule Based Approach (RBA).

In implementing the experiment, for capturing user movement context, we used
AR Toolkit [8]. It is very useful to perceive user identity as well as user 3D tracking
because it provides developers with different figures of recognizable marks. For
implementing voice recognition functionality, we used Microsoft speech SDK 5.1 [9].
Finally, we gathered more context information from the system environment or the
Internet, such as time and temperature.

 Effective Appliance Selection by Complementary Context Feeding 239

First of all, to test and find the initial success or failure rate (k) of the primary
interface, voice command, we asked three users participated in the experiment to
speak any possible type of a voice command with conceiving intention to point some
different five appliances such as audio, heater, cooler, stove, and lamp in the test
space under assumption of fifteen categorical scenarios. Before starting the
experiment, they obviously didn’t know which type of voice command is desirable
and effective to make the intended appliance work correctly. Through the way, they
could give a command to SHS without any bias. For evaluation, we used a criterion,
the number of successes over all trials, to measure the degree of user satisfaction for a
service, which is called success rate.

4.2 Experiment Result and Evaluation

As you can see in Fig. 2, the success rate (k) of the primary interface was 70%
because of some incomplete (arbitrary so not valid) command sentences and
environmental noise. The next experiment was to reduce the failure rate by
implementing and applying RBA to Situation Analyzer. RBA could improve the
66.6% portion of the failure cases (30%) which were not quite recognized when we
had used only voice recognition interface. After all, we could improve the original
success rate from 70% up to 89.8% by adding 19.8% of success cases in the case of
RBA. However, BTA could more improve it up to 94%. The reason why RBA failed
was because there were no rules to check some exceptional situations or sensitive
values hanging in a threshold boundary of relation operation. For instance, the rule “if
PI=’on’ AND c1=?→cooler AND c3>45℃ then Action=(now, cooler, power, on)”
could not recognize the case Tid 4 in Table 2 as the situation the cooler should be
activated following user intention. On the other hand, BTA could work better
effectively than RBA not because an exactly matched situation data (just like a rule in
RBA) had already existed in Historical Situation DB but because Situation Analyzer
referring to Historical Situation DB had been already trained by user preferred similar
situation data before that time.

Fig. 2. Experiment Results for given scenarios

240 T. Lee, J. Park, and H.P. In

5 Related Work

Since introducing the paradigm of Ubiquitous Computing, many of applications
addressing or utilizing context (or situation) awareness have been emerged.
Especially, to solve interoperability problem between devices in their working,
interface definition languages were presented in [4], [5], [6]. To make a decision for
whether to be a particular situation or not from a given context set, it uses rule based
determination (i.e. Rule Based Approach). In many cases, RBA is very useful and
easy to abstract and formalize intangible situation concept. So, it has been used in
implementing a situation-aware middleware [6]. However, it has still disadvantages.
Table 4 is for pros and cons of RBA and BTA which we proposed in this paper.

Table 4. Rule Based Approach vs. Bayes Theorem Approach

 RBA BTA

Pros

 Easy update of a rule set if
necessary

 Light computation and high
performance

 Easy implementation

 Flexibility for dynamic user
preference and habit change

 Self training mechanism by
feeding user feedbacks

Cons

 Inflexibility against noise input
data or a sensitive value in the
boundary of a rule threshold

 No self-training mechanism

 Need for abundant training data
 High computation cost to
implement it when having many
context attributes

Application
conditions

 When implementing it on devices
having low computation power for
lightness and assuming distributed
running environment of devices

 When implementing it on a
centralized server system having
high computation power and
storage capacity.

As you can see in Table 4, each approach has its own pros and cons. Therefore, we
can not say our proposed BTA is always better. However, if you have enough
conditions to implement BTA, it will give you more flexibility in inferring situation
information as you can see the evaluation results in the previous section.

6 Conclusion

In home automation system space, the diverse intelligent appliances can suffer from
incompleteness and ambiguousness of interface information given by a user. So, the
appliances sometimes malfunction against the original user intention. The
malfunctions disturb users to satisfy the intelligent functionality appliances could
have given to themselves so that they can not avoid in controlling the appliances
manually at the end. That is very undesirable to users expected somewhat automatic
working. That is why we are still using a legacy controlling system such as pressing
buttons or using a remote controller even though we have very matured commercial
products having voice recognition functionality in the recent times.

 Effective Appliance Selection by Complementary Context Feeding 241

In this paper, we proposed a prototype of Smart Home System architecture and
especially a Bayes theorem based algorithm to be adopted by Situation Analyzer. Our
proposed study aims at complementing a poor primary user interface with situation
information embedding user intention for the purpose of providing a user-friendly
service. Our proposed method, of course, can sometimes recommend a wrong advice
because it is impossible for a computer system to perfectly predict user intention.
However, for permanent improvement, our approach can take the user feedbacks
utilized to fatten and evolve the Historical Situation DB. Situation Analyzer using the
DB has high flexibility for dynamically changed user preferences.

Despite the advantages of the proposed study, there are still disadvantages which
should be improved in the future as follows:

 Need for reliable training data. Through diverse case studies, we need to

collect high quality of training data before fully operating SHS. Data
collecting, analyzing, and managing processes must be simplified and
organized well in practical implementation.

 Heavy computation. The proposed method requires many multiplication
computations of float numbers to calculate and analyze probability values.
Therefore it is not so light to implement the method in small devices having
low computation power in SHS so that centralized intelligent system
architecture is better choice than that of distributing the computation
responsibilities to thick client devices. Hence, we have an idea to combine the
advantages of the RBA used in SA-IDL and BTA proposed here in order to
present a hybrid method not only suitable to a centralized system but also
scalable to small devices in the future.

In addition to complementing future works above, we have a plan to test and check

computation overhead in implementing the proposed BTA and compare it not with
RBA but with other existing probabilistic methods for better improvement of our
research.

Acknowledgments. This work was supported by the 2nd Brain Korea 21 Project in
2007.

References

1. Tan, P.-n., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addison
Wesley, London (2006)

2. Han, J., Kamber, M.: Data Mining - concepts and techniques, 2nd edn. Morgan Kaufmann,
San Francisco (2006)

3. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: Proceedings
of the 1st International Workshop on Mobile Computing Systems and Applications, pp.
85–90 (1994)

4. Chae, H., Kim, T., Lee, D., Peter, H.: Conflict Resolution Model Based on Weight in
Situation Aware Collaboration System. In: FTDCS2007. IEEE 11th International
Workshop on future Trend of Distributed Computing System (expected publication date -
March 2007)

242 T. Lee, J. Park, and H.P. In

5. Yau, S.S, Wang, Y., Huang, D.: H. P, Situation-aware Contract Specification Language for
Middleware for Ubiquitous Computing. In: the proceeding of the Ninth Future Trends of
Distributed Computing Systems, pp. 93–99 (May 2003)

6. Yau, Y.W., Karim, F.: Developing Situation Awareness in Middleware for Ubicomp
Environments. In: Proc. 26th International Computer Software and Applications
Conference, pp. 233–238 (2002)

7. Wang, Y.: An FSM Model for Situation-Aware Mobile Application Software Systems. In:
Proceedings of the 42nd annual Southeast regional conference (2004)

8. 3D tracking: AR Toolkit, http://www.hitl.washington.edu/artoolkit/
9. Microsoft speech SDK 5.1, http://www.microsoft.com/downloads

10. Oviatt, S.L.: Multimodal interfaces. In: Jacko, J., Sears, A. (eds.) The Human-Computer
Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications,
ch. 14, pp. 286–304. Lawrence Erlbaum Assoc., Mahwah, NJ (2003)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 243–252, 2007.
© IFIP International Federation for Information Processing 2007

Vector Graphic Reference Implementation for
Embedded System

Sang-Yun Lee1 and Byung-Uk Choi2

1 Dept. of Electronical Telecommunication Engineering, Hanyang University, Seoul, Korea
syllee@etri.re.kr

2 Division of Information and Communications, Hanyang University, Seoul, Korea
buchoi@hanyang.ac.kr

Abstract. We propose the reference implementation with software rendering of
OpenVG for the scalable vector graphic hardware acceleration, which the
Khronos group standardizes. We present the design scheme that enables EGL
and OpenVG to be ported easily in an embedded environment. Moreover, we de-
scribe the background of selection of an algorithm, and the mathematical func-
tion adopted for the performance improvement, and we propose the optimum
rendering method. We present displaying of vector image on a screen through
the OpenVG implemented using software rendering method. And, we present the
test result of the CTS which is compatibility test tool. And we show the perform-
ance comparison against the Hybrid corp.'s reference implementation.

Keywords: OpenVG, EGL, Scalable Vector Graphic, Embedded System, Soft-
ware Rendering.

1 Introduction

Recently, the demand for the applications using the vector graphics technology has
increased [1]. Particularly, in areas such as SVG viewer, hand-held guidance service,
E-Book reader, game, scalable user interface, and etc, the vector graphics technology
is widely applied. OpenVG™ is a royalty-free, cross-platform API that provides a
low-level hardware acceleration interface for vector graphics libraries such as Flash
and SVG [2].

Currently in development, OpenVG is targeted primarily at handheld devices that
require portable acceleration of high-quality vector graphics for compelling user inter-
faces and text on small screen devices while enabling hardware acceleration to pro-
vide fluidly interactive performance at very low power levels. OpenVG is the stan-
dard constituted by the Khronos group. And the version 1.0 was released at July 2005
for the first time [3].

When the standard needs to be verified, or when the OpenVG application needs to
be operated through an emulator in advance, or when there is a no hardware support-
ing OpenVG, it is necessary to have the reference implementation (RI) operating in
the software rendering mode. Additionally, it takes much time until the special-
purpose hardware supporting OpenVG is produced. The RI also can reduce the cost.

244 S.-Y. Lee and B.-U. Choi

Besides, as embedded devices and CPU’s performance is improved, the possibility of
being replaced with the software rendering is high.

In this paper, we propose the OpenVG reference implementation which can be eas-
ily ported to the various embedded devices by using the software rendering method.
And, we show that our RI is more excellent than the existing RI in the performance
aspect.

2 Design of OpenVG and EGL Engine

2.1 System Architecture

The system architecture of the OpenVG RI proposed in this paper is shown in Fig. 1.

Fig. 1. The system architecture

The OpenVG RI is composed of Embedded Graphics Library (EGL) block and
OpenVG block. EGL is an interface between rendering APIs such as OpenGL|ES or
OpenVG (referred to collectively as client APIs) and an underlying native platform
window system [4]. EGL provides mechanisms for creating rendering surfaces onto
which client APIs can draw, creating graphics contexts for client APIs, and synchro-
nizing drawing by client APIs as well as native platform rendering APIs [5]. We de-
signed so that, through the EGL Display Adapter, the client API could access the
windowing system of the native platform.

In the EGL standard, the Embedded Platform Library (EPL) API is not included.
However, it is necessary in order to implement client API, and must be ported accord-
ing to a system. The API includes, for example, the functions of returning the frame
buffer from Surface, the memory allocation, memory releasing, and etc. Hardware
Graphic Library (HGL) interfaces performs the function of connecting EGL to the na-
tive graphics system. EGL is itself the standard which is made to abstract the hard-
ware system. However, it is necessary to have the separate porting layer like HGL so
that EGL can be ported to the different native platform window systems through the
minimum overhead. The OpenVG API is 2D vector graphics library and the VGU

 Vector Graphic Reference Implementation for Embedded System 245

API is 2D vector graphics utility API of the high level. The OpenVG graphic engine
provides the core functions that the OpenVG API and the VGU API need.

2.2 Structure of the EGL Engine

The block structure of the EGL engine is shown in Fig. 2.

EGL

Context Manager

Display Manager

Surface Manager

Thread Manager

EGL API State Manager

Config Manager

EPL API

HGL API

Manager Factory

HGL Manager

Display

Context Surface

Fig. 2. Structure of the EGL Engine

The Display Manager creates and manages the display object which takes charge
of displaying graphics. The State Manager stores the error value generated when the
functions executed. The Thread Manager provides the functions for avoiding the race
condition in which several processes or the threads try to access EGL at the same
time. As to these three modules, however, only one object can be generated. The
Manager Factory enables them to have the uniqueness in three modules.

2.3 Structure of the OpenVG Engine

The block structure of the OpenVG engine is shown in Fig. 3. The OpenVG engine
provides the OpenVG API which applications can use and the Context Sync API
which EGL can use. The Context Sync API provides synchronization between the
VGContext generated in the OpenVG internally and the Context generated in EGL.
The elements that need synchronization include creation and termination of a context,
the current setup status, and etc. The VG State Manager stores and manages the error
value generated during the execution of OpenVG. The VG Context Manager, the
Paint Manager, the Image Manager, and the Path Manager create and manage the VG
Context object, the Paint object, the Image object, and the Path object respectively.
The VG Manager Factory performs the role of guaranteeing that these ob-
jects operate with singleton. The Rasterizer performs the function of drawing on the
frame buffer provided by the surface of EGL with data combined of Path, Image, and
Paint information.

2.4 Requirement for Designing the OpenVG/EGL Engine

OpenVG can operate not only on a desktop personal computer but also on a server.
But it was developed to be mainly used in the embedded devices. In an embedded

246 S.-Y. Lee and B.-U. Choi

OpenVG

VGContext Manager

Path Manager

Image Manager

Paint Manager

2D-VG Algorithm Factory

Rasterizer

OpenVG API
VG Manager Factory

VG State Manager

VG Context

Paint

Image

PathCotext Sync API

Fig. 3. The Structure of the OpenVG Engine

environment, there are always porting issues, because of wide variety of not only the
hardware, but also the platforms and software. Therefore, we must consider porting
issues at as early as the architecture design phase, if we want to easily port once de-
veloped OpenVG to the various embedded devices. That is, the porting layer must ex-
ist so that the part to be modified according to the environmental change can be mini-
mized. In addition, EGL and OpenVG must be loosely coupled.

Generally, in an embedded environment, the performance of a CPU is lower and
the size of the memory is restrictive. Therefore, algorithms must be selected in such a
way that the selected algorithms produce optimum performance and at the same time
use as low memory and power as possible.

3 Novel Features of OpenVG Reference Implementation

3.1 Mathematical Function

In the operation process of drawing each graphic object of OpenVG, the use of the
mathematical function is frequent. The method of calculating the mathematical func-
tion is classified into two ways. Firstly, it is the method of referring to the table value
having the value calculated in advance. The second is the method of calculating the
Taylor series of the finite order [6]. The former case consumes big amount of mem-
ory, whereas the latter takes longer time to execute.

The Hybrid RI [7] adopted the later case. And as a result, it induced the perform-
ance degradation of the mathematics functional operation [8]. However, we adopted
the table-look-up method and sought the performance improvement.

 Vector Graphic Reference Implementation for Embedded System 247

3.2 Sort Algorithm

In the OpenVG, sorting is used in the tessellation based rendering algorithm. That is, the
vertex passing the scan line is arranged to the abscissa order. Or there is case where it
arranges several scissoring rectangles. In the Hybrid RI, the bubble sort algorithm was
adopted. But we adopted the merge sort algorithm, in this paper. The merge sort has a

complexity of)log(NNO , whereas the bubble sort has a complexity of)(2NO .

3.3 Improved Raster Rendering Algorithm

A rendering refers to the operation of drawing the vector graphics object in the dis-
play [9]. There are the vector rendering mode in which the vector graphics object is

Fig. 4. The proposed Rendering Algorithm

248 S.-Y. Lee and B.-U. Choi

drawn every time, and the raster rendering mode in which objects are drawn by calcu-
lating the color of each pixels of an image [10], [11], [12].

The raster rendering has an advantage in comparison with the vector rendering in
the various aspect. Firstly, the raster rendering has a lower complexity than the vector
rendering according to increasing of the number or area of Path. Secondly, the calcu-
lation for applying the Fill Rule is made altogether in the vertex drawing step.
Thirdly, the mathematical calculation for vertex drawing is unnecessary because Ver-
tex is not directly drawn. But it spends much time, because this method calculates all
the parts which are not in fact displayed in a screen [13].

In this paper, we propose the improved rendering algorithm in order to solve this
problem. Fig. 4 shows the improved raster rendering algorithm proposed in this paper.

The procedure of the proposed rendering algorithm is as followings: (1) If the area
overlapping with the path bound is discovered for each scissoring rectangle, the pixel
color is calculated for the corresponding part; (2) If the area overlapping is not dis-
covered, the same operation is performed for the next scissoring rectangle; (3) If the
vertex intersecting with the corresponding scan line is not discovered, the scan line is
moved to the next line. That is, by remarkably reducing the area visited in order to
calculate the pixel value, the proposed method can display the vector graphics faster
than the existing method.

4 The Design Point for the Embedded Environment

4.1 The Coherence of OpenVG and EGL

The Hybrid RI shares data structure between the objects which EGL and OpenVG
create. Therefore, it has an effect on the other block if one block is modified among
EGL or the OpenVG block. For example, the waste of resources occurs, because the
object for OpenVG is also generated within EGL when the data structure of EGL is
expanded to support OpenGL|ES and is used, although we develop only the
OpenGL|ES application.

In this paper, we separated data structure of OpenVG and EGL and concealed
each data structure and status information, in order to resolve these problems. More-
over, we designed so that OpenVG could use the function of EGL engine through the
EGL API or the EPL API call.

4.2 The Language Dependency

The Hybrid RI was implemented with C++ language. C++ language is very powerful
in the desktop environment, but it has many problems to be used in the embedded en-
vironment. Firstly, the speed of executing the inheritance or the virtual function is
slow. Secondly, some compilers do not completely support C++ language. Therefore,
we adopted C language that can be easily ported to an embedded device and the exe-
cution speed is fast. We defined function pointers in C structure that processes and
manipulates the information, in order to provide for object-oriented concept supported
easily in C++ language.

 Vector Graphic Reference Implementation for Embedded System 249

4.3 The Singleton Pattern Design

There is an object in which several copy creations are not allowed among an object.
Each Factory in the EGL block, and the context Manager, state Manager, image Man-
ager, and algorithm Factory in the OpenVG block are those objects. We introduced
the singleton pattern for the guaranteed uniqueness of an object. If we design without
the singleton pattern, each module has to recognize this object and avoid creating
them. Or, these objects have to be registered in the global variables storage and used.
However, existing code has to be modified to be ported to other platforms, because it
is different in the structure of the global variables storage according to platforms.

5 Implementation and Experimental Results

5.1 Implementation

We verified whether our design method could be easily adapted to the embedded en-
vironment by implementing EGL and OpenVG and porting them to the various envi-
ronments. We implemented EGL and OpenVG based on the Windows XP at first.
And then, we modified the porting layer and could easily port it to the Linux and the
WIPI platform [14]. At first, we implemented EGL for the Windows XP by using the
GDI (Graphic Device Interface) in order to access the native windowing system, and
then we ported it with the OpenGL Utility Toolkit (GLUT) for the performance com-
parison with Hybrid RI. There is the advantage of reducing the code amendment too,
when it is ported to the Linux if it uses GLUT.

 (a) Tic-Tac-Toe on PC (b) tiger on PC (c) tiger on handset

Fig. 5. Example of vector graphic displayed using the proposed RI

(a) 25% (b) 50% (c) 75% (d) 100%

Fig. 6. The process of drawing tiger

250 S.-Y. Lee and B.-U. Choi

Fig. 5 shows vector graphics displayed on a screen through the proposed RI. Fig.
5(a) shows the image seen in the Tic-Tac-Toe game. Fig. 5(b) shows the tiger im-
age that is the representative image of the vector graphics field. The Tiger image is
comprised of 305 paths. Fig. 5(c) shows the tiger image rendered on a celluar phone.

Fig. 6 shows the process of the tiger image being displayed with vector graphics. It
shows when of 305 path, 25%, 50%, 75%, and 100% of the path are drawn.

5.2 CTS Test Result

We performed test through the Conformance Test Suites (CTS) 1.0.0, the OpenVG
compatibility test tool that the Khronos group distributes [15], in order to verify how
our implementing RI adhered to the standard specification. Consequently, the success
rate was 73% approximately. Table 1 shows the CTS success rate according to the test
item in detail.

Table 1. CTS test result

Item No. of test Success Fail Success Rate(%)
Parameter 10 8 2 80.0

Matrix 11 11 0 100.0

Clearing 3 3 0 100.0

Scissoring 5 4 1 80.0

Masking 2 2 0 100.0

Path 48 37 11 77.1

Image 10 6 4 60.0

Paint 10 5 5 50.0

Image Filter 3 2 1 66.7

VGU 12 5 7 41.7

Total 114 83 31 72.81

Among the items that CTS reported as failure, there were items that correctly ren-

dered resulting image cannot be differentiated from our reference-generated image
visually. This was the case where the pixel value was off by one pixel. Moreover,
there was a case where the already passed test image failed when a code was modified
in order to pass another failing case. This is grasped that the test image of CTS is not
yet stabilized.

5.3 Performance Evaluation

We developed performance measure program called Vgperf for 2D vector graphics. It
was executed in the Windows XP for the comparison with the Hybrid RI. The test
was progressed in the intel Core Duo 1.83GHz CPU, 2GB RAM, 2 MB (L2) Cash
Memory, ATI Radeon X1400 Graphic card, and 128MB Video Ram environment.

The Fig. 7 shows the performance measurement result of Path drawing. The Fig.
7(a) shows the measurement result of drawing basic diagram such as, a triangle or a
square. The Fig. 7(b) shows the measurement result of drawing little more complicated

 Vector Graphic Reference Implementation for Embedded System 251

0

20

40

60

80

100

120

140

Empty

Rectangle

Empty

Triangel

Filled

Rectangle

Filled

Triangle

m

il
li
s
e
c
o
n
d
s

Hybrid OpenVG

Proposed OpenVG

0

2000

4000

6000

8000

10000

12000

14000

16000

Empty

Ellipse

Rounded

Rectangle

Filled Ellipse Filled

Rounded

Rectangle

m

il
li
s
e
c
o
n
d
s

Hybrid OpenVG

Proposed OpenVG

(a) Basic path performance (b) Complex path performance

Fig. 7. Performance test result

figures like an ellipse or a rounded square. As shown in the figure, the OpenVG RI
proposed in this paper is faster than the Hybrid RI 1.3-1.6 times in case of the basic
path, 4.6-76 times in case of complicated path.

As to the tiger image, the Hybrid RI took 7.3 seconds and our RI did 3.6 sec-
onds, when the size of the drawing surface was 1,024 x 768.

6 Conclusion

The FlashTM already occupies the market more than 80%, in the vector graphics field.
The OpenVG was initiated latter than the Flash, but has been settled as the industry
standard. We expect that the OpenVG will expand market occupancy sooner or later,
because most of the graphic card companies participate in standardization.

In this paper, we proposed the reference implementation of the OpenVG using
software rendering. We showed the possibility of success of the software rendering
mode, by showing the proposed RI outperforms the Hybrid RI. Moreover, we could
port the proposed OpenVG RI easily to the various platforms due to systematically
designing it considering an embedded environment.

The academic research or development case of the OpenVG has been scarcely re-
ported because it is introduced recently. We expect that this paper will become the
turning point that it activates the OpenVG research and development.

In the future work, we will enhance the success rate of the CTS and continue to re-
search about the performance improvement by using software rendering mode. More-
over, we have a plan to research of supporting the SVG based on the OpenVG.

References

1. Pulli, K.: New APIs for Mobile Graphics. In: Proceedings of SPIE - The International Soci
ety for Optical Engineering, vol. 6074, art. no. 607401 (2006)

2. He, G., Pan, Z., Quarre, C., Zhang, M., Xu, H.: Multi-stroke freehand text entry method
using OpenVG and its application on mobile devices. In: Pan, Z., Aylett, R., Diener, H.,
Jin, X., Göbel, S., Li, L. (eds.) Technologies for E-Learning and Digital Entertainment.
LNCS, vol. 3942, pp. 791–796. Springer, Heidelberg (2006)

252 S.-Y. Lee and B.-U. Choi

3. Khronos Group Std. OpenVG, Kronos Grouop Standard for Vector Graphics Accelerations
(2005), http://www.khronos.org/openvg/

4. Huang, R., Chae, S.-I.: Designing an OpenVG accelerator: algorithms and guidelines. In:
Proc. Int’l Conf. Computer & Communication Engineering, pp. 555–560 (May 2006)

5. Khronos Group Std. EGL, Kronos Grouop Standard for Native Platform Graphics Inter-
faces (2005), http://www.khronos.org

6. Watt, A.: 3D Computer Graphics, 3rd edn. Addison-Wesley, Reading (2000)
7. Hybrid Graphics Forum, OpenVG Reference Implementation (2005), http://forum.hybrid.fi
8. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley, Read-

ing (1992)
9. Huang, R., Chae, S.-I.: Implementation of an OpenVG Rasterizer with Configurable Anti-

Aliasing and Multi-Window Scissoring. In: Proceedings of the Sixth IEEE International
Conference on Computer and Information Technology, pp. 179–184. IEEE Computer So-
ciety Press, Los Alamitos (2006)

10. Schilling, A.: A new simple and efficient antialiasing with subpixel masks. ACM
SIGGRAPH Computer Graphics 25(4), 133–141 (1991)

11. Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-quality ren-
dering. ACM SIGGRAPH Computer Graphics 24(4), 309–318 (1990)

12. Doan, K.: Antialiased rendering of self-intersecting polygons using polygon decomposi-
tion. In: Proc. 12th Pacific Conf. Computer Graphics and Applications, pp. 383–391
(2004)

13. Harrington, S.: Computer Graphics A Programming Approach, 2nd edn. McGraw Hill,
New York (2006)

14. KWISF, Wireless Internet Platform for Interoperability (2006), http://www.wipi.org.kr
15. Huone, Confermance Test Suite for OpenVG (2006), http://www.khronos.org

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 253–262, 2007.
© IFIP International Federation for Information Processing 2007

A QoS Routing Protocol for Mobile Ad Hoc Networks
Based on a Reservation Pool

Donghak Pyo1, Sunggu Lee1, and Min-Gu Lee2

1 Electrical and Computer Engineering Division
Pohang University of Science and Technology (POSTECH)

San 31 Hyoja Dong, Pohang, Korea
{dhpyo, slee}@postech.ac.kr

2 Network Control Platform Development Team
BcN Business Unit, Korea Telecom Corporation, Seoul, Korea

bluehope@kt.co.kr

Abstract. Even without possible interference from external radio sources, the
problem of guaranteeing quality-of-service (QoS) routing in mobile ad hoc
networks (MANETs) is a difficult problem. Difficulties arise because node
mobility can cause frequent network topology changes, communication
channels can have high error rates, the jitter rate is high and several different
applications can be sharing the use of the communication medium. This paper
addresses these issues and proposes a new QoS routing protocol for MANETs
that combines aspects of a MAC protocol and a path reservation protocol. The
proposed QoS routing protocol can be implemented based on any routing
method that supports multiple paths (e.g., DSDV, TORA, PDR). The QoS
performance of the proposed protocol is verified with simulations conducted
using NS-2.

Keywords: Mobile ad hoc network (MANET), quality-of-service (QoS),
routing, time division multiple access (TDMA).

1 Introduction

There are many interesting applications that can be supported if quality-of-service
(QoS) support can be provided for mobile ad hoc networks (MANETs). Such
applications include reliable mobile multimedia services, disaster recovery and real-
time identification of mobile objects in a battlefield environment. However, because
MANETs typically use electromagnetic-wave-based wireless communication
protocols, such as IEEE 802.11 or ZigBee, it can be difficult (or even impossible) to
control possible interference from external radio sources. For example, if an ad hoc
IEEE 802.11b/g network (named Network A) is created, then other electronic devices
using Bluetooth (which uses the same 2.4GHz frequency range) or IEEE 802.11b
connections outside of Network A can interfere with communication within Network
A. Thus, IEEE 802.11b/g uses a communication protocol based on carrier sense
multiple access with collision avoidance (CSMA/CA), which is a protocol that

254 D. Pyo, S. Lee, and M.-G. Lee

inherently cannot guarantee real-time communication. Since, in general, possible
interference from external radio sources cannot be controlled, exclusive reservation of
communication bandwidth (for a particular application) cannot be achieved, and thus,
complete quality-of-service (QoS) support cannot be achieved.

Given the fact that the behavior of external radio sources cannot be controlled, the
best that can be hoped for in a MANET environment using wireless links is to create a
communication protocol that prevents interference between any two communication
channels that strictly adhere to the protocol created. There have been several previous
attempts to create such a protocol. However, all previously proposed protocols have
drawbacks that limit their usability. Thus, in this paper, a new QoS routing protocol
is proposed for use in MANETs.

Let us assume that there is no interference from external radio sources. Even with
this restriction, the problem of guaranteeing quality-of-service (QoS) routing in
mobile ad hoc networks (MANETs) is a difficult problem. For a given network,
sufficient resources must be reserved in order to satisfy the QoS requirements of a
particular application. However, in a MANET, node mobility can cause frequent
network topology changes, communication channels can become unreliable and have
high error rates, the total available bandwidth tends to be lower than in wired
networks, the jitter rate is high and several different applications can be sharing the
use of the communication medium. In this paper, we propose a new QoS routing
protocol that combines aspects of a MAC protocol and a path reservation protocol.
First, a MAC protocol based on a multihop TDMA method, adapted to a MANET
environment, is used to permit exclusive reservation of network bandwidth resources.
Second, a reservation pool method, in which network resources are reserved in
advance and placed in a reservation pool, is used to deal with the problem of frequent
network topology changes.

The rest of this paper is organized as follows. Section 2 provides an overview of
previously proposed QoS routing protocols that can be applied to MANETs.
Summaries of the proposed protocols and their drawbacks are described. Next, a new
QoS routing protocol that overcomes these drawbacks is described in Section 3.
Simulation results are presented in Section 4. Finally, the paper concludes with
concluding remarks in Section 5.

2 Related Work

In [1], Lin and Liu proposed a QoS routing method for MANETs built on top of the
Direct Sequence Distance Vector (DSDV) routing algorithm. To overcome a
potential hidden terminal problem, Lin and Liu propose the use of a code division
multiple access (CDMA) technique applied on top of a time division multiple access
(TDMA) method. [1] proposes a systematic method for computing the link bandwidth
and path bandwidth available to a virtual circuit. Code and time slot resources are
reserved for primary and secondary paths that meet the pre-specified bandwidth
constraints for a given virtual circuit request. If a link in the primary path becomes
disconnected due to node movement or other reasons, the virtual circuit is switched to
the secondary path. This method has the drawback of requiring the reservation of
valuable network resources for a backup path that may not be used. In addition, the

 A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a Reservation Pool 255

need to implement CDMA over TDMA results in a complex system that may not be
appropriate for use in applications with low-performance processors such as wireless
sensor networks.

The Ticket Based Probing (TBP) protocol is an alternative QoS-aware routing
protocol proposed by Chen and Nahrstedt [2]. Tickets are used for arbitration – the
holder of a ticket is given permission to search for a path. Two types of tickets are
used: yellow and green. A yellow ticket indicates a preference for paths with shorter
delays. A green ticket indicates a preference for lower-cost paths. Flow control is
implemented by limiting the number of yellow and green tickets allocated to the
network. A localized path repairing scheme is provided to deal with mobile nodes.
Three levels of path redundancies are provided in TBP. In the first level of path
redundancy, multiple routing paths are established for a single message stream (a
separate copy of each data packet is sent only each path). With the second level of
path redundancy, multiple routing paths are established, but data packets are only sent
along one primary path. The other paths are backup paths that are only used if the
primary path becomes disconnected. However, note that the presence of backup paths
has an adverse affect on other message streams since valuable network resources have
to remain reserved for the backup paths. In the third level of path redundancy, a
secondary path is only established when the primary path fails. Such a method will
result in a long recovery time – this may result in a temporary failure to meet
prespecified QoS requirements.

A method referred to as “Stateless Wireless Ad hoc Networks (SWAN)” is also
proposed as a QoS routing protocol for MANETs [3]. The term “stateless” in the
name of this method refers to the fact that per-flow or aggregate state information
does not need to be stored at each node. This method instead relies on feedback
information obtained from the network. When a circuit needs to be established, a
probe packet is sent towards the destination. Upon observing a probe packet, each
intermediate node marks its bandwidth in the packet header if its own available
bandwidth is detected as the bottleneck bandwidth. Upon receiving the probe packet,
the destination node replies to the source node with the bottleneck bandwidth value.
The source node initiates a rerouting procedure if the bottleneck bandwidth is
insufficient to support the necessary level of QoS. This type of route discovery
process may incur a large amount of control overhead and a long delay. In addition,
false admission is possible because forward reservation is not being used.

In [4], Shih et. al. propose another TDMA-based routing protocol meant to support
QoS routing in MANETs. This method, referred as a Distributed Slots Reservation
Protocol (DSRP), is designed to be an improvement over Lin and Liu’s method [1]
based on using CDMA over TDMA. In order to obviate the need for implementing
CDMA on top of TDMA, and thereby complicating the system implementation,
reasoning about possible conflicts due to hidden terminal and exposed terminal
problems is used to determine the set of time slots that can be used by a given node
without fear of running into conflicts with other transmitting nodes. This reasoning is
implemented in a set of algorithms executed at each node. Route maintenance is
implemented by executing a new route discovery phase when a link breakage is
detected. Due to this dynamic route maintenance mechanism, however, route
recovery may take a long time and QoS requirements may not be met as a result.

256 D. Pyo, S. Lee, and M.-G. Lee

3 Proposed QoS Routing Protocol

The QoS routing protocol proposed in this paper overcomes the problems of high
complexity, waste of network resources, and/or slow recovery from link breakage
observed with the previously proposed MANET QoS routing protocols. There are
two aspects to the proposed routing protocol. First, a multi-hop TDMA method is
used to provide a simple method of allocating time slots to communication channels
such that no two transmitting nodes conflict with each other. Second, a reservation
pool method, based on [5], is used to deal with the problem of frequent network
topology changes. The following subsections present the assumptions used in the
proposed protocol and the above two aspects of this protocol.

3.1 Assumptions

Before delving into the details of the proposed method, let us briefly outline the
assumptions being made in this paper. First, it is assumed that external radio
interference, if any, will not adversely affect the real-time performance of the
proposed routing protocol. Of course, since we cannot control the behavior of all
external devices that emit radio waves, it is possible for a wireless communication
channel to become disrupted for a short time interval. However, in such a case, we
are assuming that appropriate forward error correction techniques can be used to
automatically make corrections to the data as it is received at each intermediate node.
If external radio interference is of a sufficiently long duration, then no routing
protocol will be capable of providing real-time communication guarantees. Thus, we
are simply assuming that such is not the case.

Second, a separate clock synchronization mechanism is assumed. Several such
clock synchronization mechanisms, including the beacon-based method used in the
IEEE 802.11 protocol, are available for use in MANET environments. A clock
synchronization mechanism is necessary in order to use TDMA to coordinate the
transmission and reception of packets over a wireless communication medium, which
is of a broadcast nature by default. The granularity of the clock synchronization
method used will determine the duration of the guard time required between adjacent
time slots in our TDMA scheme.

Third, as in [1], the only QoS parameter of interest will be assumed to be the
bandwidth available to a given virtual circuit between a source node and a destination
node. Thus, other possible QoS parameters such as end-to-end latency, signal-to-
interference ratio and packet loss rate are not considered in this paper. This
assumption is made because bandwidth guarantees are the most critical factor for
typical real-time applications. Consideration of other possible QoS parameters will
be left as future work.

3.2 Multihop TDMA

Suppose that a given source node wishes to send a sequence of data packets, with
certain QoS guarantees, to another node in the MANET. Then the source node can
send out probe control packets in order to find a path to the destination node and to
reserve appropriate network resources along that path. A set of reserved network

 A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a Reservation Pool 257

channels from the source node to the destination node, using the path found, will form
a virtual circuit that can be used to subsequently send out the data packets requiring
QoS guarantees. A key requirement of this type of procedure is the capability of
reserving network resources. If link bandwidth is considered as the primary network
resource of interest, then a method is required to partition the total available
bandwidth on a given link and to reserve portions of the total available link
bandwidth. A natural way to achieve this is to use TDMA on that link. However,
since end-to-end QoS guarantees will be required for the virtual circuit to be created,
a multihop TDMA protocol will be required for a MANET environment.

Let us first consider the partitioning of the time available for communication on a
single link of a given MANET. For this purpose, time can be partitioned into
superframes, with a superframe partitioned as shown in Figure 1. Although this
structure appears similar to the frame structure used in [1] and [3], it is actually
slightly different because each slot in the control phase is allocated to a specific node
in our network (there are as many control phase slots as there are nodes) and each slot
in the data phase is used to partition the link bandwidth available for sending data
packets. Thus, the idea is that a node can use the control phase slot allocated to it to
request allocation of a data phase slot for its exclusive use when sending data packets
to a specific neighboring node. Although such a method limits the size of the
MANET that can be supported, it is nevertheless a simple and low-overhead method
that can be used with appropriately-sized MANETs.

Fig. 1. The structure of a superframe used for bandwidth reservation on a single link

When using the above type of superframe structure, care must be taken to ensure
that nodes that are two or fewer hops away from each other do not attempt to use the
same data slot. Unless handled properly, such a conflict can result in a so-called
“hidden terminal” problem, which is the reason that [1] uses CDMA on top of
TDMA. To ensure that there are no potential conflicts with two different packets,
received at the same time at an intermediate node, from two different nodes, slot
usage information can be exchanged between neighboring nodes.

In particular, each node can maintain a two-dimensional slot-usage state table.
This state table only needs to contain information about the data slots being used by
neighbors and the neighbors of neighbors. Thus, each node informs its neighbors of
the data slots that it has reserved. Those neighbors then pass on this information for
one more hop. Figure 2 shows the format of the state table used with example data

258 D. Pyo, S. Lee, and M.-G. Lee

entries. Node mobility is taken into account by maintaining an “exists” bit that is set
when a neighboring node moves into the radio range of the current node; the “exists”
bit for a particular node is reset when that node moves out of the radio range of the
current node. When making a data slot assignment request, a node only needs to refer
to the data slot usage of those nodes with the “exists” bit set to one.

Fig. 2. The slot-usage state table and “exists” bit column with example data

By maintaining appropriate state information, of a manageable size, at each node,
the time slots that can be utilized by a given node without conflicting with other nodes
can be determined in a much simpler method than that used in [4]. In the example
data shown in Figure 2, which could be a slot-usage state table stored at node 0, node
0 is receiving data from a node with ID number IDprev1 using slot 1 and sending data
to node IDnext1 using slot i. Node j, which is a neighboring node in the radio range of
node 0, is sending data to node IDnext2 using slot 2 and receiving data IDprev2 using slot
Nslot_max. Since node 0 knows the slots being used by its neighboring nodes (this
information is stored in its slot-usage table), node 0 can avoid those slots when
reserving bandwidth for a new channel to another adjacent node. Thus, if node 0
wishes to communicate with node 1 after node 1 moves into the radio range of node 0
(which will result in the “exists” bit for node 1 being changed from a 0 to a 1), then it
can reserve any slot except the slots 0, 1, i and Nslot_max.

 A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a Reservation Pool 259

3.3 Reservation Pool Method

Suppose that a virtual circuit is created by reserving network resources along a
primary path. Data packets requiring QoS guarantees can be sent using such a virtual
circuit. However, since a MANET environment is assumed, nodes can move around.
Thus, in order to maintain a virtual circuit with the required QoS, path maintenance
will be required to switch over to alternate paths or to repair the current primary path
when link breakage occurs in the primary path. This problem was handled in
different ways by the previous QoS methods surveyed in Section 2. However, as
noted there, methods that reserve network resources for a backup path in advance can
waste precious network resources if the backup path is not needed, while methods that
search for a new path when the primary path breaks can require long path recovery
times.

The solution proposed in this paper is to maintain a pool of network resources,
reserved in advance and shared by all virtual circuits that may require such resources.
If a potential link breakage in a primary path is detected (based on detection of current
node movements and estimates of future node movements), path maintenance is
initiated. This is done by searching the reservation pool for a set of channels (a
channel is a link and its associated data slot reservation, which together creates a
communication pathway with a guaranteed bandwidth) that can be used to form a
detour path with the required level of QoS. If such a set of channels are found, those
channels are removed from the reservation pool and the primary path is modified to
use the detour path. If the channels for such a detour path are not found in the
reservation pool, control packets are sent out to search for a detour path. In both
cases, the primary path is modified to use the detour path before the link breakage
occurs, if possible.

By using a reservation pool as described above, path recovery will be much
quicker than if new network resources have to be found every time a link breakage
occurs. Also, since the resources in the reservation pool can be shared, there is much
less waste of precious network resources. This solution is based on a method
previously presented by two of the authors in [5]. Potential link breakage can be
detected using a novel link stability estimation model and method presented in [7].
That paper also discusses other link stability estimation methods presented in the
literature. Interested readers are referred to these papers for details on these methods.

4 Simulation Results

In order to evaluate the performance of the proposed QoS routing protocol, computer
simulations were conducted using the NS-2 (Version 2.26) simulator [8]. Although
simulations were performed using various sets of parameters, in this section, results
are only shown for a representative set of environment and protocol parameters since
results for other sets of parameters were similar. The simulation environment
considered consists of 30 mobile hosts roaming about in a 1500 * 500 m2 area
according to the Random Waypoint model [8]. Hosts move around with a random
uniform speed (with maximum speeds ranging from 0 ~ 20 m/s) and an initial
randomly chosen direction (with random direction changes). Each mobile host has

260 D. Pyo, S. Lee, and M.-G. Lee

the same transmission range of 250m. A transmission rate of 2 Mbps is used. The
superframe used in the simulations consists of control and data phases as shown in
Figure 1. The slot time for each frame in the control phase is set to 1.2 ms and the
total number of slots in the control phase is set to 30, which is also the total number of
mobile hosts. The slot time of each frame in the data phase is set to 5ms and the total
number of slots in the data phase is set to 16. Therefore, the total length of a
superframe is 116ms = (30*1.2) + (16*5). Pseudo Distance Routing (PDR) is used as
the underlying routing protocol [5]. The source-destination pair for a “call” (a virtual
circuit connection) is chosen according to a uniform random distribution. For each
call, traffic is generated with bandwidth requirements of 1, 2 or 3 slots (denoted as
QoS1, QoS2 and QoS3, respectively) chosen in a uniform random manner. The total
simulation time is set to 250 seconds.

In the first set of experiments, we consider the call setup time and bandwidth as the
metrics of performance for the proposed protocol. The call setup time is the time
required to reserve all of the slots in a path to the destination. Figure 3 shows the
simulation result for call setup time versus node mobility. We compare call setup time
while varying the number of hops in the path. When the node mobility is low, the
number of probing messages used by the routing protocol (PDR) is small. The
queuing time before transmission of the control packet is short. However, when the
node mobility increases, the number of probing messages is also increased. Thus, the
call setup time also increases. As shown in Figure 3, call setup time increases in
direction proportion to the number of hops in the path.

Fig. 3. Call Setup Time vs Mobility

 A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a Reservation Pool 261

In the second set of experiments, the average throughput was measured for
connections with different QoS requirements. As was done in [1], we assumed that
each mobile host can request a connection to a destination node with different
throughput requirements. The three types of throughput levels that can be requested,
QoS1, QoS2 and QoS3, use 1, 2 and 3 slots, respectively, in the data phase of a
superframe (refer to Figure 1). Each data packet size is assumed to be 1000 bytes long
and the average interarrival time of packets is set to 30 milliseconds. If path
reservation is successful, the source node sends 30 data packets to its destination.
Figure 4 shows the throughput with various mobility levels. Overall, the average
throughput of QoS1 is 67.0Kbps, QoS2 is 125.5Kbps and Qos3 is 183.7Kbps. These
simulation results show that the proposed QoS protocol can be used to provide
different levels of throughput to circuits with different QoS flow requirements in a
consistent, predictable manner.

Throughput vs Mobility

0

50

100

150

200

250

0 5 10 15 20

Node Maximum Speed (m/s)

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
)

QoS3

QoS2

QoS1

Fig. 4. Throughput vs Mobility

5 Conclusion

This paper has presented a new QoS routing protocol for MANET environments. It
has been shown that all previously proposed QoS routing methods for MANETs have
drawbacks that limit their usage. The QoS routing protocol presented in this paper
gets around these drawbacks by using a multihop TDMA protocol and a reservation

262 D. Pyo, S. Lee, and M.-G. Lee

pool of network resources. The multihop TDMA protocol presented uses a
superframe structure and a slot-usage table stored at each node in order to provide a
simple method of allocating time slots to communication channels such that no two
transmitting nodes conflict with each other. A backup reservation pool method is
used to enable fast recovery when a primary path becomes disconnected because of
links that break due to mobile nodes. The performance of the proposed QoS routing
protocol is verified with NS-2 simulations. The simulation results show that this
protocol can be used to provide different levels of throughput to circuits with different
QoS requirements in a highly stable and predictable manner in MANET
environments.

References

1. Lin, C.R., Liu, J.: QoS Routing in Ad HocWireless Networks. IEEE J. on Selected Areas in
Communications 17(8), 1426–1438 (1999)

2. Chen, S., Nahrstedt, L.: Distributed Quality-of-Service Routing in Ad Hoc Networks. IEEE
J. on Selected Areas in Communications 17(8), 1488–1505 (1999)

3. Ahn, G.-S., Campbell, A.T., Veres, A., Sun, L.-H.: Supporting Service Differentiation for
Real-Time and Best-Effort Traffic in Stateless Wireless Ad Hoc Networks (SWAN). IEEE
Trans. Mobile Computing 1(3), 192–207 (2002)

4. Shih, K.-P., Chang, C.Y., Chen, Y.-D., Chuang, T.-H.: A Distributed Slots Reservation
Protocol for QoS Pouting on TDMA-based Mobile Ad Hoc Networks. In: ICON. Proc. 12th
International Conference on Networks, vol. 2, pp. 660–664 (2004)

5. Lee, M.-G., Lee, S.: Pseudo-Distance Routing(PDR) Algorithm for Mobile Ad-hoc
Networks. In: Proc. ITC-CSCC2005, vol. 2, pp. 797–798 (2005)

6. Lee, M.-G., Lee, S.: QoS Support for Mobile Ad-Hoc Networks Based on a Reservation
Pool. In: ISORC. Proc. 9th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, pp. 194–204. IEEE Computer Society Press,
Los Alamitos (2006)

7. Lee, M.-G., Lee, S.: A Link Stability Model and Stable Routing for Mobile Ad-Hoc
Networks. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.H., Yang, L.T., Xiao, B. (eds.) EUC
2006. LNCS, vol. 4096, pp. 904–913. Springer, Heidelberg (2006)

8. The network simulator, NS-2 Notes and documentation and source code. Available: http://
www.isi.edu/nsnam/ns/

Exact Schedulability Analysis for Static-Priority

Global Multiprocessor Scheduling Using
Model-Checking�

Nan Guan1, Zonghua Gu2, Qingxu Deng1, Shuaihong Gao1, and Ge Yu1

1 Department of Computer Science and Engineering
Northeastern University, Shenyang, China

2 Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong, China

Abstract. To determine schedulability of priority-driven periodic
tasksets on multi-processor systems, it is necessary to rely on utilization
bound tests that are safe but pessimistic, since there is no known method
for exact schedulability analysis for multi-processor systems analogous to
the response time analysis algorithm for single-processor systems. In this
paper, we use model-checking to provide a technique for exact multi-
processor scheduability analysis by modeling the real-time multi-tasking
system with Timed Automata (TA), and transforming the schedulability
analysis problem into the reachability checking problem of the TA model.

1 Introduction

For single-processor systems, there are mainly two approaches to schedulability
analysis: utilization bound tests and response time analysis. Take fixed-priority
Rate Monotonic (RM) scheduling for example. The well-known Liu and Layland
utilization bound test [1] states that a taskset with N tasks is schedulable if the
total utilization does not exceed N(21/N−1). This is a sufficient but not necessary
condition, and rejects some tasksets that are schedulable. In fact, all utilization
bound tests are necessarily pessimistic. Lehoczky et al [2] presented response
time analysis, a polynomial-time algorithm for calculating a task’s Worst-Case
Response Time (WCRT) by performing processor demand analysis when the task
and all other higher-priority tasks are initially released at time 0, the critical
instant. A task is schedulable if its WCRT is less than its deadline, and the
taskset is schedulable if all tasks are schedulable. This is a necessary and sufficient
condition for schedulability.

Multiprocessor (MP) systems are drawing a lot of attention recently, with
industry trends such as multi-core processors and Multiprocessor Systems-on-a-
Chip (MPSoC), hence real-time scheduling and schedulability analysis for MP
systems become an important research area. MP scheduling algorithms can be
� This work is partially supported by National Basic Research Program of China

(973 Program) under Grant No.2006CB303000 and the Cultivation Fund of the Key
Scientific and Technical Innovation Project, Ministry of Education of China, under
Grant No.706016.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 263–272, 2007.
c© IFIP International Federation for Information Processing 2007

264 N. Guan et al.

classified into three categories, (no migration, restricted migration and full mi-
gration) based upon the permissible degree of inter-processor migration [3].

No migration (partitioned) scheduling with a given task allocation to proces-
sors is similar to single-processor scheduling and can be addressed with existing
techniques, but restricted and full migration scheduling brings serious challenges
to schedulability analysis. For these task models, an analogous algorithm for
WCRT calculation does not exist, since there may not be a critical instant as
in single-processor scheduling. Traditionally, there are two methods to deter-
mine the schedulability of MP systems: utilization bound tests, which is safe
but pessimistic, and simulation, which is unsafe, since it only explores one ex-
ecution trace, not exhaustive exploration of the state space. For simulation, a
widely adopted convention is to set all task release offsets to be zero. However,
in contract to single-processor scheduling, it is not necessarily true that this is
the worst case situation that maximizes task response times for MP scheduling,
hence simulation sometimes gives the wrong result, i.e., determine a taskset to
be schedulable even though it is not.

In view of the drawbacks of utilization bound tests and simulation, it would
be valuable if we could have a method for exact schedulability analysis with-
out the pessimism of the utilization bound tests. In this paper, we provide an
exact method for static-priority MP schedulability analysis without any pes-
simism by transforming the schedulability problem into reachability analysis
problem of Timed Automata. In addition to exact schedulability analysis of pe-
riodic tasksets, model-checking has an additional benefit of being able to handle
non-periodic tasksets. In classic scheduling theory, real-time tasks are usually
assumed to be periodic, and sporadic tasksets are treated as periodic ones using
the minimum inter-arrival time as the task period, which results in pessimistic
analysis results. But with model-checking, we can model the external environ-
ment that triggers the taskset in a precise manner, thus avoiding the pessimism
of the strict periodic taskset assumption.

We make a number of simplifying assumptions in this paper. We assume
that tasks are assigned static priorities, and they are independent from each
other without precedence relationships and data sharing. Each task has a fixed
execution time instead of a range of possible execution times. Although it is not
difficult to relax these assumptions in our modeling framework, we make these
assumptions for the sake of clarity of presentation.

This paper is organized as follows. We first discuss related work in Section 2.
We present the TA model for restricted migration in Section 3 and for full mi-
gration scheduling in 4. We present performance evaluation results in Section 5.
Finally, we draw conclusions in Section 6.

2 Related Work

2.1 Utilization Bound Tests

For EDF-based MP scheduling, several authors have presented utilization bound
tests. Goossens et al [5] presented a test assuming that tasks have relative

Exact Schedulability Analysis 265

deadlines equal to the period. Baker [6] presented another test that can han-
dle relative deadlines less than or equal to the period. Baker [7] extended [6] to
include tasks with post-period deadlines, and showing that EDF-US[1/2], which
gives higher priority to tasks with utilizations above 1/2, is optimal. Bertogna
et al [8] presented an improved test, and showed that it is incomparable to [6],
and each test can accept tasksets that the other test rejects. For tasksets with
different timing characteristics, they have different performance in terms of ac-
ceptance ratio.

For fixed-priority MP scheduling, Andersson [9] proved that the utilization
guarantee for any static-priority MP scheduling algorithm, cannot be higher
than (m+1)/2 for an m-processor platform. This conclusion places a theoretical
upper bound of the utilization bound test for MP scheduling, and highlights the
inherent pessimistic natural of the schedulability bound tests. For full-migration
static priority scheduling, Andersson [9] defined a periodic taskset with con-
strained deadlines 1 to be a light system on m processors if it satisfies the follow-
ing properties: (1)

∑N
i=1

Ci

Ti
≤ m2

3m−2 , (2) Ci

Ti
≤ m

3m−2 , for 1 ≤ i ≤ N , and showed
that any periodic task system that is light on m processors is schedulable on m
processors with preemptive RM algorithm.

Baruah [17] proved a similar result with the conclusion that a taskset, with all
deadlines equal to periods, is guaranteed to be schedulable on m processors with
RM scheduling if Ci/Ti ≤ 1/3 for 1 ≤ i ≤ N and Ci/Ti ≤ m/3. The group of tests
consist of three tests with complexity of O(N3), O(N2) and O(N) respectively.

Baker [16] presented a group of efficiently computable schedulability tests for
fixed-priority scheduling of periodic tasksets with arbitrary deadlines on a homo-
geneous MP system. They improve upon Andersson’s utilization bound tests by
relaxing the assumptions of rate monotonic priorities and deadline being equal
to period. For the special case when deadline equals period and priorities are
rate monotonic, any set of tasks with maximum individual task utilization umax

and minimum individual task utilization umin is feasible if the total utilization
does not exceed m(1 − umax)/2 + umin. We will compare our approach to the
utilization bound tests in Andersson [9] and Baker [16] in Section 5.

2.2 Formal Methods for Schedulability Analysis

TIMES [4] is a tool for schedulability analysis of periodic or sporadic tasksets on
a single processor. It uses Extended Timed Automata with asynchronous pro-
cesses to model the real-time taskset, and UPPAAL [12] as the analysis engine.
Fersman [10] showed that, for fixed-priority scheduling on a single processor, the
schedulability checking problem can be transformed into reachability analysis on
TA using only two extra clocks in addition to the clocks to describe task arrival
times. This observation greatly reduces the state space and improves scalability
of model-checking, since the state space increases sharply with the number of
real-time clocks. However, TIMES is only applicable to single-processor systems,
while we extend its approach to handle MP scheduling in this paper.
1 The deadline of a periodic task is constrained if its relative deadline is equal to its

period.

266 N. Guan et al.

ACSR-VP [11] stands for Algebra of Communicating Shared Resources with
Value Passing, a real-time process algebra used to model and solve the schedu-
lability analysis as well as priority assignment problems. UPPAAL does not
have parametric analysis capability of ACSR, so it can be used for schedulabil-
ity analysis but not for priority assignment. Conceptually, we could have used
ACSR-VP to model and solve the MP schedulability problem instead of UP-
PAAL. It is not our purpose to compare strengths and weaknesses of different
modeling formalisms and tools, so we leave this as possible future work.

3 TA Model for Restricted Migration Scheduling

We have two alternatives approaches for building the TA model. The first one is
to model all the tasks within a single model. This approach requires two clocks
in each task automaton, one for accumulation of execution time in order to
know when a job finishes execution, and the other one for testing if a task has
missed its deadline. With this approach, 2N clocks are involved if there are N
tasks.

We take advantage of these restrictions to reduce the number of clocks. Since a
high-priority task will never be delayed by low-priority tasks, we model and check
schedulability of each task one by one in decreasing order of priority, similar to
the approach of TIMES. When we are checking schedulability for a task Ti, Ti is
called the task under analysis, and all other tasks with higher priority than Ti are
called the background tasks. The tasks with lower priority than Ti do not need
to be modeled. We need to use one clock in the TA modeling each background
task to accumulate its execution time, and use two clocks in the TA modeling
the task under analysis. Therefore, the maximal number of clocks is N + 1, and
model-checking needs to be performed for at most N times. Since the state space
of timed automata grows drastically with the number of clocks, this alternative
is superior to the first one.

As discussed earlier, model-checking is done for each task in decreasing order of
priority, and only the tasks with higher priority than task i are modeled in S when
task i is the task under analysis. The automaton S is the parallel composition
of one task automaton v − task modeling the task under analysis(Fig. 1(a)), i

(a) TA modeling the task under
analysis

(b) TA modeling the back-
ground task

(c) TA modeling the
scheduler

Fig. 1. TA model for restricted migration scheduling

Exact Schedulability Analysis 267

task automata non−v − task modeling each background task (Fig. 1(b)), where
i is the number of the tasks with higher priority than the task under analysis,
and one automaton scheduler modeling the scheduler (Fig. 1(c)). In Fig. 1(a),
the task automaton is initially in location Idle. When the scheduler automaton
issues an event executeT !, each task automaton checks to see if this command
is meant for itself. If yes (exeT == i), then it goes into location Run; otherwise
(exeT ! = i), it goes back to location Idle. When task i is in location Run, some
other jobs with higher priority may be allocated to its processor and preempt
it (Run → C2 → Run). As shown in Fig. 2, when task i is preempted, r[i] is
updated, and task i finishes execution when c[i] == r[i]. At this time, clock
c[i] is reset, and the variable r[i] is updated when c[i] == Cmax, where Cmax
denotes the maximum execution time of the tasks. When the job of task i is
finished, it updates the relevant variables and sends an event finish! to inform
the scheduler of its termination(Run → C5 → Idle). The automaton v − task
models the task under analysis. In contrast to non − v − task, v − task resets
the clock d and goes into location Ready when a job is released. In the location
Ready and Run, when the condition d == D[i] is satisfied, the task has missed
its deadline and goes into the Error location.

The automaton scheduler maintains the system state, allocates and schedules
released jobs. When a task is released, an event release! sent by T , and the tran-
sition Init → C1 with release? is taken. The value of rlsT updated by T shows
which task the released job belongs to. Then we check to see which processor is idle
and record it (p = PrmptW ()). If there is at least one idle processor (p >= 1), then
the released job is allocated to it. After updating the relevant variables (C1 → C4),
an event executeT ! is issued (C4 → Init) to inform the corresponding task to start
execution. If there is no idle processor (p == 0), then the scheduler checks to see
if there is any running job with lower priority than the newly-released job. If not,
then the released job goes into the wait state (C2 → Init); otherwise, the newly-
released job (C2 → C3) preempts the lower-priority job.

When a job finishes execution, an event finish! is issued by non − v − task
or v − task, and the transition Init → C5 with finish? is taken. The value
fshP records which processor the finished job has been running on. If all jobs
allocated to this processor have finished execution (rn[p] == 0), then the sched-
uler wakes up the waiting task with the highest priority if the wait queue is
non-empty.

Fig. 2. Execution scenario for tasks i and j with Prio(j) > Prio(i)

268 N. Guan et al.

4 TA Model for Full Migration Scheduling

In contrast to restricted migration scheduling, a preempted job can resume exe-
cution on any available processor using full migration scheduling. Due to inherent
limitations of the model-checking technology (we are not aware of any model-
checkers that can handle fractional numbers.), we can only handle tasksets with
integer task attributes. We can safely assume that a task’s period and deadline
to be integers, since it does not make a lot of sense to assign a non-integer period
or deadline to a task from a real-time scheduling perspective, and it is almost
never done in industry practice. However, it is possible for a task’s execution
time and deadline to be non-integers. We can round up the execution time to
the nearest integer for schedulability analysis. We believe this is not a major
limitation in practice. We can prove the following theorem (proofs omitted due
to space limitations):

Theorem 1. To determine schedulability of a periodic taskset whose attributes
are all integers, it is sufficient to only consider task release times at integer time
instants, which only produce execution traces in which all scheduling events (task
release, preemption, blocking and finish) happen at integer time instants.

Theorem 1 implies that the expressiveness of discrete time formalism is adequate
for the purpose of schedulability analysis if we accept the limitation that all task
attributes must be integers. Using the discrete time approach has the additional
benefit of making it easier to model preemptive scheduling, since using a con-
tinuous time formalism would require a stopwatch mechanism to keep track of
each task’s execution time when it is preempted and resumed [13]. However, it is
not necessarily true that using a discrete time approach always yields a smaller
state space than using the continuous time approach, if there are long durations
of time intervals within which no significant events happen.

Fig. 3(a) shows the automaton that generates periodic clock ticks. TICK is a
constant denoting granularity of clock ticks. When oc == TICK, the transition
on edge T → T is taken, and all discrete clocks are incremented by 1 in the func-
tion UpdateClock(), which means that one digital clock tick has passed. Unlike
continuous time clocks, the integer variable representing a discrete clock can be

(a) TA model-
ing the periodic
clock tick

(b) TA modeling a task (c) TA modeling the scheduler au-
tomaton

Fig. 3. TA model for full migration scheduling

Exact Schedulability Analysis 269

paused or restarted. We use dcC[i] = dcC[i] + run[i] to update dcC[i] and in
UpdateClock(). Setting run[i] = 0 pauses the discrete clock dcC[i], and setting
run[i] = 1 resumes it. Since the discrete clocks can be paused and resumed, we
can model the time behavior of each task separately rather than accumulating
the computing time of the jobs preempted it. As shown in Fig. 3(b), when the
automaton is in location Run, if dcC[i] == C[i], then task i has finished execu-
tion. When it is in location Run or Wait and dcD[i] == D[i], then task i has
missed its deadline, and we determine the taskset to be unschedulable.

In contrast to restricted migration, the full migration scheduler maintains a
global wait queue, in which all the ready jobs are waiting. As shown in Fig .3(c),
when a job is released, the scheduler checks to see if there is an idle processor
(p = LkIdle()). If yes (p >= 1), the job starts executing on it immediately
(C1 → Init). Otherwise, the scheduler checks to see if there is any running job
can be preempted (p = PrmptW (id)). If yes (p >= 1), the newly-released job
preempts the running job (C2 → C3 → Init). Otherwise, the released job waits
(C2 → Init). When some job is finished on a processor, the scheduler checks to
see if there are any waiting jobs (id = WhWk()). If yes (id! = 0), the job with
highest priority starts executing, otherwise the processor remains idle.

5 Performance Evaluation

We compare the schedulability analysis results of our method with classical meth-
ods. The model-checking experiments were run on a serverwith four AMDOpteron
844 (1.8GHz) CPUs and 8GB RAM running Fedora Linux. We use a utility pro-
gram memtime developed by the UPPAAL group to record peak memory usage
and running time of the model-checker. To our best knowledge, there is no known
utilization bound test for the static-priority restricted-migration scheduling, so we
only consider the case of full-migration scheduling in the following experiments.

We generated 200 tasksets, each consisting of 5 tasks running on 2 processors.
Each task’s period is chose randomly in the range of [8, 20], and a task’s execution
time is the product of its period with a random value in the range of [0.1, 0.5],
rounded to the nearest integer. In the experience, 64 tasksets are accepted by
Baker’s test [16], 98 accepted by Andersson’s test, 154 accepted by our method
and 157 accepted by simulation in which all task release offsets are 0. We can
see that the utilization bound tests in Baker and are indeed pessimistic and
rejects a large number of tasksets that are actually schedulable. The acceptance
ratio using simulation with zero task release offset is slightly larger than that
using model-checking, as several tasksets are determined to be schedulable using
simulation, but are in fact unschedulable since the worst-case response time for
a task is maximized with some tasks have non-zero release offsets.

Next, we evaluate the performance and scalability2. Fig. 4 shows how the
worst-case peak memory size and running time of UPPAAL increase with the
2 Since the performance results are similar for restricted and full-migration scheduling,

we only show the data for full-migration scheduling to give the reader a general idea
of model-checking performance.

270 N. Guan et al.

(a) Running Time (b) Peak Memory Usage

Fig. 4. UPPAAL performance for full-migration scheduling on 2 processors

(a) Running Time (b) Peak Memory Usage

Fig. 5. UPPAAL performance for full-migration scheduling of 6 tasks

number of tasks with a fixed number of processors (2), and Fig. 5 shows how
they increase with the number of processors with a fixed number of tasks (6).

We use a taskset with 6 tasks to show how model-checking complexity grows
with scaling-up of taskset parameter values. The task parameters (period, dead-
line and execution time) in the first group are integer multiples of those of the
original taskset, and the parameters in the second group are the integer multi-
ples plus 1. A taskset in the second group are ”pathological” in the sense that

(a) Running Time (b) Peak Memory Usage

Fig. 6. UPPAAL performance for full-migration scheduling with different scale factors
of task parameters

Exact Schedulability Analysis 271

task periods are relatively prime to each other, so the taskset has a very large
hyper-period. The state space for a taskset in the second group grows up much
faster with the scale factor than that for a taskset in the first group, which is
confirmed by Fig. 6, where we can see that UPPAAL’s performance deteriorates
quickly with the increase in scale factor for the second group, while it stays more
or less constant for the first group. On the other hand, adding 1 to each task’s
scaled execution time while scaling up its period and deadline has a negligible
impact on performance. We can also see that UPPAAL handles long time dura-
tions gracefully as long as they are integer multiples of each other. In industry
practice, task periods are typically assigned to be integer multiples of each other,
thus making the model-checking approach more practically relevant.

6 Conclusions

In this paper, we use model-checking to provide an exact method to schedulabil-
ity analysis of periodic tasksets on multi-processor systems, in order to overcome
the pessimism of schedulability bound tests. As we can see in Section 5, the main
limitation of the model-checking is state-space explosion, which limits the size
of the problem that can be handled. This is especially problematic for real-time
model-checkers like UPPAAL must handle continuous real-time clocks. As part
of our future work, we plan to experiment with other modeling formalisms such
as ACSR-VP [11], and compare their performance and scalability.

HW task scheduling on a FPGA shares many similarities with global task
scheduling on identical multi-processors [3], where all processors in the system
have identical processing speed and different task invocation instances may run
on different processors. But it is actually a more general and challenging problem
since a HW task may occupy a different area size on the FPGA while a SW task
always occupies one and only one CPU. Some authors [14][15] have derived
utilization bound tests for FPGA scheduling. We plan to apply model-checking
to develop a schedulability analysis tool for FPGAs.

References

[1] Liu, C., Layland, J.W.: Scheduling Algorithms for Multi-Programming in a Hard
Real-Time Environment. Journal of the ACM 20, 46–61 (1973)

[2] Lehoczky, J.P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In: IEEE Real-Time Systems
Symposium (RTSS) (1989)

[3] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.:
A Categorization of Real-Time Multiprocessor Scheduling Problems and Algo-
rithms, Handbook of Scheduling: Algorithms, Models and Performance Analysis,
Chapman and Hall/CRC (2004)

[4] Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a Tool
for Schedulability Analysis and Code Generation of Real-Time Systems. In: FOR-
MATS. International Workshop on Formal Modeling and Analysis of Timed Sys-
tems (2003)

272 N. Guan et al.

[5] Goossens, J., Funk, S., Baruah, S.K.: Priority-Driven Scheduling of Periodic Task
Systems on Multiprocessors. Real-Time Systems 25 (2003)

[6] Baker, T.P.: Multiprocessor EDF and Deadline Monotonic Schedulability Analy-
sis. In: IEEE Real-Time Systems Symposium (RTSS), pp. 120–129 (2003)

[7] Baker, T.P.: An Analysis of EDF Schedulability on a Multiprocessor. IEEE Trans.
Parallel Distrib. Syst. 16, 760–768 (2005)

[8] Bertogna, M., Cirinei, M., Lipari, G.: Improved Schedulability Analysis of EDF
on Multiprocessor Platforms. In: Euromicro Conference on Real-Time Systems
(ECRTS), pp. 209–218 (2005)

[9] Andersson, B., Baruah, S.K., Jonsson, J.: Static-Priority Scheduling on Multipro-
cessors. In: IEEE Real-Time Systems Symposium, pp. 193–202 (2001)

[10] Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of
fixed-priority systems using timed automata. Theor. Comput. Sci. 354(2), 301–
317 (2006)

[11] Kwak, H.-H., Lee, I., Philippou, A., Choi, J.-Y., Sokolsky, O.: Symbolic Schedu-
lability Analysis of Real-Time Systems. In: IEEE Real-Time Systems Symposium
(RTSS) (1998)

[12] The UPPAAL Model-Checker, http://www.uppaal.com
[13] Cassez, F., Larsen, K.G.: The Impressive Power of Stopwatches. In: Palamidessi,

C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg
(2000)

[14] Danne, K., Platzner, M.: An EDF Schedulability Test for Periodic Tasks on Re-
configurable Hardware Devices. In: ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded (LCTES) (2006)

[15] Guan, N., Gu, Z., Deng, Q., Liu, W., Yu, G.: Improved Schedulability Analysis
of EDF Scheduling on Runtime Partially Reconfigurable Hardware Devices. In:
WDPRTS 2007 (2007)

[16] Baker, T.P.: An Analysis of Fixed-Priority Schedulability on a Multiprocessor.
Real-Time Systems 32(1-2), 49–71 (2006)

[17] Baruah, S.K., Goossens, J.: Rate-Monotonic Scheduling on Uniform Multiproces-
sors. IEEE Trans. Computers 52(7), 966–970 (2003)

http://www.uppaal.com

Soft Real-Time Task Response Time Prediction

in Dynamic Embedded Systems

Cássia Yuri Tatibana, Carlos Montez, and Rômulo Silva de Oliveira

Universidade Federal de Santa Catarina, Pós-Graduação em Engenharia Elétrica,
Caixa Postal 476,

Florianópolis-SC, 88040-900, Brazil

Abstract. The hardware infrastructure that provides the support of
ubiquitous embedded computing may be shared by different applications.
Many of those applications have real-time requirements, where events
from the environment require the reaction of the computing system. The
meeting of deadlines is hindered by the fast system dynamics. At the
same time, the embedded system must deal with overload situations. In
this paper we assume that an embedded application receives aperiodic
requests with soft deadlines. Other unknown applications are executed
simultaneously. The goal of this paper is to discuss algorithms to estimate
the probability of a deadline to be met. The prediction of a deadline miss
at the request arrival allows actions for damage control.

1 Introduction

The accelerated growth of the use of embedded systems in a huge diversity of
products, towards the implementation of ubiquitous systems in different envi-
ronments, creates the demand for an always larger diversity of applications. In
this context, physical and financial constraints will require the sharing of the
hardware infrastructure (processors, memory, network, etc) that provides the
support of ubiquitous embedded computing among different applications, at dif-
ferent times. Although nowadays most embedded systems are developed through
co-design of the hardware and of the software, in the future the infrastructure
embedded in the environment will need to support the download and the execu-
tion of applications designed much before or after the hardware was designed.

Many embedded system and ubiquitous system applications have soft real-
time requirements, where events in the environment generate the need of a re-
action from the computing system. Most of the time, those timing requirements
are not critical.

In this context, the meeting of timing requirements is hindered by the dy-
namics of the system (applications are started and finished at any moment),
by the lack of knowledge about internal characteristics of the other applications
(worst-case computation time, types of existent threads, etc), and by resource
constraints. At the same time, the need for autonomy requires embedded systems
to deal with overload situations without the aid of human supervision.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 273–282, 2007.
c© IFIP International Federation for Information Processing 2007

274 C.Y. Tatibana, C. Montez, and R.S. de Oliveira

In this paper we consider the situation where an embedded application receives
requests from clients that can be physical devices (by hardware interrupts), tasks
in other processors (by messages) or tasks in the same processor. Such requests
are accompanied by a soft deadline, in an explicit way (for example, a data field
in the received message) or in an implicit way (all request of that type always
have the same deadline). The application is capable of working with a pre-
defined group of request types, that is to say, it implements a pre-defined group
of services. There is a local thread pool responsible for serving those requests. It
is used at the most a single thread for each service type, in order to reduce the
overhead associated with context switching and synchronization mechanisms.
Other applications of unknown nature are executed simultaneously.

Requests arrival is aperiodic, characterizing the system as dynamic and sub-
ject to overloads. Deadlines are necessarily not critical. During overload there is
the formation of request queues for one or more of the supported services. How-
ever, the occurrence of an overload in the processor doesn’t affect the requests
generation directly. That is because requests are generated due to external events
and they are not subject to control flow.

The objective of this paper is to discuss algorithms to predict the probability of
meeting a deadline, in dynamic systems that are not controlled by the algorithm
and there is limited information about the state of the system. The prediction
of a deadline missing must be made at the arrival of the service request, since
it will allow actions of damage control, such as the signaling of alarms (timing
exception), the use of an alternative computer or the use of some mechanism for
load reduction (admission control).

The remaining of the paper is organized as follows: section 2 presents some
of the related work, section 3 describes the problem, section 4 has the proposed
approach, an example application is described in section 5 and section 6 contains
the final remarks.

2 Related Work

Most of the real-time scheduling theory considers systems where no deadline may
be missed.On the other hand, there are applications that tolerate the eventual
miss of a deadline, as long as it doesn’t happen too often. Several works present
schedulability tests that include the possibility of eventual misses of deadlines.
For example, Tia et al. [11] present Probabilistic Time Demand Analysis, which
was extended by Diaz et al. [5]. Gardner et al. [7] present Stochastic Time
Demand Analysis. Other stochastic analysis methods are the one presented by
Manolache [10] for uniprocessor systems and the one presented by Leulseged et
al. [9] for multiprocessor systems. Also, the Real-Time Queuing theory presented
by Lehoczky [8] can provide stochastic guarantees for system with a high traffic
load. Several results have been presented requiring a specific scheduler, such
as those by Abeni [1] for reservation based systems, and the Statistical Rate
Monotonic Scheduling by Atlas et al. [2].

Soft Real-Time Task Response Time Prediction 275

Some works in the literature deal with the response time of aperiodic tasks.
In [3] the existence of periodic tasks is assumed, whose hyper-period is analyzed,
the moments of idle processor are identified and these moments form the base
of the analysis, which is better when the computation time of the aperiodic
task is small compared to the hyper-period. In [4] it is supposed FCFS as the
scheduling policy, for tasks whose control flow is described by a probabilistic
graph. The service requests are characterized by a probabilistic distribution. In
[6] it is supposed that each application can be characterized by a workload that
expresses the amount of resources (processor, disk and network) necessary for
that application. The modeling of the system is base on this demand description.
The estimate of the latency average is used in [12] to predict the response time
of a new request sent to a HTTP server. It combines the average and variance
of previously observed latencies into a single metric.

3 Problem Description

Consider an embedded computer where several programs execute simultaneously
and a program is capable to accomplish a certain group S of services, S =
{S1, S2, . . . , Sns}, where ns is the number of services supported by the program.
The execution of a service may correspond to the execution of a single or several
software functions, or even the interaction with physical devices.

Along the execution of this program, aperiodic requests arrive for the execu-
tion of its services. We will call task the execution of a service. Without loss
of generality, we can number the requests in the growing order of their arrival
instants, being T1 the first received request. Each task Tk is characterized by the
request of a specific service Sk, Sk ∈ S, and by a relative deadline Dk.

All service requests are executed according to the scheduling algorithm of the
program and of the underlying operating system. Tasks whose response time is
bigger than the deadline are executed to the end. This avoids the occurrence
of internal inconsistency in the data structures of the program. Also, requests
for the same service are always executed in the order of arrival. The scheduling
among different services may vary.

We want an algorithm that, at the arrival of task Tk, it determines the prob-
ability of deadline Dk of task Tk to be met, i.e., P (Rk ≤ Dk), where Rk is the
response time associated with the execution of Tk. As an additional constraint,
the algorithm has to be implemented at the application level, it can not depend
of specific support from the underlying operating system.

It is necessary to define the metric used to compare the quality of the response
time predictions done by several algorithms in a given system. In this work we
use the relative error rate E(z) observed for each considered algorithm, where z
indicates the algorithm used. This rate supplies a measure valid only for a given
system and a given pattern of request arrivals, but it allows a comparison among
different algorithms.

At each arrival of a task Tk in the system, each response time prediction
algorithm z under evaluation calculates the probability Pk(z) of this task to

276 C.Y. Tatibana, C. Montez, and R.S. de Oliveira

meet its deadline, 0 ≤ Pk(z) ≤ 1. Task Tk is executed and its effective response
time Rk is measured.

The relative error Ek(z) is the error associated with the prediction of the
response time done by algorithm z for the task Tk, it is defined as:

Ek(z) =
{

1 − Pk(z) case Rk ≤ Dk

Pk(z) case Rk > Dk

The value of Ek is necessarily between 0 and 1. The situations below illustrate
the behavior of this metric:

– The algorithm z determines that there is a chance of 80% for task Tk to meet
its deadline, Pk(z) = 0.8, and it meets its deadline, we have the relative error
Ek(z) = 1 − 0.8 = 0.2;

– The algorithm z determines that there is a chance of 80% of task Tk to
meet its deadline, Pk(z) = 0.8, but the task misses its deadline, we have the
relative error Ek(z) = 0.8;

– The algorithm z determines that there is a chance of 50% of the task Tk to
meet its deadline, Pk(z) = 0.5, and in this case we will have Ek(z) = 0.5
independently of the task meeting (1 − 0.5) or not (0.5) its deadline.

The relative error rate of a given algorithm z is defined as:

E(z) =
∑

all k Ek(z)
nk

4 Proposed Approach

A simple approach is to use the response time of tasks in the past to predict the
probability of meeting the deadline of a task that arrives. So, the program history
should be maintained with the response time of each task executed before, for
each service of the program. The history can be used as the PMF (Probability
Mass Function) of the random variable Rk, and a simple inspection of the history
supplies the probability P (Rk < Dk) of task Tk. However, this simple approach
has some disadvantages. Due to the fast system dynamics, only recent response
times are important to predict the response time of a new task. Besides, the
task type may have not been requested for a long period, and the prediction
algorithm has no data to work.

In fact, the complete history contains the PMF of the response time of invo-
cations of a given service, observed on long periods of time. In order to decide
about the probability of the next execution of this service to meet its deadline,
it is necessary the PMF of this next activation. The PMF of the next request for
service S depends on the current state of the system, which is defined by several
factors, such as: (i)The parameters supplied in the call of the service; (ii) The
current value of the permanent variables of the program; (iii) The computer load
due to the other tasks of that application; (iv) The size of the queues associated
with services of this program; (v) The computer load due to other applications;

Soft Real-Time Task Response Time Prediction 277

(vi) Changes in the relative demand for the several resources in the system, what
affects the many services differently.

The number of possible system states is huge, if not infinite. However, it
is possible to merge those states, according to some properties that are easy
to measure and capable of indicating the response time approximately to be
expected in the next execution of the requested service.

A form of attacking the problem is to use, to predict the response time of a
service S1, not only the old executions of S1, but also the historical data about
old executions of all the services supported by the program. We assume that an
overload in the node will increase the response time of all the services, and not
only of S1. Besides, the response time of S1 may be influenced by the current
state of the permanent variables of the program (size and content of the data
structures of the program). Thus, the recent behavior of all the services can be
used for the calculation of the response time prediction.

An analysis of the crossed correlation among the response times of the sev-
eral services supported by the program would allow the identification of which
services are important for the estimate of the response time of which services.
Assuming that the program implements ns services, it would be necessary n2

s

correlation studies, including the auto-correlations. Such analysis would need to
be done continually, given the non stationary nature of the considered system.
For example, a variation in the size of a data structure of the program may
change the correlation between two specific services. The processing cost of this
solution is prohibitive for many systems.

4.1 Approach Description

The approach proposed in this paper tries to merge all the possible system states
in just two: normal and high loaded. Initially the system is in state normal. At
the moment a task Tk finishes, its response time Rk is compared with the average
response time Rs associated with service S. The new state of the system is defined
as State Normal, in case Rk ≤ Rs, or State High Loaded, in case Rk > Rs.

The value Rs is defined as a running average. It is updated whenever a task
concludes the execution of service S. The new value of Rs is denoted by Rs(i+1)
and it is given by:

Rs(i + 1) = α × Rk + (1 − α) × Rs(i)

where Rs(i) is the previous value of Rs, Rk is the last response time observed
for service S and α is a constant between 0 and 1. The purpose of keeping Rs as
a running average is twofold: to discard old response time values and to reduce
the computing cost, since Rs is used by the prediction algorithm every time a
new request for service S arrives.

A record of historical data is maintained with the recent response times of each
method, together with the information on the system state at the moment of
the arrival of that request. In fact, there are two historical records, one with the
response times observed with the system in normal state, and another observed
with the system in high-load state.

278 C.Y. Tatibana, C. Montez, and R.S. de Oliveira

Whenever a new request arrives for service S, the historical data specific for
service S response times is used. It is considered only that response time that
was observed in the past, when the system was in the same state that it is now.
By using this historical record as a PMF, the conditional probability of the task
meeting its deadline can be calculated, given that the system is identified as in
a given state, that is to say, P (Rk ≤ Dk|system state). A simple inspection of
the historical record supplies this information.

The historical record is implemented as a circular list, with a finite size. Only
the last T conclusions of each service type are maintained in the record. The size
T depends on the kind of system, this will be discussed in the next section.

5 Example Application

An application was implemented as a proof of concept for the approach pro-
posed in this paper. Since the objective of the proposed approach is to deal with
dynamic systems, whose behavior of the operating system and of the other ap-
plications is unknown, the application was implemented in Java and executed
on a desktop computer using Windows XP, together with other programs. The
availability of Java in the versions Micro-Edition (J2ME) and Real-Time (RTSJ)
will increase its use in embedded and ubiquitous systems.

The program to be analyzed is composed by 7 types of services. Simple and
quite common functions were used: insert in a list at the end, sequential search
and delete from the list, calculation of average through a complete scan of the list,
calculation of standard deviation through two complete scans of the list, binary
search in a sorted array, generation of two square matrices with pseudo-random
numbers and finally the multiplication of two square matrices. The Java class
Vector was used for the implementation of the list. The list starts empty and it
grows along the execution of the program. The matrix used by the generation
service and by the multiplication service has a random size between 50x50 and
100x100, defined at each new arrival of the task of matrix generation. It is
important to observe that this variation in the parameters of this service also
generates a variation in the computing effort associated with the service. The
Java Garbage Collector execution was not controlled neither requested.

Except for the requests for the matrix multiplication, all the others are gen-
erated with intervals between arrivals that follow an uniform distribution, within
the following intervals: 10mS to 20mS for Insert; 10mS to 40mS for Remove; 10mS
to 45mS for Average Computation; 10mS to 45mS for Standard Deviation Com-
putation; 10mS to 20mS for Binary Search; 30mS to 70mS for Matrix Generation.

The matrix multiplication is always requested by the service of matrix gener-
ation. Therefore, the interval between arrivals of the requests of matrix multi-
plication is approximately equal to the interval between arrivals of the requests
for matrix generation.

As an additional disturbance in the system, a Java thread was included that
generates two matrices of size 100x100, then it makes their multiplication. This
thread doesn’t use the service queue mentioned before, but it implements its own

Soft Real-Time Task Response Time Prediction 279

functionality. This extra load is activated once approximately every 4 seconds.
It does not represent a disturbance controlled by the program.

Regarding the priorities of the Java threads, it is important that the request
service load does not interfere with the requests generation. So, the threads
”source” receive the highest priority, the thread ”extra load” has an intermediary
priority and the threads ”server” have the lowest priority. The scheduling policy
among the 7 threads of type ”server” is described together with the experiment
results, in the next section.

The deadlines for the requests were chosen in a way to be spread along the
interval of values observed as their response times. For all the service types,
the values of the deadlines were randomly generated, with uniform distribution,
inside of an interval defined by 1 millisecond and approximately twice the value
of the response time average for that service. Each experience lasted 60 seconds,
but the data about the quality of the predictions were collected only during the
final 40 seconds. A value of 0.01 was used for α.

5.1 Experiment Results

For each experiment, the relative error rates obtained for each tested algorithm
are shown. In each experiment, the following algorithms are considered:

– ALWAYS: it always indicates that the deadline will be met;
– NEVER: it always indicates that the deadline will be missed;
– SOSO: it always indicates a probability of 0.5 of meeting the deadline;
– SAMELAST100: it uses a single history record, size 100 for each service type;
– SAMELAST30: it uses a single history record, size 30 for each service type;
– SAMELAST3: it uses a single history record, size 3 for each service type;
– SAMELAST1: it uses a single history record, size 1 for each service type;
– DUALLAST100: it uses a history record with annotation about the system

state, with size 100 for each service type;
– DUALLAST30: it is similar to DUALLAST100, size 30 for each service type;
– DUALLAST3: it is similar to DUALLAST100, size 3 for each service type;
– DUALLAST1: it is similar to DUALLAST100, size 1 for each service type.

A first group of experiences used scheduling COLABORATIVE among the
threads that the program uses for servicing the requests. When concluding the
servicing of a request, the server thread yields the processor to the next server
thread, in a circular way. Results are presented in Table 1.

The algorithms ALWAYS and NEVER present a relative error rate close to
0.5, it indicates that around half of the service requests missed their deadlines
during the experiment. This was expected because of the way the deadline values
were generated. The algorithm SOSO presents a relative error rate of exactly 0.5.

Two conclusions can be easily noticed from the Table 1. Firstly, the modeling
of the system state in two levels brings benefits, because the relative error rate
of the algorithms DUALLAST are always smaller than those of the algorithms
SAMELAST. Secondly, it can be observed that the size of the response time
log is not important. A record with only 3 entries was enough to obtain similar

280 C.Y. Tatibana, C. Montez, and R.S. de Oliveira

Table 1. Results with colaborative scheduling

Algorithm Error rate Algorithm Error rate

ALWAYS 0.594
NEVER 0.406

SOSO 0.500
SAMELAST100 0.257 DUALLAST100 0.205
SAMELAST30 0.256 DUALLAST30 0.206
SAMELAST3 0.258 DUALLAST3 0.204
SAMELAST1 0.258 DUALLAST1 0.244

results to a record with 100 entries. That is explained by the PMF of the task
response times, which presents an enormous tail to the right. Table 2 shows,
for each service, the average response times, their standard deviation and their
medians. The fact that the average is so much larger than the median indicates
the concentration of values to the left of the curve and the existence of some
very big values to the right of the curve.

A second group of experiences was done, now using fixed priorities among
the threads that service the requests. Lower priority was defined for threads
associated with requests ”Remove”, ”Double scan” and ”Matrix multiplication.”
Table 3 shows the results.

A third group of experiences was done with the same program described
before, in the same conditions of the first group of experiences, but now executing
simultaneously in the computer an anti-virus program, making a complete scan
of the main disk. The program anti-virus represents an additional load to the
system. The results were very similar to those of Table 1.

An important question is to know if the relative error rate keeps constant for
all the services, or the algorithm makes better predictions for one service than
for another. Table 4 shows the relative error rate of the algorithms SAMELAST3
and DUALLAST3, in the conditions of the first experiment, according to each
service type. It can be noticed that, although difference exists in the quality of
the predictions for the different service types, the prediction of DUALLAST3 is
always better than the prediction of SAMELAST3.

Table 2. Statistics about response times

Service type Average (uS) Standard dev. (uS) Median (uS)

Insert 900.1 4814.7 44.0
Remove 1099.4 4186.9 219.0

Scan 941.3 4659.1 126.0
Double scan 948.9 4056.0 184.0

Binary search 862.0 4540.4 36.0
Matrix generation 3173.6 6540.7 2090.0

Matrix multiplication 9408.4 7262.8 7827.0

Soft Real-Time Task Response Time Prediction 281

Table 3. Results with priority scheduling

Algorithm Error rate Algorithm Error rate

ALWAYS 0.699
NEVER 0.301

SOSO 0.500
SAMELAST100 0.255 DUALLAST100 0.216
SAMELAST30 0.253 DUALLAST30 0.216
SAMELAST3 0.249 DUALLAST3 0.210
SAMELAST1 0.251 DUALLAST1 0.272

Table 4. Relative error rate by service type

Service Type Number of Tasks SAMELAST3 DUALLAST3

Insert 2421 0.317 0.225
Remove 1501 0.176 0.172

Scan 1384 0.226 0.193
Double scan 1377 0.097 0.080

Binary search 2430 0.328 0.225
Matrix generation 803 0.279 0.279

Matrix multiplication 803 0.332 0.298

6 Conclusions

In this paper we considered algorithms to predict the probability of a deadline
to be met, in dynamic systems that are not controlled by the algorithm, which
has only limited information on the state of the system. The early prediction of
a deadline miss allows actions of damage control, such as the signaling of alarms,
the use of an alternative computer or some load reduction mechanism.

The relative error rate was defined as the metric to be used for the com-
parison among different algorithms. Considering the existence of processing and
memory limitations, we looked for algorithms that don’t demand a great com-
puting power. The paper proposed the use of an algorithm based on the record
of previous response times, maintained separately according to the system state
being Normal or High-Loaded. The implementation of an example showed the
feasibility of the approach and also that the records used don’t need to be big.

An open question is how to integrate, in the definition of the system state, the
state of the service request queues. The service request queues are an excellent
indication of sudden overload, even when this fact doesn’t still shows itself in
the response times of the services, because the requests are still being serviced.
Another important subject is the size of the record to be maintained. The record
of response times represents a time window to the past. Since the requests are
aperiodic, a record of fixed size represents a time window with variable size.

282 C.Y. Tatibana, C. Montez, and R.S. de Oliveira

References

1. Abeni, L., Buttazzo, G.: Stochastic Rate Monotonic Scheduling. In: WPDRTS’01.
Proceedings of the 9th International Workshop on Parallel and Distributed Real-
Time Systems (April 2001)

2. Atlas, A., Bestavros, A.: Statistical Rate Monotonic Scheduling. In: RTSS’98. Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium, Madrid-Spain, pp. 123–
132 (December 1998)

3. Binns, P.: Statistical Estimation of Aperiodic Response Times when Scheduled on
top of Static Timelines. In: PARTES’04. 1st International Workshop on Proba-
bilistic Analysis Techniques for Real-Time and Embedded Systems (2004)

4. Chu, W.W., Leung, K.K.: Task Response Time Model and Its Applications for
Real-Time Distributed Processing Systems. In: Proceedings of the Real-Time Sys-
tems Symp., pp. 225–236 (December 1984)

5. Diaz, J.L., Garcia, D.F., Kim, K., Lee, C.G., LoBello, L., Lopez, J.M., Min, S.L.,
Mirabella, O.: Stochastic Analysis of Periodic Real-Time Systems. In: RTSS’02.
Proceedings of the 23rd IEEE Real-Time Systems Symposium, Austin-USA, pp.
289–300 (December 2002)

6. Ferdean, C., Makpangou, M.: Exploiting Application Workload Characteristics To
Accurately Estimate Replica Server Response Time. In: Proceedings of DOA (2005)

7. Gardner, M.K., Liu, J.W.: Analyzing Stochastic Fixed-Priority Real-Time Systems.
In: Proc. of the 5th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (March 1999)

8. Lehoczky, J.P.: Real-Time Queuing Theory. In: RTSS’96. Proc. of 17th IEEE Real-
Time Systems Symposium, Los Alamitos-USA, pp. 186–195. IEEE Computer So-
ciety Press, Los Alamitos (1996)

9. Leulseged, A., Nissanke, N.: Probabilistic Analysis of Multi-processor Scheduling of
Tasks with Uncertain Parameter. In: Proc. of the 9th International Conference on
Real-Time and Embedded Computing Systems and Applications (February 2003)

10. Manolache, S.: Schedulability Analysis of Real-Time Systems with Stochastic Task
Execution Times. Licentiate Thesis No. 985, Dept. of Computer and Information
Science, IDA, Linköping University, Sweden (December 2002)

11. Tia, T.S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.C., Liu, J.S.: Prob-
abilistic Performance Guarantee for Real-Time Tasks with Varying Computation
Times. In: RTAS’95. Proc. of the 1st IEEE Real-Time Technology and Applica-
tions Symposium, Chicago-USA, pp. 164–173. IEEE Computer Society Press, Los
Alamitos (1995)

12. Vingralek, R., Breitbart, Y., Sayal, M., Scheuermann, P.: Web++: A System For
Fast and Reliable Web Service. In: Proc. of the USENIX Annual Technical Con-
ference Monterey, California-USA (June 1999)

Transparent and Selective Real-Time Interrupt

Services for Performance Improvement

Jinkyu Jeong1, Euiseong Seo1, Dongsung Kim1, Jin-Soo Kim1,
Joonwon Lee1, Yung-Joon Jung2, Donghwan Kim2, and Kanghee Kim3

1 Dept. of CS, Korea Advanced Institute of Science and Technology
2 Electronics and Telecommunications Research Institute

3 Samsung Electronics Co.
{jinkyu, ses, dskim}@calab.kaist.ac.kr, {jinsoo, joon}@cs.kaist.ac.kr

{jjing, dhkim76}@etri.re.kr, kang.hee.kim@samsung.com

Abstract. The popularity of mobile and multimedia applications made
real-time support a mandatory feature for embedded operating systems.
However, the current situation is that the overall performance is signifi-
cantly degraded due to the real-time support. This paper suggests a novel
scheme to minimize the performance degradation in embedded operat-
ing systems with real-time support. Especially, we propose transparent
and selective real-time interrupt services which transparently monitor
the system and postpone interrupt handling that are not relevant to
real-time tasks. The proposed scheme was implemented on the Linux
2.6 kernel and the experimental results show that our scheme improves
the throughput by up to 86% for Hackbench benchmark while providing
almost the same scheduling latency compared to the previous work.

Keywords: Real-time, Scheduling algorithm, Interrupt handling, Em-
bedded operating systems, Latency, Throughput.

1 Introduction

Due to the digital convergence phenomenon [1], consumer electronics devices, such
as cell phones, PDAs (Personal Digital Assistants), and PMPs (Portable Media
Players), run many sophisticated applications beyond their original purposes. For
example, a typical cell phone is equipped not only with the phone tasks for call-
ing and SMS (Short Message Service), but also with PIMS (Personal Information
Management System), still pictures management system, and simple games. The
number of these extra applications, as well as the size and the complexity of the
individual application, will continue to grow rapidly in the near future.

Pure real-time operating systems are not adequate for those consumer electron-
ics devices because of its limited functionality and the lack of generality. As a re-
sult, more general embedded operating systems, such as Windows CE and Embed-
ded Linux, are becoming widely used in the area of portable embedded systems.

Many tasks in portable embedded systems are time sensitive [2] or require
prompt response to external stimuli. Notable examples include call processing

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 283–292, 2007.
c© IFIP International Federation for Information Processing 2007

284 J. Jeong et al.

tasks in PDAs or video streaming tasks in PMPs. To make these real-time tasks
run harmoniously with other normal tasks, a certain level of real-time support
is essential in embedded operating systems. In spite of this requirement, many
embedded operating systems which are rooted in general-purpose operating sys-
tems do not fully support the real-time constraint.

Recently, Ingo Molnar has proposed a Linux kernel patch called Complete Pre-
emption [3] for the improved real-time support in embedded devices. Although
Complete Preemption is quite effective in improving the responsiveness of the
system [4], the problem is that the system throughput is notably degraded due
to the real-time support. We find that the excessive context switching between
tasks to provide prompt response to real-time tasks is the main source of the
performance degradation.

To resolve this problem, we propose a novel scheme to minimize context
switching without sacrificing the responsiveness of the system. The proposed
scheme suppresses the preemption by normal tasks so that only the interrupts
associated with real-time tasks are rapidly serviced. The interrupts associated
with real-time tasks are transparently identified by the system, thus requiring
no manual intervention. The proposed scheme was implemented in the Linux
kernel 2.6 and evaluated using various benchmarks. Our result shows that the
proposed scheme improves the throughput up to 86% for Hackbench benchmark
on VIA C3 embedded board.

The rest of the paper is organized as follows. The following section reviews the
previous work for real-time support. Section 3 explains Complete Preemption in
detail and analyzes the source of performance degradation. Section 4 discusses
the proposed scheduling policy of real-time and normal tasks. Section 5 shows the
evaluation results compared to the existing solutions in the aspects of scheduling
latency and throughput. The final section summarizes our work and concludes
the paper.

2 Related Work

Although widely used in embedded systems, Linux is hardly classified into real-
time operating system (RTOS) since it does not support full preemption and
priority inheritance. Two approaches, sub-kernel and preemptible kernel, are
proposed to make Linux support real-time applications.

RTLinux [5] from FSMLabs and RTAI [6] are the representative examples of
the sub-kernel approach [7]. The kernel is divided into core-kernel and sub-kernel.
When some real-time tasks exist, the core-kernel executes those real-time tasks.
Otherwise, the control is transferred to the sub-kernel and normal tasks are
executed. In the sub-kernel structure, the scheduling latency of real-time tasks
becomes lower than tens of microseconds. However, the sub-kernel approach has
a disadvantage that only normal tasks can fully exploit the features provided by
the Linux kernel.

A preemptible kernel [8] denotes the kernel which can be preempted either at
certain preemption points or everywhere inside the kernel. For example, RED

Transparent and Selective Real-Time Interrupt Services 285

Linux [9] inserts preemption points in the kernel, while Timesys Linux/RT [10]
supports full kernel preemption. The Linux kernel 2.6 also supports kernel pre-
emption originally developed by the preemptible kernel project [11]. In the pre-
emptible Linux kernel, the kernel can be preemptible if it is not in critical sec-
tions, which enhances the responsiveness of real-time tasks. Unlike the sub-kernel
approach, real-time tasks can make full use of kernel features. The scheduling
latency, however, becomes more or less unstable.

Ingo Molnar’s Complete Preemption [3,4] makes preemption possible even
when the kernel is in critical sections using mutex-based spin locks. ISRs (In-
terrupt Service Routines) are also made preemptible by implementing them as
kernel threads. Consequently, the scheduling latency of real-time tasks is further
reduced below tens of microseconds. This means that a real-time task can react
to interrupts more quickly. The priority inheritance mechanism is also imple-
mented. Thus, Ingo Molnar’s modified Linux kernel meets all the functionalities
of RTOS [12].

The performance of Complete Preemption was under investigation by pre-
vious studies [13,14]. The evaluation results show that Complete Preemption
was quite effective in real-time support because of its outstanding scheduling
latency. However, our study reveals that Complete Preemption decreases the
system throughput considerably due to many preemption points. The next sec-
tion investigates Complete Preemption in more detail.

3 Linux Complete Preemption

In the preemptible Linux kernel, preemption is not possible inside critical sec-
tions due to synchronization. Consequently, a long scheduling delay for a real-
time task is inevitable because the scheduling of the real-time task is postponed
until the lock is released. Ingo Molnar’s Complete Preemption replaced almost
all the spin locks in the kernel with mutex-based spin locks. Using mutex-based
spin locks, the real-time task can preempt any tasks even if those tasks are in
a critical section. Other tasks trying to enter the critical section are enqueued
in the waiter list of the lock. ISRs can be also preempted by real-time tasks
in Complete Preemption since they are implemented using kernel threads. As
a result, almost all the kernel codes are preemptible by real-time tasks. Com-
plete Preemption also provides the priority inheritance mechanism which further
enhances the responsiveness of real-time tasks.

One of the problems in Complete Preemption is that it sacrifices the sys-
tem throughput in favor of shorter scheduling latency. Our preliminary study
reveals that PREEMPT-RT, the Linux kernel patched using Complete Preemp-
tion, degrades the throughput considerably. Figure 1 shows the execution time of
Hackbench [15] 50 and the number of context switchings during the benchmark
tests on Pentium 2.4GHz machine. As shown in the figure, PREEMPT-RT takes
about five times of the execution time compared to the Vanilla Linux kernel.

The significant decrease in the throughput is mainly due to excessive context
switchings. In PREEMPT-RT, almost all kernel codes are preemptible by any

286 J. Jeong et al.

0

5

10

15

20

25

30

35

1 5 10 20 30 40 50
The number of Hackbench groups

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d Vanilla

PREEMPT-RT

(a) Execution time

0

1000000

2000000

3000000

4000000

5000000

6000000

1 5 10 20 30 40 50
The number of Hackbench groups

T
h
e
 n

u
m

b
e
r

o
f
c
o
n
te

x
t
s
w

it
c
h
in

g
s

Vanilla

PREEMPT-RT

(b) The number of context switchings

Fig. 1. Hackbench results of Vanilla and PREEMPT-RT

interrupt even though the interrupt has nothing to do with real-time tasks.
Unnecessary context switchings not only waste CPU cycles but also incur hidden
costs such as TLB (Translation Lookaside Buffer) flush and cache misses.

4 Transparent and Selective Real-Time Interrupt
Services

PREEMPT-RT provides fast and stable scheduling latency. However, allowing
a lot of preemption points adversely affects the overall performance since only
real-time tasks need to preempt other normal tasks. In the following subsections,
we describe our scheme to selectively service interrupts that are associated with
real-time tasks.

4.1 Suppressing the Preemptions by Normal Tasks

In Linux, all tasks are classified into two classes, a real-time class and a normal
class. The Linux scheduler is based on the priority scheduling and tasks in the
real-time class have always higher priorities than normal tasks.

PREEMPT-RT allows any task whose priority is higher than the currently run-
ning task to acquire the CPU even if the current task is in a critical section. This
helps to reduce the scheduling latency for real-time tasks. However, the problem
is that normal tasks are also able to preempt other normal tasks due to Complete
Preemption. Since normal tasks are not so sensitive to the scheduling latency, con-
text switchings from a normal task to another normal task take up the CPU cycles
unnecessarily with additional overhead such as TLB flush and cache misses.

To remedy this problem, our scheme suppresses the preemptions caused by
normal tasks as much as possible. Any higher-priority normal task does not
preempt the current normal task immediately. Instead, the execution of the
current normal task is guaranteed until the end of its time quantum in order
to avoid frequent context switchings between normal tasks. Note that real-time
tasks still can preempt other tasks for the minimal scheduling latency.

In our implementation, when the Linux scheduler is invokeddue to the change in
the runnable task set, the scheduler first chooses the next task based on the Linux

Transparent and Selective Real-Time Interrupt Services 287

scheduling algorithm. If the next task is in the real-time class, the scheduler per-
forms the preemption immediately. If not, however, the previous task is resumed to
rununtil the end of the remaining time quantum, thus suppressing the preemption.

4.2 Selective Handling of Real-Time Interrupt Threads

Because ISRs are implemented as kernel threads in PREEMPT-RT, they are
scheduled by the Linux scheduler with their own priorities just like the other
tasks. These interrupt threads are treated as real-time tasks. An interrupt thread
can cause many context switchings, because it is able to preempt other tasks with
the real-time priority.

In the proposed scheme, we basically treat interrupt threads as normal tasks.
Although they have real-time priorities, we do not allow them to preempt other
normal tasks in order to avoid the situation that the execution of a normal task
is interrupted by non-critical interrupts.

The previous scheduling policy, however, may increase the scheduling latency
considerably when some interrupt thread triggers a real-time task. Therefore,
there should be a mechanism that we can somehow differentiate interrupt threads
according to their relevance to real-time tasks. If we know a specific interrupt is
associated with real-time tasks, we can set a special RT flag in the task structure
of the corresponding interrupt thread. The RT flag indicates that the correspond-
ing thread triggers a real-time task, hence it should be scheduled urgently.

Now the scheduling algorithm presented in Section 4.1 is modified as follows to
deliver one or more predefined interrupts fast to real-time tasks. When the next
candidate task is an interrupt thread, the Linux scheduler first checks whether
the RT flag is marked in the task structure or not. If the RT flag is not set,
the preemption is suppressed as explained in Section 4.1. On the other hand, if
the RT flag is set, the interrupt thread is scheduled immediately to make the
scheduling latency for real-time tasks short and stable.

4.3 Transparent Association of Interrupts with Real-Time Tasks

The selective handling of real-time interrupt threads is effective to achieve the
short and stable scheduling latency for real-time tasks while minimizing unnec-
essary context switchings between normal tasks. In the previous subsection, we
assume that interrupts associated with real-time tasks are specified in advance
by application developers. Often this assumption is reasonable in many real-
time systems since real-time tasks are usually associated with specific sensors
and actuators. However, it is annoying for application developers to specify the
associated interrupts every time since they may not be familiar with hardware
details. Annotating the source code with a special system call not only low-
ers the application portability but also makes the application dependent on the
hardware configuration on which it is running. Sometimes, it may not unclear
which are right interrupts for the real-time tasks and the association may even
change over time for complex real-time applications. In this subsection, we pro-
pose a way to transparently discover the relationship between real-time tasks
and interrupts without any hints from application developers.

288 J. Jeong et al.

In PREEMPT-RT, a task is waken up in the function try_to_wake_up()
when it is called by an interrupt thread. This means that if a real-time task is
awakened by an interrupt thread, we can transparently identify those interrupts
that are associated with real-time tasks without adding any kernel interface. The
identified interrupt handler is marked with the RT flag in the task structure and
the RT flag is later used by the Linux scheduler as described in Section 4.2.

In the Linux kernel, a part of interrupt handling can be delayed to bottom
halves. The kernel thread called the soft-irq thread is usually used to perform the
remaining work left by the interrupt handler. Since the PREEMPT-RT kernel
also follows the same structure, the relationship between real-time tasks and
interrupt threads may not be correctly recognized in try_to_wake_up() function
if real-time tasks are waken up by bottom halves. We pay special attention to
this case so that the original interrupt can be associated with the real-time task
although the real-time task is awakened by the soft-irq thread.

The RT flag in the interrupt thread is removed when the associated real-time
task either terminates or voluntarily turns into the normal task. Even though
a real-time task terminates, some interrupt thread can be still marked with the
RT flag since two real-time tasks may share the same interrupt. In this case,
the RT flag is not removed until all the real-time tasks that share the interrupt
terminate. Similarly, a single real-time task may be triggered by more than one
interrupts, in which case all the interrupts are marked with the RT flag.

5 Evaluation

In real-time systems, the scheduling latency is one of the most important fac-
tors [13]. The overall throughput under limited computing resources is also an
important characteristic of the system. Accordingly, the following two metrics
are major concerns of our evaluation:

– Latency. The scheduling latency is the time between the event time and
the start time of the task. In real-time systems, a stable scheduling latency
must be guaranteed in various environments.

– Throughput. The throughput denotes the total amount of work that can be
done in the given interval. In real-time systems, it is desirable to achieve the
throughput as high as possible, while guaranteeing the predictable scheduling
latency.

We describe our evaluation methodology in Section 5.1. Section 5.2 and Sec-
tion 5.3 present our experimental results in detail.

5.1 Methodology

In this paper, we evaluate the following four Linux kernels:

– Vanilla kernel. The standard Linux kernel. Tasks are not preemptible while
in the kernel.

Transparent and Selective Real-Time Interrupt Services 289

– Preemptible kernel. The Linux kernel. Tasks are preemptible in the kernel
area except critical sections.

– PREEMPT-RT kernel. The Linux kernel modified with Ingo Molnar’s
Complete Preemption.

– Selective IRQ kernel. The Linux kernel which implements the proposed
scheme.

Note that our work was not compared to traditional real-time operating sys-
tems, such as QNX and VxWorks, because those RTOSes are limited in their
functionality. The MontaVista Linux is largely similar to the Preemptible kernel.

We used an open source benchmark called Realfeel [16,13,17,18] to measure the
scheduling latency. We have also used two benchmark programs, Hackbench [15]
and Tbench [19] to evaluate the throughput of the system. Hackbench and Tbench
are executed as normal tasks. The experiments are performed on a 1GHz Nehemiah
C3 Core VIA board with 256MB of RAM and a 40GB, 5400RPM IDE disk drive.

5.2 Latency

We generate a 256Hz stream of interrupts using Realfeel to measure the schedul-
ing latency. The total 30 million interrupts are sampled by Realfeel, which run
as a real-time task. To see how the scheduling latency is affected by other normal
tasks, we give various stresses to the kernel. First, we executed two benchmark
programs, Hackbench and Tbench, together with Realfeel (denoted as light load).
To give heavier stress, one CPU bound task and one I/O bound task are added
to two benchmark programs (denoted as heavy load). The CPU bound task is a
matrix multiplication program and the I/O bound task is an FTP program that
downloads ten 700MBytes files.

Figure 2 shows the scheduling latency under two types of system loads. The x-
axis represents the scheduling latency in milliseconds and the y-axis the percent
of the samples. In Figure 2(a), Selective IRQ shows the similar distribution of the
scheduling latencies to that of PREEMPT-RT under the light load. Specifically,
in both kernels, all samples are scheduled within 100 microseconds. Under the
heavy load, the percent of the samples that have long scheduling latencies is

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
5

8.
2

Scheduling latency(msec)

P
e
rc

e
n
t

Vanilla

Preemptible

PREEMPT-RT

Selective IRQ

(a) Under the light load

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
2

3.
8

Scheduling latency(msec)

P
e
rc

e
n
t

Vanilla

Preemptible

PREEMPT-RT

Selective IRQ

(b) Under the heavy load

Fig. 2. The distribution of the scheduling latencies with 256Hz RTC interrupt

290 J. Jeong et al.

increased in case of the Vanilla kernel and the Preemptible kernel as shown in
Figure 2(b). Selective IRQ and PREEMPT-RT still have very stable latencies
even under the heavy load. The maximum scheduling latency is measured to be
less than 100 microseconds in both PREEMPT-RT and Selective IRQ.

5.3 Throughput

To observe the basic throughput without real-time tasks, we ran two benchmark
programs mentioned in Section 5.1 while the system is idle. The next evaluation
simulated a realistic workload, where the real-time task Realfeel is run simulta-
neously with other two benchmark programs. Recall that the scheduling latency
of Realfeel in the latter case is already shown in Section 5.2.

Figure 3(a) and (b) present the benchmark results without other interfering
tasks. All the values in the figure are normalized to the value of the Vanilla kernel.
In Figure 3(a), the x-axis and the y-axis denote the number of Hackbench groups
and the relative throughput of Hackbench respectively. PREEMPT-RT drops the
throughput about 30% compared to the Vanilla kernel. The Preemptible kernel
has the similar throughput to the Vanilla kernel but, as we have already seen
in Section 5.2, it fails to provide the stable scheduling latency. Selective IRQ
improves the Hackbench throughput by up to 40.3% compared to PREEMPT-
RT as the number of Hackbench group increases.

Hackbench generates a considerable number of context switchings when many
Hackbench groups run concurrently. The Selective IRQ improves the throughput

20%

40%

60%

80%

100%

120%

140%

5 10 20 40
The number of Hackbench groups

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(a) Hackbench only

20%

40%

60%

80%

100%

120%

140%

20 40 80
The number of Tbench processes

R
e
la

tiv
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(b) Tbench only

20%

40%

60%

80%

100%

120%

140%

5 10 20 40
The number of Hackbench groups

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(c) Hackbench with Realfeel

20%

40%

60%

80%

100%

120%

140%

20 40 80
The number of Tbench processes

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t

Vanilla
Preemptible
PREEMPT-RT
Selective IRQ

(d) Tbench with Realfeel

Fig. 3. Hackbench and Tbench results

Transparent and Selective Real-Time Interrupt Services 291

because the proposed scheme intends to suppress unnecessary preemptions
among normal tasks.

Figure 3(b) depicts the results of Tbench. The x-axis illustrates the num-
ber of Tbench tasks and the y-axis denotes the relative bandwidth of Tbench
normalized to the result of the Vanilla kernel. This result also indicates that
PREEMPT-RT achieves only 85% of the throughput of the Vanilla kernel. Se-
lective IRQ enhances the throughput by up to 3.2% compared to PREEMPT-RT.

Figure 3(c) and (d) show the results of Hackbench and Tbench when a real-
time task Realfeel is running together. From Figure 3(c), we can observe that
the throughput of PREEMPT-RT becomes even worse with the presence of a
real-time task. However, the proposed Selective IRQ scheme consistently shows
the better throughput compared to PREEMPT-RT. Especially in Hackbench,
PREEMPT-RT degrades throughput about 58% and Selective IRQ improves
throughput up to by 86% compared to PREEMPT-RT. In Figure 3(d), the
enhancement of the bandwidth under Selective IRQ is also increased from 3.2%
to 4.6%.

6 Conclusion

In this paper, we proposed a novel scheme to improve the performance of em-
bedded operating systems with real-time support. The performance degradation
was mainly caused by a lot of preemption and scheduling points. Kernel-threaded
interrupt service routines also contribute to the decrease in the performance. Ex-
cessive preemption and scheduling points yield many context switchings among
tasks. The increased TLB flush and cache misses following the context switching
are the direct sources of the performance degradation.

In the proposed scheme, the number of context switchings is reduced by the
following two methods. First, we suppress the kernel preemptions caused by
normal tasks as much as possible. Second, interrupts that are not relevant to real-
time tasks are delayed. In order to provide prompt response to real-time tasks,
our scheme transparently selects the interrupts that are related to real-time
tasks and boosts them selectively. Consequently, the proposed scheme improves
the system throughput significantly while exhibiting almost the same scheduling
latency for real-time tasks.

Our work was implemented in the Linux 2.6 kernel. The experimental results
show that the scheduling latency was below tens of microseconds. Moreover, the
throughput is enhanced by 40% compared to Complete Preemption when there
is no real-time task. If there is a real-time task, the throughput is increased by
up to 86%. We plane to optimize our scheme further to achieve better response
time and throughput.

Acknowledgments. This research was funded by the MIC(Ministry of Infor-
mation and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Infor-
mation Technology Assessment) (IITA-2006-C1090-0603-0020). This work was

292 J. Jeong et al.

also supported by DSRC(Defense Software Research center) and the Korea Sci-
ence and Engineering Foundation(KOSEF) grant funded by the Korea govern-
ment(MOST) (No. R01-2006-000-10724-0)

References

1. Yoffie, D. (ed.): Completing in the Age of Digital Convergence. Harvard Business
School Press (1997)

2. Abeni, L., Goel, A., Krasic, C., Snow, J., Walpole, J.: A measurement-based anal-
ysis of the real-time performance of linux. In: IEEE Real-Time and Embedded
Technology and Applications Symposium, p. 133. IEEE Computer Society Press,
Los Alamitos (2002)

3. Molnar, I.: Complete preemption (2005),
http://people.redhat.com/mingo/realtime-preempt/

4. Heursch, A.C., Grambow, D., Horstkotte, A.: Steps towards a fully preemptable
linux kernel. In: Workshop on Real-time Programming (2003)

5. Yodaiken, V.: The rtlinux manifesto. In: Proceeding of The 5th Linux Expo (1999)
6. Mantegazza, P., Dozio, E.L., Papacharalambous, S.: Rtai:real time application in-

terface. Linux Journal (2000)
7. Dankwardt, K.: Real time and Linux, Part 3: Sub-kernels and benchmarks. Em-

bedded Linux Journal 9, 33–37 (2002)
8. Mercer, C.W., Tokuda, H.: Preemptibility in real-time operating systems. In: IEEE

Real-Time Systems Symposium, pp. 78–88. IEEE Computer Society Press, Los
Alamitos (1992)

9. Wang, Y.C., Lin, K.J.: Enhancing the real-time capability of the linux kernel. In:
IEEE Real Time Computing Systems and Applications, IEEE Computer Society
Press, Los Alamitos (1998)

10. Oikawa, S., Rajkumar, R.: Linux/rk: A portable resource kernel in linux (1998)
11. Love, R.: The linux kernel preemption project,

http://kpreempt.sourceforge.net/
12. Beneden, B.V.: Comp.realtime: Frequently asked questions (faqs) (version 3.6)

(2004), http://www.faqs.org/faqs/realtime-computing/faq/
13. von Hagen, W.: Real-time and performance improvements for the 2.6 linux kernel.

Linux Journal (2005)
14. captain@captain.at: Linux real time patch review - vanilla vs. rt patch comparison

(2006), http://www.captain.at/howto-linux-real-time-patch.php
15. Russell, R.: Hackbench, http://lkml.org/lkml/2001/12/11/19
16. Hahn, M.: Realfeel. www.brain.mcmaster.ca/∼hahn/realfeel.c
17. Webber, A.: Realfeel test of the preemptible kernel patch. Linux Journal (2002)
18. Williams, C.: Which is better – the preempt patch, or the low-latency patch? both!

Linux Devices (2002)
19. Tridgell, A.: Dbench, ftp://samba.org/pub/tridge/dbench/

http://people.redhat.com/mingo/realtime-preempt/
http://kpreempt.sourceforge.net/
http://www.faqs.org/faqs/realtime-computing/faq/
http://www.captain.at/howto-linux-real-time-patch.php
http://lkml.org/lkml/2001/12/11/19
 www.brain.mcmaster.ca/~hahn/realfeel.c
ftp://samba.org/pub/tridge/dbench/

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 293–300, 2007.
© IFIP International Federation for Information Processing 2007

An Approach for Energy-Aware Management in
Ubiquitous Home Network Environment

Hyung-Soo Mok1, Sung-Yong Son2, Jun Hee Hong2, and Sanghoon Kim3

1 The Department of Electrical Engineering,
Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea

hsmok@konkuk.ac.kr
2 Power IT Research Center,

Kyungwon University, Seongam-Si, Gyeonggi-do, 461-701, Korea
{xtra, hongpa}@kyungwon.ac.kr

3 The Department of Electrical and Electronics Engineering,
Kangwon National University, Chuncheon-Si, Gangwon-do, 200-701, Korea

kshoon@kangwon.ac.kr

Abstract. This research studies energy-aware managemen strategies in
ubiquitouse home network environment. Always-on connectivity is essential to
establish home networks, and it induces more energy consumption. In this
work, a methodology is prosposed to achieve energy saving in overalls without
harming the quality of services. Energy management technology used in
wireless sensor network is expanded to information appliances, usage patterns
and dependecy tree are applieds to design the management system, and the
effect in energy saving is analyzed.

Keywords: Energy-Aware, Home Network, Ubiquitous, Information
Appliances.

1 Introduction

Home network systems that have been rapidly deployed in Korea change the
definition of “home” by expanding its meaning to the cyber world with the anytime
and anywhere connectivity. They can check house security from outside in real time
by connecting home network systems remotely with PCs, mobile phones, and
telematics equipments. Even they can see and talk with the visitors who drop by
during their absence. To enable these services the network needs to guarantee
always-on connectivity to the internet, and every device at home must be ready to
respond to the commands that may come from outside. Although these home network
systems bring convenience to users, they increase energy consumption additionally.
Considering world-wide tendency in energy saving due to the shortage of energy
resources and the necessity of CO2 reduction, home network systems need to consider
energy efficiency to be widely deployed.

Many efforts have been made to reduce energy consumption in various aspects by
developing energy efficient materials and chip sets, varying CPU clocks and voltages,

294 H.–S. Mok et al.

optimizing communication speed or powers, and controlling software processes, etc.
Calhoun tried to reduce standby power with dynamic voltage scaling [1]. Frequency
scaling is also considered in addition to voltage [2]. Dynamic power management is a
common approach for embedded systems and wireless sensor networks by entering to
the sleeping mode during not working [3, 4]. The approach is especially useful when
a device needs to work occasionally. Energy-aware system, routing and protocol
designs are also widely performed researches [5,6,7,8,9]. Although many efforts have
been conducted to reduce energy consumption for specific technology or individual
device, the approach from the whole system viewpoint is insufficient.

Reducing standby power is an important and urgent issue for home appliance
industry. Standby power means power dissipated while not performing the main
function of a device. The power may be used only for waiting incoming commands
or to accomplish side functions such as a clock and alarm. Reducing standby power
under 1W for home appliances is becoming a world-wide trend. However, it is
difficult to define standby status in home network systems because always-on
connectivity is a prerequisite for them. Since the devices should be ready to work,
there is a limitation in cutting down the standby power.

It is important that energy saving in home network systems should not harm the
quality of services. The quality can be divided into two view points. One is the
resulting service quality induced from the activity of a home network system. For
example, to control the humidity of a home environment, there are few different ways
to achieve the goal. They may turn on an air conditioner, activate a dehumidifier, turn
on a heater or open a window to reduce the humidity. Such an approach is not
considered in this work. The other view point is whether the system can respond to a
command appropriately within an expected time. To solve this problem, home
network devices are classified into groups based on their allowed latency. Then, an
operation strategy is proposed to reduce energy consumption.

2 System Configurations

Figure 1 shows an example of typical home network systems, which consists of
control devices, sensor devices, information appliances, data devices and AV devices.
In general, control and sensor devices use relatively low electric power because they
are designed for a single purpose and do not require high computing performance.
Information and AV devices consume much higher energy than control and sensor
devices because of their complex and advanced service nature. There are many
different ways in connecting these devices to a home network system, and it is
difficult to determine a single standard configuration because the environment is
different case by case. A network medium is selected for each device based on the
functional characteristics and industry trends in this research. For sensor nodes,
battery-powered Zigbee is mostly selected. Since control devices usually require
relatively high electric power when it works, AC power is directly supplied to the
devices when needed while using Zigbee for communication. A low speed PLC is
used for information appliances, and Ethernet is used for data and AV devices.

 An Approach for Energy-Aware Management 295

Fig. 1. A ubiquitous home network system configuration which consist of control devices,
sensor devices, information appliances, data devices and AV devices

Table 1 shows the power consumption of each device in a ubiquitous home
network system used in this research. Ubiquitous sensor network-based devices
consume small amount of energy as well as power that ranges 25~1,500mW
depending on their functions. On the other hand, information appliances consume
high standby power when compared to home appliances without network
connectivity. The electric power of home appliances used for normal operation (air
conditioning, heating, washing, etc.) is not considered in this work because they are
too big ranging 300~1,500W to see the effect of communications. The residential
gateway and the home auto (door phone) use high standby power since they should
work as communication and control hubs to accept incoming events and data.

The life of battery-powered devices has been regarded as one of the most critical
issues because it is directly related to their maintenance. Therefore, efficient system
design has been studied in many ways. Dynamic power management is a key
approach in ubiquitous sensor networks to maximize the life of sensor nodes. To
reduce power consumption, devices go to sleep mode during idle time. Much work
has been done exploiting sleep state and active power management [3, 4].

High power consuming devices are essential to connect to the power line directly
to obtain enough energy to perform their main functions. The ease of energy
acquirement put the energy saving issues of those home network devices in the dead
angle so far. Control devices with their own power suppliers are in the similar
situation. Not enough efforts are made for those devices compared to battery-
powered wireless devices. In this work, energy saving mechanism used for battery-
powered wireless device is adopted.

296 H.–S. Mok et al.

Table 1. The list of home network devices and their power consumption

3 System Analysis and Results

The functions of devices used in home networks are classified into 4 basic types
depending on the nature of data that they generate or use. Event sources generate
urgent signals that should affect to other home network systems immediately. Event
sinks accept data generated from event sources, so they should be always ready to get
data transferred from other nodes. Information sources generate data that may be
important but not urgent, and information sinks accept data generated from
information sources. The types can be represented as the latency sensitiveness in their
services. Although devices developed to perform a singe function are easy to
determine their types, some devices are difficult to be classified into a category
because they may perform complex functions. Table 2 shows an example of types
and corresponding devices.

Table 2. An example of device type classfications for home network devices

 An Approach for Energy-Aware Management 297

In real life, the device types can vary depending on the status of home, which is
determined from given situations. The status can be represented with life modes such
as Stay, Going-out, and Sleeping. In each mode, the types of devices can be
differently defined. For example, a motion detector is important in Sleeping and
Going-out modes to monitor unexpected intrusions. However, it may generate false
alarm by the interference from the movements of family members in Stay mode.
Therefore, the detector would be better to be used to collect and analyze life patterns
in the mode. Although a light control needs to respond to commands immediately in
Stay and Sleeping mode, slow response would not make a serious problem in Going-
out mode. For that reason, the types of devices should be determined for each mode
to set up appropriate power management strategies. Table 3 shows an example of
devices and their types for given life modes.

Table 3. The types of devices corresponding to life modes

Battery-powered sensor nodes are energy efficient enough compared to other
devices in this case. They generally consume less than 100mW and 0.1mW for
working modes and power save modes, respectively, as shown in Table 1. When
considering the standby powers of information appliances and IP devices that range
2~10W, the electric power used by sensor nodes are negligible. This does not mean
that there is no room to be improved in energy management for sensor networks, but
more efforts are required for other devices to reduce energy consumption. The home
network system used in this work as it is consumes 2,019Wh per day. The electric
energy is mostly used by IP devices and information appliances, which amounts
1,109Wh and 693.6Wh, respectively. Although IP devices spend 54% of entire
energy, it is difficult to reduce the power consumption of IP devices because they
serve as an event and data sink of the system providing network connectivity to the

298 H.–S. Mok et al.

entire system. To receive all events and data generated by other devices without
missing, some nodes should be awake all the time. Residential gateways and home
auto devices usually do the work in home networks. Though other IP devices such as
computers, STBs, and security cameras generally provide complex services, their
roles are limited in home networks. Reducing energy consumptions of IP devices is
an important issue because they use more than 50% of entire energy.

Information appliances are found to consume more energy than expected when
comparing with home appliances which recently tend to be designed to use less than
1W for standby power. By using efficient network communication modules, it is
possible to reduce the energy consumption for information appliances. In this
example, the energy consumption becomes to 1,747Wh per day, and it is 13% in
overall, and 30% without IP devices less than the original amount.

Then, sleeping mechanism is added to remove unnecessary energy waste. Except
for some emergency cases, devices can provide the equivalent services without losing
the service quality with small amount of response delay. Not to miss incoming events
or commands, the devices can contact a service hub right after waking up, and check
up incoming signals. Since latency is allowed to a certain degree except for the event
sink devices, sleeping can be an effective tool in energy saving as proved in battery-
powered wireless devices.

To analyze the energy consumption of the home network system, 3 life patterns are
designed as shown in Fig 2. In pattern A, all family members stay outside during
daytime. Pattern B and C represent families who spend more time at home than ones
with pattern A.

Fig. 2. Three life patterns are designed to analyze the power consumption of a home network
system

Figure 3 shows the result of energy used in the home network system after
applying two strategies for life pattern A. For the first step, efficient communication
modules are applied to information appliances and control devices. This mainly
decreased the energy used by information appliances. In the second step, the sleeping
mechanism is applied and the energy consumption is decreased 31% of the original
amount using 1,390Wh. Without considering IP devices, 70% of the original amount
is diminished. The energy consumptions for life pattern B and C are obtained as
1,426Wh and 1,438Wh, respectively.

 An Approach for Energy-Aware Management 299

Fig. 3. The energy consumption per day of the selected home network system is shown. In step
1, network communication nodes are improved to be power efficient, and sleeping mechanism
is added in step 2 for a life pattern A in Figure 2. Most reduction occurs in control devices and
information appliances in this work.

Dependency trees among devices in a home network system are useful to make
energy management policies. For example, VCR, STB, and DVD are usually
dependent on TV, and monitors, printers and scanners are hardly used without
computers. By using the relations, a hierarchical energy management can be designed.

4 Conclusions

In this work, a home network system is modeled and analyzed to figure out energy
consumption characteristics. Since external electric power is provided to most devices
in home networks, no much work has been done to save energy so far. Especially, IP
devices and information appliances have much to be improved. Energy efficient
hardware and sleeping mechanisms which are used for battery-powered wireless
devices are expanded to other home network devices. Device types are classified for
each life mode to reduce unnecessary communications, and the possibility of energy
saving is shown.

References

1. Calhoun, B.H, Chandrakasan, A.P.: Standby Power Reduction Using Dynamic Voltage
Scaling and Canary Flip-Flop Structures. IEEE Journal of Solid-State Circuits 39(9), 1504–
1511 (2004)

2. IBM and MotaVista Software: Dynamic Power Management for Embedded System.
Ver.1.1, IBM and MotaVista (November 19, 2002)

3. Brock, B., Rajamani, K.: Dynamic Power Managent for Embedded Systems. In: IEEE
International System-On-Chip (SOC) Conference, pp. 416–419. IEEE Computer Society
Press, Los Alamitos (2003)

4. Sinha, A., Chandrakasan, A.: Dynamic Power Management in Wireless Sensor Networks.
IEEE Design and Test of Computers 19(2), 62–74 (2001)

300 H.–S. Mok et al.

5. Calhoun, B.H., et al.: Design Considerations for Ultra-low Energy Wirelss Microsensor
Nodes. IEEE Transactions on Computers (June 2005)

6. Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.J.: Protocols for Self-Organization of a
Wireless Sensor Network. IEEE Personal Communications 7(5), 16–27 (2000)

7. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-Aware Wireless
Microsensor Networks. IEEE Personal Communications 7(2), 40–50 (2002)

8. Schurgers, C., Raghunathan, V., Srivastava, M.: Power Management for Energy-aware
Communication System. ACM Transactions on Embedded Computing Systems 2(3), 431–
447 (2004)

9. Heo, J., Yi, S., Park, G., Cho, Y., Hong, J.: EAR-RT: Energy Aware Routing with Real-
Time Guarantee for Wireless Sensor Networks. In: Alexandrov, V.N., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 946–953. Springer,
Heidelberg (2006)

On-Chip Bus Architecture Optimization for

Multi-core SoC Systems�

Cheng-Min Lien1, Ya-Shu Chen1, and Chi-Sheng Shih2

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan 106
cshih@csie.ntu.edu.tw

Abstract. With the significant driving force from the application do-
mains, modern embedded systems are designed over heterogeneous multi-
core SoC platforms. When more and more functions are integrated into
one system, the designs of embedded systems have become more and
more complicated. In particular, most of embedded multimedia appli-
cations are data intensive. Performance bottleneck are often caused by
inappropriate bus architecture design within the system. In this paper,
we present the algorithms for bus architecture optimization in MFASE.
The algorithm takes the workloads in the system and their timing be-
havior requirements into account. The goal is to minimize the number of
buses in the system without violating timing requirements. We prove that
the minimzation problem is NP-hard and develop a heuristic algorithm.
We evaluate the algorithm with extensive simulations. The performance
results show that the algorithm reduce up to 80% of the bus cost and
performs as well as optimal exponential algorithm does.

1 Introduction

Traditional system-level chip design aims at designing reliable single function
systems or distributed embedded systems. Thanks to modern SoC platform, a
multiple function system can be integrated onto a single chip. However, the
design complexity exponentially grows as the number of functions on one chip
increases. Traditional design approach is not suitable for such systems. With-
out proper system-level performance analysis tool and design tool, engineers
rely on their experience of designing single function systems to design multiple
function systems. The results are usually over-allocated resources such as bus,
memory and processing elements. In addition, traditional design tools focus on
the correctness of the systems. Timeliness of the systems is left for the applica-
tion engineers and is ignored during system-level chip design. Traditional design
method leads to great programming overhead and is not suitable for designing
multi-function SoC systems.

� This work is supported in part by a grant from Academia Sinica Thematic program
and part by a grant from the NSC program NSC 96-2752-E-002-008-PAE.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 301–310, 2007.
c© IFIP International Federation for Information Processing 2007

302 C.-M. Lien, Y.-S. Chen, and C.-S. Shih

The design of SoC can become very complex due to the variety of software
and hardware system blocks that need to be integrated. Mobile phone is one
example. As the market gets more competitive, more and more features such
as motion video capability and audio playback are integrated in mobile phones.
A new challenge is how to find a communication architecture between the cost
and performance trade-off efficiently for the mobile phone venders. It is because
that if all processing elements are on one bus, the execution of every processing
element becomes sequential. The application may be fail due to the bus con-
tention. To solve the problem, we can use multi-bus architecture to increase the
parallelism of the system.

Bus

MPC755_A

Bridge
Bus

SRAM

MPC755_B

SRAM

Bus 0

MPC755_C MPC755_D

Bus 1

Subsystem 1
Bus

Subsystem 2

Fig. 1. An example of multi-bus architecture

Figure 1 shows an example of
multi-bus architecture which are
connected through a bus bridge
to exchange data between them.
Each bus subsystem has two
MPC755s [1] and a memory block.
Both bus systems in Figure 1 can
operate at the same time without
bus contention. In this way, the
system performance will increase.
On the other hand, the cost of the
system also increases because of additional bridge, memory and bus routing for
bus subsystems.

In last few decades, many researches have focused on the SoC communication
system-level synthesis problem [2,3]. In the paper, we are concerned with the
bus architecture synthesis for SoC platform. We use a directed acyclic graph
(DAG) to describe the software property including bus transaction, transaction
time, precedence constraint and timing constraint. We also demonstrate that the
proper selection of the communication architectures which based on multi-bus.
For this, we schedule the bus transactions of input software for the different
architecture and select one.

There are numerous advantage for conducting system level co-synthesis such
as shortening the design time, manufacture cost, die size and power dissipation
[4,5]. The researches in system level co-synthesis address on two main issues.
The first issue is to optimize the selection and mapping of the system’s func-
tional blocks onto a set of processing elements (PE), like CPUs, digital signal
processors (DSPs) and application-specific cores, etc [6,7]. The second issue is
to optimize the communication architecture between the processing elements
[8,9,10,11]. The separation between computation and communication enables
the system designers to explore the communication architecture independently
of processing elements selection and mapping. The focus of this paper lies on
the second problem of the system level co-synthesis design.

The targeted issue in this paper is to systematically determine on-chip bus
architecture so as to minimize chip cost subject to the real-time performance
constraints. The algorithm is a greedy algorithm. It starts with a most expensive

On-Chip Bus Architecture Optimization for Multi-core SoC Systems 303

architecture to conduct the feasibility test for the given task set. When the real-
time performance constraints are not met, the algorithm terminates. Otherwise,
the algorithm iteratively evaluates the design and reduces the number of buses
on the chip. It terminates when the real-time performance constraints cannot be
met. In this paper, we use a more practical model for the SoC bus design. Both
high-level bus transactions as well as the effect of shared memory accesses are
considered.

The remainder of this paper is organized as follows: In Section 2, we present
related work in on-chip bus communication synthesis and formally define the
problem. A two steps heuristic algorithm was proposed for on-chip bus commu-
nication architecture synthesis in Section 3. Section 4 presents the performance
evaluation results for the developed algorithms. Finally, Section 5 summaries the
paper.

2 Background and Formal Model

Our work is related to several on-chip bus synthesis researches. In [10], Lahiri et
al. presented an algorithm to find a communication architecture after the system
has been partitioned. They focused on how to use a set of bus architectural
templates to connect processing elements. To do so, the algorithm assumes that
the bus topology is given. In this paper, we relax this assumption. Specifically, we
are interested in how to synthesis the bus topology when the bus transactions
are given based on system-level design analysis. In [9], Kim et al. presented
the problem for finding the on-chip bus topology and the allocation of shared
memories. The proposed exploration technique is a three steps algorithm. In the
first step, they use a static performance estimation technique, proposed in [8], to
quickly evaluate each candidate design and prune the design space. The second
step is to scatter communication traffic in conflict on a bus into different buses
to reduce conflict and maximize concurrency. For this purpose, the algorithm
selects a processing element one at a time, allocates it to a new bus, and produces
different share memory allocation. This step is time consuming, when the number
of processing elements are large. The last step determines the priorities of each
processing elements.

In [11], Pandey et al. formulate the problem from a different perspective.
The given input is a hardware communication lifetime interval graph (CLTI.) In
CLTI, it is assumed that the computation time for each processing element is
a constant but the bus transaction time, depending on the bus width, is not a
constant. The contribution of the paper is to find an optimal bus width which
minimizes the bus contention, and then to optimize the on-chip bus topology.
Unfortunately, many bus protocols such as AMBA only support fixed bus width.
Hence, this approach is only applicable for custom designed bus architecture.

In the following, we define the terms used in this paper and define the problem
of interests. Processing element, denoted by PEk where k is no less than 0, is
a CPU, DSP, or an ASIC in the system. A Task is a sequence of works such as
computation and file access to complete certain function. Tasks are denoted by

304 C.-M. Lien, Y.-S. Chen, and C.-S. Shih

T1, T2, etc. When a task needs to send or retrieve data from other components
in the system such as memory or processing elements, it triggers a bus access
request. When the bus is free, the task occupies the bus to send or retrieve data.
Otherwise, it may wait till the request is granted by bus arbitrator. Namely,
a bus transaction is a data transmission over bus by a task to other devices
in the system. The bus transactions for task Ti are denoted by BTi,1, BTi,2,
etc. In this paper, we assume that the execution of a bus transaction cannot be
interrupted. A bus transaction fails when it is interrupted during its execution. A
bus transaction is defined by two parameters: requesting PE and bus transaction
interval. Requesting PE is a processing element on which the task starts the
bus transaction, and bus transaction interval is the amount of time needed to
complete the transaction. Bus transaction interval for bus transaction BTi,j

is denoted by BIi,j ∈ Z
+. We assume that the length of all bus transaction

intervals are known a priori. It is because the HW/SW partitioning result has
given. Precedence constraint is the execution order of bus transactions. A bus
transaction cannot start until all of its preceding bus transactions complete.

Bus transaction graph, denoted by BTG = (V, E) where V and E is the set
of vertex and edges, is a labeled directed acyclic graph. A vertex, denoted by
vi,j , represents bus transaction BTi,j ; A directed edge from vi,j to vi,k, denoted
by ei,j,k, represents that bus transaction BTi,j is the preceding bus transaction
for bus transaction BTi,k.

While designing a system-on-chip, we are often interested in a set of tasks.
Hence, we can present all the bus transactions for the set of tasks by a set of bus
transactions. Common relative deadline for a set of bus transactions, denoted
by D ∈ Z

+, is the maximum allowable response time for any of the bus trans-
actions. The set of bus transactions meet its timing constraint when all the bus
transactions complete before the common deadline. The rationale of meeting
timing constraint is to assure that the tasks can meet their real-time perfor-
mance requirements. Example for the real-time performance requirements are
the playback rates for multimedia player and sampling rate for audio recorder.

Local memory for a bus transaction means that the memory and requesting
PE are on the same bus; Remote memory for a bus transaction menas that
the memory and requesting PE are not on the same bus. Hence, when the bus
transaction is executed, it will occupy at least two buses to access the memory.
Shared memory, denoted by SMi,j,k, represents a region of memory space for
the data communication between bus transactions BTi,j and BTi,k. When the
bus transaction BTi,j is executing, the bus connected to the shared memory
space is reserved for bus transaction BTi,j to access (i.e. read or write) the
shared memory space. Bridge connects two buses such as AMBA AHB bus so
that a processing element on one bus can access the memory on another bus.
We assume that the bridges are programmable and can be set as open or close
during the run-time. If a bridge is open, the two buses connected by the bridge
can be simultaneously reserved by different PE in the same time. On the other
hand, the two buses are linked together, they will be regard as one bus and
simultaneously reserved by the same PE.

On-Chip Bus Architecture Optimization for Multi-core SoC Systems 305

Communication architecture is based on multi-bus architecture. Every bus
connects at least one processing element and exactly one memory. The different
buses which are connected by bridges can be reserved by different processing
elements concurrently. The more buses brings more concurrency and higher cost.

The bus architecture synthesis problem is defined as following.

Definition 1. Given a set of bus transaction graphs G =
{BTG1, BTG2, ...BTGN} and their common deadline D. The problem is
to determine a communication architecture with the minimal number of buses
subject so that the timing constraint is met.

BTG 1

1,1ΒΤ

1,2ΒΤ
������
������
������
������
������

������
������
������
������
������

PE 1

3 2 1

2

1

3

������
������
������
������
������

������
������
������
������
������

���
���
���

���
���
���

0,1ΒΤBTG 0 ΒΤ0,0

PE 2

PE 0

1,0ΒΤ

0,2ΒΤ

Fig. 2. An example of bus transaction
graphs

In the following, we use an example to il-
lustrate the problem defined in Definition
1. Figure 2 shows the set of bus transac-
tion graphs: BTG0 and BTG1. There are
six bus transactions. The color and label
of each vertex represent its requesting PE
and bus transaction interval. For instance,
BT0,0 and BT1,1 are requested by process-
ing element PE0 for 3 time units. In ad-
dition, bus transaction BT1,1 and BT1,2
can start only after bus transaction BT1,0
completes, due to the precedence constraint. Figure 3 shows a communication
architecture for the bus transaction graphs shown in Figure 2. This architecture
uses two buses to connect three processing elements. The processing elements
PE0 and PE2 are allocated on bus B0 and PE1 is allocated on bus B1. The
shared memory SM0,0,1 and SM1,0,2 is allocated on memory M0. The shared
memory SM1,0,1 and SM0,1,2 is allocated on memory M1.

Bridge

PE0 PE2 PE1

SM1,0,1

SM0,1,2

SM0,0,1

SM1,0,2

Memory M0 Memory M1

Bus B1
Bus B0

Fig. 3. An example communica-
tion architecture for BTG0 and
BTG1

Given the communication architecture, we
can find the bus transaction schedules. Figure
4(a) illustrates the schedule without shared
memory. Figure 4(b) illustrates the schedule
with shared memory. The blocks in the sched-
ules represent the bus reservations. There are
two kinds of bus reservations which caused by
local memory access and shared memory ac-
cess. For example, block BT0,0 is a local mem-
ory access, so bus 0 is reserved for the tempo-
rary files I/O when bus transaction BT0,0 is
executing in the time interval 0 to 3. SM1,0,1
is a shared memory access between BT1,0 and
BT1,1, so bus 1 is reserved for reading input data from the shared memory when
bus transaction BT1,1 is executing in the time interval 5 to 8. Similarly, bus 1
is reserved for writing output data to the shared memory when bus transaction
BT0,1 is executing in the time interval 3 to 5.

Our problem is to find a cost effective architecture with a bus transaction
schedule which meets the timing constraint. We will show that the sub-problem

306 C.-M. Lien, Y.-S. Chen, and C.-S. Shih

Bus B

Bus B1

0 2 3 Time85

0

ΒΤ1,0 ΒΤ1,2

ΒΤ0,0 ΒΤ0,1 ΒΤ1,1

ΒΤ 0,2

(a) Without Shared Memory

Bus B0

Bus B1

0 2 3 85 Time9

0,21,0 ΒΤ1,2

ΒΤ0,0 ΒΤ0,1 ΒΤ1,1

SM0,1,2 ΒΤΒΤ SM1,0,1

(b) With Shared Memory

Fig. 4. Bus Transaction Schedule Examples

to schedule the bus transaction graphs on a given architecture is a NP-complete
problem. In our model, each bus transaction graph is a connected graph in DAG
and released at time 0. There is a common deadline for all bus transaction graphs.
In a given architecture, each bus transaction is scheduled to the requested PE’s
local bus, so the allocation of bus transactions are given. If all the bus transaction
graphs are chains, the sub-problem is to schedule the bus transaction graphs
which are chains on a given architecture. The special case of the scheduling
problem is the JOB SHOP SCHEDULING[12] which is NP-complete. The
special case of the sub-problem is a NP-complete problem, so the hardness of
the problem we want to solve in this paper is also NP-complete at least.

3 On-Chip Bus Synthesis Algorithms Design

In this section, we present the heuristic to find near optimal bus architecture,
Greedy Bus Architecture Synthesis Algorithm (GBASA.) The GBASA algorithm
is an iterative algorithm and consists of three major steps. GBASA algorithm
starts with the bus architecture in which each processing element is connected to
one dedicated bus to conduct the feasibility analysis. If there is no feasible sched-
ule for this architecture, the algorithm stops because the timing constraint will
never be met. When the timing constraint can be met, the algorithm continues to
reduce the number of buses so as to reduce the cost. The algorithm stops when
the timing constraint can barely be met.

Shared memory allocation

No

Yes

No archMeet timing constraint?

Meet timing constraint?

Yes

No
Return previous arch.
and end of algorithm

Schedule generator

Arch. generator

Merge bus &

Fig. 5. Flow of GBASA Algorithm

Figure 5 shows the flow of the proposed
algorithm. In the first step, the algorithm
synthesizes a most expensive architecture
in which every processing element has its
dedicated bus. The second step revises
the initial architecture by scheduling the
bus transactions. If the timing constraint
cannot be met, the algorithm terminates
and returns no feasible architecture. Oth-
erwise, the third step chooses a pair of
buses and merging them into one bus to
reduce the cost. In order to shorten the
finish time of the bus transaction graphs,
the pair of buses which cause less effect

On-Chip Bus Architecture Optimization for Multi-core SoC Systems 307

to the finish time of the schedule is merged. After merging the bus pair, the
algorithm returns to the second step to revise the architecture. If the timing
constraint can be met, the third step tries to reduce cost again. On the con-
trary, the algorithm returns the last feasible architecture and terminates. In the
following, we present the algorithm step by step.

Bus 1

Bridge 1Bridge 0

Memory 0 Memory 1Memory 2

Bridge 2

PE0 PE1

PE2

Bus 0 Bus 2

Fig. 6. The initial architecture

Initial Communication Architecture Gener-
ation. The algorithm first adds processing
elements to the initial communication ar-
chitecture, and one memory and one ded-
icated bus for every processing element.
Then, the algorithm checks every edge in
the bus transaction graphs for examining
the communications between processing el-
ements. If there are bus transactions be-
tween any two processing elements, the al-
gorithm adds a bridge between two dedi-
cated buses. After this initiation, we will
have a communication architecture with
high concurrency and cost. It is because we
use as many memories and buses as we can. Again, take Figure 2 as the input of
the algorithm. The algorithm Initial Architecture Generator generates the initial
architecture which has three PEs with its own bus and memory. After initializing
PE, bus and memory, we add a bridge for a pair of buses, if the two PEs on the
two buses have to communicate to each other. The output of the algorithm is
shown in Figure 6.

Architecture Evaluation. In the second step, the algorithm first conducts the
feasibility test and considers the share memory allocation later.

To efficiently generate a schedule which has a short makespan, we use a heuris-
tic instead of exhaustive search. Observing the given task set, we know that each
bus transaction has its own release time1, deadline, and is non-preemptive. The
scheduling policy is to schedule the bus transaction which has longer residual
execution time. The residual execution time of a bus transaction is the summa-
tion of all the successors’ execution times. The rationale is that longer residual
execution time implies that there are more bus transactions to be completed
before the common deadline. We use the value to determine the importance of
bus transactions. The time complexity of Longest Successors’ Execution Time
First Algorithm is O(n2). The algorithm is similar to the Least Slack Time First
algorithm [13]. The difference is that each bus transaction does not have equal
release time but has common deadline. When the requesting PEs for two consec-
utive bus transactions are located on different buses and need to exchange data,
share memory is the most common mechanism to do so. However, more than one
bus may be occupied to access a remote share memory. Hence, which memory
1 Only the first bus transaction for every BTG, BTi,1 for i ≥ 0, has the same release

time.

308 C.-M. Lien, Y.-S. Chen, and C.-S. Shih

on one of the two buses is used for a share memory determine the makespan
and cause deadline miss. After a feasible schedule is found in the above step, the
algorithm determines the use of share memory. Three cases are considered:

– When both the schedule of the two buses have available time intervals for
remote memory access, the algorithm selects the one with shorter bus trans-
action interval.

– When only one of the bus have available time interval for remote memory
access, a remote memory access is inserted to the bus.

– When none of the two buses has available time intervals for remote mem-
ory access, a remote memory access is inserted to the bus for shorter bus
transaction interval.

Inserting remote memory access in the first two cases does not prolong the
makespan.However, the third case prolongs the makespan. If the timing constraint
cannot be met, the architecture is not feasible and the algorithm terminates.

Memory 1

Bridge

PE1 PE2 PE1

Bus 0 Bus 1

Memory 0

Fig. 7. The example architecture after
one iteration

Communication Architecture Cost Down.
When the timing constraint is still met,
the GBASA algorithm continues to reduce
the number of buses in the design. The al-
gorithm selects one of the bridges if there
is any to remove. Two metrics, overlap
time and precedence number, are used.
The overlap time of a bridge is the sum of
time intervals during which the two buses
are occupied simultaneously. The prece-
dence number of a bridge is the number
of bus transactions to be removed due to
the remote memory access between the bus pair. First, we choose a set of bridges
which have the same shortest overlap time. In the second step, we choose a bridge
which has the largest precedence number. The rationale is that we merge the
two buses which have less bus contention. By merging the bus pair, we can also
reduce the additional bus transaction caused by shared memory access. By using
this algorithm, we merge the bus pair bus B0 and B2. Figure 7 shows the new
architecture after bridge remove. The new architecture will be evaluated by Step
2 for further cost down.

4 Performance Evaluations

We evaluate the performance of the GBASA algorithm by extensive simulations
and compare its performance with the exponential branch and bound algorithm.
Two metrics, optimality and timing overhead time, are measured to evaluate
the performance. Optimality is the ratio of the number of buses selected by the
GBASA algorithm to that selected by branch and bound algorithm. Timing over-
head is the amount of time that the two algorithms take to complete their designs.

On-Chip Bus Architecture Optimization for Multi-core SoC Systems 309

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
un

ni
ng

 T
im

e
(m

s.
)

Number of Bus Transactions

B&B Search
Our Algo.

(a) Timing Overhead

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 4 5 6 7 8 9

O
pt

im
al

ity

Number of Bus Transactions

optimal ratio

(b) Optimality ratio

 0

 2

 4

 6

 8

 10

 12

 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 B

us
es

Number of Bus Transactions

worst case #
3BAGA result #

optimal #

(c) Bus elimination with
maximum 15 PEs

Fig. 8. Evaluation Results

The software environment of the experiments is Ubuntu Linux Distribution
and GNU GCC 4.0. The hardware environment is a machine equipped Intel
Pentium III 800 MHz and 128MB RAM. We evaluate our algorithm in differ-
ent types of bus transaction graphs including DAG, tree and chain in order to
simulate different types of applications. The transaction time are uniformly dis-
tributed in the range of 10 to 70. We compare the result of the GBASA algorithm
to the worst case architecture and the optimal case architecture.

Figure 8(a) shows the timing overhead of the GBASA algorithm and B&B
algorithm. The confidence interval of each data point in the figure is no less than
95%. The x-axis is the total number of bus transactions. The y-axis is the run-
ning time in milliseconds. As shown in the figure, the timing overhead of B&B
search-based algorithm exponentially increases with the number of bus trans-
actions. On the other hand, the timing overhead of GBASA algorithm slowly
increases. Figure 8(b) shows the optimality of the GBASA algorithm. The figure
shows that the GBASA algorithm performs as well as the branch and bound
algorithm. Figure 8(c) shows how many redundant buses the GBASA algorithm
eliminates, comparing to the worst design. A worst design is the one in which
every processing element has its dedicated bus and memory. Figure 8(c) shows
the results when there are 15 PEs. The results show that the GBASA algorithm
performs as well as an optimal results and eliminates up to 80% of the buses
from the worst design.

5 Conclusion and Future Work

In this paper, we presented a solution for on-chip bus synthesis for a system-on-
a-chip (SoC) such that the communication cost if minimized subject to real-time
performance constraints. We developed a three stages heuristic, GBASA algo-
rithm, to synthesize on-chip bus design and shorten the makespan simultane-
ously. Performance evaluation results show that the GBASA algorithm reduces
the run-time overhead and derive near-optimal solutions. For the future work, we
can extend the communication architecture to the multi-layer bus architecture.
It is because the multi-layer bus architecture can also provide higher concur-
rency. Another research direction is the routing path of the on-chip bus. The
complex of SoC is still growing up. There will be more complex connection be-

310 C.-M. Lien, Y.-S. Chen, and C.-S. Shih

tween hardware components. The routing path of on-chip bus will affect the size
of chip, energy dissipation and the propagation delay.

References

1. Ryu, K.K., Mooney, V.J.: Automated bus generation for multiprocessor soc design.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 23, pp. 1531–1549. IEEE Computer Society Press, Los Alamitos (2004)

2. Wolf, W.H.: An architectureal co-synthesis algorithm for distributed, embedded
computing systems. IEEE Transactions on Very Large Scale Integration Systems 5,
218–229 (1997)

3. Yen, T.Y., Wolf, W.: Performance estimation for real-time distributed embedded
systems. IEEE Transactions on Parallel and Distributed Systems 9, 1125–1136
(1998)

4. Zhang, Y., Ye, W., Irwin, M.J.: An alternative architecture for on-chip global
interconnect: Segmented bus power modeling. In: The Thirty-Second Asilomar
Conference on Signals, Systems and Computers, November 1–4 1998, vol. 2, pp.
1062–1065 (1998)

5. Liveris, N.D., Banerjee, P.: Power aware interface synthesis for bus-based soc de-
signs. In: Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, Feburary 16–20, 2004, vol. 2, pp. 864–869 (2004)

6. Shirvaikar, M., Estevez, L.: Digital camera with jpeg, mpeg4, mp3 and 802.11 fea-
tures. In: Workshop Presentation, Embedded Systems Conference, San Francisco,
USA (2002)

7. Rim, M., Jain, R., Leone, R.D.: Optimal allocation and binding in high-level syn-
thesis. In: Proceedings. 29th ACM/IEEE Design Automation Conference, 1992,
June 8–12, 1992, pp. 120–123. IEEE Computer Society Press, Los Alamitos (1992)

8. Kim, S., Im, C., Ha, S.: Schedule-aware performance estimation of communica-
tion architecture for efficient design space exploration. In: First IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(October 1–3, 2003)

9. Kim, S., Im, C., Ha, S.: Efficient exploration of on-chip bus architectures and mem-
ory allocation. In: CODES+ISSS ’04. Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, pp.
248–253. ACM Press, New York (2004)

10. Lahiri, K., Raghunathan, A., Dey, S.: Design space exploration for optimizing on-
chip communication architectures. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 23, 952–961 (2004)

11. Pandey, S., Glesner, M., Muhlhauser, M.: Performance aware on-chip communica-
tion syhthesis and optimization for shared multi-bus based architecture. In: ACM
17th Symposium on Integrated Circuits and Systems Design, ACM Press, New
York (2005)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

13. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Transactions on Software Engineering 15(12), 1497–1506 (1989)

An Effective Path Selection Method

in Multiple Care-of Addresses MIPv6
with Parallel Delay Measurement Technique�

Jungwook Song, Heemin Kim, and Sunyoung Han��

Department of Computer Science and Engineering, Konkuk University
1 Hwanyang, Gwangjin, Seoul 143-701, Korea

{swoogi, procan, syhan}@konkuk.ac.kr

Abstract. In the Ubiquitous Society, there will be many types of mobile
access network surrounding us and we can access the Internet anytime
anywhere. At that time, mobile device can select several links from sur-
rounded mobile access networks and access the Internet with multiple
interfaces. We have already Mobile IPv6 protocol that supports mobility
and try to extend to support multiple Care-of Addresses registration.
But, we don’t have any solution for selecting effective path. The effective
path has many advantages such as reducing communication overhead. In
this paper, we propose that effective path selection method in Multiple
Care-of Addresses Mobile IPv6 environment with ‘Parallel Delay Mea-
surement’ technique. With our technique, we can make down average
packet delay.

1 Introduction

In the Ubiquitous Society, there will be many types of mobile access network
surrounding us and we can access the Internet anytime anywhere. Nowadays,
we can see that many types of devices keep contact to the Internet while mov-
ing their location. And there are many types of mobile access network services
such as HSDPA(High Speed Downlink Packet Access), IEEE 802.16e mobile
WiMAX(WIBRO in KOREA), and IEEE 802.11 Hotspots. HSDPA and mobile
WiMAX are supporting high speed movement of mobile devices and IEEE 802.11
Hotspots support connection to the Internet in many public areas.

The network layer protocol is very important as the mobile access network.
We have already standardized mobility support protocol that is Mobile IPv6[1].
According to the current Mobile IPv6 specification, a mobile node may have
several care-of addresses, but only one, termed the primary Care-of Address,
can be registered with its Home Agent and the Correspondent Nodes. However,
for matters of cost, bandwidth, delay, etc., it is useful for the mobile node to
get Internet access through multiple access media simultaneously, in which case
multiple active IPv6 Care-of Addresses would be assigned to the mobile node. So,
� This research was supported by the ‘Seoul R&D Program’.

�� Corresponding author.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 311–318, 2007.
c© IFIP International Federation for Information Processing 2007

312 J. Song, H. Kim, and S. Han

IETF(Internet Engineering Task Force) Monami6 Working Group try to extend
exists Mobile IPv6 protocol standard to support multiple Care-of Addresses
registration[2].

Many type of Adapters for mobile access network will become more cheaper
and smaller. So, the Mobile devices can access multiple link to the Internet
with multiple adapters and register multiple Care-of Addresses with MCoA-
MIPv6(Multiple Care-of Addresses Mobile IPv6). Not the less, there is no proper
solution for selecting effective path(link) to the Home Agent or the Correspon-
dent Nodes. There are many disadvantages cause of non-effective path.

In this paper, we propose the solution for selecting effective path in MCoA-
MIPv6 using ‘Parallel Delay Measurement’ technique. With our method, the
Mobile Node and its Home Agent and the Correspondent Nodes can select ef-
fective path and we can reduce the communicating overhead.

The rest of the paper is organized as follows. Section 2 describes the path
selection problem of MCoA-MIPv6. Section 3 describes the ‘Parallel Delay Mea-
surement’ technique. Section 4 shows the result of analysis and concluding re-
marks are in Section 5.

2 Path Selection Problem of MCoA-MIPv6

2.1 Current Problem

The Mobile Node can have multiple interfaces and many types of mobile access
network can be overlapped. So, it is needed that multiple Care-of Addresses
registration for effectiveness and redundancy. Fig. 1 shows two sample configu-
rations in the middle of overlapped mobile access networks.

Let’s assume the CoA1(mobile access network associated with the Care-of
Address1) has biggest bandwidth, minimum cost and minimum delay(different
from one-way delay or round trip time to the Home Agent or to the Correspon-
dent Nodes), it is natural that MN(Mobile Node) chooses CoA1 as the prime
link to access the Internet, and it is reasonable in case (a) of Fig. 1. But in case

Internet

MN

CoA2

CoA3

CoA1

CN

HA

Internet

MN

CoA2

CoA3

CoA1

CN

HA(a) (b)

Fig. 1. Sample Configuration

An Effective Path Selection Method in Multiple Care-of Addresses MIPv6 313

(b) of Fig. 1, we can easily guess that CoA2 is better than CoA1 when MN
communicating with CN(Correspondent Node) and CoA3 is better than CoA1
when MN communicating with HA(Home Agent).

There are no functions that can measure whole path quality of communication
parties in the MCoA-MIPv6, and they are actually needed. The Mobile Node
just grades links and sets priority values to the Binding Unique Identifier sub-
option and the Correspondent Node refers to this priority values for selecting
effective path of communication. That priority values represent only link specific
characters, but communicating parties actually need path specific characters.

2.2 Current Implementations of MCoA

The SHISA is an implementation of Mobile IPv6 which supports MCoA.
The WIDE project had developed two different Mobile IPv6 through the
KAME project (KAMEMIP) and through the internetCAR project(SFCMIP).
They finally decided to work together for single implementation (called
SHISA) in the WIDE project on spring 2004. The SHISA support RFC3775,
RFC3776, RFC3963, RFC4584, draft-wakikawa-mobileip-multiplecoa-05 and
draft-momose-mip6-mipsock-00[3,4,5].

The NEPL NEMO Platform for Linux is the NEMO(NEtwrok MObility) im-
plementation based on the MIPL2 architecture. This is another implementation
of supporting MCoA[6,7].

3 Parallel Delay Measurement Technique

In this section, we describe the ‘Parallel Delay Measurement’ technique for ef-
fective path selection in MCoA-MIPv6. We can measure one-way delay with
addition of the Binding Timestamp sub-option to the MCoA-MIPv6[2]. From
this one-way delay and exist priority values of the Binding Unique Identification
sub-option, we can select effective path and reduce communicating overhead.
And we also can be adapted to variation of link status through binding refresh-
ment mechanism of MIPv6. Some modification to MCoA-MIPv6 are required to
support parallel delay measurement technique.

3.1 Binding Timestamp Sub-option

To measure one-way delay, the Mobile Node must add timestamp information to
its own Binding Update message. If needed, the Binding Timestamp sub-option
is included in the Binding Update, Binding Acknowledgement, and Binding
Refresh Request messages. Fig. 2 shows the format of the Binding Timestamp
sub-option that we newly define in this paper. When the Mobile Node sends
Binding Update message with the Binding Unique Identifier sub-option and
the Binding Timestamp sub-option, the Priority/Status field in the Binding
Unique Identifier sub-option can be set to specific value from the MCoA-
MIPv6 or set to zero for entrusting selecting path to the Correspondent Node.

314 J. Song, H. Kim, and S. Han

Type = TBD Length

Binding Unique ID (BID)

Timestamp

Reserved

80 312416

Fig. 2. Binding Timestamp sub-option

– Type
Type value for Binding Timestamp sub-option will be assigned later.

– Length
8-bit unsigned integer. Length of the option, in octets, excluding the Type
and Length fields. This field must be set to 4.

– Binding Unique ID (BID)
The BID which is assigned to the binding carried in the Binding Update
with this this sub-option. BID is 16-bit unsigned integer. A value of zero is
reserved[2].

– Reserved
8 bits reserved field. Reserved field must be set with all 0.

– Timestamp
32-bit unsigned integer. This value can be retrieved from normal C library
function.

3.2 Parallel Binding Update

In MCoA-MIPv6, the Mobile Node has multiple interfaces and has multiple links
to the Internet. So, the Mobile Node has multiple Care-of Addresses and sends the
Binding Update messages to the Home Agent and to the Correspondent Nodes per
each care-of address[2]. In our method, when the Mobile Node sends the Bind-
ing Update messages, it sends all binding information of all Care-of Addresses
simultaneously as possible. The Timestamp field in the Binding Timestamp sub-
option must be set as the value of the Binding Update message creation time. So,
all Timestamp values are slightly different. When the Mobile Node receives the
Binding Refresh Request message, it must send all binding information of each
Care-of Address at the same time with Binding Timestamp sub-option.

And, when sending Binding Update messages, the Mobile Node sets all
TTL(Time To Live) value of the IPv6 header belong the Binding Update mes-
sages as the same value. From this small technique, we can easily measure the
difference of the hop count of each path.

3.3 Selecting Effective Path on the Home Agent and the
Correspondent Node

In MCoA-MIPv6, the Mobile Node determines priorities of each Care-of Address
and sends that to the Home Agent and the Correspondent Nodes with the Bind-
ing Unique Identifier sub-option[2]. In our method, priorities are synthetically

An Effective Path Selection Method in Multiple Care-of Addresses MIPv6 315

determined by the Mobile Node, the Home Agent and Correspondent Nodes.
Whenever the Home Agent receives the Binding Update message with Binding
Unique Identifier sub-option and Binding Timestamp sub-option, gets its own
timestamp at that time and calculates difference between the Binding Times-
tamp and its own timestamp. This difference value is the one-way delay. The
Home Agent could get minimum one-way delay and gives higher priority value
to that binding information. It is not need global timestamp or absolute one-way
delay, we need just relative one-way delay. We could assume that relatively small
one-way delay means small packet delay. The Correspondent Nodes determine
priorities same as the Home Agent.

Because the Mobile Node sets all TTL values as the same value, we can easily
measure the difference of the hop count of each path. When the Home Agent
receives Binding Update messages, retrieves final TTL values from messages and
decides maximum and minimum final TTL value. The smaller final TTL value
means the bigger hop count and the bigger final TTL value means the smaller
hop count. Thus, the maximum final TTL value means the shortest path.

From these two factor, one-way delay and final TTL value, we could calculate
new priority value PNEW as following equation.

PNEW = αPMN + βΔTTL − γDelay

PMN means the priority value from the Mobile Node, ΔTTL means difference
between final TTL value and minimum final TTL value and Delay means the
one-way delay value. α, β and γ are positive weight values that will be determined
with real experiment.

3.4 Selecting Effective Path on the Mobile Node

When the Home Agent and Correspondent Node receive the Binding Up-
date message and if that is correct, they send the Binding Acknowledgement

Internet

MN

CoA2

CoA3

CoA1

CN

Timestamp2

Priority2

BU Message

Timestamp1

Priority1

BU Message

Timestamp3

Priority3

BU Message

Timestamp4

Priority4

BR Message

Timestamp5

Priority5

BR Message

Timestamp6

Priority6

BR Message

Fig. 3. Parallel Delay Measurement

316 J. Song, H. Kim, and S. Han

message[2]. At that time, in our method, they send the Binding Acknowledge-
ment messages with Binding Timestamp sub-option. Then the Mobile Node
receives the Binding Acknowledgement messages, calculates one-way delay and
determines priorities.

Fig. 3 shows brief sequence of the parallel delay measurement technique.

❶ ∼ ❸ MN sends the BU messages to CN with priorities and Timestamps.
❹ ∼ ❻ CN replies BR messages to MN priorities and Timestamps.

4 Analysis

To analyze effectiveness of our method, we consider two cases of one scenario. The
scenario is that the Mobile Node has three network connection and exchange one
thousand messages with the Correspondent Node through the highest priority
path. We take the ‘tic-toc’ model as exchanging messages, the Mobile Node
sends a ‘tic’ message and the Correspondent Node receives ‘tic’ and reply with a
‘toc’ message. This is one sequence and repeat five hundred times. Totally they
exchange one thousand messages.

The first case of the scenario, the Correspondent Node is plain IPv6 node,
therefore the Mobile Node and the Correspondent Node can’t optimize the rout-
ing path of packets. The second case of the scenario, the Correspondent Node is
MIPv6 enabled node, therefore the Mobile Node and the Correspondent Node
can optimize the routing path of packets.

And, we consider two network configurations as shown in Fig. 1. We assume
that the average delays of each link as follows: CoA1 → 2ms, CoA2 → 3ms,
CoA3 → 5ms and internet cloud → 10ms. We don’t need to consider the other

Fig. 4. Analysis Result of Configuration (a). Because Path Selection Method always
could select better path, its performance is better.

An Effective Path Selection Method in Multiple Care-of Addresses MIPv6 317

Fig. 5. Analysis Result of Configuration (b). Even if the Correspondent Node is not
MIPv6 enabled, the path selection(PS) method is better.

link, because other link will any affect to the result. The delays of each link can
be changed suddenly while exchanging messages, because the Mobile Node can
moving. We assume that delays of each link rotate when after exchanging every
100th message. Fig. 4 and Fig. 5 show the results.

5 Concluding Remarks

In this paper, we proposed an effective path selection method in MCoA-MIPv6
with ‘Parallel Delay Measurement’ technique. To measure one-way delay, we
defined new sub-option called the Binding Timestamp sub-option and through
one-way delay, we could maximize the efficiency of communication between the
Mobile Node and the Home Agent or the Correspondent Nodes.

We are building NGN(Next Generation Network) for the Ubiquitous Com-
puting environment. The NGN has huge bandwidth compared with the present
Internet. But, if hundreds of or thousands of application services for Ubiquitous
Network are deployed, it will become crowded same as the present situation. So,
we need the solution that maximize the utilization of the network. We believe
that our method can contribute to increasing effectiveness of the network usage.
We need more researches on context adaptive measurement method.

References

1. Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6: RFC3775, IETF
(June 2004)

2. Wakikawa, R., Ernst, T., Nagami, K.: Multiple Care-of Addresses Registration:
draft-ietf-monami6-multiplecoa-01.txt, IETF Draft (October 2006)

318 J. Song, H. Kim, and S. Han

3. SHISA, http://www.mobileip.jp/
4. The KAME project, http://www.kame.net/
5. WIDE Project, http://www.wide.ad.jp/
6. Nautilus, http://software.nautilus6.org/
7. MIPL, NEPL, http://www.mobile-ipv6.org/
8. Devrapalli, V., Wakikawa, R., Petrescu, A., Thubert, P.: Network Mobility

(NEMO) Basic Support Protocol: RFC3963, IETF (January 2005)
9. Ng, C., Thubert, P., Watari, M., Zhao, F.: Network Mobility Route Optimiza-

tion Problem Statement: draft-ietf-nemo-ro-problem-statement-03.txt, IETF Draft
(September 2006)

10. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification:
RFC2460, IETF (December 1998)

http://www.mobileip.jp/
http://www.kame.net/
http://www.wide.ad.jp/
http://software.nautilus6.org/
http://www.mobile-ipv6.org/

Self-organizing Resource-Aware Clustering for

Ad Hoc Networks

Tales Heimfarth, Peter Janacik, and Franz J. Rammig

Heinz Nixdorf Institute, University of Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany
{tales,pjanacik,franz}@uni-paderborn.de

Abstract. This paper proposes an efficient heuristic for solving
the minimum-intracommunication clustering problem in energy- and
resource-constrained ad hoc networks. The heuristic organizes the net-
work in clusters aiming to minimize a given cost function. The function
used measures the total communication cost between all nodes within
the cluster, keeping a minimum amount of resources per cluster.

The clusterhead selection of the proposed heuristic is based on the
division of labor encountered in social insects. The idea is that each node
has probabilistic tendencies to assume a determined role in the network.
For example, nodes with good connectivity and high energy level are
good candidates for being clusterheads. The probability of assuming a
determined role is based on a node’s fitness for the specific role and the
actual necessity (reflected by stimulus) of the role in the current network
context. After becoming clusterhead, a node starts recruiting members in
order to reach a minimum amount of resources that have to be available
in the cluster. The procedure is based on a membership fitness function
that evaluates the suitability of a node for the cluster.

The realized simulations demonstrate that the proposed heuristic per-
formance was about in average 25% inferior to the global optimum.

1 Introduction

Wireless ad hoc networks enable a myriad of novel applications ranging from
human-embedded sensing to ocean data monitoring. Given current hardware lim-
itations of wireless nodes, e.g. commercial off-the-shelf sensor nodes, approaches
for the management of ad hoc networks have to be designed to function using
only a low amount of resources and communication overhead.

In general, there are two heuristic design approaches for management of ad hoc
networks at different levels (e.g. topology control, network layer, application).
The first method is to have all nodes maintain knowledge of the network and
manage themselves. This encurse a large amount of overhead. An alternative is to
clustering the nodes, identifying a subset of nodes, and vest them with the extra
responsibility of being a leader (clusterhead) of certain nodes in their proximity.
The aim of this approach is to reduce communication and memory overhead.

In this paper, we present a new heuristic to organize an ad hoc network into
clusters. Our proposal addresses the problem of partitioning the nodes of the

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 319–328, 2007.
c© IFIP International Federation for Information Processing 2007

320 T. Heimfarth, P. Janacik, and F.J. Rammig

network in multi-hop groups with a guaranteed minimum amount of resources
q in each one of them. This kind of clustering is useful in various scenarios. An
example is the operating system (OS) we are currently developing in our research
group, called NanoOS [1].

NanoOS is a small distributed OS for sensor networks. In order to provide
more functionality on hardware constrained nodes, we are distributing the OS
and application services among the nodes of the network. We use the heuristic
presented here to organize the network in clusters. After this, each OS and
application instance (a set of services) is distributed inside one cluster. We set the
resource requirement (q) to the worst-case resource utilization of one instance of
the OS and application. Therefore, it is guaranteed that each cluster has enough
resources for an instance of our distributed OS.

This paper is organized as following: Section 2 reviews the state-of-the-art
in clustering algorithms for ad hoc networks. Section 3 describes the proposed
architecture, before Section 4 discusses simulation results. Finally, Section 5
presents the conclusions.

2 Related Work

There are several clustering algorithms that aim to find the Maximum inde-
pendent set (MIS) of a network modeled as an undirected graph. This is often
combined with the dominance property, which means that the following proper-
ties should be satisfied: independence (no two clusterheads can be neighbors) and
dominance (every ordinary node has at least a clusterhead as direct neighbor).
There are several algorithms that satisfy these properties ([2,3,4,5,6]). Different
from our approach, they result in a 1-hop distance to the clusterheads of clusters.

Several approaches have been proposed for multi-hop clustering with different
construction objectives. Here we have the Max-Min D-Cluster Formation [7] that
aims to construct the cluster with nodes at most d hops away from the clusterhead.

Other heuristics that pursue different objectives are the Budget Approach [8]
which tries to divide the ad hoc network in a set of clusters whose size is close
to a given one. Beyond this, the Upper and under bound approach [9] works with
superior and inferior size limits. It tries to construct clusters that respect these
limits. Nevertheless, the approach allows a small overlap among the clusters.

In contrast to above heuristics, our clustering algorithm pursues a different
objective: all clusters should posess a minimum amount of resources (i.e., the
under bound limit is not given by a size in nodes, but by an amount of resources),
and we try to minimize the internal cluster communication cost. This will be
discussed in detail in the next sections.

3 The Minumum-Intracommunication Clustering
Problem

In this section, a formal definition of our clustering problem (we call it minumum-
intracommunication clustering) is described.

Self-organizing Resource-Aware Clustering for Ad Hoc Networks 321

The ad hoc network is modeled by an undirected graph G = (V, E), where V
is the set of wireless nodes and an edge {u, v} ∈ E if and only if a communication
link is established between nodes u ∈ V and v ∈ V . Each node v ∈ V has a
unique identifier (IDv).

For each link, a weighting function attributes a positive weight w : E → [0, 1]
that represents the quality of a wireless link. In the work [10], we presented a
method to estimate the quality of a wireless link based on our combined metric.
We call this metric virtual distance and smaller values represent better connec-
tion links. We define for each edge not in the graph ({u, v} /∈ V), w(u, v) = ∞.

For each node, an additional weighting function r is responsible to characterize
the amount of resources available in the node. r : E → �∗. This models the
resource capacity of the node.

We aim to create multihop clusters with a minimum amount of resource per
cluster minimizing the intra-cluster communication cost.

The considered optimization problem is modeled as follows:

Input: A graph with weighted nodes and links (G, w, r) and a resource require-
ment q ∈ �∗ that must hold in each cluster

Constraints: For every input instance (G, w, r, q), M(G, w, r, q) =
{C1, C2, .., Ck|Ck is the kth cluster configuration, where the following
proprieties holds }
Ck =

{
ck1, ck2, .., ck(nk)

}
is the kth possible cluster configuration of the

graph, where k = {1, 2, .., n} (n is the number of possible configurations, nk
is the number of clusters in the kth configuration, nk = #Ck)
cki =

{
v1

ki, v
2
ki, .., v

#cki

ki

}
∈ Pot(V) is the ith cluster of the kth configuration,

where vj
ki is the jth element of the cluster cki

For each configuration Ck, k = 1, 2, .., n, the following proprieties must hold:
1.

⋃
i=1,2,..,nk cki = V (cluster definition constrain)

2.
⋂

i=1,2,..,nk cki = ∅ (no overlapping constraint)

3. Let P (u, v) =
{
p
(u,v)
1 , p

(u,v)
2 , .., p

(u,v)
m

}
be the set of all possible paths

between nodes u and v. p
(u,v)
h ∈ Pot(E) is the hth possible path where

p
(u,v)
h =

{
{u, xh

1}, {xh
1 , xh

2}, .., {xh
g−1, x

h
g}, {xh

g , v}
}
, xh

f ∈ V , f = 1, 2, .., g,
g ∈ IN

For each {u, v} ∈ E∧u, v ∈ cki, i = 1, 2, ..., nk, ∃p
(u,v)
h ∈ P (u, v)|xh

f ∈ cki

for f = 1, 2, .., g. (Connectivity constraint)
4.

∑#cki

j=1 r(vj
ki

) ≥ q, for each i = 1, 2, ..., nk (minimum amount of resource
per cluster)

Costs: For every cluster configuration Ck = {ck1, ck2, .., ck(nk)} ∈ M(G, w, r, q),
the cost is cost(Ck, (G, w, r, q)) =

∑nk
i=1

∑
u,v∈cki

Dcki
(u, v)·

(
α·r(u)+(1−α)

)
,

where D(u, v) is the virtual distance between u, v ∈ V . Dcki
(u, v) is the

virtual distance between u, v using the shortest path that includes just links
that are inside the cluster cki (sum of the link weights of the shortest path
inside the cluster) . α ∈ [0, 1] controls how much the amount of resources
influences the distance metric. For α = 0, just the distances between cluster

322 T. Heimfarth, P. Janacik, and F.J. Rammig

members are incorporated into the metric; α = 1 means that nodes with n
times more resources have an n times stronger influence.
PCost(p(u,v)

h) = w(u, xh
1) +

∑g−1
f=1 w(xh

f , xh
f+1) + w(xh

g , v)

D(u, v) = PCost(p(u,v)
h), where PCost(p(u,v)

h) = min
(
PCost(p(u,v)

b)
)

for

b = 1, 2, .., m Dcki
(u, v) = PCost(p(u,v)

h), where p
(u,v)
h ∈ P (u, v)|xh

f ∈ cki

and PCost(p(u,v)
h) = min

(
PCost(p(u,v)

b)
)

for b = 1, 2, .., m

Goal: Minimum (i.e. min{cost (Ck, (G, w, r)) | for k = 1, 2, .., n})

It is important to note that we are trying to minimize the sum of the link costs
over all clusters. In each cluster, this cost is given by the sum of the link costs
from every node to all other ones.

4 Emergent Clustering

The heuristic presented aims to find good clustering configuration in a network
with a low amount of mobility. It reacts by stronger changes through re-execution.

4.1 Clusterhead Selection

In the initial state, all nodes of the network are ordinary nodes, i.e., there is no
cluster structure in the network. The variable statev describes the actual state of
a node v (statev ∈ {CH, Me, Nm}) and ci is set of the current members of the
cluster i ∈ IN . For the sake of simplicity, we define that clusterID = i. Initially,

for i = 0, 1, .., n, ci =. The response function TθCHv
(sCHv) =

sβ
CHv

sβ
CHv

+θβ
CHv

is

responsible for the transition from an ordinary (Nm) node v ∈ V to clusterhead.
θCHv is the threshold of the node v to become clusterhead and sCHv

is the
stimulus of v to assume the clusterhead role.

The threshold indicates how appropriate a node is for a role. Smaller θCHv

means that the node v is very well suited to carry out the role of a clusterhead.
The definition of the threshold can be seen in (1).

θCHv = k1

(∑
u∈NgbNm(v) w(u, v)

#NgbNm(v)

)
+ k2(1−Ev)+ k3

(
1 − #NgbNm(v)

Max Nm

)
(1)

Where Ev ∈ (0, 1) describe the energy level of the node v, such that 1 means
the battery is full and 0 that it is depleted. Let Ngb(v) be the set of nodes that
are directly connected with v, i.e. u ∈ Ngb(v) iff {u, v} ∈ E. A node u is in the
set NgbNm(v) iff u ∈ Ngb(v) and stateu = Nm. This means that NgbNm(v) is
the set of neighbors of v that do not yet belong to any cluster.

The idea of this threshold function is that nodes with high energy level
and high connectivity are good candidates for becoming elected as clusterhead.
The energy is an important factor because clusterheads assume administrative

Self-organizing Resource-Aware Clustering for Ad Hoc Networks 323

(among other) tasks within the cluster and have a special status in the network.
Good connectivity comes from the greedy assumption that starting a cluster
from well-connected nodes will result in a relatively small clustering cost.

The stimulus function is given (for k1 + k2 = 1) by sCHv
= k1

telapsed

trequired
+

k2

(
1 − NgbMe(v)+NgbCH (v)

Ngb(v)

)
. The elapsed time is telapsed and trequired is the

maximum running time of the algorithm.
A node u is in the set NgbMe(v) iff u ∈ Ngb(v) and stateu = Me. Similarly,

u ∈ NgbCH(v) iff u ∈ Ngb(v) and stateu = CH . With simple words, NgbMe(v)
is the set of neighbors of v that are members of some cluster. NgbCH(v) is the
set of neighboring nodes that are already clusterheads.

The underlying idea is that nodes that are not belonging to any cluster for
a longer period of time and nodes without clusters in their vicinity should have
a higher stimulus to become clusterhead. With the response function given by
TθCHv

(sCHv), spontaneously, some nodes will start to change the role to cluster-
head based on the stimulus function. When a node decides to be clusterhead, it
selects a random ClusterID.

4.2 Members Selection

Influencing parameters. During membership selection by the clusterheads
the following paramenters help to evaluate the suitability of a node b:

1. The distance to the closest node already in the cluster : This parameter helps
to reduce the communication cost within the cluster. It is given by Db

ci
=

min{w(b, e)|e ∈ Ngb(b)∩ci}, i.e., the smallest vertice weight that is adjacent
to node b and to a member of the cluster ci. If a node is not directly connected
to a cluster member, Dci

d = ∞.
2. The distance to the clusterhead : This parameter is responsible for shaping

the cluster in order to constrain its diameter.
3. Connectivity to nonmembers: This parameter is important when there is a lot

of resources still missing in the cluster. Given by Cnb
Nm =

∑
e∈NgbNm(b)(1−

w(b, e)), i.e., the sum of the “proximity” (1−w(b, e)) of the set of the neigh-
bors of b that have nonmember status. Figure 1 illustrates the effect of this
term.

4. Connectivity to members of the cluster : This parameter helps to re-
duce the communication cost within the cluster. It is given by Cnb

ci
=∑

e∈{Ngb(b)∩ci}(1 − w(b, e)) where ci is the current set of members of the
cluster i ∈ IN .

5. The resource availability of the node: Aim of communication cost reduction
based on the idea that nodes with higher resource availability will reduce
the cost of the cluster to a greater extent since fewer of them are needed.

These aspects will be explicitly or implicitly considered by the Membership-
Select algorithm presented here.

324 T. Heimfarth, P. Janacik, and F.J. Rammig

0 .5 0 .5
0 .2 0 .9

1 2

d

Ca n d ita te s

Fig. 1. Example of two candidates
with different neighborhood

15
20
25
30
35
40
45
50
55
60

Emergent ClusteringOptimumT
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n

C
o
st

Fig. 2. Resulting communication cost of a
randomly-placed wireless network using the
signal strength as link metric. For this trial,
q = 3 was used.

Membership-Select algorithm. For the membership selection, we use the
statev variable describing the actual state of a node v with an additional state:
the deciding (Dd) state (statev ∈ {CH, Me, Nm, Dd}). Let Δq be the amount
of additional resources needed by a cluster in order to fulfill the requirement q at
a certain point of time. The Membership-Select algorithm is an incremental pro-
cess, i.e., at beginning, the cluster has just the clusterhead (CH) node and during
the clustering process, more and more nodes are added until the cluster achieves
an appropriate size (

∑
v∈ci

r(v) ≥ q). At the beginning of the clustering process
of the cluster i, just one node belongs to the cluster: the clusterhead. We will call
it node hi (hi ∈ ci, stateh = CH). When a node becomes part of the cluster (in-
cluding the clusterhead), immediately a message is broadcasted to the neighbor-
ing nodes signalizing the new status and requesting new members (Call Members
message). Each nonmember and deciding node d (statusd ∈ {Nm, Dd}) that re-
ceives this message changes its state to deciding (statusd = Dd).

Deciding nodes are the potential new members of the cluster. Nevertheless,
not all nodes are the best choice to be included into the cluster. In order to
privilege nodes potentially contributing to a low global cluster cost, each node
b in the decision state estimates its own fitness value 0 ≤ Fitnessb

ci
≤ 1. This

value will be defined later. Fitnessb
ci

describes the suitability of the inclusion of
node b ∈ V into the cluster ci.

At this point, the node b waits using a delay which is proportional to the
1 − Fitnessb

ci
value. When the waiting time has elapsed, the node sends a

Membership Request message to the clusterhead, informing it that it is will-
ing to be included into the cluster. Now the clusterhead, based on Δq and the
availability of resources of the candidate, can decide whether the node will be
accepted as member. If accepted, the clusterhead includes the new node in a
table with all members of the cluster. A message is sent back to the node con-
firming/refusing the entrance into the cluster. When receiving the response mes-
sage, the requester changes its status accordingly (stateb = Me, if accepted and
stateb = Nm if refused). If accepted, this new status is broadcasted immediately

Self-organizing Resource-Aware Clustering for Ad Hoc Networks 325

0 .2
0 .90 .3

0 .4 5

0 .5

0 .4
0 .2

0 .90 .3

0 .4 5

0 .5

0 .4

0 .2
0 .90 .3

0 .4 5

0 .5

0 .4

Fitn e s s = 0 .1Fitn e s s = 0 .8

Fitn e s s = 0 .5

0 .2
0 .90 .3

0 .4 5

0 .5

0 .4

Fitn e s s = 0 .1

Fitn e s s = 0 .7

Fitn e s s = 0 .6

Fitn e s s = 0 .5

0 .2
0 .90 .3

0 .4 5

0 .5

0 .4

Fitn e s s = 0 .1

Fitn e s s = 0 .7

Fitn e s s = 0 .6

Ela p s e d t im e

Ela p s e d t im e

Ela p s e d t im e

Ela p s e d t im e

0 .2
0 .90 .3

0 .4 5

0 .5

0 .4

Fitn e s s = 0 .1

Fitn e s s = 0 .7

Fitn e s s = 0 .6

Ela p s e d t im e

(a) (b)

(c)

(d)

(e) (f)

1

2 3

4

5

2

2
2

2
2

1
1

11

1

3
3

33

3

4
4

4 4

4

5
5

5

5 5

Fig. 3. Example of member selection in a partial network. All nodes have unitary
amount of resource (r(b) = 1, b ∈ V) and q = 3.

Fitnessci(v) =

=

�����
����

1 −
�
k1 · Dv

ci
+ k2 · min{D(v,Clusterheadci

)
Max dist

, 1}+ if r(v) < q

+k3 · min{ Cnb
Nm

Max connect
, 1} + k4 · min{ Cnb

ci
Max connect

, 1}+
+k5

r(v)
q

�
0 if r(v) � q

Fig. 4. Definition of the fitness function

in a message calling for new members (Call Members) to the neighborhood of
b, starting the process again.

When Δq � 0, i.e., the cluster is complete, all additional receiving requests
will be rejected.

Consider the example depicted in Figure 3. We colored the nodes according
the state; white nodes are nonmembers, black nodes members (or clusterhead,
i.e. status ∈ {Me, CH}) of the cluster ci being formed and gray members are
deciding nodes.

In Figure 3 (a), the initial state with a one member cluster (clusterhead,
selected by the response function) is shown. The clusterhead broadcasts the

326 T. Heimfarth, P. Janacik, and F.J. Rammig

Call Members message transmitting its state (3 (b)). At this point, all nodes
that receive the message change to the deciding state. A timer is set based on
the calculated fitness for each node. In Figure 3 (c), the programmed time of
node 2 has already elapsed. The node now asks for membership. As the total
resource request (q) is not satisfied by the current cluster size, the node 2 is
included in the cluster. Now it also broadcasts a Call Members message to the
neighborhood (Figure 3 (d)). When node 4 and 5 receive the broadcasted mes-
sage, they start a timer related to the computed fitness (1 − Fitnessci(4) and
1 − Fitnessci(5)). Due to the fact that node 4 has already a timer, just the
timer with the shortest deadline is kept. In Figure 3 (e), the programmed time
of node 4 has elapsed and it requests for membership. It receives permission to
enter into the cluster. Since the cluster is already complete, node 4 does not
broadcast a new Call Members message. Finally, the waiting time for nodes 5
and 3 is over. They request membership, but due to the fact that the cluster has
enough resources, the permission to integrate the cluster is refused.

Now we will integrate the already presented heuristic hints (see Section 4.2)
that should guide the member selection. The first point says that the heuristic
should privilege nodes with a small distance to some of the nodes inside the
actual cluster. In order to observe that, two aspects must be addressed: (1)
Include the distance to the next cluster member in the fitness function with the
aim of reducing communication costs. (2) An implicit behavior of the heuristic
makes that nodes far away from the clusterhead, but with good connection to
the cluster are penalized since starting the timer in a later stage.

This should be addressed together with the point number two in our influ-
ence parameters list: the distance to the clusterhead. This point is aided by the
implicit behavior of algorithm. The two aspects are important for reducing the
cluster cost. Nodes near to the cluster are suitable because the connection cost is
smaller, nevertheless, to keep clusters with smaller diameter also helps to reduce
the total cost.

The distance to clusterhead is also addressed by two points: (1) Including the
distance to the clusterhead in the fitness function. (2) Implicit behavior of the
heuristic. To show that we can reuse the example shown in Figure 3. The fact
that nodes near to the clusterhead started the timer earlier implicitly helps to
get small diameter clusters.

Analyzing these two different requisites, the following method was created in
order to penalize the distance to the clusterhead and reward the distance to
the cluster (i.e. the distance to the closest node in the cluster). We will now
count the rounds that the algorithm has already executed. Using the example
presented in Figure 3, (b) represents the first round of the algorithm and (d) the
second one. Each time that a new member was selected and made a broadcast
to the neighborhood, the variable roundv, v ∈ V is increased.

We define the waiting time of a node v to request to be included in the
cluster ci as WaitingT imev

ci
= k · (1 − Fitnessci(v)) · 1

κ roundv+(1−κ) , where
v ∈ V, κ ∈ [0, 1], k ∈ �∗ and 0 ≤ Fitnessci(v)) ≤ 1. It uses the fitness function
and the current round to calculate the waiting time.

Self-organizing Resource-Aware Clustering for Ad Hoc Networks 327

Using this equation, for bigger rounds, the time that should be waited is
shortened. With the κ parameter, the amount of reward given to the distance
to the cluster versus penalization of distance to clusterhead can be controlled.

The fitness function that takes into account all points presented in the Section
4.2 is presented in Figure 4 (for

∑5
i=1 ki = 1), where k1, ..., k5 define how each

of the terms influences the fitness metric. It is important to remark that 0 ≤
Fitnessci(v) ≤ 1. For two nodes v, u ∈ V and Fitnessci(v) < Fitnessci(u)
means that the node v is less suitable for the cluster ci than the u. Max dist
describes the minimum distance to the clusterhead that should be considered the
maximum penalty, Max connect is the same for the connection measurements.
We should remark that for nodes with more resources than required, the fitness
is always 0 because they should form a cluster with one member.

5 Simulation and Results

We implemented our emergent clustering heuristic using Shox [11], a Java-based
wireless ad hoc network simulator. As input, we generated 40 instances of the
problem with 13 nodes in a field of 25m by 25m. These instances were generated
by random selection of the nodes’ position.

Our link metric used the received signal strength (RSSI) that was calculated
using the free space model for an isotropic point source in an ideal propagation
medium. The limits of the RSSI were determined using two thresholds, having
the meaning of maximum signal (w = 0.1) strength and no signal (w > 1).
We adjust the radio power in order to achieve a maximum transmission range of
10m. The RSSI was the only metric used to calculate the virtual distance. In our
simulation, we adjust several parameters of the described equations such that
every part of the equation has the same weight. In order to calculate the opti-
mum cost of a problem instance, we model our minimum-intracommunication
clustering as an integer linear programming problem and for each generated
instance, we solve it using the lp solve program.

Figure 2 shows the results of the 40 runs for our distributed heuristic and the
respective optimal solution. The picture also shows the confidence interval of the
obtained average. The average communication cost of the emergent clustering
was 30.72 with a standard deviation of 6.07. The optimum solution has a mean
of 24.42 with a standard deviation of 4.26.

6 Conclusion

In this paper, we introduce a useful clustering problem and develop an efficient
heuristic to solve it. The heuristic is based on the response functions derived from
the division of labor in social insects. On the basis of the response function, the
most suitable nodes in terms of connectivity, energy and resources are selected
for the clusterhead role. After emerging spontaneously, each clusterhead starts
gathering members for the clusters until a resource requirement q is satisfied.
The membership candidates are evaluated using a fitness function taking into

328 T. Heimfarth, P. Janacik, and F.J. Rammig

consideration their distance to the cluster and its clusterhead, connectivity and
resource availability. After evaluating those items, a node delays its response
by a time related to its fitness. Therefore, the higher fitness nodes announce
themselves earlier, having higher priority for entering the cluster.

Using simulations in the Shox network simulator, we show that our approach
performs well in average. It uses just local information and it is capable of
starting in an unorganized ad hoc network, finding a cluster configuration that
is in average just 25% above the optimum one. Further, the proposed emergent
clustering approach obtains a performance of at least 1.5 times the optimal for
60% of the test cases. There are no test cases with a performance inferior to 2
times the optimum result.

Our results demonstrate once again that a principle from natural systems can
be successfully transferred to an efficient algorithm for ad hoc networks solving
a problem which is NP-complete in good aproximation.

References

1. Heimfarth, T., Danne, K., Rammig, F.J.: An os for mobile ad hoc networks using
ant based hueristic to distribute mobile services, 77 (2005)

2. Baker, D., Ephremides, A.: The architectural organization of a mobile radio net-
work via a distributed algorithm. IEEE Transactions on Communications 29(11),
1694–1701 (1981)

3. Baker, D.J., Ephremides, A., Flynn, J.A.: The design and simulation of a mobile
radio network with distributed control. IEEE J. on Selected Areas in Communica-
tions SAC2(1), 226–237 (1984)

4. Gerla, M., Tsai, J.T.-C.: Multicluster, mobile, multimedia radio network. Wirel.
Netw. 1(3), 255–265 (1995)

5. Basagni, S., Chlamtac, I., Farago, A.: A generalized clustering algorithm for peer-
to-peer networks. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)

6. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Transactions on Wire-
less Communications 1(4), 660–670 (2002)

7. Amis, A., Prakash, R., Vuong, T., Huynh, D.: Max-min d-cluster formation in
wireless ad hoc networks. In: INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. 26-30 March
2000, vol. 1, pp. 32–41 (2000)

8. Krishnan, R., Starobinski, D.: Message-efficient self-organization of wireless sensor
networks. In: Proc. IEEE Wireless Communications and Networking Conference,
New Orleans, USA, IEEE Computer Society Press, Los Alamitos (2003)

9. Bannerjee, S., Khuller, S.: A clustering scheme for hierarchical control in wireless
networks. In: Proc. IEEE INFOCOM, Anchorage, Alaska, IEEE Computer Society
Press, Los Alamitos (2001)

10. Heimfarth, T., Janacik, P.: Ant based heuristic for os service distribution on ad
hoc networks. In: BICC 2006. 1st IFIP International Conference on Biologically
Inspired Cooperative Computing, IFIP International Federation for Information
Processing, Boston, MA, USA, vol. 216, pp. 75–84. Springer, Heidelberg (2006)

11. http://shox.sourceforge.net (Accessed on Jannuary 28, 2006)

http://shox.sourceforge.net

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 329–338, 2007.
© IFIP International Federation for Information Processing 2007

Intelligent Context-Awareness System Using Improved
Self-adaptive Back Propagation Algorithm∗

Sang-Hun Eo1, Wei Zha2, Byeong-Seob You1, Dong-Wook Lee1,
and Hae-Young Bae3

Dept. of Computer Science & Information Engineering, Inha University
1{eosanghun, subi, dwlee}@dblab.inha.ac.kr,

2zhazhago@hotmail.com,
3hybae@inha.ac.kr

Abstract. Since the context plays a significant role in ubiquitous computing
environment, many researches have studied about context-awareness system to
improve the performance. An efficient learning mechanism is in importance of
context-aware system, but there are seldom algorithms focused on convenience
of systems by elaborating the learning mechanism with user's context informa-
tion. As one of the most adaptable algorithm, Back Propagation provides us fa-
vorable inference capability. In this paper, we concentrate on improving the
predict ability and reducing the system workload by proposing improved self-
adaptive back propagation algorithm. The middleware we proposed improves
the predicate capability. Thus, the overall performance becomes better than
other systems. By adding system cache to middleware, it is possible for the con-
text-aware system to act faster and improve the workload efficiency. Experi-
ments show that there is an obvious improvement in overall performance of the
context-awareness systems.

1 Introduction

According to the definition in [1], “Context is any information that can be used to charac-
terize the situation of an entity”. If a system uses context to provide the relevant informa-
tion and/or services to its clients, it is context-aware. However, the relevancy depends on
the user's task[1]. Context-awareness system collects, analyses and utilizes context. It is
necessary for system to be context-awareness in ubiquitous environment[2].

As the popularity of sensor network and mobile terminal, mobility has become the
main data source of context-aware environment. To provide better service to mobile
users and avoid information flood, the context-awareness systems should be proactive
according to the changing environment[3]. This requires context-aware systems to have
the ability to learn users’ environment and to predict users’ behavior pattern. Most of
the current computing systems are capable to process the users’ explicit input and output

∗ This research was supported by the MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program super-
vised by the IITA (Institute of Information Technology Assessment).

330 S.–H. Eo et al.

the result. But they are not aware of users’ status[4], for example, where is the user,
what the user is doing, when the user does it, who is beside the user, and etc. Some of
them focus on providing a uniform model to context, and some of them focus on provid-
ing an interface for different applications and distribute context, and some of them focus
on how to manage context. But none of these systems can satisfy the requirement of
ubiquitous computing environment completely, especially for the mobile user.

In this paper, we propose a new middleware for by using an advanced learning
mechanism of context-aware systems. Back Propagation(BP) algorithm[10] is chosen
as the basic learning mechanism due to its ability of learning relationships in complex
data sets. The standard BP algorithm has limitations that it is too slow to provide the
output in a short time. We introduced a dynamic momentum parameter added on the
original BP algorithm with the view to make the BP algorithm avoid oscillations and
respond instantly. The parameter value is calculated with reference to the LMS(Least
Mean Square) between the obtained output and the desired output. By experiment, we
prove that by using the improved BP algorithm in the proposed middleware, the sys-
tem can precisely be proactive according to the users’ changing environment.

This paper is organized as follows: in section 2, we briefly review the related work,
previous context-awareness systems and the idea of primordial BP algorithm. In sec-
tion 3, we propose an advanced learning mechanism SABPA (Self-Adaptive Back
Propagation Algorithm) and an intelligent middleware for context-awareness system.
In section 4, we make a comparison for the proposed middleware. The conclusion and
future work are given in section 5.

2 Related Works

Most of the existing contxt-awareness systems have a common deficiency, that is, limita-
tions in proactive and adaptation to the changing environment for the lack of learning
mechanism. In [5], Dey et al. introduced their context toolkit system. The system aims to
provide balanced touch to different kinds of applications through the distributed context
and gives the idea how to achieve better performance, it is crucial for context-awareness
systems to adopt proactive behaviors and the key point lies in finding user patterns. How-
ever, due to distinct characteristics of individual user behavior, user patterns are diversely
different. Therefore, learning is considered as an efficient way to get the pattern.

In this chapter, our learning mechanism and improved BP algorithm for robust con-
text-awareness systems are introduced. But it does not consider proactive and learning
mechanisms. Roman et al. developed the Gaia context-awareness system to manage
context[6]. This system throws light on assisting mobile applications to be developed and
implemented in active spaces and supports mobile applications in a limited area. But it
still lacks the ability of learning and proactive through the users’ environment. A.
shehzad et al. emphasized on interactivity among applications[7]. They proposed a
context model in the purpose of having a common understanding of the contextual in-
formation but no proactive functions was mentioned. S.S.Yau et al. proposed the adap-
tive and object-based middleware RCSM in 2004[8]. This context-awareness system is
designed for the mobile networks. So, it supports the mobile users and adapts to users’
changing environment. In addition, this system supports using some specific contextual
information to trigger corresponding actions. However, this system also lacks the ability

 Intelligent Context-Awareness System 331

of learning to proactive. H. Park et al. included context inference, learning, event trigger-
ing module of their middleware for the purpose of deal with various context[9]. In learn-
ing module, they listed some possible algorithms for learning but no material solutions.

For the robust context-awareness system, we chose BP algorithm as one of the most
appropriate solution. From [10], a basic BP algorithm contains 3 layers: input layer,
hidden layer and output layer. Input sample is processed step by step in terms of hidden
units through input layer. Then it is transmitted to output layer after passing through all
the hidden units. During this process, the state of units of each layer influences the next
layer. After comparison of present output to expected output, the results are transferred
to BP module if they are not matched. During the BP process, error signals are transmit-
ted through original forward path but in converse direction, and weight value is modi-
fied by each unit in each hidden layer on the expectation of the minimized error signals.

3 Context-Awareness System Using SABPA

To achieve better performance, it is crucial for context-awareness systems to adapt
proactive behaviors and the key point lies in finding user patterns. However, due to
distinct characteristics of individual user behavior, user patterns are diversely differ-
ent. Therefore, learning is considered as an efficient way to get the pattern.

In this chapter, our intelligent context-awareness middleware and advanced learn-
ing mechanism SABPA for robust context-awareness systems are introduced.

3.1 Learning Middleware

We propose a new middleware that uses learning mechanism to provide useful con-
text in context-awareness system. As shown in fig.1, we generally divide our middle-
ware into three layers, namely, context source layer, context processing layer and
context delivery layer. User and sensors can be the context sources (i.e. context can
either come from user input or detected by the sensors).

Context Pre-process Module. Deals with the original context from users and sensors.
Since the raw data are in variety of forms and expressions. It is necessary to convert
the context into normalized forms which are easy for the system to process. Some
context is aggregated to a higher level. We take GPS data for example; following is
one data tuple of GPS:

$GPGGA, 170647, 3726.4905, N, 12627.1471, E, 1, 03, 1.27, 2.7, M, -34.4, M, a*41

We need to separate following information from this tuple:

Time = 17:06:47
Longitude- Latitude = (37°26′49.05″, 126°27′14.71″)
Altitude = 2.7m

And further, it (37°26′49.05″, 126°27′14.71″) is changed to specific loca-
tion such as “Incheon International Airport” by Gauss projection. After that, useless
data are abandoned here and essential context is sent to System Cache and stored in
the context DB. The context DB stores the historical context including input context
and the context predicted by the system.

332 S.–H. Eo et al.

Dynamic Adaptive Module. Between learning mechanism and context DB keeps the
learning network up-to-date. The trigger event of update is controlled here, when new
arrival context accounts for certain percent of the total context, the old learning
mechanism network can not predict accurately. We need to go on training our net-
work to improve the accuracy. The Dynamic Adaptive module will continue training
network with the new context in DB when the trigger event happened, until the error
rate is within the default value.

Context DB. Inside the Dynamic Adaptive Module is the database of our middleware. It
maintains and provides the data for training and update. Preprocessed data are sent here
to store, when the trigger event happened, Dynamic Adaption Model will send message
to ask Context DB provide the corresponding data to Learning Mechanism for training.
After training, it is possible to categorize the new coming context to the already known
classification and conclude the user pattern. By adjusting the default error rate, the accu-
racy can be controlled in an acceptable range. The structure of network such as number
of hidden layers and nodes of each layer depends on applications specifically.

Fig. 1. Middleware for learning mechanism

System Cache. Makes context awareness system possible to response faster. Users
would not change their habits suddenly; the maintaining of the latest input context and
their options will dramatically improve the response time. These recorded options can
be provided rapidly without computing when users repeat their queries. Also, the

 Intelligent Context-Awareness System 333

cache stores the parameters of learning network for different users (users use learning
networks respectively, because each user is different individual), which makes it pos-
sible to support multiple users and response in a short time. Learning network, a
background process that mines users’ patterns, needs to be trained before using.

User Pattern Module. Stores the most recently query result. When the recently query is
matched in System Cache, the corresponding answer can be provided directly from here.
Learning Mechanism is the algorithm chosen for learning. In our research, an im-
proved BP algorithm SABPA is introduced and will be discussed in next section

3.2 SABPA (Self-adaptive BP Algorithm)

The motivation of using BP algorithm is its ability of learning relationships in com-
plex data sets which can not be easily perceived by humans. It has the ability to mod-
ify the output according to the changing of user context. It doesn’t require the whole
network rebuild when new context comes.

However, standard BP algorithm has two drawbacks. First, learning speed is slow.
Traditional BP network can not provide fast response. Second, there are oscillations
during learning. These problems cause its low efficiency. We have to improve the
original BP algorithm so that it can be suitable for our proposing middleware. From
[10], the formula for update weight in BP is

)()(/)1()1(tttEt ijijij αωωηω +∂+∂−=+Δ

Where η is the constant learning rate, which is usually chosen 0<η <1 to guarantee

that the weights space do not overshoot the minimum of the error space.α is momen-
tum, which drastically affects the learning speed.

Table 1. SABPA algorithm

1. Initial η ,)0(ω , expect error ε and set k=1.

2. Set 2
))t((

))t((
)0(

ω
ωα

Ε∇
Ε= ,).0(αα =

3. If
2

)t((
2
1

))t(())())(((ωαωαωωη Ε∇−≤Ε−+−Ε ttg

go to step 5; otherwise, set k=k+1 and go to step 4

4. Set 1/)0(−= kmαα and go to step 3.

5. Set)())(()1(ttgt αωωηω +−=+ and
)(

)1(
)0(

t

t

Ε
+Ε= αα

6. If εαωωη ≤+−Ε))())(((ttg , then terminate; otherwise begin

recursion.

m in step 4 is reduction factor. The choice of m value is not critical
for successful learning, we choose m =0.5 in our algorithm.

334 S.–H. Eo et al.

E is the batch error measure defined as the sum-of-squared-differences error func-
tion over the entire training set

∑ ∑∑
−

−==
m

k

q

t

k
t

k
t

m

k

k cyEE
1

2 2/)(

By defining gi(ω) as the gradient of E(ω) with respect to the ith variable ω i, and
g(ω)=(g1(ω),…, gn(ω)), the whole weights update can be written as

)())(()1(ttgt αωωηω +−=+

Also, g(ω) defines the gradient)(ωΕ∇ of the sum-of-squared-differences error

function E at ω .
Large values of momentum can accelerate the learning process but the drawback

result is oscillations during learning. On reverse, smaller values of momentum decel-
erate the learning process. Normally, the momentum α is fixed before training. Here,
we propose a strategy for dynamic adjusting momentum α ,called SABP (Self-
adaptive BP Algorithm). This strategy makes the BP network faster and avoids oscil-
lations. The basic idea is, check)1(+tE every time. If)()1(tEtE >+ , which

means learning is too slow, we should accelerate the learning process by increas-
ingα . If)()1(tEtE <+ , which means learning is too fast, oscillations may occur,

we should reduce the learning process by decreasing α . The proposed algorithm
SABPA is illustrated in table 1.

When
2

)t((
2
1

))t(())())(((ωαωαωωη Ε∇−≤Ε−+−Ε ttg , which means

learning is a little fast, it is advantageous to slow down the learning process. Due to

1
)(

)1(<+
tE

tE
, then)()1(tt αα <+ . The learning process is decelerated.

When)()1(tEtE >+ , that means learning is too slow. It is necessary to in-

crease the learning speed. Due to 1
1

1
>−km

, then)()1(tt αα >+ learning process

is accelerated.
 By dynamically adjusting momentum every time, SABPA avoids oscillations dur-

ing learning and also accelerates the learning process.

3.3 Learning Steps

Because of the variety of raw data, some preparatory work needs to be done before
learning, which are collection and cleaning of each user context, and storing them in
context DB to train BP network. The raw data are first sent to Context Preprocess
model which will clean the data and generate them to suitable format or higher level to
make them available for proposed Learning Mechanism. Preprocessed data will be sent
to Context DB which maintains all the necessary data for training and updating our

 Intelligent Context-Awareness System 335

network. According to different situation, diverse BP network (difference in number of
hidden layers and nodes of each layer) will be constructed. The training of BP network
for each user should continue until the desired error rate is reached. Meanwhile the
parameters of BP network for each user are stored in system cache respectively.

When user inputs query or sensors detect changing of environment, the context is
sent to context pro-process module where contexts are converted into normalized forms
and some context is aggregated to a higher level. The essential contexts are selected to
be stored in the context DB and sent to the system cache. If the context information
already exists in system cache, the output can be provided directly by system cache as it
stores the recently queries and answers. Otherwise, the cache selects parameters of BP
network according to the specific user and sends to BP network Learning Mechanism
Model. In Learning Mechanism Model, BP network learns these contexts, categorize
them to already known classification to fetch the user pattern and sends the results to
both output and system cache for repeated queries. Fig 3 shows the learning steps.

The dynamic adaptation module is in charge of the update of SABPA network.
When the accuracy of SABPA network decreases or new context takes up certain
percent of the total context, this module sends messages to both Context DB and
Learning Mechanism Model to manage them goes on training SABPA network until
it matches the expected error rate. Thus, the accuracy is guaranteed.

Fig. 3. Learning steps of proposed middleware

336 S.–H. Eo et al.

4 Implementation

We choose GPS system as the symbol of context-awareness system to implement our
learning middleware. A basic BP network is generated by the Neural Network Tool-
box for MATLAB for the learning process which contains three layers: input layer,
hidden layer, and output layer). A user environment context DB which contains three
months’ context information is provided for training.

Table 3. Sample of training data set. Since the raw data is in variety of forms, we clean and
normalize them to following forms.

Input Desired Output

User ID Date Time Mode From To

User1 Monday Morning Bus S1 C3,C4,C1

User2 Monday Afternoon Car S1 C2,C1,C5

User1 Tuesday Evening Car S3 C2,C3,C4

User3 Friday Afternoon Walk S5 C6,C1,C2

User3 Wednesday Morning Car S4 C5,C4,C5

We made a scenario using learning process to predict the usual destination of
GPS user. Each GPS user has own pattern. We split the users into two halves de-
pending on their behavior, one half of users with fixed routes, whose positions can
be inferred accurately by their starting position and the other group of users with a
high probability changing their routes frequently. For the first groups of users, we
can make some explicit rule for inferring the destination. For the second group of
users, it is difficult for human to explicit their rules. But if we can learn from these
users’ history DB, it is possible to get the user pattern to find the most likely desti-
nation in a high accuracy.

In our scenario, the following context information is chosen: User ID, which dis-
tinguish different user; event date which illustrate the date when the event happens;
event time, similar to the event date, illustrating the exact time when the event hap-
pens; transportation mode which gives the way how user behaves, say, where is the
user from and where to go is illustrated by start position and destination.

We simply classify these contexts into input (User ID, event date, event time,
mode, start position) and desired output(destination) for training the proposed BP
network. Table 3 shows the training sample.

We train the SABPA network with context DB until we get the output within the
desired error rate. Then, the network has the ability to give the most likely output.

In our case, according to the input context we create five nodes for input layer, six
nodes for hidden layer, and three nodes in output layer for giving the most possible
result. The testing result is shown in table 4.

 Intelligent Context-Awareness System 337

Table 4. Testing result. By using test data of table 3, our learning network output the most
likely three destinations and their probability respectively

Input Output
User ID Date Time Mode From To Probability

User 1 Monday Morning Car S1
C1
C3
C4

60%
87%
74%

User 3 Friday Afternoon Walk S1
C1
C2
C5

85%
64%
84%

User 1 Tuesday Evening Car S3
C2
C3
C6

77%
80%
88%

User 4 Monday Morning Bus S5
C2
C5
C6

91%
65%
46%

User 2 Thursday Evening Car S4
C1
C3
C5

87%
69%
77%

5 Performance Evaluations

After building the learning network for context-awareness system, it is possible for
the GPS system to predict the future location of a GPS user. Benefit from this ability,
more information can be provided to the users without any query, such as weather,
traffic jam, the shortest path. At the same time, workload is obviously reduced. Fig 4
shows the comparison of workload among systems.

Workload Comparison

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning Rate

W
o

rk
lo

ad
(%

)

No Learning

SABPA

SABPA + Cache

Accuracy Comparison

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Time(hour)

A
cc

u
ra

cy
(%

)

Bayes Network

SABPA, Error Rate 0.1

SABPA, Error Rate 0.05

Fig. 4. The workload comparison between the
system using learning and without learning

Fig. 5. The accuracy comparison between
using Bayes and Backpropagation

Besides BP, other algorithms such as Baye’s theorem are widely used. For GPS
systems, Bayes could also be adopted as a satisfying learning mechanism. But BP is
superior to Bayes on the control of prediction accuracy. Furthermore, when the new
context accounts for some percent of the total context, Bayes network requires

338 S.–H. Eo et al.

rebuilding rather than improvement on the current network. Fig 5 shows the accuracy
comparison between Bayes and BP with different learning rates.

6 Conclusion and Future Work

In this paper, we propose an intelligent learning middleware of context-awareness
systems and using SABPA (Self-adaptive BP Algorithm) as learning mechanism for
context recommend in ubiquitous computing environment. Different from standard
BP, we improved it to become suitable for the proposed middleware regardless of its
slowness. Using this middleware in our scenario, context-awareness systems evi-
dently reduce the workload and provide better service. Through the tests, we proved
that our middleware and SABPA performs far beyond just acceptable.

Future work in this are includes how to select the essential context for learning.
Training a BP network is CPU-cost computing. Schedule management for training and
user service is also important. In addition, the proposed SABPA is not yet completely
optimized. More effective algorithm should be discovered for better performance.

References

1. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology, College
of Computing (June 1999)

2. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in Ubiquitous
Computing Environments. In: ACM/IFIP/USENIX International Middleware Conference
(2003)

3. Byun, H.E., Cheverst, K.: Harnessing context to support proactive behaviours. In:
ECAI2002 Workshop on AI in Mobile Systems, Lyon (2002)

4. Schmidt, A.: Potentials and Challenges of Context-Awareness for Learning Solutions. In:
LWA 2005, pp. 63–68 (2005)

5. Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development of context-aware
applications. In: Workshop on Software Engineering for Wearable andPervasive Comput-
ing, Limerick, Ireland (June 2000)

6. Roman, Manuel, et al.: A Middleware Infrastructure to Enable Active Spaces. In: IEEE
Pervasive Computing, pp. 74–83 (October-December 2002)

7. Shehzad, A., Ngo, H.Q., Pham, K.A., Lee, S.Y.: Formal Modeling in Context Aware Sys-
tems. In: International Workshop on Modeling and Retrieval of Context (2004)

8. Yau, S.S., Karim, F.: An adaptive middleware for context-sensitive communications for
real-time applications in ubiquitous computing environments. Journal of RealTime Sys-
tems 26(1), 29–61 (2004)

9. Park, H.: A middleware of context-awareness for ubiquitous computing middlewares. In:
International Conference on Information Systems, vol. 00, pp. 369–374 (2005)

10. Kumar, S.: neural networks. McGraw-Hill Education, New York (2005)

Towards an Artificial Hormone System for
Self-organizing Real-Time Task Allocation

Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

Institute for Process Control, Automation, and Robotics
University of Karlsruhe (TH), Germany

{brinks, pacher, renteln}@ira.uka.de

Abstract. This article presents the concept of an artificial hormone system for a
completely decentralized realization of self-organizing task allocation. We show
that tight upper bounds for the real-time behavior of self-configuration can be
given. We also show two simulation results using the artificial hormone sys-
tem demonstrating the operation of the artificial hormone system under different
workloads.

1 Introduction

Today’s computational systems are growing increasingly complex. They are build from
large numbers of heterogeneous processing elements with highly dynamic interaction.
Middleware is a common layer in such distributed systems, which manages the coop-
eration of tasks on the processing elements and hides distribution to the application.
It is responsible for seamless task interaction on distributed hardware. As shown in
figure 1, all tasks are interconnected by the middleware layer and are able to oper-
ate beyond processing element (PE) boundaries like if they would reside on a single
hardware platform. To handle the complexity of today’s and even more tomorrow’s
distributed systems, self-organization techniques are necessary. Such a system should
be able to find a suitable initial configuration by itself, to adapt or optimize itself to
changing environmental and internal conditions, to heal itself in case of system failures
or to protect itself against attacks. Middleware is a good place to realize such self-X
features (self-configuration, self-optimization, self-healing) by autonomously control-
ling and adapting task allocation. Especially for self-healing, it is important that task
allocation is decentralized to avoid single points of failure.

This work presents an artificial hormone system for task allocation to heterogeneous
processing elements. In the following, we will present our approach in detail and we
will discuss several properties considering real-time aspects induced by the hormone
system.

2 Using an Artificial Hormone System to Obtain Self-X-Properties

For task allocation, three types of hormones are used:

Eager value: This hormone determines, how well a PE can execute a task. As higher
the hormonal value, as better the task executes on the PE.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 339–347, 2007.
c© IFIP International Federation for Information Processing 2007

340 U. Brinkschulte, M. Pacher, and A. von Renteln

Processing Element Processing Element

Task . . . Task

Processing Element

. . .

Middleware

Task . . . Task Task . . . Task

Fig. 1. Middleware in a distributed system

Suppressor: A suppressor represses the execution of a task on a PE. Suppressors are
subtracted from eager values. Suppressors are e.g. used to prevent duplicate task
allocation or to indicate a detoriating PE state.

Accelerator: An accelerator favors the execution of a task on a PE. Accelerators are
added to eager values. The accelerators can be used to cluster cooperating tasks in
the neigborhood or to indicate an improved PE state.

The following figure 2 sketches the basic control loop used to assign a task Ti to a
processing element. This closed control loop is executed for every task on every pro-
cessing element. It determines based on the level of the three hormone types, if a task
Ti is executed on a processing element PEγ or not. The local static eager value Eiγ

indicates how well task Ti executes on PEγ . From this value, all suppressors Siγ re-
ceived for task Ti on PEγ are subtracted and all accelerators received for task Ti on
PEγ are added. The result of this calculation is a modified eager value Emiγ for task
Ti on PEγ . The modified eager value is sent by the middleware to all other PEs in
the system and compared to the modified eager values Emiγ received from all other
PEs for this task. Is Emiγ greater than all received eager values Emiγ , task Ti will be

For i,
received

suppressors
Si

For i,
received

accelerators
Ai Local

eager value
Ei

-

+ +

Modified
eager values

Emi
send by i,

For i,
received

eager values
Emi

a > b
?

Take task Ti on
PE

Suppressors
Si

send by i,

Accelerators
Ai

send by i,

Task Ti on PE

a

b

Notation: Hi Hormone for task Ti executed on PE
Hi : Hormone from task Ti executed on PE , Latin letters are task indices, Greek letters are processing element indices

Fig. 2. Hormon based control loop

Towards an Artificial Hormone System 341

taken by PEγ (in case of equality a second criterion, e.g. the position of a PE in the
grid, is used to get an unambiguous decision). Now, task Ti on PEγ sends suppressors
Siγ to all other PEs to prevent duplicate task allocation. Accelerators Aiγ are sent to
neighbored PEs to favor the clustering of cooperating tasks. This procedure is repeated
periodically.

It should be emphasized in this point that the strength of the different types of hor-
mones is initially set by the applicants who want to influence the task allocation. In
section 3.1 we show the task allocation process based on the hormone values in detail.

The described approach is completely decentralized, each PE is responsible for its
own tasks, the communication to other PEs is realized by a unified hormone concept.
Furthermore, it realizes several self-X properties:

– The approach is self-organizing, because no external influence controls the task
allocation.

– It is self-configuring, an initial task allocation is found by exchanging hormones.
The self-configuration is finished as soon as all modified eager values become zero
meaning no more tasks wants to be taken. This is done by sending suppressors
which have to be chosen strong enough to inhibit an infinite task assignment.

– The self-optimization is done by offering tasks again for re-allocation. The point
of time for such an offer is determined by the task respectively the PE itself. It can
be done periodically or at a point of time where the task or the PE is idle.
In this context it is simple to handle the entrance of a new task in the system: At
first, all processing elements have to be informed about their hormone values for
the new task. Then, the task is allocated as described for self-optimization.

– The approach is self-healing, in case of a task or PE failure all related hormones are
no longer sent, especially the suppressors. This results in an automatic reassignment
of the task to the same PE (if it is still active) or another PE.

In addition, the self-configuration is real-time capable. There are tight upper time
bounds for self-configuration which we will present in the next sections.

3 Dynamics of the Artificial Hormone System

In the this section, the dynamics of the artificial hormone system and the conditions and
rules for its correct working will be presented. Figure 3 shows the cyclic sequence of
sending the hormones followed by the task allocation. The sequence starts with ”send
hormones” (S) to create the knowledge base for the first decision. At least the eager

send
hormones

(S)

decide
(E)tSE

tES

Fig. 3. Hormon cycle

342 U. Brinkschulte, M. Pacher, and A. von Renteln

values need to be available. After sending the hormones and waiting the time tSE ,
a decision (E) on the task allocation, based on the received hormones, is taken. This
process is repeated after a waiting time of tES .

3.1 Dynamics of Task Allocation

Let PEγ be a processing element willing to run a task Ti. We need to distinguish three
cases:

Case 1: All eager values of all processing elements for task Ti are constant and spread
over the whole system. Thus, the system is in a steady state and all PEs make their
decisions based on up-to-date and constant values. Then, PEγ can allocate a task
if it has the highest eager value, respectively, with equal eager values, a higher
priority.

Case 2: The eager value of processing element PEγ for task Ti decreases (e.g. by
suppressor influence). In this case, PEγ may allocate the task Ti if the decreased
eager value is still sufficient. All the other PEs will not allocate the task, as they
know either the old or the new eager value of PEγ which wins with both values.

Case 3: The eager value of the processing element PEγ for task Ti increases (e.g.
by accelerator influence). This case is critical if PEγ becomes the winner by the
increased eager value, because other PEs might not yet know it and therefore decide
wrongly. Thus, PEγ may only allocate the task Ti after the new eager value has
successfully been submitted to all PEs and until PEγ itself has possibly received
a suppressor from another PEδ (γ �= δ), which allocated the task Ti based on the
old, lower eager value of PEγ .

The question, however, is how long the waiting times should be chosen? Figure
4 shows the worst-case scenario in which PEδ allocated the task Ti just before it
has received the new eager value from PEγ . PEγ must not come to a decision

tK tK

tES

tSEPE

PE

. . .

. . .

. . .

. . .

tK : communication time
PE allocates task Ti

possibly based on

iSiNew Em

iOld Em

S E

SE

Fig. 4. Worst-case timing scenario of the hormone exchange with the task allocation

until it has received the possibly incoming suppressor from PEδ . Therefore, the
communication time tK needed by a hormone to be spread over the whole system
is very important to be known. Knowing tK we present a rule for the task allocation
with increased eager values as well as conditions for the times tES and tSE .

Towards an Artificial Hormone System 343

Rule: If a processing element PEγ gets able to allocate a task Ti only based on an
increased eager value, then it has to delay it’s decision to the next communica-
tion cycle to ensure the transmission of the increased eager value and to wait
for possible suppressors for the same task from other PEs. This comes true if
(follows directly from figure 4):

tSE ≥ tES + 2tK

The cycle time tCycle defines as follows:

tCycle = tSE + tES

Of course the cycle time should be minimized, thus:
1) tES should be as small as possible, ideally 0.
2) tSE ≥ tES + 2tK , ideally with tES = 0: tSE ≥ 2tK

3.2 Self Configuration: Worst Case Timing Behavior

Figure 5 shows the precise cycle of the hormone distribution and interpretation based
on figure 3. First of all, the hormones (eager values, suppressors and accelerators) for
all the tasks which PEγ is interested in are emitted by PEγ .

After waiting the time tSE , the decision for a task Ti (PEγ is interested in) will be
taken. Afterwards i is incremented and the next cycle starts (tES = 0). In this way
the hormones for all the relevant tasks are emitted in each cycle and the decision for
exactly one task will be taken. This allows the hormones to take effect. If the allocation
decisions for all tasks would take place in parallel, the emitted accelerators would not
have any impact (as all tasks would already be allocated in the first cycle).

send hormones
for all tasks

Tj M relevant
for PE

wait (tSE)

tES = 0

decide on
task Ti

i:= i+1

Fig. 5. Cycle of the hormone distribution and the decision making for a PEγ

Let’s assume that all m tasks have to be distributed on all PEs and all PEs are inter-
ested in all tasks.

We introduce a further assumption to simplify the scenario: Let all eager values
be constant, i.e. there are no accelerators and suppressors. Then all tasks have been
inspected and allocated after m cycles and it follows:

Worst-case time behavior = m cycles

In the following we remove the simplifying assumption of constant eager values, i.e.
we allow accelerators and suppressors. Now some tasks might not have been allocated

344 U. Brinkschulte, M. Pacher, and A. von Renteln

PE checks Ti

PE checks Ti

PE checks Ti

PE wins

PE wins

PE wins

PE increases eager value for Ti caused by
an accelerator

Fig. 6. Accelerator caused delay of the task allocation

after m cycles. This can be caused by accelerators and suppressors, see fig. 6. Let’s as-
sume three PEs checking one after another the possibility to allocate the task Ti. While
PEγ and PEδ are checking PEε is the winner. After PEδ has checked, it increases its
eager value caused by a received accelerator. If afterwards PEε checks its status, PEδ

is the winner now. However, PEδ has already checked its status regarding task Ti and
will not repeat this check within the the next m cycles.

So at worst case task Ti will not be checked again until a complete cycle of all other
tasks, thus after m cycles. Afterwards the same scenario could occur again.

However, the maximal number of cycles is limited: A change of the eager value by
suppressors or accelerators only takes place if a task has been allocated somewhere in
the system (Assumption: Monitoring accelerators and suppressors are constant during
the initial self-configuration). It follows that in each allocation cycle at least one task
will be allocated. Thus, in the case of a variable eager value we get the following worst
case timing behavior for the self-configuration:

Worst Case Timing Behavior = m2 cycles

4 Simulation Results

We started to implement a hormone simulator in order to evaluate and demonstrate the
behavior of our artificial hormone system approach. The first simulations confirmed the
worst-case time bound for self-configuration. We also registered that the accelerators
have to be smaller than the suppressors to get a stable task allocation. The reason is that
if a task is scheduled, accelerators will be submitted to the neighbor cells to allocate
cooperating tasks nearby (see section 2). If these accelerators are stronger than the sup-
pressors (which prevent the task from being allocated onto another processing element)
the task allocation will not be stable. The reason is that the modified eager values will
continuously increase.

In the first configuration we have chosen a grid of 64 processing elements with 64
tasks to be distributed. The tasks were grouped in 8 × 8 cooperating tasks. Assuming
light-weight tasks, the suppressors indication processor were chosen weak. Therefore it
is possible that several tasks can run on one processing element. Figure 7 shows the sim-
ulation result. Coopearting tasks were scheduled right next to each other which would

Towards an Artificial Hormone System 345

Fig. 7. 64 tasks in eight groups, weak suppressors

Fig. 8. 64 tasks in eight groups, strong suppressors

346 U. Brinkschulte, M. Pacher, and A. von Renteln

lead to a small communication overhead in a real-world scenario. These clusters are not
scattered at all and several tasks were scheduled onto a single processing element.

The second configuration is the same as the first one - the only difference is that the
suppressors indicating processor load were chosen strong so that each processing ele-
ment can execute exactly one task. As shown in figure 8 the related tasks form clusters
again. This shows the efficiency of the artificial hormone system because, even under
full load it is able to form entire clusters which are not scattered.

We also tested self-optimization by spontaneously increasing a task’s eager value of
a PE. As expected, the task moved to this PE if the eager value was high enough and
the accelerators of the cooperating tasks were not too strong. In this way we were also
able to move complete organs for optimization.

In addition, we simulated the failing of one or more PEs and the simulation results
shows that the artificial hormone system was able to re-allocate the affected tasks if
there were enough PEs able to take a task.

5 Related Work

There are several approaches for clustered task allocation in middleware. In [2], the
authors present a scheduling algorithm distributing tasks onto a grid. It is implemented
in the Xavantes Grid Middleware and arranges the tasks in groups. This approch is
completely different from ours because it uses central elements for the grouping: The
Group Manager (GM), a Process Manager (PM) and the Activity Managers (AM). Here,
the GM is a single point of failure because, if it fails there is no possibility to get
group information from this group anymore. In our approach there is no central task
distribution instance and therefore the single point of failure can not occur.

Another approach is presented in [3]. The authors present two algorithms for task
scheduling. The first algorithm, Fast Critical Path (FCP) makes sure time constrains to
be kept. The second one, Fast Load Balancing (FLB) schedules the tasks so that every
processor will be used. Using this strategy - especially the last one - it is not guaranteed
that related tasks are scheduled nearby each other. In contrast to our approach, these
algorithms do not include the failing of processing elements.

In [1], a decentralized dynamic load balancing approach is presented. Tasks are con-
sidered as particles which are influenced by forces like e.g. a load balancing force (re-
sults from the load potential) and a communication force (based on the communication
intensities between the tasks). In this approach, the tasks are distributed according to
the resultant of the different types of forces. A main difference to our approach is that
we are able to provide time bounds for the self-configuration. Besides our approach
covers self-healing which is absolutely not considered by this decentralized dynamic
load balancing.

6 Conclusion and Further Work

We presented an artificial hormone system to allocate tasks to processing elements
within a processor grid. The assignment is completely decentralized and holds self-
X-features. Furthermore, we showed that we can guarantee tight upper bounds for the

Towards an Artificial Hormone System 347

real-time behavior of the artificial hormone system for the self-configuration. We started
testing the presented algorithms using a hormone simulator which confirmed the theo-
retical results so far.

As ongoing work, we will investigate additional quality properties of the artificial
hormone system i.e. if it is possible to find time bounds for self-optimization and self-
healing. We will also investigate if we can guarantee stability of the task assignment.
Another question in this scope is how to find an optimal task assignment and is the
artificial hormone system able to find it (if it exists)?

References

1. Heiss, H.-U., Schmitz, M.: Decentralized dynamic load balancing: The particles approach.
In: Proc. 8th Int. Symp. on Computer and Information Sciences, Istanbul, Turkey (November
1993)

2. Cicerre, F.R.L., Bittencourt, L.F., Madeira, E.R.M., Buzato, L.E.: A path clustering heuristic
for scheduling task graphs onto a grid. In: MGC05. 3rd International Workshop on Middleware
for Grid Computing, Grenoble, France (2005)

3. Radulescu, A., van Gemund, A.J.C.: Fast and effective task scheduling in heterogeneous sys-
tems. In: IEEE Computer - 9th Heterogeneous Computing Workshop, Cancun, Mexico, IEEE
Computer Society Press, Los Alamitos (2000)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 348–357, 2007.
© IFIP International Federation for Information Processing 2007

On Self-aware Delay Time Based Service Request
Optimization for Gateway Stability in Autonomic

Self-healing Systems

Junaid Ahsenali Chaudhry1, Yonghwan Lee2, Seungkyu Park1, and Dugki Min2,*

1 Graduate School of Information and Communication, Ajou University,
Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea

{junaid,sparky}@ajou.ac.kr
2 School of Computer Science and Engineering, Konkuk University,

Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea
{Yhlee,dkmin}@konkuk.ac.kr

Abstract. The benefits of component-based service composition are immense
however due to their exponential complexity; their real time implementation is
a big challenge. In hybrid networks i.e. ubiquitous zone-based networks (u-
Zone Networks), the high intensity of service requests can effect drastically on
the performance stability of service gateways. In this paper, we present a self-
aware service request optimization algorithm for autonomic self-healing
systems. We propose when a service request is received and the system is found
in the overload state where it can not entertain more service requests, instead of
imposing denial of service, the gateway would evaluate the workload of the
worker thread at the gateway and reschedule the service request by deferring it.
According to our simulation result, the proposed delay time algorithm, if
implied, enable gateways with more stability in order to process high flux of
service request loads even beyond the saturation point.

1 Introduction

The enormous management [1] cost is the trade-off of countless anticipated
reimbursements by distributed networks i.e. u-Zone networks. The u-Zone networks
carry the features of cluster-based Mobile Ad-hoc NETworks (MANETs) i.e. high
heterogeneity, mobility, dynamic topologies, limited physical security, limited
survivability, and low setup time [2] along with the support of high speed mesh
backbones [3]. Autonomic Computing (AC) presents a novel solution for
management costs in the form of self-management [4] but because of lack of
standardization activities and demarcation of functional specifications, self-
management is not a straight forward solution. Several network management
solutions proposed in [5, 6, 7, 8] are confined strictly to their respective domains i.e.
either mesh network or MANETs.

* Corresponding author.

 On Self-aware Delay Time Based Service Request Optimization 349

In u-Zone networks, due to such a wide variety of clients, it is not worthwhile to
devise separate management solutions for each client. Rather we suggested that
dividing the problem domain into sub domains [9]. The component-based solutions
can be applied after dividing the problems into sub-domains. A component based self-
healing solution is proposed in [10]. The dynamic service composition carries
exponential complexity [11] so transaction thrashing can take place. The term
thrashing generally describes “a phenomenon where an increase of the load results in
decrease of throughput (or another-related performance measure)” [12]. So it is
integral to provide a mechanism for preventing the thrashing in dynamic component
integration systems. We use the delay time-based peak load control scheme in order
to prevent the transaction trashing caused by enormous number of service request in
u-Zone-based hybrid networks. This complexity may be the biggest hindrance in real-
time implementation of autonomic solutions in real time environments.

Although there has not been much published work on service request management
in self managing networks, we propose a time delay based peak load control
mechanism for the self healing engine proposed in [11]. As the complexity of the
solutions made by dynamic composition from components can be exponential [11], it
is critical to provide incremental, low cost and time efficient solutions. The worker
pattern [8], connecter-accepter model [16], reactor [15] and proactive [21] approaches
are effective in combination but not cost effective in real life applications. The use of
the Peak Load Control (PLC) mechanism manages the service requests at the
gateway. Depending on the load on the host gateway, the service requests are
evaluated and deferred to avoid Denial of Service (DoS). We assign time stamps to
the service requests for “fairness” in their scheduling. We show the simulation result
for proving the stability of performance. According to our experimental results, the
proposed delay time algorithm can stably control the heavy overload after the
saturation point and has significant effect on the controlling peak load.

In section 2 we discuss related work. The system architecture follows in section 3.
In section 4 we discuss self-aware service request optimization mechanism. In section
5 we describe the simulation results along with their significance. In section 6 we
conclude the paper and discuss future work.

2 Related Work

In this section we compare our research with related work. Since there has not been
any research work published for controlling the service request load control in
autonomic self healing networks, we can compare our scheme on the bases of
autonomic self-management functions only. However the use of the self-aware PLC
mechanism in self-healing networks remains uniqueness in the area.

The Robust Self-configuring Embedded Systems (RoSES) project [13] aims to
target the management faults using self configuration. It uses graceful degradation as
a means to achieve dependable systems. In [14] the authors propose that there are
certain faults that can not be removed through configured of the system, which means
that RoSES does not fulfill the definition of self management as proposed in [18]. The
HYWINMARC [3] uses cluster heads to manage the clusters at local level but does not
explain the criteria of their selection. The specifications of Mobile Code Execution

350 J.A. Chaudhry et al.

Environment (MCEE) are absent. Moreover the use of intelligent agents can give
similar results as discussed above in the case of [8, 15, 16, and 21]. To enforce
management at local level, the participating nodes should have some local
management entity. We compare the Autonomic Healing-based Self-management
ENgine (AHSEN) with the other architectures. The comparison reveals that entity
profiling, functional classification of self management entities at implementation
level, and assurance of the functional compliance is not provided in the schemes
proposed. Moreover the self monitoring at node’s local level courtesy NFM not only
gives a node its self awareness but also uses the shared medium to the minimum. In
very dynamic hybrid networks these functionalities go a long way in improving the
performance of the self management system.

3 System Architecture

In hybrid wireless networks, there are many different kinds of devices attached with
the network. They vary from each other in their power, performance etc. One of the
characteristics not present in the related literature is the separate classification of the
client and the gateway architectures. Figure 1 shows the client and gateway self-
management software architectures.

(a) (b)

Fig. 1. The AHSEN architectures of client (a) and gateway (b)

The Normal Functionality Model (NFM) is a device dependent ontology that is
downloaded, along with SMF, on the device at network configuration level. It
provides a mobile user with an initial default profile at gateway level and device level
functionality control at user level. The client SMF constantly tracks the user activities
and sends them to the SMF at the gateway. The SMF at gateway directs the track
requests to the context manager which updates the related profile of the user. The
changes in service pool, trust manager, and policy manger are reported to the Context
Manager (CM). The CM consists of a Lightweight Directory Access Protocol (LDAP)
directory that saves its sessions at predetermined time intervals in the gateway
directory. The Policy Manager (PM) and Service Manager (SM) follow the same
registry based approach to enlist their resources. The presence of NFM provides
decision based reporting unlike the ever-present SNMP. The Trust Manager uses the
reputation-based trust management scheme in public key certificates [10]. The trust
factor is typically decided on trustee’s reputation to mitigate risks involved in

 On Self-aware Delay Time Based Service Request Optimization 351

interaction with unknown and potentially malicious users. We desist providing more
details on AHSEN architecture here. For a more detailed description of the
architecture shown in figure 1, please refer to [10].

In [3] the authors classify self management into individual functions and react to
the anomaly detected through SNMP messages. The clear demarcation of self-*
functions is very difficult due to the original mapping of faults onto management
functions is not defined. Considering the overlapping nature of faults, it is more fertile
to target the problems, which can be either atomic or complex, with atomic, vaguely
categorized solutions that either combine at run time to make complex ‘healing
policies’ or work independently in the shape of components [12]. The service
generation engine is a rule-based engine embedded into AHSEN for template based
service generation from components, the details of which are not within the scope of
this paper.

Fig. 2. Architecture of Self Management Framework (SMF)

The Root Cause Analyzer is the core component of the problem detection phase of
healing. The State Transition Analysis based approaches [21] might not be
appropriate as Hidden Markov Models (HMMs) takes long training time along with
exhaustive system resources utilization. The profile based Root Cause Detection
might not be appropriate mainly because of the vast domain of errors expected.
Considering this situation, we use the meta-data obtained from NFM to trigger Finite
State Automata (FSA) series present at the Root Cause Analyzer. In the future we plan
to modify State Transition Analysis Tool [21] in lines of on fault analysis domains.
After analyzing the root-cause results from the RCA, the RCF manager in cooperation
with the Signature Repository and Scheduler search for the already developed
solutions else it arranges a time slot based scheduler for plug-ins. The traffic manager
directs the traffic towards different parts of AHSEN.

4 Self-aware Service Request Optimization

The Traffic Manager receives Simple Object Access Protocol (SOAP) requests from
many devices within a cluster and redirects them to all the other internal parts of
SMF. Figure 3 shows the structure of delay time-based peak load control. The

352 J.A. Chaudhry et al.

Acceptor thread of the Traffic Manager receives a SOAP request (service request) and
then puts it into the Wait Queue. The Wait Queue contains the latest context of the
gateway load. If the gateway is in saturated state, the service request is handled by the
self-aware sub module. The figure 4 is the pseudo code of self-aware sub-module in
WorkerManager’s Delay Time Algorithm. Let a service request (SR1) arrives at the
gateway. At first the SR1 is checked if it contains the comebacktime stamp (for fair
scheduling). If the comebacktime is ‘fair’ (that is the service request is returned after
the instructed time), it is forwarded to the Wait Queue else it is accessed against the
work load of the Worker Manager. The Acceptor is updated about the latest status of
the Worker Manager. The Acceptor evaluates the intensity of current workload (how
long it will take to free resources) and adds buff (buffer is the time to give some extra
room to gateway) to the time. The aggregate time is assigned to SR1 and the service
request is discarded.

Fig. 3. The Structure of Delay Time-Based Peak Load Control in AHSEN

When the system is ready to accept the service request, the Traffic Manager get a
Worker Thread from a thread pool and run it. The Worker Thread gets the delay time
and the over speed from the WorkerManager. The admission to other internal parts
SMF is controlled by the Worker Thread that accepts the arriving requests only if the
over speed OS(ti+1) at the time ti+1 is below zero and the delay time D(ti) at the time ti

is below the baseline delay δ. Otherwise the requests have to sleep for the delay time
calculated by the WorkerManager. After the Worker Thread sleeps for the delay time,
the Worker Thread redirects the requests to the Root Cause Analyzer, the RCF
Manager, and the Scheduler. Finally, the Worker Thread adds the number of
processed transaction after finishing the related transaction.

The figure 4 is the pseudo code for the WorkerManager’s delay time algorithm.
After sleeping during interval time, the WorkerManager gets the number of
transactions processed by all Worker Threads and the maximum transaction
processing speed configured by a system administrator. And then, the
WorkerManager calculates the TPMS (Transaction per Milliseconds) by dividing the
number of transactions by the maximum transaction processing speed and calculate
the over speed OS(ti+1) that means the difference of performance throughput at the
time ti+1 between the TPMS and the maximum transaction processing speed during
the configured interval time. If the value of the over speed is greater than zero, the

 On Self-aware Delay Time Based Service Request Optimization 353

system is considered as an overload state. Accordingly, it is necessary to control the
overload state. On the contrary, if the value of the over speed is zero or less than zero,
it is not necessary to control the transaction processing speed. For controlling the
overload state, this paper uses the delay time algorithm of the WorkerManager. The
Figure 6 describes the formulas for calculating the delay time.

0- Let a service request SR1 arrives at Acceptor
1- Check SRi.comebacktime
2- If (SRi.comebacktime=’fair’) // check the virtual queue

a. Wait Queue Send SR1
3- Acceptor Send current_context(worker_Manager_Status_Update)
4- If (current_context!=‘overloaded’)

a. Wait queue Send SR1
5- else

a. While (current_context=’overlaoded’)
i. delaytime= Calculate

(intensity_of(current_context)+buff
ii. Set SR1.comebacktime delaytime

iii. Dismount SR1
6- While run_flag equals “true” do
7- get interval time for checking load
8- sleep during the interval time
9- get the number of transactions processed during the interval time
10- get the configured maximum speed
11- TPMS := number of transactions / interval time
12- over speed := TPMS – the configured maximum speed
13- If over speed >0 then

a. get the previous delay time
b. if previous delay time = 0

i. previous delay time := 1
c. get the number of active worker thread
d. new delay time:= over speed / number of active worker *

previous delay time
14- else

a. get current delay
b. if current delay > δ

i. new delay time := current delay * β

c. else
i. new delay time := 0

d. end if
15- end if
16- end while

Fig. 4. The Pseudo code for Self-Aware module and WorkerManager’s Delay Time Algorithm

If the over speed OS(ti+1) is greater than zero, the first formula of the Figure 6 is
used for getting a new delay time D(ti+1) at the time ti+1. The N(ti+1) means the number
of active Worker Threads at the time ti+1 and D(ti) means the delay time at the time ti.
If the D(ti) is zero, D(ti) must be set one. If the OS(ti+1) is below zero and the delay
time D(ti) at the time ti is greater than the baseline delay δ, The D(ti+1) is calculated by
applying the second formula of the Figure 6. On the contrary, if the D(ti) is below the
baseline delay, D(ti+1) is directly set zero. In other word, because the state of system is
under load, the delay time at the time ti+1 is not necessary. Accordingly, the Worker
Thread can have admission to other internal parts SMF. The baseline delay is used for

354 J.A. Chaudhry et al.

preventing repetitive generation of the over speed generated by suddenly dropping the
next delay time in previous heavy load state. When the system state is continuously in
state of heavy load for a short period of time, it tends to regenerate the over speed to
suddenly increment the delay time at the time ti and then suddenly decrement the
delay time zero at the time ti+1. In other words, the baseline delay decides whether
next delay time is directly set zero or not.

The β percent of the second formula of the Figure 5 decides the slope of a
downward curve. However, if the delay time at the time ti is lower than the baseline
delay. The new delay time at the time ti+1 is set zero. Accordingly, when a system
state becomes the heavy overload at the time ti, the gradual decrement by β percent
prevents the generation of repetitive over speed caused by abrupt decrement of the
next delay time.

1
1

1

1 1

1

() ()
, (()) 0

()

() : ()* , ((()) 0 (())) ,

0, ((()) 0 (()))

i i
i

i

i i i i

i i

OS t D t
if OS t

N t

D t D t if OS t D t

if OS t D t

β δ

δ

+
+

+

+ +

+

∗⎧ >⎪
⎪
⎪
⎪= ≤ ∩ >⎨
⎪
⎪
⎪ ≤ ∩ ≤
⎪
⎩

Fig. 5. A Mathematical Model for Delay Time Calculation

Once the service request is received by the worker thread the analysis of the cause
of anomaly starts. As proposed in [18] the faults can be single root cause based or
multiple root cause based. We consider this scenario and classify a Root Cause
Analyzer that checks the root failure cause through the algorithms proposed in [19].
After identifying the root causes, the Root Cause Fragmentation Manager (REF
Manager) looks up for the candidate plug-ins as solution. The RFC manager also
delegates the candidate plug-ins as possible replacement of the most appropriate. The
scheduler schedules the service delivery mechanism as proposed in [20]. The
processed fault signatures are stored in signature repository for future utilization.

5 Simulation Results

In order to prove performance stability of the self-aware PLC-based autonomic self-
healing system, we simulated the self-aware delay time algorithm of the
WorkerManager. As for load generation, the LoadRunner 8.0 tool is employed. The
delay time and over speed are used as a metric for simulation analysis. The maximum
speed, δ and β for delay time algorithm are configured 388, 100ms, and 0.75
respectively. Figure 6 shows the result of simulation for describing the relationship
between the over-speed and the delay time after the saturation point.

 On Self-aware Delay Time Based Service Request Optimization 355

Fig. 6. The Simulation Results Proving the Effect of Delay Time Algorithm

The experimental results prove that the proposed delay time algorithm of the
WorkerManager has an effect on controlling the over-speed. As the number of
concurrent users is more than 220 users, the over-speed frequently takes place.
Whenever the over-speed happens, each Worker Thread sleeps for the delay time
calculated by the WorkerManager. As the higher over-speed takes place, each Worker
Thread sleeps for the more time so that the over speed steeply goes down. Although
the over speed steeply goes down, the delay time does not steeply goes down due to
the baseline delay value δ. As the baseline delay value is set 100 ms in this
experiment, the delay time gradually goes down until the 100 ms. As soon as the
delay time passes 100 ms, the next delay time is directly set zero. The result of
simulation in figure 7(a) shows that the over-speed does not happen until zero delay
time due to the slope of a downward curve. However, As soon as the delay time
passes zero, the over speed again occurs and the next delay time controls the over
speed.

(a) (b)

Fig. 7. The Simulation Results for Gateway Performance Stability using WorkerManager’s
Delay Time Algorithm

356 J.A. Chaudhry et al.

Although the heavy request congestion happens in a Traffic Manager of the
gateway, the delay time-based PLC mechanism can prevent the thrashing state in
overload phase and help the Traffic Manager to execute stably the management
service requests.

The figure 7(a) shows that the gateway with PLC scheme is more stable than the
one without PLC mechanism. The standard deviation at the gateway without PLC is
more than 58.23 whereas the deviation in performance cost at the gateway with PLC
mechanism is 24.02 which prove the argument posted in the previous section that
PLC mechanism provides stability to gateways in u-zone based networks. The figure
7(b) shows that applying self-aware sub module to the PLC mechanism gives stable
performance than applying PLC algorithm only. The stability in the cost function with
time shows that the cost is predictable over time scale. Although the cost of applying
PLC mechanism with self-aware module is more than without it, the self-aware PLC
gives more stability hence is more suitable in unpredictable, dynamic, and highly
heterogeneous u-Zone Networks.

6 Concluding Remarks and Future Work

In this paper, we propose a self-aware delay time based service request optimization
algorithm for gateway stability in ubiquitous networks. We apply the scheme in
autonomic self-healing based systems. As there is large variety of clients trying to
access the same set of services it is highly probable that a service that works optimally
for a certain type of client may prove terminal for another type of client. So we
propose to decrease the granularity and name them components and join them
dynamically. We identify that because of exponential complexity among dynamic
service composition systems, their real time implementation is not easy. For this
reason, we propose a self-aware delay time based algorithm that gives more stability
to the gateway than some of the solutions proposed.

In future we aim to test this scheme in more complex situations and at mutually
dependent services. We aim to improve the root cause analysis algorithms so that the
exact situation at the client end could be sorted out. The performance of self-aware
enabled PLC algorithm is yet to be tested in the presence of multiple users.

References

1. Firetide TM Inc (Last accesses:(01-01-2007), http://www.firedide.com
2. Doufexi, A., Tameh, E., Nix, A., Armour, S., Molina, A.: Hotspot wireless LANs to

enhance the performance of 3G and beyond cellular networks. Communications Magazine,
IEEE 41(7), 58–65 (2003)

3. Oh, M.: Network management agent allocation scheme in mesh networks.
Communications Letters, IEEE 7(12), 601–603 (2003)

4. Cybenko, G., Berk, V.H., Gregorio-De Souza, I.D., Behre, C.: Practical Autonomic
Computing. In: Computer Software and Applications Conference, 2006. COMPSAC ’06.
30th Annual International, vol. 1, pp. 3–14 (September 2006)

 On Self-aware Delay Time Based Service Request Optimization 357

5. Chaudhry, S.A., Akbar, A.H., Kim, K.-H., Hong, S.-K., Yoon, W.-S.: HYWINMARC: An
Autonomic Management Architecture for Hybrid Wireless Networks. Network Centric
Ubiquitous Systems (NCUS 2006) (2006)

6. Richard, B.: Network Management. Concepts and Practice: A Hands-on Approach Pearson
Education, Inc. (2004)

7. Kishi, Y., Tabata, K., Kitahara, T., Imagawa, Y., Idoue, A., Nomoto, S.: Implementation of
the integrated network and link control functions for multi-hop mesh networks in
broadband fixed wireless access systems. In: Radio and Wireless Conference, 2004 IEEE,
19-22 September 2004, pp. 43–46 (2004)

8. Yong-Lin, S., DeYuan, G., Jin, P., PuBing, S.: A mobile agent and policy-based network
management architecture. In: Proceedings, Fifth International Conference on
Computational Intelligence and Multimedia Applications ICCIMA 2003, 27-30 September
2003, pp. 177–181 (2003)

9. Chaudhry, J.A., Park, S.: A Novel Autonomic Rapid Application Composition Scheme for
Ubiquitous Systems. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC 2006. LNCS,
vol. 4158, Springer, Heidelberg (2006)

10. Chaudhry, J.A., Park, S.: Using Artificial Immune Systems for Self Healing in Hybrid
Networks. In: Encyclopedia of Multimedia Technology and Networking, Idea Group Inc.
2006 (to appear)

11. Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungs
Problem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)

12. Denning, P.J.: Thrashing: Its Causes and Prevention. In: Proc. AFlPS FJCC 33, pp. 915–
922 (1968)

13. Shelton, C., Koopman, P.: Improving System Dependability with Alternative
Functionality. In: DSN04 (June 2004)

14. Morikawa, H.: The design and implementation of context-aware services. In: Proceedings
of IEEE saint-w 2004, pp. 293–298. IEEE Computer Society Press, Los Alamitos (2004)

15. Schmidt, D.C.: Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching. In: Coplien, J.O., Schmidt, D.C. (eds.)
Pattern Languages of Program Design, pp. 529–545. Addison-Wesley, Reading (1995)

16. Schmidt, D.C.: Acceptor and Connector: Design Patterns for Initializing Communication
Services. In: Martin, R., Buschmann, F., Riehle, D. (eds.) Pattern Languages of Program
Design, Addison-Wesley, Reading (1997)

17. Trumler, W., Petzold, J., Bagci, F., Ungerer, T.: AMUN – Autonomic Middleware for
Ubiquitious eNvironments Applied to the Smart Doorplate Project. In: International
Conference on Autonomic Computing (ICAC-04), May 17-18, 2004, New York (2004)

18. Gao, J., Kar, G., Kermani, P.: Approaches to building self healing systems using
dependency analysis. In: Network Operations and Management Symposium, 2004. NOMS
2004. IEEE/IFIP, 19-23 April 2004, vol. 1, pp. 119–132 (2004)

19. Chaudhry, J., Park, S.: On Seamless Service Delivery. In: Wang, L., Jiao, L., Shi, G., Li,
X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, Springer, Heidelberg (2006)

20. Hu, J., Pyarali, I., Schmidt, D.C.: Applying the Proactor Pattern to High-Performance Web
Servers. In: Proceedings of the 10th International Conference on Parallel and Distributed
Computing and Systems, IASTED (October 1998)

Algorithmic Skeletons for the Programming of
Reconfigurable Systems

Florian Dittmann

Heinz Nixdorf Institute, University of Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany

Abstract. Reconfigurable hardware such as FPGAs combines performance and
flexibility, two inherent requirements of many modern electronic devices. More-
over, using reconfigurable devices, time to market can be reduced while simul-
taneously cutting the costs. However, the design of systems that beneficially ex-
plore the reconfiguration capabilities of modern FPGAs is cumbersome and little
automated. In this work, a new approach is described that starts from a very high
level of abstraction, so-called algorithmic skeletons, and exploits the additional
information of this level of abstraction to beneficially execute on reconfigurable
devices. Particularly, the approach focuses on dynamic run-time reconfiguration
on partially reconfigurable FPGAs. As a first introduction to this approach, we
consider stream parallelism paradigms including their composition.

1 Introduction

Flexibility and performance are demanding requirements of modern computing sys-
tems. Reconfigurable devices offer these requirements as they compute in parallel while
still being adaptable (e. g. [1,2]). However, these benefits are cumbersome to explore,
particularly, if dynamic reconfiguration shall be exploited. Despite an increasing num-
ber of modern FPGAs providing partial run-time reconfiguration—two core require-
ments for dynamic reconfiguration—methods that allow to exploit these additional flex-
ibilities are rarely found. Nevertheless, some work has been done that proofs the benefit
of fine grain granularity and high adaptability of FPGAs, e. g. in [3,4,5,6,7,8].

To eventually exploit the potentials, the cumbersome details of partial run-time re-
configuration should be transparent. We therefore need to offer dynamic reconfiguration
on a high level of abstraction to easily gain the benefits of partially reconfigurable sys-
tems. These benefits are most likely if the design is done in an FPGA aware manner,
i. e., close to the technical (hardware) characteristics of the FPGAs. As the latter is
challenging for the application oriented designer, we propose to raise the level of ab-
straction by using so-called algorithmic skeletons. Algorithmic skeletons are program-
ming templates that guide designers to efficiently implement algorithms by separating
the structure from the computation itself. In reconfigurable systems, partial run-time
reconfigurability thus becomes transparent for the algorithms.

As an introduction to the concept, we show how stream parallelism of applications
executed on FPGAs can be abstracted using algorithmic skeletons. On basis of the ab-
straction, a run-time reconfiguration manager can successfully combine the execution
of several—also different—skeletons on one FPGA during the same time.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 358–367, 2007.
c© IFIP International Federation for Information Processing 2007

Algorithmic Skeletons for the Programming of Reconfigurable Systems 359

This work is organized as follows: In the next section, we review related work. Sec-
tion 3 formulates the problem, while Sect. 4 conceptually describes the proposed so-
lution. In Sect. 5, we refine the concept proposed by detailing three skeletons of the
stream parallel computing paradigm. Dynamic reconfiguration by virtue of algorithmic
skeletons is discussed in Sect. 6. Finally, we conclude and give an outlook.

2 Related Work

In the literature, we find some works on designing reconfigurable systems on a higher
level of abstraction than hardware description languages (HDLs). Most of these works
do not target partial run-time reconfigurable systems. Additionally, the models proposed
assume the designer to have reasonable knowledge of the system under development.

The work of DeHon et al. [9] on design patterns for reconfigurable systems is a so-
phisticated approach on providing canonical solutions to common and recurring design
challenges of reconfigurable systems and applications. The authors intend on providing
a mean to crystallize out common challenges of reconfigurable system design and the
typical solutions. However, their work focusses more on providing a layer of abstraction
to the reconfigurable systems community than to application engineers.

Some years earlier, SCORE (Stream Computations Organized for Reconfigurable
Execution) was proposed in [10]. The approach focusses on providing a unifying com-
pute model to abstract away the fixed resource limits of devices. Therefore, the re-
sources are virtualized, which can ease the development and deployment of reconfig-
urable applications. Again, the addressees of the SCORE approach are mainly recon-
figurable computing engineers.

Modern languages for embedded systems like SystemVerilog or SystemC also aim
at raising the level of abstraction. These approaches can be seen as extended HDLs that
introduce design principles to the hardware world, such as re-use, polymorphism, etc.
For example, SystemC as language to model dynamic reconfigurable hardware is used
in [11]. However, the languages are often used for simulation only and the generation
of executable code is challenging.

Further approaches propose an operating systems for reconfigurable systems or FP-
GAs, respectively, e. g. [7,12,13,14]. These approaches focus on providing the recon-
figurable fabric to tasks via the abstraction layer of the operating system. The benefit of
these approaches can be a predictable behavior of the executed task. Operating systems,
however, seldom consider structure and behavior of the algorithms to be computed.

Finally, in low-level hardware design, [15] focus on a high-level hardware descrip-
tion called hardware skeletons. Considering the idea of separation of structure from the
algorithm, this approach is closest to our work. Moreover, the authors motivate their
work similar to us, i. e., an increase of abstraction in order to open the field of hardware
design to a broader audience. However, the amount of skeletons is very limited and
they are still very low-level and will often be too far away from algorithm designers.
Moreover, we do not find the paradigm of reconfigurability in their work.

To summarize, all these abstracting approaches barely consider partial run-time re-
configuration and therefore lack the possibility to make the cumbersome details of re-
configurable systems transparent to the application designer.

360 F. Dittmann

3 Problem Definition

The design of applications for the execution on partially run-time reconfigurable sys-
tems is twofold. On one hand, FPGAs fundamentally are hardware that can be pro-
grammed and whose configuration may change over time. Therefore, we need a firm
background in hardware design, including communication and I/O requirements. We
also have to respect the critical path information, clock skew, etc. Moreover, partially
reconfigurable FPGAs require to consider the modification of hardware over time.

On the other hand, the application design is driven by achieving high performance
and short time to market. Designers therefore explore the theory behind applications
and search for algorithms that server the problems best. Moreover, they try to abstract
from the execution platform, mostly due to reasons of programmability and portability.
Partial run-time reconfiguration becomes a feature that should be beneficially for the
performance of the algorithm. The details of hardware and FPGAs thereby are of sec-
ondary focus, as development takes place more in the terms of the software world, even
if special requirements of embedded systems are respected.

Synthesis from behavioral problem description to reconfigurable hardware targets
this issue. However, in the domain of partial run-time reconfigurable hardware, au-
tomatic synthesis still lacks good results. Furthermore, if iterative design due to per-
formance evaluation is required, or portability is an issue, we require a more suitable
design methodology that supports designers on a high level of abstraction.

4 Problem Solution

We propose to use algorithmic skeletons as bridge between circuit design and applica-
tion development for FPGAs. Algorithmic skeletons therefore are offered as a library
that is used by the algorithms of the application under development. The usage of al-
gorithmic skeletons constrains the design of algorithms to a set of templates. However,
we can extract valuable information for dynamic reconfiguration from these templates.

4.1 Algorithmic Skeletons

Algorithmic skeletons were introduced by Cole [16]. They separate the structure of
a computation from the computation itself. Originally, the application domain of algo-
rithmic skeletons are parallel machines or cluster computers. In particular, the skeletons
free the programmer from the implementation details of the structure, such as how to
map it to the available processors. By providing a structured management of parallel
computation, they can be used to write architecture independent programs, shielding
application developers from the details of a parallel implementation.

Algorithmic skeletons are similar to higher order functions of functional languages
for conventional imperative languages. Concerning design space exploration, skeletons
and their level of abstraction enable to explore a variety of parallel structurings for a
given application. A clean separation between structural aspects and the application
specific details is realized by virtue of algorithmic skeletons. Thanks to the structural
information provided, static and dynamic optimization of implementations is possible.

Algorithmic Skeletons for the Programming of Reconfigurable Systems 361

FPGA

Algorithmic Skeletons

Tasks

Runtime Environment

Skeleton Dispatcher

Applications

Fig. 1. Layer model

tile
tile

Fig. 2. Two run-time execution environments

The purpose of every skeleton is to abstract a pattern of activities and their inter-
actions. They provide a means of implementation, which separates them from design
patterns. The latter are mostly used during the design phase and offer only orientation
for the final implementation. Due to their proximity to a run-time environment, algo-
rithmic skeletons allow us to exploit the performance offered by the processing system.

Consequently, there has to be a balance between generality (allowing re-use for dif-
ferent architectures and user kernels) and specificity (for efficient implementation and
interfaces to the user kernels). There also is the so-called trap of universality, i. e., pro-
viding a skeleton that is generic in itself and can be used if no other skeleton might fit.
Such a skeleton would increase the complexity of a run-time environment. In order to
avoid this trap, there is usually the restriction of the acceptable input for a system to a
set of valid algorithmic skeletons only, see also [17,18]. In case of modern FPGAs, we
can also overcome this gap by exploiting soft or hard core CPUs. These general purpose
processors can execute any algorithm due to their Turing completeness.

4.2 Application in Reconfigurable Systems

Reconfigurable computing on FPGAs basically is similar to processing on parallel sys-
tems, as execution of algorithms on hardware like FPGAs also means processing in
parallel. When reconfiguring FPGAs, we usually define exchangeable regions and ap-
ply different modules to these regions. Several such regions can be marked on the same
FPGA. These regions are comparable to the nodes of a computing cluster. The inter-
module communication, so still a challenging research area, enables various ways of
data exchange. Thus, we see broad similarities to parallel computing in the sense of
algorithmic skeletons. We can distribute applications into the regions as it is done in the
parallel computing domain. For efficient execution and beneficial exploitation of the
capabilities, both systems need structure, which is provided by algorithmic skeletons.

Therefore, we use algorithmic skeletons as means of abstraction for partial run-time
reconfiguration of FPGAs. The skeletons provide a seminal method to abstract recon-
figurable fabrics on a high level. We combine the skeletons into a library. As a first
introduction to this new concept, we detail stream parallelism in the next section.

We abstract the general concept by virtue of a layer model, see Fig. 1. Applications,
which built the top layer, are described by a set of tasks. These tasks must be imple-
mented using algorithmic skeletons. An execution environment that executes the tasks

362 F. Dittmann

E

C

W1 WpW2

in

Fig. 3. Farm parallelism

W1 WpW2

in

out

Fig. 4. The pipeline paradigm

on an FPGA accepts the tasks described by a set of skeletons only. The set of skeletons
is processed by a dispatcher that is deeply connected to its execution environment.

4.3 Execution Environment

Concerning the practical realization of a suitable run-time environment for the execu-
tion of the set of skeletons on an FPGA, we consider a tiled system. As we focus on
homogenous FPGAs in this work, each tile comprises similar logic resources. However,
we still consider two different tile arrangements: the first being a purely quadratic or-
ganization, while the second one offers more direct communication possibilities due to
an underlying hexagonal structure (see Fig. 2).

Xilinx Virtex 4 devices support the proposed execution environments as they support
2D style partial reconfiguration. Furthermore, on these devices, the external communi-
cation, i. e. the I/O pads, is separated and not part of a slice. With the advances in FPGA
design, more sophisticated run-time environments are possible.

5 Stream Parallelism

Stream parallelism may be the closest idea of parallel computing that matches the ideas
of execution on FPGAs [19]. Stream computation can be described as applying f : α →
β on a stream of input values a1, a2, The idea is to exploit the parallelism within
the computation of f on different (and unrelated) elements of the input stream. As an
example, we can consider a vision system that explores images. The images enter the
system abstracted as a stream and must be handled differently.

5.1 Farm Paradigm

An algorithm that computes the same f on all of the elements of a stream a1, a2, . . .
exploits the farm paradigm. The computations f(a1), f(a2), . . . can be executed in par-
allel using a pool of parallel processing modules. Figure 3 depicts the concept. The
major characteristic to observe is that the functions can be executed independently of
each other as they are all operating on a different data set.

Algorithmic Skeletons for the Programming of Reconfigurable Systems 363

W1

E,C

W3

W2 E

W4

b

W1 W2

u

W5

W3

s C

W6

inin out

Fig. 5. Two possible execution schemes of applications using the farm skeleton

As an application example, we can assume a stream of two video channels that
should be output alternatingly to one single channel. However, the switch between
the two channels should not be abrupt but smoothly, i. e., a fading between the two
channels. We thus have a function f that is applied on a stream of three input values
〈x1, y1, c1〉, 〈x2, y2, c2〉, . . ., while x1 and y1 denote the two video streams and c1 the
dominance of the one stream over the other (an increasing/decreasing number of e. g.,
8 bit width). Both streams arrive at the node E which distributes the single images to
the worker processes W1, W2, . . . , Wn adding the number ci. These functions can be
computed independently of each other in different worker nodes Wi. The results then
are propagated to the combining node C that forwards the stream to the video screen.

If we describe our algorithm using a skeleton for the farm paradigm, the structure of
the application is given. Thus, we know how to execute the algorithm on the execution
device. First, we can derive a meaningful placement of the algorithm that serves both
the requirements of the farm and the characteristics of the FPGA. Figure 5 shows how
the skeleton can be mapped in two different ways. In the left approach, we use the same
tile for the input and output of the nodes. However, if we rely on direct communication
links only, the number of possible worker tiles is limited. Therefore, the right approach
of Fig. 5 spans the farm skeleton over the whole width of the FPGA.

Dynamic run-time reconfiguration is needed if the amount of worker modules should
be adapted during run-time. External stimuli therefore could be a requirement to adapt
the quality of service, etc. Further details are discussed in Sect. 6.

To summarize the farm skeleton, a structural concept is given that allows to distribute
workers of an application on different tiles of a partially and run-time reconfigurable
FPGA. The execution of the workers including their reconfiguration is part of the run-
time environment and its dispatcher. However, by describing an application on basis
of the farm skeleton, the number of workers is not set. Depending on the resources
available, a different quality of service can be realized. The optimal solution, i. e., a
solution that avoids the blocking of workers, etc. due to overload conditions, must be
derived carefully by evaluating the execution times of the function f and the distribution
time of the initial node E.

5.2 Pipeline Paradigm

The pipeline paradigm comprises a composition on n functions f1 . . . fn such that
f1 : α → γ1, . . . , fi : γi−1 → γi, . . . , fn : γn−1 → β (1)

Figure 4 shows the concept as a graph.

364 F. Dittmann

f

f

g

g

g

g

g

f

out

in

f

f

g g

g

f

g

g

g

g

in

Fig. 6. Two realizations of a pipeline with different area requirements

As an example within our image processing environment, we consider a scenario
of a stereo vision system. We receive the input of two cameras 〈x1, y1〉, 〈x2, y2〉, . . .
and want to extract valuable information out of the system. We therefore compute the
composition of two functions f ◦ g. Function g will result in a combination of the two
images, having the pixel combined into the means (g(〈xi, yi〉) = zi), while f will
produce the histogram on the resulting image zi. The functions f and g can be executed
in parallel each on a subsequent data set, thus exploiting pipeline parallelism.

In Fig. 6, we depict two possible realizations assuming the second function f to
consume more area than function g. Here we can see that different stages can consume
more area than available on one single tile by simply combining tiles. The dispatcher
of the run-time environment may react on the different requirements of the functions
within the pipeline. If enough area is available, the dispatcher may also built up a second
pipeline in parallel in order to increase the throughput of the systems.

Describing a problem using the pipeline skeleton, we can further exploit the charac-
teristics of stream processing. As the stages of the pipeline get activated in sequence,
we can decrease the reconfiguration latency of the overall system. We successively load
the bitstreams of the pipeline stages in their order given. After reconfiguring the first
stage, this stage may start its execution before the complete pipeline is loaded. The
same holds for the subsequent stages. Thus, the fastest possible response time can be
guaranteed. Additionally, if less area than required by the stages is available, we may
apply hardware virtualization. Therefore, only parts of the overall pipeline are loaded
on the FPGA at the same time. These parts may also perform block processing of a
block of input sets in order to hide the reconfiguration overhead, which is still in the
range of milliseconds on modern FPGAs.

A further approache to improve the behavior of a pipeline streaming algorithm is
to identify the bottleneck stage. In order to reduce the impact of this stage, we can
provide a functionality to map this stage on a tile comprising of specific computation
resources (assuming a heterogenous FPGA). Alternatively, we might provide critical
stages in different implementation variants that can be tested in a design space explo-
ration that explores different implementations of the pipeline skeleton. We then select
the combination of these stages that offer the best overall performance.

Algorithmic Skeletons for the Programming of Reconfigurable Systems 365

W1 WpW2

in

out

feed

Fig. 7. Stream iterative paradigm

5.3 Stream-Iterative Paradigm

In the stream-iterative paradigm, we have a number of functionally equivalent stages.
This number of stages may depend on the input values and is generally unknown before
execution. We can view the stream-iterative paradigm as a tail recursive function f that
comprises of a finite result x if a boolean function c(x) computes true, or a recursive call
f(g(x)) otherwise. We can compute such a problem in parallel by a pipeline including
a stage for each recursive call of f . Figure 7 depicts the concept. In order to implement
such an unbounded pipeline on an FPGA with limited resources available, we emulate
the unbounded pipeline by folding it on a chain of processes of a fixed length.

As an example, we can consider again a stream of images that are processed by a
filter in each of the stages. The processing will go on until no further refinement of the
image is possible and the final result is sent to the output.

6 Dynamic Reconfiguration

The above presented paradigms can be composed to built more complex parallel struc-
tures. In Fig. 8, we show how different skeletons can be executed on the same FPGA,
exploiting a multi task environment. Depending on the specific needs (quality of ser-
vice, etc.) of the applications behind the skeletons, we can react and dynamically adapt
the purpose and organization of the tiles of our execution environment.

Such a dynamic reconfiguration means the adaptation of a device during run-time.
In particular, the amount and shape of tasks that shall be executed on a run-time en-
vironment are not known at design time. When realizing such a behavior without any
abstracting layers on top of an FPGA, we would have to cope with fragmentation and
on-line routing issues that can be tremendously challenging.

The implementation of applications by virtue of algorithmic skeletons enables a so-
phisticated and dynamic execution of tasks on FPGAs. The run-time environment al-
lows us to load tasks which are available on the basis of algorithmic skeletons onto
the FPGA. As the usage of algorithmic skeletons enforces the applications to be well-
formed, we thereby can prevent fragmentation of the devices and guarantee communi-
cation requirements. Additionally, the quality of service may be considered.

In the example depicted in Fig. 8, we first assume a scenario where a farm skeleton is
executed in the left side of the FPGA and a stream-iterative skeleton occupies the right
side of the FPGA. The former one can use four worker tiles, while the latter has eight
worker tiles on its dispose. At some point in time, a new application requests to enter
the system. We can decrease the pipeline of the stream-iterative skeleton, thus freeing

366 F. Dittmann

W0

E,C

W3

W2

W1

W3

W4

W5

W2

W1

W6

W8

W7

W0

E,C

W3

W2

W1

P1

P2

P2

W2

W1

W3'

W5'

W4'

in in in

inin

out

out out

out

Fig. 8. Combination of different skeletons

area in the middle of the FPGA. This area is then used to execute a new application that
ist implemented referring to the pipeline skeleton.

In the example, the execution environment is fixed, as it provides the computational
resources and the communication for its set of skeletons. The dispatcher accepts a set
of skeletons only. On basis of the information of the skeletons, we can take care of con-
nections, etc. The combination of dispatcher and specific run-time environment allows
us the execution of a set of skeletons. We can execute any algorithm on this run-time
environment irrespectively of its behavior and size, as long as the algorithm can be im-
plemented by virtue of some of this environment’s skeletons. If the area requirements
exceed the size of the FPGA, we can apply hardware virtualization as described above.
As a drawback, we only serve applications which are implemented as skeletons that the
execution environment supports.

The design of applications by virtue of algorithmic skeletons allows us to react on
changing needs of the whole system and of a single application of the system. In partic-
ular, if the quality of service must be increased, we can demand additional resources.

7 Conclusion

In this work, we have introduced algorithmic skeletons for dynamic reconfigurable
computing. Algorithmic skeletons separate structure from the behavior of an algorithm.
By providing a library of skeletons to implement applications for reconfigurable sys-
tems, we can beneficially explore partial run-time reconfiguration of reconfigurable fab-
rics. Therefore, solutions, i. e., hardware realizations, of the skeletons are applied to
various applications. We have introduced the field of stream parallelism comprising of
the farm, pipeline and stream-iterative paradigm. In general, the approach is a hopeful
mean to provide an interface between the hardware platform (FPGA) and applications.
Moreover, additional benefits are possible if a composition of skeletons is used.

We currently broaden the library of algorithmic skeletons to offer also data pral-
lelism. Furthermore, we want to consider heterogeneous FPGAs, as the additional re-
sources of such fabrics facilitate improved solutions for specific applications that we
hope to also cover by algorithmic skeletons. As a final outlook, also coarse-grain recon-
figurable devices as execution environments may be taken into account.

Algorithmic Skeletons for the Programming of Reconfigurable Systems 367

References

1. DeHon, A., Wawrzynek, J.: The case for reconfigurable processors (1997)
2. Compton, K., Hauck, S.: Reconfigurable Computing: A Survey of Systems and Software.

ACM Computing Surveys 34(2), 171–210 (2002)
3. Ganesan, S., Vemuri, R.: An Integrated Temporal Partitioning and Partial Reconfiguration

Technique for Design Latency Improvement. In: DATE ’00. Proceedings of the IEEE Design,
Automation and Test in Europe, Paris, France (2000)

4. Diessel, O., ElGindy, H., Middendorf, M., Schmeck, H., Schmidt, B.: Dynamic Schedul-
ing of Tasks on Partially Reconfigurable FPGAs. IEE Proceedings – Computer and Digital
Techniques (Special Issue on Reconfigurable Systems) 147(3), 181–188 (2000)

5. Horta, E.L., Lockwood, J.W., Taylor, D.E., Parlour, D.: Dynamic hardware plugins in an
FPGA with partial run-time reconfiguration. In: DAC ’02. Proceedings of the 39th conference
on Design automation, pp. 343–348. ACM Press, New York (2002)

6. Li, Z., Hauck, S.: Configuration prefetching techniques for partial reconfigurable coprocessor
with relocation and defragmentation. In: FPGA ’02. Proceedings of the 2002 ACM/SIGDA
tenth international symposium on Field-programmable gate arrays, pp. 187–195. ACM Press,
New York (2002)

7. Steiger, C., Walder, H., Platzner, M.: Operating systems for reconfigurable embedded plat-
forms: Online scheduling of real-time tasks. IEEE Trans. Comput. 53(11), 1393–1407 (2004)

8. Danne, K., Bobda, C., Kalte, H.: Run-time Exchange of Mechatronic Controllers Using Par-
tial Hardware Reconfiguration. In: Cheung, P.Y.K., Constantinides, G.A. (eds.) FPL 2003.
LNCS, vol. 2778, Springer, Heidelberg (2003)

9. DeHon, A., Adams, J., DeLorimier, M., Kapre, N., Matsuda, Y., Naeimi, H., Vanier, M.C.,
Wrighton, M.G.: Design patterns for reconfigurable computing. In: FCCM, pp. 13–23 (2004)

10. Caspi, E., Chu, M., Huang, R., Yeh, J., Wawrzynek, J., DeHon, A.: Stream computations
organized for reconfigurable execution (score). In: Grünbacher, H., Hartenstein, R.W. (eds.)
FPL 2000. LNCS, vol. 1896, pp. 605–614. Springer, Heidelberg (2000)

11. Antti Pelkonen, K.M., Cupák, M.: System-Level Modeling of Dynamically Reconfigurable
Hardware with SystemC. In: Proceedings of International Symposium on Parallel and Dis-
tributed Processing (Reconfigurable Architectures Workshop), pp. 174–181 (April 2003)

12. Brebner, G.J.: A Virtual Hardware Operating System for the Xilinx XC6200. In: Glesner,
M., Hartenstein, R.W. (eds.) FPL 1996. LNCS, vol. 1142, pp. 327–336. Springer, Heidelberg
(1996)

13. Danne, K.: Operating Systems for FPGA Based Computers and Their Memory Management.
In: ARCS 2004.Organic and Pervasive Computing, Workshop Proceedings. GI-Edition Lec-
ture Notes in Informatics (LNI), vol. P-41, Köllen Verlag (2004)

14. Walder, H., Platzner, M.: A Runtime Environment for Reconfigurable Hardware Operating
Systems. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp.
831–835. Springer, Heidelberg (2004)

15. Benkrid, K., Crookes, D.: From application descriptions to hardware in seconds: a logic-
based approach to bridging the gap. IEEE Trans. VLSI Syst. 12(4), 420–436 (2004)

16. Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pit-
man/The MIT Press, London, UK/Cambridge, Massachusetts, USA (1989)

17. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Comput. 30(3), 389–406 (2004)

18. Rabhi, F.A., Gorlatch, S.: Patterns and Skeletons for Parallel and Distributed Computing.
Springer, Heidelberg (2002)

19. Pelagatti, S.: Structured development of parallel programs. Taylor & Francis, Inc., Bristol,
PA, USA (1998)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 368–377, 2007.
© IFIP International Federation for Information Processing 2007

A Framework for Supporting the Configuration and
Automatic Integration of Heterogeneous Location

Sensors

Yoo Chul Chung, Yangwoo Ko, Youngrock Cha, and Dongman Lee

Information and Communications University
{chungyc, newcat, u00cha, dlee}@icu.ac.kr

Abstract. We propose a framework that supports user-friendly configuration of
a new location sensor system and its integration with a location manager. The
proposed framework abstracts the diversity of heterogeneous sensor
technologies using adapters that provide a common interface to the location
manager. Configuration of a location sensor system requires information
provided by the vendor of the location sensor system, so we propose a
configuration protocol with which a newly deployed location sensor system can
provide and obtain configuration options and parameters. An integration
protocol is proposed as well so that a newly deployed sensing system can be
integrated as part of an existing location manager. In order to verify the
efficiency of the proposed framework, we measured configuration time with our
framework and against manual configuration. Experimental results show that
the proposed framework reduces configuration time significantly.

Keywords: location management, location service, location sensors,
configuration, integration, coordinate mapping, transformation matrix, adapter.

1 Introduction

In ubiquitous computing environments, smart objects interact with each other and
users [7]. In these environments, the location of a user is an important piece of
information about the user. Smart objects decide what services to provide to specific
users based on this information.

As location sensors become cheaper, users may start deploying a variety of
location sensor systems in order to obtain higher accuracy using sensor fusion and to
provide diverse methods for obtaining locations. In order to deploy a new location
sensor system, sensor-specific coordinates need to be transformed into reference
coordinates used by the location manager. Manually configuring the sensor system to
support this, as is done in MiddleWhere [3] and LORE [11], requires significant effort
and skill. In addition, location sensor systems may be added, moved, or removed
according to the needs of the users. Therefore, a ubiquitous computing environment
must be able to simplify the work required for configuring and integrating diverse
location sensor systems.

 A Framework for Supporting the Configuration and Automatic Integration 369

Many of the current location sensor systems [8, 9, 10] require careful configuration
and calibration to work properly, so manual integration of heterogeneous location
sensor systems may be comparatively insignificant additional work. However, we
expect that location sensor systems will become increasingly self-configuring and
self-calibrating in the near future [1, 2, 6], so the effort required for manual
integration may become increasingly unacceptable.

Our research introduces a framework for supporting the configuration and
integration of location sensor systems with a minimum of user interaction. Each
location sensor system includes an adapter, which connects to the location manager
using a standard interface that abstracts the underlying sensor technologies. It also
transforms a local coordinate specific to a location sensor system to a reference
coordinate usable by the location manager. As a result, the framework makes it easy
for users to deploy a location sensor system. Experimental results from deploying
Ubisense [10] on top of a WLAN-based location sensor system show that the
proposed framework reduces configuration time significantly, although manual
configuration still results in higher accuracy.

The rest of this paper is organized as follows. Section 2 examines related work. We
then describe the design and implementation of our framework in Section 3. We
describe experimental results with a sample application based on our implementation
in Section 4, and conclude the paper in Section 5.

2 Related Work

[1] and [2] propose techniques for sensor localization in a large-scale sensor network
which consists of a very large number of nodes. Each sensor node has the ability to
estimate distance to nearby nodes. Based on this information, each sensor node knows
where it is in a common frame of reference. This sensor localization is attained in
real-time without the need for human intervention. However, their work assumes the
use of only a single homogeneous location sensor system.

[6] also proposes sensor localization techniques for Cricket. Initially there is no
coordinate system in each node. Sensor nodes gather to form a local cluster, where
each cluster has its own coordinate system. Coordinate transforms can then be
computed between overlapping clusters to stitch them into a global coordinate system.
As in [1] and [2], this approach cannot be applied to heterogeneous location sensor
systems because they assume all nodes are Cricket nodes. In contrast, our work
supports the integration of heterogeneous location sensor systems which cannot
directly interoperate with each other and where each system can have their own
coordinate system.

MiddleWhere [3] and LORE [11] are location managers which are able to integrate
multiple location sensor systems. These systems acquire locations of objects from
multiple location sensors and fuse the sensor data by using a variety of algorithms.
Their focus is on producing more accurate locations and representing locations in
various forms. Each location sensor system uses an adaptor to transparently integrate
with the location manager. MiddleWhere and LORE require the manual configuration
of each adapter, while our work overcomes this limitation by proposing a framework
which eases configuration and automates the registration of heterogeneous location
sensor systems with a location manager.

370 Y.C. Chung et al.

3 Approach

Our framework introduces several components required for configuring and
integrating location sensor systems. We also define a protocol between the
components that the vendors of location sensor systems can take advantage of.

3.1 Overview

When a location sensor system is deployed, the adapter for a location sensor
broadcasts its existence, which is detected by the configurator. The configurator
responds to the notification and replies with its own reference to the adapter. The
adapter, the configurator, and the location manager then interact with each other to
configure the location sensor system and integrate it with the location manager. We
envision that the vendors of location sensor systems may implement an adapter for
their sensor system in order to take advantage of our framework. The adapter should
include sensor-specific information such as accuracy, precision, communication
mode, type and reporting rate.

However, for a ranged location sensor system, which covers an area or a volume,
the configuration of the adapter cannot be done completely automatically. A location
sensor system will typically use a coordinate system that is independent of that used
by the location manager, especially if the location sensor system is self-calibrated.
This means that we must be able to transform a coordinate in the sensor-specific
coordinate system to that in the reference coordinate system used by the location
manager. Since such transformations are done on physical coordinates and separate
location sensor systems cannot directly know how their coordinate systems are
different from each other, the configuration required to support such transformations
cannot be done purely in software.

The actual transformation of coordinates is done using a transformation matrix and
a displacement vector as in Equation (1). The transformation matrix represents the
scaling and rotation of the coordinate systems, while the displacement vector
represents the displacement of the origins between the sensor-specific coordinate
system and reference coordinate system. Also, (x, y) is a sensor-specific coordinate in
the newly deployed coordinate system, while (x’, y’) is a reference coordinate in the
location manager for the same physical location. In the rest of the paper, we will
simply refer to both the transformation matrix and the displacement vector together as
the “transformation matrix.”

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,

,

y

x

f

e

y

x

dc

ba (a,b,c,d,e,f are constants)
(1)

In order to actually configure the transformation matrix, the framework collects
coordinates from both the newly deployed location sensor system and the location
manager for the same physical location. This is done by providing sensor tags to a
user from the newly deployed location sensor system and the location sensor system
already integrated with the location manager. The location sensor systems detect
location based on these sensor tags. A user then moves as the framework directs him
to while carrying both tags. As the user moves around, coordinates from both location

 A Framework for Supporting the Configuration and Automatic Integration 371

sensor systems are collected. Since a user can be at only one place at a time,
coordinates gathered at the same time must be from the same physical location.

The collected coordinates are specific cases of how (x, y) maps to (x’, y’) in
Equation (1). With three such mappings, we can compute the transformation matrix,
since the equation is actually two linear equations with three variables each. Using
only three such mappings will probably result in large errors because of errors in the
detected coordinates, so instead we use two-dimensional multiple linear regression
with a large number of mappings. Our framework gathers mappings from coordinates
in the newly deployed location sensor system to coordinates in the location manager
until the rate of change in the computed transformation matrix falls below a specific
threshold.

Fig. 1. Overall architecture of the proposed framework

Once the transformation matrix is obtained, the framework sends the result to the
adapter, which will use the transformation matrix to transform sensor-specific
coordinates to reference coordinates when reporting locations to the location manager.
Fig. 1 illustrates the architecture of our framework.

3.2 System Components

As described in Section 3.1, the framework consists of three major components –
location manager, configurator, and adapters.

The location manager gathers data from various location sensor systems and tracks
physical objects continuously. It performs sensor fusion in order to obtain more
accurate locations. It also reports locations either symbolically or as physical
coordinates according to application needs. The location manager is basically the
central clearinghouse from which applications obtain locations of physical objects.

The configurator supports the automatic configuration of adapters so that they can
integrate with the location manager. Some of the parameters that are configured are
the transformation matrix and adapter identifier. In order to acquire the transformation
matrix, the configurator has collection, collation, matrix derivation, and activation
components. The collection component collects coordinates from the newly deployed
location sensor system and the location manager. The collation component binds
coordinates collected at the same time. The matrix derivation component computes
the transformation matrix based on these coordinates. The activation component is
responsible for configuring the transformation matrix in the adapter.

372 Y.C. Chung et al.

The adapter enables plug-and-play deployment of heterogeneous location sensors.
Thanks to the adapter, the upper layers such as the location manager need not
consider the diversity in underlying sensor technologies. It includes a transformation
matrix in order to integrate with the location manager. The adapter includes error
attributes which influence how the transformation matrix is obtained. An adapter also
includes the estimated error when reporting locations.

3.3 Configuration and Integration Protocol

In this section we describe the protocol between the system components for
configuring and integrating a new location sensor system.

(a)

(b)

 (c)

Fig. 2. State-transition diagram for (a) configurator, (b) adapters, and (c) location manager

Figure 2(a) illustrates the state-transition diagram for the configurator. The
configurator starts out in the INIT state, and waits for a DISCOVER message from an
adapter. Once it receives a DISCOVER message, it replies with an OFFER message,
which includes the network location of the configurator, and changes to the SETUP
state. In the SETUP state, the configurator waits for an INFO message from the
adapter, which includes information about the sensor system such as its type,
reliability, precision and coverage. It then allocates an identifier for the adapter and
sends it within an IDENT message to the adapter. Then IDENT message also includes
the network location of the location manager. It also sends a GET message to the
location manager. The configurator then changes to the LISTEN state, during which it
continuously receives SAMPLE messages from both the adapter and the location
manager. The SAMPLE messages include the coordinates of the designated sensor
tags and are the adapter identifier they come from. These are gathered until enough
data is collected so that the computed transformation matrix or location is stable for
ranged sensors or point sensors, respectively. Once the configurator has determined
that enough data has been collected, it sends a MATRIX message to the adapter,
which includes the transformation matrix that should be used by the adapter, and
returns to the INIT state where it waits for other new location sensor systems.

Figure 2(b) illustrates the state-transition diagram for adapters. Starting out in the
INIT state, an adapter broadcasts a DISCOVER message over the network and
changes to the SEARCH state. The configurator will respond with an OFFER
message, which the adapter replies to with an INFO message and then changes to the
SETUP state. The adapter waits for an IDENT message from the configurator in the
SETUP state, from which it will learn its identifier and the network location of the
location manager. It then switches to the REPORT state, where it continuously sends

 A Framework for Supporting the Configuration and Automatic Integration 373

the coordinates of the designated sensor tag from the new location sensor system to
the configurator in SAMPLE messages. It continues this until it receives a MATRIX
message from the configurator. The adapter uses this message to configure its
transformation matrix. It then registers its identifier, network location and information
about the sensor system with the location manager using a REGISTER message, at
which point configuration of the adapter is complete and it can start reporting
locations to the location manager using the reference coordinate system.

Figure 2(c) illustrates the state-transition diagram for the location manager. The
location manager starts out in the INIT state, where it waits for a GET message from
the configurator. Once this message is received, it starts reporting the coordinates of
the designated sensor tag from an existing location sensor system using SAMPLE
messages. It continues this until it receives a REGISTER message from the adapter.
(SAMPLE messages sent from the location manager to the configurator after the
configurator sends a MATRIX message but before the adapter sends a REGISTER
message are discarded by the configurator.) Integration of the new location sensor
system is complete at this point, and the location manager can start measuring
locations and apply sensor fusion using the information in the REGISTER message.

3.4 User Actions

Our framework currently supports two methods for deploying a new location sensor
system. In both methods, the user carries sensor tags designated by the configurator
from both the location sensor system being deployed and a location sensor system
already integrated with the location manager.

In the first method, which we will call the guideless configuration method, the user
tells the adapter that configuration and integration should begin using a PDA. The
user then randomly moves around the area covered by the location sensor system
being deployed. Location coordinates are continuously and automatically gathered
using the carried sensor tags, which the configurator uses to compute the
transformation matrix. Once the configurator determines that it has gathered enough
data, it continues with the configuration and integration procedure after notifying the
user that he can stop moving via the PDA.

The second method, which we will call the guided configuration method, starts out
similarly with the user starting the configuration with the PDA. However, an
application on the PDA guides the actions of the user. The application uses a map
viewer to suggest to the user a specific location to move to. The user then moves to
the approximate location, waits several seconds, and via the PDA tells the adapters to
report a fixed number of coordinates to the configurator. This repeats until the
configurator determines that enough data has been gathered.

The first method is much more convenient for users in that no interaction with the
configurator is required while coordinates are gathered. However, the second method
can be more accurate because some sensor systems become more inaccurate when
there is movement (e.g. the error in Ubisense is several times larger when walking
compared to standing still). Using the map viewer to suggest locations to move to also
helps ensure that coordinates are gathered from a widely dispersed range, which can
help improve the accuracy of the derived transformation matrix, although this requires
that a map of the area be available.

374 Y.C. Chung et al.

4 Evaluation

4.1 Test Environment

We implement our framework as part of the Active Surroundings environment, our
ubiquitous computing middleware [5]. We test the proposed location framework in a
testbed which is comprised of a 36m2 room and includes a variety of sensors,
hardware appliances, and software systems necessary for a ubiquitous computing
environment.

Among the sensors included is the Ubisense location system [10]. Ubisense detects
locations using fixed sensors installed inside the room. These sensors receive signals
from a user-carried radio beacon and estimate the location of the beacon from the
relative signal strengths. Our installation of Ubisense, which only covers the Active
Surroundings environment, exhibits an error range of 25cm for non-moving beacons,
although the error range grows several times larger while beacons are moving.

We also develop a WLAN-based location system for the Active Surroundings
environment. It uses the signal strengths of multiple wireless access points to estimate
location [8]. It covers the entire building but exhibits an error range of 3m.

We test a scenario where a Ubisense location sensor system is being installed into
an environment with an already integrated WLAN-based location sensor system. We
test manual configuration, guideless configuration and guideless configuration for
deploying Ubisense. Each test is repeated five times.

The reference coordinate system is set to that used by the WLAN-based location
sensor system. The origin of this coordinate system is set to one of the corners of the
room, and the axes are oriented parallel to the walls of the room. The reference
coordinate system is two-dimensional, so height is not represented.

4.2 Results and Analysis

We measure the amount of time to complete configuration for each test. We also
measure how much error that is exhibited in each physical location when measuring
locations with the Ubisense location sensor system after it is configured and
integrated. Sensor fusion is not used when measuring the errors.

The average amount of time taken to complete manual configuration is about 20
minutes. The amount of skill required for manual configuration suggests that it would
be difficult and more time consuming for casual users to manually configure and
integrate a new location sensor system.

The average amount of time taken to complete guideless configuration is about 5
minutes. The configurator collects 375 mappings of sensor-specific coordinates to
reference coordinates during this time. The average amount of time taken to complete
guided configuration is about 10 minutes. The configurator collected 15 samples each
in 25 locations during this time. The resulting error distributions of the configured
Ubisense system are shown in Figures 3, 4, and 5 for manual, guideless, and guided
configuration.

 A Framework for Supporting the Configuration and Automatic Integration 375

Fig. 3. Error distribution when manually configured

Fig. 4. Error distribution with guideless configuration

When comparing the error distributions between the different configuration
methods, we see that manual configuration is the most accurate with a maximum error
of 25cm, guided configuration is next with a maximum error of 2.5m, and guideless
configuration is the least accurate with a maximum error of 3m. Manual configuration
is much more accurate because the most of the error comes from only Ubisense,
which has an error of 25cm. Guideless and guided configuration are not only affected
by errors in Ubisense, but also by errors in the WLAN-based system, which has an
error of 3m. The errors resulting from the use of our framework is within the limits of
the error of the WLAN-based system.

We also measure how the error changes in guided configuration when varying the
number of locations from which coordinates are gathered and the number of samples
gathered at each location. At least eight mappings are required to halve the measured
errors. We also found that it is much more important to gather coordinates from more
distinct locations than gathering more samples from each location. This suggests that
the user should move in a large region covered by both location sensor systems
instead of limiting movement to a small region, since moving around in a large region
would result in more locations from which coordinates can be gathered.

376 Y.C. Chung et al.

Fig. 5. Error distribution with guided configuration

From the experimental results in this section, we can see that our framework makes
the deployment and integration of new location sensor systems with an existing
location manager much easier.

5 Conclusion

The goal of our research is to build a location manager that eases the configuration
and automates integration of heterogeneous location sensor systems. Our proposed
framework uses adapters to abstract the heterogeneity of various location sensor
systems. It also defines configuration and integration protocols between location
system components, which vendors of location sensors can take advantage of for
easing the deployment of their sensors.

The proposed framework significantly reduces the amount of time and effort
required to deploy a new location sensor system. One of the methods supported
simply requires two button presses on a PDA and random movement of the user in
between the button presses, while another provides a user interface with a map viewer
to guide the movement of the user.

We have implemented the proposed framework in the Active Surroundings
environment and successfully tested the deployment of a Ubisense location sensor
system on an existing WLAN-based location sensor system. Our results show that the
proposed framework is much easier to use compared to manual configuration, with
accuracy being constrained only by the underlying sensor technologies.

Further issues that need to be studied are techniques for reducing errors, especially
when accurate sensors are being deployed in an environment with existing inaccurate
sensors, and a mathematical analysis of how errors in the underlying sensors affect
the final results. We also plan to use the Active Surroundings location manager
developed in this work to investigate how multiple location managers can cooperate
with each other with the goal of providing more extensive location services.

 A Framework for Supporting the Configuration and Automatic Integration 377

Acknowledgments. This research is supported by the Ubiquitous Computing and
Network Project, the Ministry of Information and Communication 21st Century
Frontier R&D Program in Korea.

References

1. Brooks, A., Williams, S., Makarenko, A.: Automatic online localization of nodes in an
active sensor network. In: IEEE 2003 International Conference on Robotics and
Automation, vol. 5, pp. 4821–4826. IEEE Computer Society Press, Los Alamitos (2003)

2. Efrat, A., Forrester, D., Iyer, A., Kobourov, S.G., Erten, C.: Force-Directed Approaches to
Sensor Localization. In: ALENEX. 8th Workshop on Algorithm Engineering and
Experiments, pp. 108–118 (2006)

3. Ranganathan, A., Al-Muhtadi, J., Chetan, S., Campbell, R., Dennis, M.: MiddleWhere: A
Middleware for Location Awareness in Ubiquitous Computing Applications. In:
ACM/IFIP/USENIX 5’th International Middleware Conference, Toronto, Ontario, Canada
(October 18th - 22nd, 2004)

4. Jiang, C., Steenkiste, P.: A hybrid location model with a computable location identifier for
ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS,
vol. 2498, Springer, Heidelberg (2002)

5. Lee, D., Han, S., Insuk Park, S.K., Lee, K., Hyun, S.J., Lee, Y.H., Lee, G.H.: A Group-
Aware Middleware for Ubiquitous Computing Environments. In: ICAT 2004 (November
2004)

6. Moore, D., Leonard, J., Rus, D., Teller, S.: Robust distributed network localization with
noisy range measurements. In: SenSys ’04. Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems, Baltimore, MD (November 2004)

7. Saha, D., Mukherjee, A.: A Paradigm for the 21st Century. IEEE Computer, 25-31, (March
2003)

8. Yousief, M.A.: HORUS: A WLAN-based indoor location determination system, Ph.D.
dissertation, University of Maryland, College Park, MD (2004)

9. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system.
In: Proceddings of MOBICOM 2000, Boston, MA, pp. 32–43. ACM Press, Boston (2000)

10. UbiSense, http://www.ubisense.net/
11. Chen, Y., Chen, X.Y., Rao, F.Y., Yu, X.L., Li, Y., Liu, D.: LORE: An infrastructure to

support location -aware services, vol. 48(5/6) (September/November 2004)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 378–383, 2007.
© IFIP International Federation for Information Processing 2007

Searching Visual Media Service Providers Using
ASN.1-Based Ontology Reasoning

Youngkun Min, Bogju Lee, and Yunmook Nah

Department of Computer Engineering, Dankook University
Hannam Dong, Youngsan Ku, Seoul, Korea

{minyk, blee, ymnah}@dankook.ac.kr

Abstract. Information retrieval is one of the most challenging areas in which
the ontology technology is effectively used. Among them, image retrieval using
the image metadata and ontology is the one that can substitute the keyword-
based image retrieval. In the paper, the retrieval of visual media such as the art
image and photo picture is handled. It is assumed that there are more than one
service providers of the visual media, and also there is one central service bro-
ker that mediates the user’s query. Given the user’s query the first step that
must be done in the service broker is to get the list of candidate service provid-
ers that fit the query. This is done by defining various ontologies such as the
service ontology and matching the query against the ontology and providers. A
novel matching method based on the ASN.1 is proposed in the paper. The ex-
periment shows that the method is more effective than the existing tree-based or
interval-based methods.

1 Introduction

Image retrieval from the web is an important research issue. The technology has been
is improved from the exact query matching and content-based retrieval using general
features such as colors, textures, shapes of the images, to the semantic content-based
retrieval using concepts, semantics, categories and spatial relationships of images. To
accomplish the semantic content-based retrieval the ontology is effectively used.

There are several researches on the image retrieval using the ontology in distrib-
uted environment. They include the Finnish Museums on the Semantic Web [1] at
Finland HIIT (Helsinki Institute for Information Technology), Semantic Annotation
of Image Collections [2] at University Amsterdam Computer Science, and SIMILE
Project [3] from W3C, HP, MIT Libraries, and MIT CSAIL. Research goal at HIIT is
a web portal site for heterogeneous databases that have different table schema and
retrieval method. For the goal they need unification of data. So they build syntactic
interoperation using XML-schema and use RDFS-RDF for semantic relation. The site
supports view-based image retrieval for more useful user-interface to end user, and
recommended services for intelligent service. In University Amsterdam Computer
Science, they perform the research on describing images using the existing ontology
such as WordNet. They are focusing on building ontology for images and describing
metadata. The goal of SIMILE project is to develop a system to integrate distributed

 Searching Visual Media Service Providers Using ASN.1-Based Ontology Reasoning 379

images that a person or community has. It provides the service search with ontology
and schema metadata for user.

In this paper, it is assumed that there are multiple image providers and single cen-
tral broker in a distributed environment. The broker accepts and answers the user’s
query. The provider’s services are classified into the service ontology. Each provider
has its own provider-specific service ontology and the broker has the union of all the
providers’ service ontology. Given a user’s query, the broker needs to find the most
appropriate providers that answer the query quickly and effectively.

The existing query matchmaking methods include the well-known CMU’s match-
making method [4] and the interval-based matchmaking which is proposed by the
Swiss Federal Institute of Technology [5]. In this paper we suggest a new matchmak-
ing method based on the ASN.1 scheme. The experiment shows that our method is
more effective than the tree-based (CMU’s matchmaking) and the interval-based
method.

Section 2 describes the two existing matchmaking methods. Section 3 introduces
our service ontology and the ASN.1-based matchmaking method. Section 4 shows the
experimental result and finally Section 5 gives the conclusion.

2 Existing Matchmaking Methods

As in the figure 1, there are four matchmaking patterns between query service Q and
library service S. “Exact” pattern means the library service S is matched to query
service Q. “Plug in” means library service S is plugged in the query service Q.
“Subsume” means the library service S is subsumed within the query service Q.
“Failed” means there is no relationship between the library service S and the query
service Q. Order of matchmaking estimation pattern is firstly “Exact”, secondly “Plug
In”, thirdly “Subsume”, and finally “Failed”, so the “Failed” has the lowest estimation
pattern [6].

Fig. 1. Matchmaking estimation patterns

380 Y. Min, B. Lee, and Y. Nah

Interval-based matchmaking method is suggested by Swiss Federal Institute of
Technology, any class in multi-inheritance layer can be symbolized into interval and
tree. The interval is included in other intervals but not overlapped. They use two
standards for setting up interval values. One is parent-child relationship and the other
is child-child relationship. In parent-child relationship, interval is determined at
between 0 and 1. Child node is assigned unique key from parent node and interval
with key-dependence function. Namely, parent-node is assigned global interval, child-
node interval that is connected it is there into parent-node’s global interval [5].

In the visual media service ontology, for example, Visual Media is represented by
<0, 1>. Then its children Video and Image are represented by <0, 0.5> and <0.5, 1>.
Image’s children Art, Medical, and Photo are represented by <0.5, 0.6>, <0.6, 0.7>,
<0.7, 0.8>. So Art domain is sub-domain of the Visual Media domain since <0.5, 0.6>
(Art) is included by <0, 1> (Visual Media). Also, Art domain has no inclusion relation-
ship with Video domain since <0.5, 0.6> (Art) has no overlap with <0, 0.5> (Video).

This method, however, has problems in that there cannot be more than ten children
since it uses the floating point number. Also the number of digits increases as the tree
depth increases.

3 Visual Media Service Ontology and ASN.1-Based Matchmaking

Visual media service ontology is defined and used as a part of HERMES Visual Media
Retrieval System [7]. As described in Section 1. The broker accepts and answers the user’s
query. Each provider has its own provider-specific service ontology and the broker has the
union of all the providers’ service ontology. Given a user’s query, the broker needs to find
the most appropriate providers that answer the query quickly and effectively.

Visual Media

ImageVideo

PhotoArt

Painting Sculpture Architect

Drawing

Watercolor

Medical

Print

MedievalPremitive Present
ModernAncient

Mesopotamia
Egypt
Rome

Byzantin

Classiciam
Romannesque

Rococo
Gothic

Renaissance

Romanticism
Realistic

Impression

Futurism
Cubism

Expressionism
Dadaism

Scenery

Human

Vehicle

Entertainment

Plant

Animal

Life Nation

Sports

Sky
Mountain

Forest
Flower

City
River
Sea

Birds
Amphibia

Reptile

Musical
Music
Movie

Korea
USA
China
Swiss
France
Britain

Subway
Airplane

Car

Visual Media

ImageVideo

PhotoArt

Painting Sculpture Architect

Drawing

Watercolor

Medical

Print

MedievalPremitive Present
ModernAncient

Mesopotamia
Egypt
Rome

Byzantin

Classiciam
Romannesque

Rococo
Gothic

Renaissance

Romanticism
Realistic

Impression

Futurism
Cubism

Expressionism
Dadaism

Scenery

Human

Vehicle

Entertainment

Plant

Animal

Life Nation

Sports

Sky
Mountain

Forest
Flower

City
River
Sea

Birds
Amphibia

Reptile

Musical
Music
Movie

Korea
USA
China
Swiss
France
Britain

Subway
Airplane

Car

Fig. 2. The visual media service ontology

 Searching Visual Media Service Providers Using ASN.1-Based Ontology Reasoning 381

Visual media service ontology provides a whole classification domain for the pro-
vider’s services. Figure 2 shows the service ontology which is used in the paper. Note
that this is the union of all the providers’ service ontology.

Now we explain the ASN.1-based matchmaking. ASN.1 standard [8], made by
ISO, is the common abstract grammar to define data at distributed environment. All
services have unique service ID’s and we know easily the relationship between super-
concept (parent) or sub-concept (child). This method has no limitation in terms of the
number of children. Figure 3 shows the service ontology with ASN.1.

Fig. 3. The visual media service ontology with ASN.1

In this scheme, the root node Visual Media is represented by <0>. Its children
Video and Image are represented by <0.0> and <0.1> respectively. Image’s children
Art, Medical, and Photo are represented by <0.1.0>, <0.1.1>, and <0.1.2> respec-
tively. As for Print, Watercolor, Painting, Sculpture, Architecture, and Drawing which
are Art’s children, the numbers are given by adding numbers after <0.1.0>. So Print
has <0.1.0.0>, Watercolor has <0.1.0.1>, Painting has <0.1.0.2>, Sculpture has
<0.1.0.3>, Architecture has <0.1.0.4>, and Drawing has <0.1.0.5>. Suppose Q is the
query domain ID, P is the provider service domain ID. Then the method determines
the Exact, Plug In, and Subsume as follows.

Exact: Q = P
Plug In: Q = prefix(P)
Subsume: prefix(Q) = P
Failed: None of above

382 Y. Min, B. Lee, and Y. Nah

Plug In, for example, if P is <0.1.0.2.3> (Modern) and Q is <0.1.0.2> (Painting), then
since “0.1.0.2” (Painting) is a prefix of “0.1.0.2.3” (Modern), they have Plug In rela-
tionship. To effectively perform the matching, the provider services and their ID’s are
listed in a table. When the query is given it is matched against the table entries one by
one. Exact, Plug In, Subsume, Failed are determined. The matched providers are
listed in this order.

4 Experimental Results

The proposed ASN.1-based matchmaking is compared with the two existing methods,
the tree traversal method and interval-based method. The experimental environments
include Intel 3.0GHz CPU, 1GB RAM computer, Java 1.4.2_07, Tomcat 4.1, JENA
2.1, and My-SQL database.

Table 1 shows the number of providers after performing matchmaking with the
three methods and four queries. As shown in the table, the tree traversal and our
ASN.1 method give the same results. The interval-based method, however, has prob-
lem in returning extra providers which are incorrect.

Table 1. The number of providers after matchmaking

 Modern Scenery Nation Vehicle
Tree traversal 8 11 17 7
Interval-based 8 11 13 10
ASN.1-based 8 11 17 7

Table 2 shows the execution times of the three methods. Our ASN.1 method has longer

execution time than the interval-based method, but faster than the tree traversal method.

Table 2. The execution times (ms)

 Modern Scenery Nation Vehicle
Tree traversal 18.9 20.3 25.2 22.3
Interval-based 6.5 4.87 7.14 3.87
ASN.1-based 19.6 17.4 15.3 14.6

As shown in the table 1 and 2, ASN.1-based method is slower than the interval-

based method, but more accurate than the interval-based method and faster than the
tree traversal method, our method is more effective than the two other methods.

5 Conclusions

In the paper, we designed a service ontology which is used in retrieving visual media.
To effectively find the service providers when the query is given, a novel ASN.1-
based matchmaking method is proposed. The proposed method is compared with

 Searching Visual Media Service Providers Using ASN.1-Based Ontology Reasoning 383

existing methods in terms of accuracy and speed. The experimental result shows that
the method is more effective that the existing methods. The ASN.1-based method can
be used in any other domain.

Acknowledgements

This work was supported by grant No. R01-2003-000-10133-0 from the Basic Re-
search Program of the Korea Science and Engineering Foundation.

References

1. Hyvonen, E., Junnila, M., Kettula, S., Saarela, S., Salminem, M., Syreeni, A., Valo, A.,
Viljanen, K.: Publishing Collections in the Finnish Museums on the Semantic Web Portal.
In: Museums and Web Conference (MW 2004) (March 31 - April 1, 2004)

2. Hollink, L., Schreiber, G., Wielemaker, J., Wielinga, B.: Semantic Annotation of Image
Collections. In: KCAP’03. Workshop on Knowledge Markup and Semantic Annotation,
Florida (October 2003)

3. Semantic Interoperability of Metadata and Information in unLike Environments, http://
simile.mit.edu/

4. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of Web Ser-
vices Capabilities. In: Proceedings of the First International Semantic Web Conference on
the Semantic Web, pp. 333–347 (2002)

5. Constantinescu, I., Faltings, B.: Efficient Matchmaking and Directory Services. In: Pro-
ceedings of the IEEE/WIC International Conference on Web Intelligence (2003)

6. Choi, W., Yang, J., Choi, J., Cho, H., Cho, H., Kim, K.: Service Discovery Algorithm Us-
ing Ontoly Herarchy Relationship. The Korean Information System 30(1) (2003)

7. Kwon, E., Nah, Y.: Extended Query Processing using Image Metadata Mapping in Dis-
tributed and Heterogeneous Environments. In: SIGDB-KISS, pp. 250–257 (2005)

8. The ASN.1 Consortium, http://www.asn1.org/
9. The DARPA Agent Markup Language Homepage, http://www.daml.org

10. Protégé Ontology Editor and Knowledge Acquisition System, http://protege.stanford.edu/
overview/

SharedSpace Based Service Discovery

Mechanism and Its Implementation for
Ubiquitous Environments

Sangdo Park, Junhyeong Kim, and Paul Barom Jeon�

Communication and Networking Lab.,
Samsung Advanced Institute of Technology

Nongseo Giheung Yongin Gyeonggi 446-712, Korea
{sdpark, skykimjh, paul.barom.jeon}@samsung.com

http://www.sait.samsung.com

Abstract. We propose a new service discovery method based on Shared-
Space concept. SharedSpace is a virtual community space for service reg-
istration and sharing, which is similar to a chat room in a chat system.
Any user1 can freely create a SharedSpace and register his/her services.
Others can join the created SharedSpace as members and register their
services. All registered services can be shared by the SharedSpace mem-
bers as if they are in a single network. Detailed mechanism is designed
and implemented with Obje middleware in order to validate our scheme.

1 Introduction

Advances in networking and computing technology have progressed to a point of
real ubiquitous computing environments. Consequently, researchers come to show
interest in complex usage scenarios as well as ad-hoc connectivity issues [1]. Vari-
ous connectivity technologies have been discussed so far, but are not able to cover
all scenarios satisfactorily yet even though most of the issues can be resolved[2].

Early ubiquitous network’s usage scenario mainly focused on connectivity
issues among nodes that compose ubiquitous network. Network-enabled devices
such as camera phone, MP3 player, Portable Media Player (PMP), etc., are
increasing explosively and various solutions are presented also in reply. On the
other hand, a tendency to separate contents and devices occurs because it causes
several inconvenience to carry hundreds of GB multimedia contents. This means
that ubiquitous computing environments require connectivity among nodes over
the network boundary as well as inside the network [3].

Before connecting nodes, one should achieve service/component discovery
first. Conventional service discovery methods can be classified into two cate-
gories: multicast and directory server based methods. However, multicast based

� Corresponding author.
1 In this paper, user is defined as a person who is connected to a server. Participant

is an user joining a SharedSpace and clinet is a program run by the user.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 384–388, 2007.
c© IFIP International Federation for Information Processing 2007

SharedSpace Based Service Discovery Mechanism 385

service discovery can’t find services beyond network boundary. Note that listing
up available services instead of querying a specified service, will give users more
flexibility to compose a desirable service under ad hoc ubiquitous environments.

Therefore, in this paper, a new service discovery method that can be utilized
in ad hoc ubiquitous network environments is proposed. The proposed method
delegates mDNS[4] to discover services on the local network. Whereas, for service
discovery beyond network boundary, a new concept of SharedSpace similar to a
chat room in a chat system is suggested.

2 Service Discovery Using ShardSpace

SharedSpace is a kind of tiny database(DB) on the public network server(Shared
Space Server). It can contain device and service information that are registered
by participants authorized to access the shared space. As people open a chat
room, any participant can create a SharedSpace. Participants can upload device
and service information as people talk to other persons. We can imagine that
a participant joins the SharedSpace and sends some information on service and
devices available locally. Once a new information is uploaded, this information
can be transferred to all participants. As devices or services are not available any
more, participants can get rid of the information from the SharedSpace. Similar
to general discovery systems, uploading and deleting information are dynamically
performed depending on local network environments. Figure 1 shows an example
of SharedSpace that contains information about services and devices.

To get information about services, user should connect to the Shared Space
Server first using client application. Client application can be run on any net-
work device. As user connects to server, it receives the list of SharedSpaces
created before. Every SharedSpace has Title for identification. Authentication
and authorization to enter the SharedSpace can be adapted to the user for access
control. On entering the SharedSpace, user can get current service information
registered before. All participants can upload local service information and par-
ticipants inside the SharedSpace should be notified about it. For some reason,
service may not be available on any moment. So, users should be able to re-
voke services on the SharedSpace. Revoked services should also be notified to all
participants belonged to the same SharedSpace.

Shared Space Server

Service Information 3: User A

Service Information 11: User B

Service Information 25: User C

Service Information 1: User E

Service Information 32: User G

Service Information 34: User H

Service Information 72: User H

Shared Space #1 Shared Space #2

Fig. 1. An example of Shared Space

386 S. Park, J. Kim, and P.B. Jeon

If there is no adequate SharedSpace, user can generate a new one with an iden-
tification. New identification should be announced to all users connected to server
for potential joining. Similarly, SharedSpace can be removed from Shared Space
Server if it is not used any more. For proper operation, SharedSpace should be
equipped with server and user functionality. Server should be able to create DB
for each SharedSpace. Optionally, server can authenticate and authorize users to
offer access control. On the other side, user functionality gives user to connect to
server and to generate UI for selecting SharedSpace as well as to achieve service
discovery on local network utilizing multicast discovery method such as mDNS.

The proposed method has following features: First, it is not restricted to only
two participants. Through one SharedSpace, more than two users can upload
services to support abundant service pool. Moreover, even though the number of
services increase, clients don’t need to know each service description a priori. Par-
ticipant should only select a SharedSpace he/she wants to join. Secondly, user can
join more than two SharedSpaces simultaneously. Naturally, a participant can
use some services provided separately by other SharedSpace. Although same ser-
vices are provided by more than two subnetworks, participant can identify each
using context information such as subnetwork name, location, etc. Finally, shar-
ing service information only within SharedSpace enables a natural access control.

The mechanism can discover various services inside and outside of the lo-
cal network without specific service descriptions. However, it should solve how
a client could select the proper SharedSpace to participate in among many
available SharedSpace. That is users in each subnetwork should be concerned
with service directly(user-in-the-loop) and users should agree on the title of the
SharedSpace. In other words, the proposed method requires that each subnet-
work should have at least one client, for the services to be registered and become
accessible. We can assume that user is controlling the client because proposed
mechanism targets ubiquitous computing environment. If there is no user in a
subnetwork, we can distribute a nominal client to register services on a fixed
network to a specific SharedSpace. Also, we assume that the SharedSpace’s title
acquisition issue can be solved by using side communication channels such as
internet messenger, e-mail, voice communication etc.

3 Practical Implementation

We utilized Obje [5] middleware to implement the proposed scheme and validate
its efficiency and ability. Obje is a peer-to-peer communication middlware over
IP network that supports recombinant computing. An implementation example
which consisted of two subnetworks was depicted in Figure 2. The subnetwork
named My Home in the left contained Webcam device, microphone, TV set,
and PC. An user could discover and utilize services by using the client agent
immanent in the TV set. The subnetwork named Parent’s Home in the right
also contained Webcam device, microphone, TV set, and PC. In addition, it had
a network-enabled digital picture frame that could display images. The access
point (AP) bridges wired and wireless networks together.

SharedSpace Based Service Discovery Mechanism 387

Shared Space Server

User 1

User 2

TV PC Gateway

Webcam Mic.

Webcam Mic.

TVGateway

Picture
Frame

Parent s Home

My Home

Public
Network

Fig. 2. Network Configuration

Following example scenarios were studied. User 2 with a PDA connected to
Parent’s Home network forming a new ubiquitous environment. Once the net-
work was formed, the client inside the PDA searched for available services on
the local network. The discovered available services were provided to user 2. At
the same time, the client gained access to the Shared Space Server, obtained
the list of SharedSpaces and joined the Birthday Plan generated by user 1 on
My Home. Then, user 2 got service references of My Home as well as Parent’s
Home. After gathering the service references of both subnetworks, the client sent
them to the Obje middleware. Then, Obje presented specific information of the
service. Finally, user 2 connected TV, Webcam, microphone, and speaker of My
Home to Webcam, TV, speaker, and microphone of Parent’s Home respectively
by using the Obje user interface and performed video conference with user 1.

Fig. 3. User Interface

388 S. Park, J. Kim, and P.B. Jeon

This made it possible to utilize large TV screen instead of small PC monitor.
Another possible application is to display digital photos saved in My Home’s PC
to digital picture frame of Parent’s Home.

Figure 3 shows the UI for user application. It consists of two panels. The
left panel shows the components discovered on the local network and discov-
ered through SharedSpace. The right panel shows the list of SharedSpaces and
corresponding control buttons. This figure depicts the aforementioned scenario
also. Clients of both User1 and User2 joined the SharedSpace named Birthday
Plan. In result, various components of both subnetworks were discovered and
displayed. User could connect the components of interest by simply performing
drag and drop of the discovered components.

4 Conclusion

In this paper, we described a process of performing service discovery mutually
for the clients when they belong to different subnetworks. SharedSpace concept
was used to hold service information on the server. Clients were to register local
services they discovered to the SharedSpace each. All service information of
the subnetworks could be shared among clients that joined the SharedSpace.
Authorization and authentication on the server enabled ordinary control of the
accesses to the services without any additional complex process. We validated out
proposed scheme by implementing a video conference application with modified
Obje middleware. The proposed method offers a simple guide of how services
can be discovered by various application scenarios under ubiquitous computing
environments in the future.

References

1. Stromberg, H., Pirttila, V., Ikonen, V.: Interactive scenarios-building ubiquitous
computing concepts in the spirit of participatory design. Personal and Ubiquitous
Computing 8(3-4) (2004)

2. Edwards, W.K.: Discovery systems in ubiquitous computing. IEEE Pervasive Com-
puting 5(2), 70–77 (2006)

3. Sivavakeesar, S., Gonzalez, O.F., Pavlou, G.: Service discovery strategies in the
ubiquitous communication environments. IEEE Communications Magazine 44(9),
106–113 (2006)

4. Cheshire, S., Krochmal, M.: Multicast DNS. IETF Draft (August 2006) draft-
cheshire-dnsext-multicastdns-06.txt

5. PARC: Obje: Ineroperability framework (2003),
http://www.parc.com/research/projects/obje/Obje Whitepaper.pdf

http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 389–393, 2007.
© IFIP International Federation for Information Processing 2007

A Study of Developing Virtual Prototyping by Using
JavaBean Interface Tool and SystemC Engine*

Husni Teja Sukmana, Jeong B. Lee, Jong Il Kim, Young J. Jung, Jin B.Kwon,
Kee W. Rim, and Young R. Lee

Sun Moon University, Dept. of Computer Science,
Asan, Chungnam, 336-708, South Korea

husniteja@yahoo.com, jblee@sunmoon.ac.kr, rumpet0@empal.com,
yjjung.kr@gmail.com, jbkwon@sunmoon.ac.kr, rim@sunmoon.ac.kr,

yrlee@sunmoon.ac.kr

Abstract. SystemC is a popular open source library in C++ for developing em-
bedded system design, from the abstract System Level Design until the accurate
Register Transfer Level Design. SystemC simulation, however, runs in console
mode (text-based), thus making it difficult for user to interact with the simula-
tion. To extend the capabilities of SystemC simulation, it is necessary to create
Graphical User Interface. In this paper we recommend to use RapidPLUS tool
for making the interface for embedded system prototype to reduce time to mar-
ket. We also propose the connectivity between RapidPLUS and SystemC by us-
ing socket communication that attached in JavaBean RapidPLUS object

Keywords: SystemC, Embedded System, RapidPLUS, Simulation, Socket, vir-
tual prototyping.

1 Introduction

In process to making the good embedded system products, usually we are not only
faced with quality but also must deal with time. The average time to market constraint
has been reported as having shrunk to only 8 month [1]. There are many ways to re-
duce time to market; one is by using prototyping such as real and virtual prototyping.

In this paper we want to suggest how to manage these problems by providing a
suitable environment. The environment that we propose will use the SystemC as a
simulation engine along with RapidPlus as a tool for making the interface.

SystemC can be used to make a virtual prototyping, where virtual prototyping is
one way to speed up the development process [3]. However, SystemC fails to provide
a graphical user interface (GUI). It only supports text-based console application. As a
feedback with a user during simulation, the user only can use printf or cout[5,6].

* This research was supported by Ministry of Information and Communication, Korea, under

the ITRC (IT Research Center) support program supervised by Institute of Information Tech-
nology Assessment.

390 H.T. Sukmana et al.

To handle this weakness, we use RapidPLUS to build the system interface. Rapid-
Plus is one of good tool for making interface prototypes. It is a comprehensive soft-
ware package for the generation of simulation and prototypes of embedded systems
[7]. Furthermore, to connect both of them, we propose to use the socket mechanism.

We also want to show an example how to make an interface in RapidPlus. In the
previous research, we have implemented the SystemC in company with Java as a
GUI. This paper does not show how to implement the connectivity between SystemC
and RapidPLUS instead of just show how the RapidPLUS can be communicate with
SystemC. The implementation still not yet finished, however we are still doing to
implement.

The paper is organized as follows: Section 2 describes the related work, and Sec-
tion 3 presents the system environment. In Section 4, we describe out the RapidPlus
testing, and in Section 5 we conclude our work.

2 Related Works

Many researchers have been worked to improve the ability of SystemC. We can look
some of example in [5, 6]. The architecture, as given in the Figure 1, is comprised of
three main parts: SystemC, Java and CommunicationLib.

In SystemC terminology, the processes are methods. It recognizes two kinds of
processes, SC_METHOD and SC_THREAD. For utilization of these processes, spe-
cific port and signal must be set. Because of this procedure, processes will be trig-
gered during data transmission by changes of signal and port. Declaration of the proc-
ess and the sensitive are registered in constructor (SC_CTOR) which is included in
the module. Child module initialization and interconnection will be declared in con-
structor. Of these circumstances, SC_MODULE, SC_THREAD, SC_METHOD and
SC_CTOR are macros in SystemC.

SystemC also has own mechanism to connect modules which consists important
role due to number of dependant modules. Single module port is responsible to input
data (SC_IN) and pairs for output data (SC_OUT), but others can be responsible to
input and output data. Single SC_OUT can receive more than one SC_IN.

2.1 Client Side

For the Client, Java Swing was used to develop the Television Simulation for GUI
application. This is due to Object Oriented enhancement and provision of various
libraries. The Television Simulation can be divided into input and output modules.
Input modules are used to input data from users via push buttons or text field. Re-
ceived inputs conveys to SystemC through CommuLibrary API. Output modules
receive data from SystemC through the SCJLib API which enables interface manipu-
lation to help users to understand how the server operates.

2.2 SCJLib API

SCJLibrary is an API for bridging SystemC (server) and GUI simulation (Java
Swing). Integration between server (back end) and client (front end) are very impor-
tant for the users, due to user friendly interaction and efficiencies.

 A Study of Developing Virtual Prototyping 391

Fig. 1. The Server (SystemC) and The Client (Java) System Architecture

There are three main classes in this library. SCJBroker class is responsible to pro-
vide connection between server and client (see figure 1), and each part must have only
one instance of this class. SCJOutput class is used to send data from client to server.
Unlike the SCJBroker class, it has only one instance in each part, whereas SCJOutput
class must instantiate for each number of data variations for delivery. In simulation
using SCJLib API, at least one instance of SCJOutput should be created.

3 System Environment

The new environments for the recommendation system will changes client side. Be-
sides using the Java as an Interface, the new system will apply to use the RapidTools.
The detail of RapidTools will be emphasized in this section. However, before we give
details about the RapidTools, Figure 2 presents our new suggestion for the new sys-
tem architecture.

There are six stages that be used to track the RapidPLUS progress. First, we will
use the Object Layout to create the application’s user interface. This is very important
stages since the market sales record condition depend on the interface.

The object, JavaBean, plays the basic rule for communicate to the SCJLib. The
JavaBean acquire data from the other objects properties such as position of frame
object or the value of the buttons and than send data to the SystemC. On the other
hand, the respond data from SystemC will traverse to the JavaBean object, and they
will give back to the other RapidPLUS Objects.

The second until the fourth stages are to define the modes and their transition, in-
cluding the triggers. The modes can be illustrated as a state machine. They will trans-
fer from one mode to others mode by waiting the triggers. The triggers can be event
or condition triggers.

Fig. 2. The New System Architecture, SystemC as a Server, RapidPlus as a Client

392 H.T. Sukmana et al.

Defining the activities is the fifth stages. In this stage the data from among the ob-
jects transfer each one another. The activity has three modes. Entry mode, mode, and
exit mode. All activities in entry mode will be confirmed any time the source is ac-
cessed. The mode’s mode will run continuously while the source is read. In contrast,
the exit mode just can be run while the source exits its mode.

4 RapidPLUS Testing

Since RapidPLUS can be applied for creating the good embedded system interface,
the following section will give an example how to use and test the RapidPLUS tool.
The example will utilize the six stages that have been mention in the last section.

We made an elevator simulation where it contains some function such open and
close door, running up, running down and automatic waiting time. Figure 3 depict the
elevator interfaces that build in RapidPLUS.

4.1 Adding Object

There are some objects that must be integrated in order making the runtime simula-
tion. As a normal elevator, the button objects must have the floors button, open and
close door button. Furthermore, the bitmap picture objects have been chosen to illus-
trate the exact car door and car wall.

Figure 3 represent all the graphical objects for our runtime testing elevator. In addi-
tion, we also should insert some non graphic objects such as timers.

Fig. 3. The elevator in Runtime Test: (a) show the idle time, (b) show the automatic open and
close door

4.2 Insert Triggers, Actions and Activities

Most developers who run RapidPLUS the first time will said that better to work in
Java coding or another GUI language than just use the RapidPLUS tool. We, how-
ever, can prove that assume is not true, since we understand the behavior of trigger,
action and activities.

Simply in our simulation, the triggers mostly associate with press button in, press
button out and timers. For example, to open the door from idle time, we should press
the door open button and than the button in condition will go to the activity mode.
The activity mode will trigger the destination mode, in this case door open. Door open
will keep door open until another trigger, door open button, is push out. The stage will
continuo to another destination, close door.

 A Study of Developing Virtual Prototyping 393

The actions are similar to activities, but they take place only during transitions. We
utilize some actions along with internal transitions

5 Conclusion

RapidPLUS is one tool for designing interface easily than using the traditional write
code. It contains many objects that can be used for making interface design. In our
experience, RapidPLUS can be used as the client side for making virtual prototyping
along with SystemC as server side.

As a conclusion, this paper studied about the ability of RapidPLUS as a tool for
making virtual prototyping in order to reduce time to market. In addition we propose
to use the SystemC as an engine instead of direct to use hardware description lan-
guage, because the time to market is our constraint. This paper are still implementing,
however, the prototyping interface have been build with elevator example. Further-
more, the next research may deal to create the communication library and systemC
engine.

References

1. Vahid, F., Givargis, T.: Embedded System Design: A Unified Hardware/Software Introduc-
tion, 1st edn. John Wiley & Sons, Chichester (2002)

2. SystemC 2.0 User Guide, SystemC.org, http://www.systemc.org/
3. Simulation Based Design Center of Univ. of New Orleans. Primer on Virtual Prototyping,

http://www.gcrmtc.org/sbdc/protoprimer print.html
4. Sukmana, T., Satria, H., Kwon, J.B., Lee, J.B., Kee, W.: User-level Virtual Prototyping for

Television Simulation using SystemC and Java GUIHusni
5. “RapidStart 8.0”, pp. 1, e-SIM. Ltd. (2004)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 394–398, 2007.
© IFIP International Federation for Information Processing 2007

Configurable Virtual Platform Environment Using SID
Simulator and Eclipse*

Hadipurnawan Satria, Baatarbileg Altangerel, Jin Baek Kwon, and Jeongbae Lee

Department of Computer Science, Sun Moon University
Kalsan 100, Tangjeong, Asan, Chungnam, South Korea

hadi198@yahoo.com, a_bbileg@yahoo.com, jbkwon@sunmoon.ac.kr,
jblee@sunmoon.ac.kr

Abstract. For designing and testing embedded software, simulation tools have
been used to keep pace with the rapid development of customized hardware
parts. SID is a framework for building computer system simulations and SID is
made for debugging, testing and verifying embedded software. Though, it is
difficult for developers to use SID for their work. In this work, we developed an
integrated virtual platform environment based SID simulation framework for a
simulator engine and Eclipse for development platform. The proposed system
avoids users to manually write the configuration file, and aids loading and
connecting components on the fly. We also developed an image file builder and
an automation tool for running SID simulation with GDB debugger.
Furthermore, users can also monitor/probe the status of all the active
components in the target virtual platform during the simulation

Keywords: embedded software, development tools, virtual platform, full
system simulator.

1 Introduction

Nowadays, embedded system products are found everywhere and are becoming more
and more advanced. To keep up with the market competition, the products must be
more sophisticated and feature rich, but manufacturers also require a shorter time to
market. Nevertheless, the improvements to the design and testing tools have not kept
pace with the rapid development of customized hardware parts. Simulation tools have
been designed to help close the gap and meet the needs of embedded software
developers. The simulation of the target environment or virtual platform enables
embedded software developers to analyze and test their software, even in the absence
of the physical hardware.

From the perspective of full system simulation and emulation, there are number of
software systems that support a wide rage of devices[1][3][4][5][6][7][8][9].
However, SID is specifically made for debugging, testing and verifying embedded

* This research was supported by Ministry of Information and Communication, Korea, under

the ITRC(IT Research Center) support program supervised by Institute of Information
Technology Assessment.

 Configurable Virtual Platform Environment Using SID Simulator and Eclipse 395

software. Since our work focuses on an environment for building embedded hardware
simulators with simulated components, SID is a better fit for our work.

Although SID is a well-designed framework and environment of building a new
virtual platform, it is difficult for embedded software developers to use SID for their
work. To use it for an actual development, the users should configure a target
platform by editing a configuration file with a text editor, run the virtual platform by
typing a command in console, write and build a binary image to be run on the target,
run a debugger such as GDB, and load and run the binary image to the active virtual
platform. Since each step is manually done with independent tools, the users of today
who get used to user-friendly user interface should endure considerable
inconvenience. Therefore, it is desirable to integrate the tools and automate the usage
procedure with graphical user interfaces.

In this work, we developed an integrated virtual platform environment based SID
simulation framework for a simulator engine and Eclipse[2] for development
platform. Eclipse is an open source development environment having extensible
architecture, where the environment can be extended by adding plug-ins. Thus, our
system is developed as Eclipse plug-ins. The proposed system avoids users to
manually write the configuration file, and aids loading and connecting components on
the fly. We also developed an image file builder and an automation tool for running
SID simulation with GDB debugger. Furthermore, the users can also monitor/probe
the status of all the active components in the target virtual platform during the
simulation.

2 Background

2.1 SID Simulation Framework

In SID, a simulation is comprised of a collection of loosely coupled components.
Simulated systems may range from a CPU's instruction set to a large multi-processor
embedded system. SID defines a small component interface which serves to tightly
encapsulate them. Components may be written in C++, C, Tcl or any other language
to which the API is bound. C++ is the main language used, and for additional
language a special component, a bridge, is required. During simulation start-up,
components are instantiated, interconnected, and configured as necessary to represent
some specific system. SID is suitable for consideration as an integration platform for
other simulators by interconnecting models from different simulators, as has been
done with Bochs[1], and also with a live Verilog system.

The components and their relationships are described in a configuration file,
therefore required to run a simulation. The configuration file describes all components
to be loaded and which component connected to which component. The SID
simulator engine loads the components and connects them according to the
configuration file. The SID framework provides a few ways for components to
communicate with each other, i.e. pin, bus, attribute and relation mechanisms. All of
these communication mechanisms may also be set up in the configuration file.
Although there is an auto-configuration file builder for some typical target boards, in
general users have to manage the configuration file content for new target platform by
editing the file.

396 H. Satria et al.

2.2 Eclipse Platform

The Eclipse[3] platform is designed for building integrated development
environments (IDEs) as an open source project. One of the key benefits of the Eclipse
Platform is realized by its use as an integration point. Building a tool or application on
top of Eclipse Platform enables the tool or application to integrate with other tools
and applications also written using the Eclipse Platform. The Eclipse Platform is
turned in a Java IDE by adding Java development components (e.g. the JDT[5]) and it
is turned into a C/C++ IDE by adding C/C++ development components (e.g. the
CDT[2]). It becomes both a Java and C/C++ development environment by adding
both sets of components. Eclipse Platform integrates the individual tools into a single
product providing a rich and consistent experience for its users [4].

Eclipse platform has a plug-in architecture, where a plug-in is the smallest unit that
can be developed and delivered separately. Plug-ins are coded in Java. Each plug-in
has a plug-in manifest declaring its interconnections to other plug-ins. The
interconnection model is simple: a plug-in declares any number of named extension
points, and any number of extensions to one or more extension points in other plug-ins.

3 Architecture

In this section, we describe the overall architecture of our system, which the modules
implementing the functions mentioned above are developed as plug-ins over Eclipse
platform. Fig. 1 shows the architecture.

Fig. 1. Overall Architecture

As shown the figure, the architecture is based on SID framework and Eclipse
platform, and includes CDT that is a set of plug-ins for IDE for C/C++. CDT consists
of an editor, building tools such as compiler and linker, a debugger front-end
connecting to GDB, etc. We extended it by adding two plug-ins, the binary image
builder and the simulator launcher, to cooperate with SID. And, the configuration
builder and the simulation monitor are plugged directly in Eclipse platform.

CDT does not support a cross-development environment. An embedded software
development environment should provide the cross-development environment, where

 Configurable Virtual Platform Environment Using SID Simulator and Eclipse 397

an image file built in a host is run on the target system. That is why the binary image
builder was developed. It provides the cross-development environment to CDT with
GNU cross toolchains, e.g., arm-elf-gcc, arm-elf-as, etc. Therefore, users can build an
image file to be run on a virtual target platform with the binary image builder.

The SID simulator requires a configuration file that describes the target platform.
Basically, the file should be manually edited by a developer. In order to eliminate the
troublesomeness, the configuration builder automatically generates a configuration
template file for a target platform by checking the components to be used and
inserting some values such as memory addresses on a GUI.

CDT has a debugger user interface interacting GDB. And, SID has a built-in
component that performs the equivalent function of a GDB remote stub. Hence, CDT
can load and debug an image on the virtual platform through GDB. The simulator
launcher activates the virtual platform described by the configuration file selected
when a debugging session begins.

SID also provides a built-in but experimental system monitor written in Tcl/Tk, to
monitor a running simulation. The system monitor lists the components in the active
virtual platform, showing specific component attributes such as pins, registers, etc.
Since our system is based on the Eclipse framework, the system monitor should also
be made to an Eclipse plug-in, which must be written in Java. However, SID cannot
support components written in Java directly without a Java bridge component. Instead
of developing the bridge component, we connected the simulation monitor plug-in
and SID over a socket communication.

4 Implementation

The simulation monitor is implemented by interacting between the SID simulator and
the Eclipse plug-in. Thus, it is implemented in two parts, one as SID component and
another as an Eclipse plug-in.

The configuration builder is implemented as a new file wizard along with SID file
types. Using the wizard, users can choose the target processor, e.g., ARM, and they
can also select the components of the target platform SID supports many kinds of
components, we currently only provide some of most important components on this
wizard. The configuration builder generates a configuration template file according to
the user’s choice. Then the user can edit the template manually for a finer
configuration.

The binary image builder provides the cross-development environment to CDT
with GNU cross toolchains, e.g., arm-elf-gcc, arm-elf-as, etc. In CDT, the set of the
tools and their settings to be used for build process is determined by selecting “Build
Target.” Thus, we add new build targets for ARM processor. By this way, the binary
image file can be successfully built with the default tools and build settings. Users can
also further modify the build settings as needed.

CDT has a debugger user interface interacting GDB. And, SID has a built-in
component that performs the equivalent function of a GDB remote stub. The
simulator launcher activates the virtual platform described by the configuration file
selected when a debugging session begins. Eclipse has a general debug configuration
window, where users can select different kinds of debug configuration template. After

398 H. Satria et al.

they choose the proper template, they can configure the debugger based on that
template. We implemented the “C/C++ Virtual” configuration template for GDB
debugging session with the virtual platform. In this configuration, the users can select
an SID configuration file describing a target machine. The simulator launcher
activates the virtual platform on SID when the debugging starts, and also deactivates
it when the debugging stops.

5 Conclusion

In this work, we developed an integrated virtual platform environment based SID
simulation framework for a simulator engine and Eclipse for development platform.
Our system is developed as Eclipse plug-ins. The proposed system avoids users to
manually write the configuration file, and aids loading and connecting components on
the fly. We also developed an image file builder and an automation tool for running
SID simulation with GDB debugger. Furthermore, users can also monitor/probe the
status of all the active components in the target virtual platform during the simulation.

References

1. The Bochs IA-32 Emulator Project, http://bochs.sourceforge.net
2. Eclipse C/C++ Development Tools (CDT), http://www.eclipse.org/cdt/
3. Eclipse Platform, http://www.eclipse.org
4. Eclipse Platform Technical Overview (2006), http://www.eclipse.org/articles/Whitepaper-

Platform-3.1/eclipse-platform-whitepaper.pdf
5. Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt/
6. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,

Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation Platform. IEEE
Computer 35(2), 50–58 (2002)

7. PearPC: PowerPC Architecture Emulator, http://pearpc.sourceforge.net
8. QEMU: A Generic and Open Source Processor Emulator, http://fabrice.bellard.free.fr/qemu
9. System, S.I.D.: Simulator, http://sourceware.org/sid

10. SimOS: The Complete Machine Simulator, http://simos.stanford.edu
11. SkyEye: An Embedded Simulation System, http://www.skyeye.org
12. Witchel, E., Rosenblum, M.: Embra: Fast and Flexible Machine Simulation. ACM

SIGMETRICS Performance Evaluation Review 24(1), 68–79 (1996)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 399–408, 2007.
© IFIP International Federation for Information Processing 2007

An Energy-Efficient k-Disjoint-Path Routing Algorithm
for Reliable Wireless Sensor Networks

Jang Woon Baek1, Young Jin Nam2,*, and Dae-Wha Seo1

1 School of Electrical Eng. & Computer Science, Kyungpook National University
2 School of Computer & Information Technology, Daegu University

1 {kutc, dwseo}@ee.knu.ac.kr, 2 yjnam@daegu.ac.kr

Abstract. Wireless sensor networks are subject to sensor node and link failures
due to various reasons. This paper proposes an energy-efficient, k-disjoint-path
routing algorithm that adaptively varies the number of disjoint paths (k)
according to changing data patterns and a target-delivery ratio of critical events.
The proposed algorithm sends packets through a single path (k=1) under no
occurrence of critical events, whereas it sends through k disjoint paths (k>1)
under the occurrence of critical events, where k is computed from a well-
defined fault model and the target delivery ratio. Note that the proposed
algorithm detects the occurrence of critical events by monitoring changing data
patterns. Our simulations reveal that the proposed algorithm not only guarantees
the target delivery ratio as much as a multi-path routing algorithm, but also
makes energy consumption and average delay as low as a single-path routing
algorithm.

Keywords: Wireless sensor networks, data variation, disjoint-path routing.

1 Introduction

According to advances in MEMS, wireless communication, and digital electronics
technology, wireless sensor networks have been widely deployed to monitor and
control physical environments [1]. Wireless sensor networks typically consist of a
large number of sensor nodes which can observe physical phenomena, process sensed
information, and communicate with other nodes. Since sensor nodes are equipped
with limited battery power, low-power consumption is very crucial in wireless sensor
networks [2]. It is believed that power consumption is dominated by the costs of
transmitting and receiving messages [3]. It is known that in-network aggregation can
save a significant amount of energy by reducing the number of transmitted messages
over wireless sensor networks [4]. Sensor nodes with in-network aggregation can
combine data from their child nodes and their locally-collected data before sending a
message to their parent nodes. Typically, in-network aggregation employs a single-
path routing algorithm with a tree topology for energy saving [4, 10]. However, if any
node on a single routing path fails, the data packet cannot be delivered to the base

* Corresponding author.

400 J.W. Baek, Y.J. Nam, and D.-W. Seo

station. Actually, individual sensor nodes are highly vulnerable to failures caused by
battery drain, outside damages, or security attacks [5].

Multi-path routing algorithms have been proposed for the reliable event delivery in
wireless sensor networks [6-8]. Basically, this breed of routing algorithms constantly
employs m disjoint paths, where m is generally determined in an ad-hoc manner. With
a larger m, the multi-path routing algorithms require more nodes to participate in the
event transmission. In result, more energy is consumed, and the overall traffic in the
wireless sensor network is increased, thus resulting is a higher possibility of
congestion and worse load balancing [9]. Another breed of routing algorithms for
reliable event delivery is the path-repair routing algorithm that forwards data along a
single path and repairs paths in the presence of failures in order to achieve a higher
delivery ratio with low-energy consumption [9, 10]. Path-repair routing algorithms,
however, usually generate additional latency in the search for alternative paths. If
some packets arrive after a timeout especially during in-network aggregation, the
aggregation process excludes these packets. To make matters worse, if packets
encompass any critical events, packet loss poses serious problems for sensor
applications.

This paper proposes an energy-efficient k-disjoint-path routing algorithm for in-
network aggregation over wireless sensor networks. The key of the proposed
algorithm is to adapt the number of disjoint paths (k) according to the changing data
patterns and the target delivery ratio of critical events, such as fires and poisonous gas
leaks, etc. The proposed algorithm configures k=1 if the variance of the received data
(data variation) from children is lower than a pre-defined threshold, whereas it sets
k>1 if data variation is higher than the pre-defined threshold, where k is determined
by the target delivery ratio. Note that the proposed algorithm detects the occurrence of
critical events by monitoring data variation. Since sensor nodes usually collect non-
critical events that have less important information and little effect on aggregation
results, the proposed algorithm spends a large portion of its lifetime operating like the
single-path routing algorithm. As a result, the proposed algorithm consumes much
less power than multi-path routing algorithms. After detecting the occurrence of
critical events, the proposed algorithm begins to work like a k-disjoint-path routing
algorithm in order to meet target delivery ratios.

The remainder of this paper is organized as follows. Section 2 provides
background information on multi-path routing and path-repair algorithms. Section 3
offers a detailed description of the proposed algorithm, and Section 4 compares the
performance of the proposed algorithm with that of exiting routing algorithms.
Finally, concluding remarks are presented in Section 5.

2 Background

Data collection from wireless sensor networks typically uses a single-path routing
algorithm with tree topology for energy saving [4, 11]. Wireless sensor networks have
a relatively short radio range and may be deployed into a large geographical coverage
area, i.e., the route between a source node and a base station is likely to consist of a

 An Energy-Efficient k-Disjoint-Path Routing Algorithm 401

large number of hops. As a result, the success probability of the single-path routing
becomes very low. There are two different methods to maintain routing paths in the
presence of node failures: multi-path routing algorithms and path-repair algorithm.

Multi-path routing algorithms have shown higher resilience to node failure both
theoretically and experimentally comparing with the single-path routing [6-8]. The
construction of disjoint multi-path is described in [7]. In this approach, multiple
copies of data are sent along different paths, allowing for resilience to failures of a
certain number of paths. For instance, the same data packet along m disjoint paths can
increase the delivery ratio in approximate proportion to m, as compared with the
single-path routing algorithm. A smaller value of m can save energy, but it is less
likely to meet a target delivery ratio. On the other hand, a larger value of m is more
likely to guarantee a target delivery ratio, whereas it not only causes higher energy
consumptions, but it also creates more traffic for the packet delivery. Note that more
traffic implies higher collisions in wireless channels and longer back-off delays for
transmission.

Path-repair algorithms are proposed to overcome the problems of multi-path
routing algorithms [9, 10]. In the face of path failure, a notification is sent to the
source node, which is responsible for finding an alternative path and resending the
packet. However, this kind of a source-initiated path-repairing approach is inefficient,
especially when a failure occurs in many hops away from the source node. To
decrease long-path recovery time and unnecessary energy consumption of source-
initiated path-repairing approaches, local-node-based path-repair algorithms have
been proposed [10]. These algorithms detect packet loss with implicit
acknowledgements [9]. In the presence of path failure, a sensor node searches for an
alternative node among a list of neighbor nodes, and it immediately sends the packet
stored in its local cache to the alternative node. These algorithms, however, still make
additional latency while discovering alternative paths.

3 The Proposed Algorithm

To begin, we assume that data aggregation is performed periodically in a wireless
sensor network. The key of the proposed algorithm is to vary the number of disjoint
paths (k) according to the changing data patterns and the target delivery ratio of
critical events. Note that the routing algorithm operates at each sensor node in a
distributed manner.

The proposed algorithm exploits the following characteristics of sensor readings in
order to detect critical events. First, as time passes, there is little change in sensor
readings from wireless sensor networks. Second, there is little change in sensor readings
from physically-adjacent sensor nodes in a wireless sensor network. Third, in the
presence of critical events, such as earthquakes or forest fires, there is significant change
in sensor readings from a wireless sensor network. By using the first two characteristics,
the proposed algorithm maintains single-path routing (k=1) when a variance of the
received data from children is lower than a pre-defined threshold because there are not
any critical events. As a result, it can consume energy dramatically compared with the

402 J.W. Baek, Y.J. Nam, and D.-W. Seo

multi-path routing algorithms. The proposed algorithm, however, employs the k-disjoint
path (k>1) when the variance becomes higher than a pre-defined threshold in order to
meet a target delivery ratio of critical events.

The occurrence of a critical event can be detected by monitoring data variation. For
example, a sharp change in the light intensity, an unusual sound matching a certain
signature and a very high temperature in the same region within a specified time
interval implies an explosion event [12]. In building risk monitoring, if the variation
of data collected by acceleration and strain sensors of sensor node is large, we can
infer that an abnormal symptom of building is generated [13]. In the earthquake
detection, a sensor node can detect the event using an earthquake detection algorithm
triggered on significant seismic or acoustic signal [14]. From theses examples, we can
see that data variation is important to detect the occurrence of critical events. The
information on detected critical events has to be reliably transferred to the base
station.

The threshold of data variation is set by using maximum data variation in a normal
condition without occurrence of critical events. The normal data variation can be
empirically obtained by running iterative experiments. Data variation depends on the
location of sensor node from the point of event occurrence. We can change the
threshold of data variation according to the characteristics of sensor applications.

The proposed algorithm computes the minimum number of disjoint paths (k>1),
say k’, between a sensor node and its final destination (a base station) in the presence
of critical events to meet a given target delivery ratio. Presently, it uses a simple fault
model, where each sensor node can be faulty independently with the probability of f
in a wireless sensor network. Fig. 1 shows a packet-transmitting model through k
disjoint multiple paths at a sensor node located N hops away from the base station.
The probability that no duplicated packet is delivered to the base station, Pfail(N), is
calculated as Pfail(N) = (1 - (l - f)N)k. Therefore, the probability that at least one single
copy of the packet is delivered to the base station can be computed as Psucc (N) = 1 –
Pfail (N). Given a target delivery ratio, Psucc (N) = α, the minimum number of disjoint
paths denoted by k’ can be computed as

k’ = log (1 - α) / log (1 - (1 - f)N). (1)

Fig. 1. Packet-transmitting model through k disjoint paths

 An Energy-Efficient k-Disjoint-Path Routing Algorithm 403

procedure PATH_INITIALIZATION()
 // N = {n| node(n)}, all sensor nodes
 // Pn = {pi}i=1, …, M, parent list of node(n)

foreach sensor node(n) N do
 receive queries from its parents;
 initialize a parent list Pn ;
 compute the number of disjoint path k’ to meet
 the target delivery ratio();
 construct k’ disjoint paths to the base station;
 pick k’ parents and its primary parent;

end

end PATH_INITIALIZATION

procedure DATA_TRANSMISSION()
 n node_id;
 packetn sensing critical or non-critical events;

repeat
 packetchild(n) receive(nodechild(n));
 packetn data_aggregation(packetn, packetchild(n));
 update data variation(dvn) at noden;
 check threshold conditions and update Timeoutn

until Timeoutn has expired

if (critical event occurred) then
 send packetn to each of the k’ parents;
 else
 send packetn to the primary parent;

endif

 sleep until the next period;
end DATA_TRANSMISSION

Fig. 2. The operational behavior of the proposed algorithm

The operational behavior of the proposed algorithm is described in Fig. 2. We
assume that there exits a set of sensor nodes denoted by N, where each sensor node is
denoted by a noden. We denote the parent nodes and the child nodes of a noden by
nodepar(n) and nodechild(n), respectively. The first step of the proposed algorithm
(PATH_INITIALIZATION) is to construct a minimum number of disjoint paths
between each sensor node to the base station. This is done in order to meet a given
target delivery ratio of critical events. A sensor node receives multiple queries from
its parent nodes (nodepar(n)) and initializes its parent list (Pn) and data aggregation
parameters including a target delivery ratio (α) and a data variation threshold (DV).
Next, the proposed algorithm calculates the minimum number of disjoint paths (k’) by
using Eq.(1) and constructs k’ disjoint paths from the noden to the base station as
follows. The noden sends duplicate requests including information of source ID,
sender ID, hop counts, and request ID to k’ parents that are randomly selected from
the parent list. Note that the request ID is unique during toward the base station.
When a node at a lower hop count receives the request, it stores the path information
unless it has received the same request ID. Otherwise, it returns the NACK message
to the request sender. Then, the sender delivers the request message to another parent.
By repeating this process at each node in a wireless sensor network, the base station
can receive the request messages through k’ disjoint paths. The base station returns

404 J.W. Baek, Y.J. Nam, and D.-W. Seo

acknowledgements to the noden through each of the reverse paths for the confirmation
of the path setup. Finally, path initialization chooses k’ parents for k’-disjoint-path
routing and a primary parent is selected from the k’ parents.

The next step in the proposed algorithm (DATA_TRANSMISSION) is to transmit
sensed data to the base station. The noden waits for packets (packetchild(n)) from the
child nodes, and fulfills partial aggregation; the noden checks the threshold condition
of data variation during a timeout (Tn), which is configured by the adaptive timeout
scheduling scheme [10]. If data variation (dvn) at noden is within DV, which means
that critical events have not occurred, the proposed algorithm sends a packet to its
primary parent (single-path routing). If the data variation is larger than DV, which
means that critical events have occurred, the proposed algorithm sends a packet to
each of the k’ parents in the parent list (k’-disjoint-path routing). When the
transmission is completed, the noden sleeps until the next period.

4 Performance Evaluations

This section evaluates the performance of the proposed algorithm via simulations. We
implemented the proposed k-disjoint-path algorithm in the ns-2 network simulator
[16]. We compared the proposed algorithm with a single-path routing algorithm [4], a
multi-path routing algorithm [7], and a path-repair routing algorithm [9]. The
performance metrics encompass the average dissipated energy, the event delivery
ratio, and the average delay.

Table 1. Simulation parameters

Parameters Values

Number of nodes 100

Transmission Range 50m

Physical Link Bandwidth 1Mbps

MAC Layer 802.11

Transmit Energy 14.88mW

Receive Energy 12.50mW

Data Collection Period 1 sec.

Critical Event Injection 50 sec.

Data Variation Threshold 5%

Probability of A Node Failure (f) 0.1

4.1 Simulation Environment

Table 1 shows the parameters used in our experiments. Each simulation begins by
deploying 100 sensor nodes randomly in a 1000-by-1000 grid. All the sensor nodes

 An Energy-Efficient k-Disjoint-Path Routing Algorithm 405

remain static after being deployed. The radio range of each node is set to 50 meters.
The bandwidth of each physical link is 1Mbps. We employ an 802.11 MAC-layer
protocol, where the transmission and reception energy consumption is set to 14.88
and 12.50mW [15]. Each simulation runs for 1,000 seconds, and the sensor
application collects sensed data every one second through the wireless sensor
network. Critical events are randomly injected into sensor nodes in the wireless sensor
network. The threshold of data variation to detect the critical events is set to 5
percents. In normal environments, the data variation of temperature is lower than 5%
at the reasonable reporting period. We assume that each node can be faulty
independently with the probability (f=0.1), and the sensor application demands the
target delivery ratio of 0.9 (α=0.9).

4.2 The Average Dissipated Energy

The average dissipated energy represents the average of the total dissipated energy at
each node when the simulation completes. Table 2 summarizes the average dissipated
energy of the proposed algorithm and the other routing algorithms with f=0.1 and
α=0.9. The number of the disjoint paths, 5-disjoint path, for the multi-path routing
algorithm is obtained from Eq.(1). The proposed algorithm is observed to consume
43% more energy than the single-path routing algorithm. However, it consumes much
less energy than the multi-path routing algorithm by 110% and even the path-repair
routing algorithms by 47%. Recall that the path-repair routing algorithm generates
additional packets to find an alternative routing path.

Table 2. A comparison of the average dissipated energy with the different routing algorithms:
The single-path algorithm, the multi-path (5-disjoint path) algorithm, the path-repair algorithm,
and the proposed algorithm, where f=0.1 and α=0.9

Routing Schemes Single-path Multi-path Path-repair Proposed
Dissipated Energy (J) 1.013 2.616 1.822 1.239
Improvement (%) 158.0 - 43.5 110.0

4.3 The Event Delivery Ratio of Critical Events

The event delivery ratio of critical events represents the ratio of the number of the
critical events received at the base station to the total number of critical events
injected at sensor nodes. Fig. 3 depicts the results of the event delivery ratio of critical
events with the different routing algorithms. While the single-path routing algorithm
cannot guarantee the target delivery ratio of 90%, the multi-path and the proposed
routing algorithms can meet the target ratio. Interestingly, the path-repair provides
only the event delivery ratio of 82% that is slightly lower than the target ratio.
Additional experiments show that the multi-path routing algorithm with three disjoint
paths cannot meet the target ratio, whereas four disjoint paths can barely guarantee
the target ratio.

406 J.W. Baek, Y.J. Nam, and D.-W. Seo

Multi-path

Path repair

Single-path

Proposed

30

40

50

60

70

80

90

100

Routing Algorithm

E
ve

nt
 D

el
iv

er
y

R
at

io
 (

%
)

1

Fig. 3. A comparison of the event delivery ratio of critical events with the different routing
algorithms (max. 10-hop distance between the sensor node and the base station): The single-
path algorithm, the multi-path (5-disjoint path) algorithm, the path-repair algorithm, and the
proposed algorithm, where f=0.1 and α=0.9

4.4 The Average Delay

The average delay represents the average latency required to transmit a critical event
from a sensor node to the base station. Fig. 4 shows the average delay measured with
each routing algorithm. The proposed algorithm has about 15% longer average delay
compared with the single-path routing algorithm making the shortest average delay.
However, the average delays of the path-repair routing algorithm and the multi-path
routing algorithm are higher than that of the proposed algorithm by 22% and 37%,
respectively. Again, the path-repair routing algorithm requires a considerable amount
of time to search an alternative path and retransmit the packet. The multi-path routing
generates more traffic by sending a packet along multiple-disjoint paths. As a result, it
causes higher collisions in wireless channels and longer back-off delays for
transmission.

Multi-path

Path-repair

Proposed
Single-path

0

0.05

0.1

0.15

0.2

0.25

0.3

Routing Algorithm

A
ve

ra
ge

 d
el

ay
 (s

ec
.)

Fig. 4. A comparison of the average delay with the different routing algorithms (max. 10-hop
distance between the sensor node and the base station): The single-path algorithm, the multi-
path (5-disjoint path) algorithm, the path-repair algorithm, and the proposed algorithm, where
f=0.1 and α=0.9

 An Energy-Efficient k-Disjoint-Path Routing Algorithm 407

5 Concluding Remarks

This paper proposed an energy-efficient k-disjoint-path routing algorithm that can
vary the number of disjoint paths (k) according to changing data patterns and a target
delivery ratio of critical events. The proposed algorithm operates as in the single-path
routing algorithm (k=1) if the data variation is lower than a pre-defined threshold
under no occurrence of critical events in order to consume less energy. On the other
hand, it works like a multi-path (k-disjoint path) routing algorithm (k>1), if data
variation is higher than the pre-defined threshold in order to meet the target delivery
ratio under the occurrence of critical events. The value of k is obtained from the well-
defined fault model and a target delivery ratio. Our simulation showed that the
proposed algorithm guaranteed the target delivery ratio as much as the multi-path
routing algorithm, whereas the single-path and path-repair routing algorithms could
not meet the target ratio. Compared with the single-path routing algorithm, the
proposed algorithm should a slight increase in the average dissipated energy and the
average delay by 18% and 15%, respectively. The multi-path routing algorithm and
the path-repair algorithm, however, consume more energy than the proposed
algorithm by 110% and 47%, respectively. In future work, we plan to apply more
complex fault models to the current routing algorithm for reliable wireless sensor
networks.

Acknowledgments. This research was in part supported by the MIC(Ministry of
Information and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Information
Technology Assessment) (IITA-2006-C1090-0603-0045).

References

1. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E., Culler, D.:
The Emergence of Networking Abstractions and Techniques in TinyOS. In: First
USENIX/ACM Symposium on Networked Systems Design and Implementation, ACM
Press, New York (2004)

2. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A
survey. Computer Networks 38 (2002)

3. Yao, Y., Gehrke, J.: Query Processing for Sensor Networks. In: Proceedings of CIDR
(2003)

4. Madden, S., Szewczyk, R., Franklin, M., Cullera, D.: Supporting Aggregate Queries Over
Ad-Hoc Wireless Sensor Networks. In: Proceedings of WMCSA (2002)

5. Deng, J., Han, R., Mishra, S.: A Robust and Light-Weight Routing Mechanism for
Wireless Sensor Networks. In: Proceedings of DIWANS (2004)

6. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient Broadcast: A Robust Data Delivery
Protocol for Large Scale Sensor Networks. Wireless Networks 11 (2005)

7. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-Resilient, Energy-Efficient
Multipath Routing in Wireless Sensor Networks. Mobile Computing and Communication
Review 4(5) (2001)

408 J.W. Baek, Y.J. Nam, and D.-W. Seo

8. Karlof, C., Li, Y., Polastre, J., ARRIVE,: Algorithm for Robust Routing in Volatile
Environments. Technical Report, UCB//CSD-03-1233 (2003)

9. Ortolani, M., Gatani, L., Re, G.: Robust Data Gathering for Wireless Sensor Networks. In:
Proceedings of ICON (2005)

10. Tian, D., Georganas, N.: Energy Efficient Routing with Guaranteed Delivery in Wireless
Sensor Networks. In: Proceedings of WCNC (2003)

11. Baek, J., Nam, Y., Seo, D.: ATS-DA: Adaptive Timeout Scheduling for Data Aggregation
in Wireless Sensor Networks. In: Proceedings of ICOIN (2007)

12. Li, S., Lin, Y., Son, S., Stankovic, J., Wei, Y.: Event Detection Services Using Data
Service Middleware in Distributed Sensor Networks. Telecommunication Systems 26
(2004)

13. Kurata, N., Spencer, B., Ruiz-Sandoval, M.: Application of Wireless Sensor Network
Mote for Building Risk Monitoring. In: Proceedings of INSS (2004)

14. Werner-Allen, G., Wieskowski, P., Welsh, M.: Demonstration: Real-Time Volcanic
Earthquake Localization. In: Proceeding of SenSys (2006)

15. Boukerche, A., Pazzi, R., Araujo, R.: A Fast and Reliable Protocol for Wireless Sensor
Networks in Critical Condition Monitoring Applications. In: Proceedings of MSWiM
(2004)

16. VINT: The Network Simulator NS-2 (2005), http://www.isi.edu/nsnam

Supporting Mobile Ubiquitous Applications

with Mobility Prediction and Soft Handoff

Marcello Cinque1 and Stefano Russo1,2

1 Dipartimento di Informatica e Sistemistica
Universita’ degli Studi di Napoli Federico II

Via Claudio 21, 80125 - Naples, Italy
{macinque, sterusso}@unina.it
2 Laboratorio ITEM “Carlo Savy”

Consorzio Interuniversitario Nazionale per l’Informatica
M.S. Angelo, Via Cinthia - 80125 Naples, Italy

Abstract. The increasing success of mobile-enabled embedded devices
is stressing the need for software architectures facing mobility-related
issues. This paper proposes a simple yet effective mobility management
scheme to ease the development of mobile ubiquitous applications. The
scheme seamlessly handles handoff events and provides ubiquitous appli-
cations with both location-awareness and mobility prediction support.
An implementation prototype has been developed on real-world Blue-
tooth enabled devices. Experimental results are then obtained from the
prototype, showing the effectiveness of the proposed scheme.

1 Introduction

Mobility management has widely been recognized as one of the most challenging
problems for a seamless integration of embedded, mobile devices (MDs) into the
physical world. Such integration is an important step towards the ubiquitous
view of computing, where computation resources are spread into small devices
which pervasively interact each other “all the time and everywhere” by means
of wireless communication infrastructures [1].

One of the key aspects of mobility management is the handling of handoff
procedures, i.e., the set of operations that need to be performed to guarantee
a MD to be connected with one or more wireless Access Points (APs) while
it roams across the ubiquitous environment. Specifically, a handoff procedure
is composed of two basic steps: i) the initiation, which detects and triggers a
handoff event from the old AP to a new one, and ii) the decision, where a new
AP is selected among the available ones.

Several handoff management schemes have been proposed over the last years,
addressing different flavors of wireless networks, from cellular networks, to the
wireless Internet. However, when facing mobility-related issues for ubiquitous
environments, several new challenges arise which are not generally supported by
current software architectures for ubiquitous applications.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 409–418, 2007.
c© IFIP International Federation for Information Processing 2007

410 M. Cinque and S. Russo

First, to achieve the “all the time and everywhere” view of mobility, handoff
management should provide high connection availability to each MD. Second,
ubiquitous devices typically offer limited computation and storing capabilities,
and rely upon batteries. The mobility management support should thus take
into account MDs and APs constrained resources by managing the handoff in
a lightweight fashion. Third, ubiquitous applications would greatly benefit from
a handoff management architecture able to provide mobility prediction. The
ability of predicting both the handoff event and the next MD location enables
to implement proactive resource allocation schemes which can have a significant
impact on the overall performance.

Connection availability and mobility prediction can be obtained by imple-
menting “soft” handoff procedures, where the MD is always connected to more
than one AP, in order to minimize unavailability periods and to oversee the
movements. However, this type of strategy may involve unacceptable resource
consumption at both MD and AP sides.

This paper addresses these problems by proposing a novel, hybrid approach
to handoff management, which requires the MD to be connected to a single AP,
while guaranteeing soft handoffs and providing mobility prediction. The novel
contribution, namely “Octopus”, is a lightweight handoff scheme which extends
our previous Last Second Soft Handoff Scheme (LSSH) [2,3]. In particular, even
if LSSH provides soft handoffs while reducing unavailability periods (please refer
to [2] for a quantitative evaluation), it presents the drawback of long decision pe-
riods, which may in turn degrade the accuracy of the location awareness support.
Moreover, LSSH does not embody mobility prediction schemes.

The novel handoff scheme has been implemented and integrated in a mobility
management architecture, running over Bluetooth wireless networks. Experimen-
tal results have been run on the actual implementation, demonstrating how the
novel mobility prediction support offered by Octopus can significantly improve
the decision latency and the location accuracy.

2 Related Work

Handoff strategies can be classified as reactive and proactive. Reactive strate-
gies, such as [4,5], look for other available APs only after the current AP signal is
lost.On the other hand, proactive strategies continuously monitor channel condi-
tions and start communication-level handoff before losing current AP signal, at
the cost of higher battery consumption. Several criteria are based on the Receiver
Signal Strength Indicator (RSSI) [6,7,8,9].Some of them, such as [6,9] are based
on a fixed threshold mechanism, that is, the handoff is initiated when the RSSI
falls below a certain threshold. It is simple to argue how this kind of initiation
leads to a poor availability. Indeed, noisy environments and shadowing problems
can lead to transient RSSI degradations, which do not strictly require any hand-
off. Fore this reason, other solutions use a more complicated RSSI processing,
such as fuzzy controllers [7], or mobility prediction [8].We can further distinguish
two types of handoff: hard handoff, where the MD is connected to only one AP
at time, minimizing signaling overhead but increasing latency and packet losses;

Supporting Mobile Ubiquitous Applications 411

and soft handoff that activates the new data path to the destination AP before
client disconnection from the origin AP [10]. It is worth noting that none of the
mentioned solutions is able to answer to the needs outlined in previous section.

3 Handoff Management and Mobility Prediction

3.1 The LSSH Scheme

The LSSH scheme is a hybrid approach that tries to exploit the advantages of
both hard and soft solutions. The initiation phase takes place using uniquely the
information about the AP currently in use, as in hard handoff, and only in the
decision phase multiple connections are established, as in soft handoff.

LSSH initiation. The initiation phase can be performed using diverse sets of
information and techniques, such as broken link recognition and AP monitor-
ing through RSSI or other measures and metrics. Our solution is RSSI based,
for several reasons: i) it allows the handoff to be proactive, ii) the RSSI pa-
rameter is often already provided by the wireless interface, without performing
intrusive measures, and iii) RSSI is an indication of the device position with
respect to APs; this helps to achieve load balancing on APs depending on de-
vice distribution in the environment. Furthermore, locationing techniques can
be implemented. According to the LSSH scheme, the initiation has to be per-
formed using only the RSSI of the AP in use. It is thus crucial to carefully
discriminate transient signal degradations, from permanent ones. Indeed, tran-
sient signal degradations can trigger unnecessary handoff procedures. To this
aim, the LSSH scheme adopts the α-count mechanism due to the clear and
simple mathematical characterization, the thorough analysis already conducted,
and the minimal computational complexity which properly answers lightweight
needs [11]. The α-count function α(L) is a count and threshold mechanism. It
takes the L-th measured RSSI as an input, then α(L) is incremented by 1 as the
current RSSI falls below the threshold SRSSI . Similarly, α(L) is decremented by
a positive quantity dec if the L-th measured RSSI is greater than the SRSSI .
A handoff is triggered as soon as α(L) becomes greater than a certain threshold
αT . The function α(L) is thus defined as follows:

α(L) =

��
�

α(L−1) + 1 if RSSI(L) < SRSSI

α(L−1) − dec if RSSI(L) ≥ SRSSI and α(L−1) − dec > 0

0 if RSSI(L) ≥ SRSSI and α(L−1) − dec ≤ 0

(1)

In our previous work we outlined how the values of αT , dec and SRSSI parameters
can be tuned in order to achieve a trade-off between early and late handoffs.

LSSH decision. During the decision phase, the MD sequentially connects to
all the neighboring APs of the old AP. The decision is then taken by evaluating
the RSSI of all the links to the neighbors and by choosing the best AP among
them. Let {ng1, ..., ngn} be the set of neighbors. During the scanning, the scheme
keeps track of the best visited AP, let say ng∗. When it connects to ngi, if the

412 M. Cinque and S. Russo

A B C D

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

initiation from AP1 decision: ng* = AP2 decision: ng* = AP3 initiation from AP3

A B C D

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

initiation from AP1 decision: ng* = AP2 decision: ng* = AP3 initiation from AP3

Fig. 1. The LSSH scheme

RSSI of ngi is greater than the ng∗ one, then ng∗ = ngi. At the end of the
scanning, the resulting ng∗ is selected as the new AP. It is simple to argue that
such sequential scanning may require long decision latencies. As for locationing
issues, we assume that a mobile device is in a zone x when it is attached to
a AP covering the zone x. Being the RSSI strictly related with the distance
between antennas, the scheme enforces devices to be connected to the closest
AP. However, even if pathological situations can lead to the selection of a wrong
AP, poor values of the signal strength, which are measured on the selected AP,
will eventually result in the initiation of a new handoff, thus correcting the error.

For more information on the LSSH scheme, please refer to our previously
published work [2]. Figure 1 summarizes the LSSH scheme in the simplistic case
of three APs.

3.2 The Novel Octopus Scheme

The Octopus scheme has been introduced to overcome LSSH’s main drawbacks,
that is, long decision periods, which may affect the locationing accuracy, and the
lack of a mobility prediction support able to predict with reasonable anticipation
the next AP the device is going to be connected to.

The basic idea behind Octopus is the same of LSSH, i.e., exploiting the ad-
vantages of both hard and soft handoff. The main difference lays in the deci-
sion phase, which is anticipated and concurrently performed with the initiation.
During its normal operation, the MD monitors only one connection, as in hard
handoff (panel A in figure 2). When a handoff event becomes probable, the MD
starts to monitor its neighboring APs, as in soft handoff. Specifically it connects,

A B C

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

initiation from AP1 initiation + decision:
octopus + prediction

initiation from AP3

A B C

AP1

AP2

AP3

AP1

AP2

AP3

AP1

AP2

AP3

initiation from AP1 initiation + decision:
octopus + prediction

initiation from AP3

Fig. 2. The Octopus scheme

Supporting Mobile Ubiquitous Applications 413

AP

α-count

values

α
Oct

α
LSSH

distance

from the AP

initiation
zone

initiation +
decision
zone

α
T_Oct

α
T_LSSH

AP

α-count

values

α
Oct

α
LSSH

distance

from the AP

initiation
zone

initiation +
decision
zone

α
T_Oct

α
T_LSSH

Fig. 3. The zones defined by the Octopus scheme and their relationship with α
(L)
LSSH

and α
(L)
Oct functions

i.e., concurrently attaches “tentacles”, to all them, hence the name “octopus”
(panel B). During this phase, the device still keeps using the old AP. In addition,
thanks to the multiple, concurrent connections, it can predict the AP it is going
to be shortly connected to. Finally, when the handoff event is triggered, the MD
can quickly decide the next AP, and release connections (panel C).

Octopus Initiation. Differently from the LSSH scheme, the Octopus initiation
is based on two α-count functions, which are evaluated concurrently on the same
RSSI signal. The first function, called α

(L)
LSSH and based on αTLSSH , dec and

SRSSILSSH parameters, has the same purpose of the LSSH α-count: it triggers
the handoff event as soon as α

(L)
LSSH becomes greater than αTLSSH . The second

function, called α
(L)
Oct and based on αTOct , dec and SRSSIOct parameters, triggers

the anticipated decision phase as soon as α
(L)
Oct becomes greater than αTOct . Since

the decision phase has to be triggered before the handoff event, it results:

αTOct =
αTLSSH

KT
, KT ≥ 1 (2)

In other terms, the threshold on the α
(L)
Oct (for the anticipated decision) has to

be lower than the threshold on α
(L)
LSSH (for the initiation). The value of the KT

constant tunes the earliness of the anticipated decision phase: the bigger KT ,
the earlier the decision phase will be undertaken. Similarly, it has to be:

SRSSIOct = KS · SRSSILSSH , KS ≥ 1 (3)

that is, α
(L)
Oct has to be less tolerant to RSSI degradations than α

(L)
LSSH .

Figure 3 depicts how the octopus scheme defines two “zones” surrounding ev-
ery AP: i) the pure initiation zone (the first circle surrounding the AP), where

414 M. Cinque and S. Russo

both α
(L)
LSSH and α

(L)
Oct are below their respective thresholds and where only the

source AP RSSI is monitored, and ii) the decision+initiation zone (between the
first and the second circle surrounding the AP), where α

(L)
LSSH is below its thresh-

old, while α
(L)
Oct already reached its threshold, and where the monitoring of the

neighboring APs is performed. In figure it is evidenced that α
(L)
Oct increases faster

than α
(L)
LSSH . This is due to the fact that SRSSIOct ≥ SRSSILSSH , or equivalently,

to the lower tolerance that α
(L)
Oct has with respect to RSSI degradations.

Octopus Decision and Mobility Prediction Support. The decision phase
is performed concurrently with the initiation phase. This way, the final decision
is already available once the initiation phase ends, hence reducing the decision
latency. During the decision phase, multiple connections are created to the neigh-
boring APs {ng1, ..., ngn}. Each connection is monitored by a separate worker
thread (the tentacle). The i-th worker thread is responsible to periodically i)
read the RSSI level of the ngi neighbor, ii) perform a moving average of the
current reading with past readings (in order to filter out transient degradation
phenomena), and iii) store the moving average in a shared structure. A man-
ager thread (the octopus itself) periodically evaluates the best neighbor ng∗

by getting the RSSI average of all neighbors from the shared structure. Once
the α

(L)
LSSH triggers the handoff event, the current best neighbor ng∗ is selected

as the next neighbor. Consequently, all the worker threads are stopped and all
the connections to other neighbors are dropped. If the decision cannot be made
(e.g., the device movements are too fast to let the octopus create all the needed
connections), the LSSH decision is performed as a back up mode.

The manager thread owns the information about the best neighbor during all
the decision phase. The best neighbor can of course change during the decision
phase, due to natural MD movements. In other terms, the manager thread “fol-
lows” device movements and it is thus able to know in advance, i.e., prior to
the handoff execution, which is the device direction and hence the next AP that
will be likely selected. Therefore, the octopus decision scheme naturally holds
precious mobility prediction information, that can be easily provided to appli-
cations as soon as the decision phase starts, that is, while the device lays in the
initiation+decision zone.

4 Experimental Results

This section shows the effectiveness of the novel Octopus scheme as compared
to the LSSH scheme. In particular, the main objectives of the experiments are:
(i) to show how Octopus practically eliminates the decision latency, and (ii)
to demonstrate that Octopus obtains better location accuracy as compared to
LSSH. To follow such objective, two are the parameters that need to be mea-
sured: the decision time, both with Octopus and with LSSH, and the location
estimate accuracy, which can be measured in terms of the percentage of location
errors, both with Octopus and with LSSH. The percentage of location errors can
be evaluated as:

Supporting Mobile Ubiquitous Applications 415

0

5

10

1 61 121 181 241

Sample number

R
S

S
I v

al
u

e
AP1

AP2

AP3

AP1 zone AP2 zone AP3 zonehandoff handoff handoff

0

5

10

1 61 121 181 241

Sample number

R
S

S
I v

al
u

e
AP1

AP2

AP3

AP1 zone AP2 zone AP3 zonehandoff handoff handoff

Fig. 4. RSSI reference traces, registered at a 1 m/s speed

% of location errors = 100 · Nwl

Nreq
(4)

where Nwl is the number of times that the handoff management scheme (either
LSSH or Octopus) returns a wrong location information with respect to the
actual device location, and Nreq is the total number of location requests. This
parameter is particularly sensible to the device speed. The faster the device, the
more is likely that the location estimate is wrong. In other terms, the faster the
device, the less the handoff management scheme is able to follow device move-
ments and to choose the right AP. Our experiments evidence how the Octopus
scheme is more robust to device movements than the the LSSH scheme.

4.1 Prototype and Experimental Setting

The Octopus scheme has been implemented and integrated in a preexisting mo-
bility management architecture, which is thoroughly described in our previous
work [3]. Please refer to our web site: www.mobilab.unina.it/Prototypes.htm
if you wish to download the last release of CLM and NCSOCKS including the
Octopus scheme. Current implementation has been sufficiently tested only on
Bluetooth wireless networks. Experimental results have been thus conducted
over such networks.

In order to perform the above mentioned measures, we set up a simple testbed
composed of three Bluetooth antennas acting as APs and one roaming, Bluetooth-
enabled MD. In order to let each AP have two neighbors, we adopted a triangular
topology. This way, every handoff procedure requires a decision between two APs.
The distance between the antennas is set to 15 meters. Since we adopted Class 2
Bluetooth devices (with 10 meters transmission range), the overlapping zone be-
tween every couple of APs is set to 5 meters. To ease the measurement process at
different device speeds, we adopted emulated RSSI readings by exploiting RSSI
reference traces. The reference traces have been obtained by measuring actual
RSSI values while the MD was moving around the testbed with a 1 m/s speed.
The resulting traces are shown in figure 4. The emulated reading takes place by
reading the RSSI value from the registered trace, rather than from the channel.
To emulate different speeds, the reading from the traces is performed with differ-
ent sampling periods. The sampling period is inversely proportional to the device
speed. To exemplify, the double the sampling period, the half the emulated speed.

416 M. Cinque and S. Russo

Table 1. LSSH and Octopus decision latency

0.0000120.000137Octopus

4.0569805.279387LSSH

decision latency
std. dev. (s)

decision latency
average (s)

Handoff
scheme

0.0000120.000137Octopus

4.0569805.279387LSSH

decision latency
std. dev. (s)

decision latency
average (s)

Handoff
scheme

0%

20%

40%

60%

80%

100%

0,5 2,0 3,5 5,0 6,5 8,0 9,5

device speed (m/s)

%
of

lo
ca

ti
on

er
ro

rs

LSSH

Octopus

Fig. 5. LSSH and Octopus location accuracy as a function of the device speed

4.2 Results

Table 1 reports the decision latency we obtained with both LSSH and Octopus,
with a 1 m/s speed. Due to its anticipated decision strategy, Octopus practi-
cally eliminates the decision latency. In particular, Octopus leads to a 99.99%
improvement for the decision latency, which only accounts for the time spent
by the manager thread to stop all worker threads and to return the last best
neighbor estimate. In addition, as confirmed by the standard deviation latency
estimates, the Octopus decision latency is by far more predictable than the LSSH
decision latency. It is worth mentioning that the high decision latency value ob-
tained for LSSH is particularly influenced by the Bluetooth technology, which
involves relatively long connection set-up times.

As for the location accuracy, figure 5 shows the percentage of location errors
as a function of the device speed. As expected, the percentage of location errors
increases with the device speed. However, the figure clearly shows how Octopus
outperforms LSSH by exhibiting a better robustness with respect to device fast
movements. Specifically, Octopus starts to exhibit errors (about 30% errors on
the total number of location estimates) when the MD speed approaches 4 m/s
(e.g., the average speed of a running human being). On the other hand, LSSH
starts to deliver wrong estimates even for relatively slow speeds, around 2 m/s.
This is basically due to the long decision latency. For relatively high speeds, e.g.
from 6 m/s to 10 m/s, Octopus roughly exhibits half the errors of LSSH.

As a last result, table 2 shows the Octopus decision latency as a function of
the speed. From a certain speed on (e.g. 5 m/s), the decision latency starts to
assume higher values. Fast movements may indeed induce the Octopus decision
to fail: for instance, the Octopus fails to establish all the needed connections

Supporting Mobile Ubiquitous Applications 417

Table 2. Octopus decision latency as a function of the device speed

0.1

0.13333

0.2

0.4

1

2

Sampling
period (s)

1,3839859,8596465510

0,62685810,061330547,5

0,3657079,955675515

0,00014417,945656332,5

0,00013743,633162141

0,00014485,41520070,5

DecisionInitiation

Average latency (s)No. of
connections

Speed
(m/s)

0.1

0.13333

0.2

0.4

1

2

Sampling
period (s)

1,3839859,8596465510

0,62685810,061330547,5

0,3657079,955675515

0,00014417,945656332,5

0,00013743,633162141

0,00014485,41520070,5

DecisionInitiation

Average latency (s)No. of
connections

Speed
(m/s)

on time. In these cases, the basic LSSH back-up scheme is adopted, leading to
longer decision latencies. However, it is worth noting that performances are good
for human walking/running speeds, that is, from 1 m/s up to 4 m/s. This means
that the Octopus scheme can be successfully adopted in all those scenarios where
the ubiquitous infrastructure “moves” at a human speed, e.g., wearable and
portable devices embedded into human activities. However, it is worth recalling
that the actual measures are relative to a Bluetooth-based scenario, where the
results are partially influenced by long connection set-up times. Hence, the actual
numbers (and the speed at which Octopus can successfully operate) depends on
the adopted wireless technology. Besides actual numbers, we can reasonably
claim that the improvement introduced with Octopus is valid in general terms.

5 Conclusions

This paper presented the driving ideas behind Octopus, a novel mobility pre-
diction and soft handoff support for mobile ubiquitous applications. The novel
scheme builds upon a previously proposed scheme, namely LSSH, and improves
it by eliminating the need for time-consuming decision periods. This result has
been made possible by the integration of mobility prediction, which also leads
to the improvement of the locationing accuracy. Such improvements have been
quantitatively demonstrated by means of experimental results on a real-world
prototype.

Future efforts will concern a thorough evaluation of the Octopus scheme for
other widely adopted wireless technologies, such as Wi-FI and ZigBee.

Acknowledgments

This work has been partially supported by the Italian Ministry for Education,
University, and Research (MIUR) in the framework of the PRIN project “COM-
MUTA : Mutant hardware/software components for dynamically reconfigurable
distributed systems”, and in the framework of the “COSMIC” project “Centro
di ricerca sui sistemi Open Source per le applicazioni ed i Servizi MIssion Crit-
ical”. Authors are grateful to Gabriele Piantadosi and Daniele Zagordi for the

418 M. Cinque and S. Russo

precious help they profused in the implementation of the Octopus prototype and
related experimental results.

References

1. Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century. In:
IEEE Computer, pp. 25–31. IEEE Computer Society Press, Los Alamitos (2003)

2. Cinque, M., Cotroneo, D., Russo, S.: Achieving All the Time, Everywhere Access
in Next-Generation Mobile Networks. ACM-SIGMOBILE Mobile Computing and
Communication Review (MC2R) 9(2), 29–39 (2005)

3. Cinque, M., Cotroneo, D., Russo, S.: Mobility Management and Communication
Support for Nomadic Applications. In: Meersman, R., Tari, Z. (eds.) On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Con-
federated International Conferences, Lecture Notes in Computer Science. LNCS,
vol. 3760, pp. 882–900. Springer, Heidelberg (2005)

4. Baatz, S., Frank, M., Gopffarth, R., Kassatkine, D., Martini, P., Scheteilg, M.,
Vilavaara, A.: Handoff support for mobility with IP over Bluetooth. In: Proc. of
the 25th Annual IEEE Conf. on Local Computer Networks (LCN 2000) (2000)

5. Tourrilhes, J., Carter, C.: P-handoff: A protocol for fine grained peer-to-peer ver-
tical handoff. In: Proc. on the 13th IEEE Int. Symposium on Personal, Indoor and
Mobile Radio Communcations (PIMRC ’02) (2002)

6. George, M.L., Kallidukil, L.J., Chung, J.M.: Bluetooth handover control for roam-
ing system applications. In: Proc. of the 45th Midwest Symposium on Circuits and
Systems. MWSCAS-2002 (2002)

7. Bianchi, G., Blefari-Melazzi, N., Holzbock, M., Hu, Y.F, Jahn, A., Ray, E, Sher-
iff, R.E.: Design and validation of QoS aware mobile internet access procedures
for heterogeneous networks. Mobile Networks and Applications, Special Issues on
Mobility of Systems, Users, Data and Computing 8(1), 11–25 (2003)

8. Bellavista, P., Corradi, A., Giannelli, C.: Mobility Prediction for Mobile Agent-
based Service Continuity in the Wireless Internet. In: Karmouch, A., Korba, L.,
Madeira, E.R.M. (eds.) MATA 2004. LNCS, vol. 3284, Springer, Heidelberg (2004)

9. Chung, S.-H., Yoon, H., Cho, J.-W.: A Fast Handoff Scheme For IP over Bluetooth.
In: Proc. of 2002 Int. Conf. on Parallel Processing Workshops (ICPPW’02) (2002)

10. Saha, D., et al.: Mobility support in IP: a survey of related protocols. IEEE Net-
work, 9(6) (2004)

11. Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., Grandoni, F.: Threshold-
based mechanisms to discriminate transient from intermittent faults. IEEE Tran-
sanction on Computers 49(3), 230–245 (2000)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 419–428, 2007.
© IFIP International Federation for Information Processing 2007

Event-Driven Power Management for Wireless Sensor
Networks*

Sang Hoon Lee1, Byong-Ha Cho1, Lynn Choi1, and Sun-Joong Kim2

1 School of Electrical Engineering
Korea University, Anam-Dong, Sungbuk-Ku, Seoul, Korea

{smile, sntblue, lchoi}@korea.ac.kr
2 RFID/USN Research Group, Telematics•USN Research Division

ETRI, Daejeon, Korea
kimsj@etri.re.kr

Abstract. In this paper we propose event-driven power management techniques
for wireless sensor networks. To accomplish this we model a sensor network
application as a set of application-specific events that the application may con-
tain. Events are first classified into scheduled and non-scheduled events. These
events are further classified according to the size and the locality of the data,
and the real-time characteristics of the event. For scheduled events we propose
schedule-driven power control and global coordination. For non-scheduled
events we propose source-driven and sink-driven power control for both lower
energy consumption and higher performance. Experimentation results confirm
that the event driven power management can substantially save energy com-
pared to existing low energy sensor network protocols while it can meet the per-
formance required by the application.

1 Introduction

Energy efficiency has been one of the key issues in implementing wireless sensor
networks. Although a wide variety of sensor network protocols have been pro-
posed [4, 5, 7, 10], the existing low-energy protocols are protocol-specific in a
sense that they do not collaborate with the power management functions of upper
or lower layers, limiting their scope. For example, when a source node reports an
event to a sink, not only the nodes on the communication path but also all the
other idle nodes repeatedly wake up unnecessarily. Furthermore, the busy nodes
on the communication path still employ the periodic wake up and sleep during the
event processing, which would substantially degrade the network performance.
This can be attributed to the fact that each node decides its power management
action without knowing its context, i.e. the state of the application or the charac-
teristics of the on-going event.

In this paper, we investigate ways of exploiting the application-level information to
further improve the energy efficiency of networking protocols. To accomplish this,

* This work was supported by the research commissioned by the Electronics and Telecommuni-

cations Research Institute.

420 S.H. Lee et al.

we characterize the sensor network events by using the following classification pa-
rameters: the event timing, the size and the locality of the report data, and the real-
time characteristics of the event. A sensor network application is then modeled as a
set of application-specific events that the application may contain.

Sensor network events are largely classified into scheduled and non-scheduled
events. For scheduled events we propose schedule-driven power control and global
coordination. For non-scheduled events we propose source-driven and sink-driven
power control. With these event-driven power management (EPM) techniques, all the
nodes on the communication path fully wake up during the event processing while all
the non-participating nodes may not need to wakeup at all. This is controlled by each
event source, i.e. a source node in the case of source-driven event, a sink node in the
case of sink-driven event, and a report timer in the case of a scheduled event. The full
duty-cycle operation during the event processing can not only reduce the message
delay but also can reduce the time spent on idle listening by increasing the interval of
the periodic wakeup during an idle state. Our detailed simulation results show that the
energy savings achieved by EPM range from 29% to 94% depending on the applica-
tion scenarios. Furthermore, EPM can also reduce the average message delay by up to
98% by employing the full duty-cycle operation on demand.

2 Application Model

2.1 Event Classification

In this work we define an event as an incident where a report needs to be sent to
the sink. An event may occur due to a sensing activity by a sensor node, a query
generated by a sink, or a local report timer at a sensor node since all of these ac-
tivities may generate a report to the sink. Thus, an event is always associated with
the generation of a report. However, a sensing activity can be performed regardless
of the report. In this sense a sensing is regarded as a means to recognize an event.

We can classify events based on the following parameters: the timing of the event,
the data characteristics of the report, and the real-time characteristics of the event.
When an event is scheduled at a specific time, the event is called a scheduled event.
Scheduled events are further classified into periodic and non-periodic events. Periodic
events generate reports at every constant interval, such as hourly, daily, weekly, or
monthly. Non-periodic events occur at predetermined times but not periodically.
When an event occurs non-deterministically, the event is called a non-scheduled
event. Non-scheduled events are classified into source-driven and sink-driven events.
Source-driven events are asynchronous events that are triggered by a sensing activity
at a sensor node, i.e. a source. Sink-driven events are triggered by a query sent by a
sink and is considered as another type of non-scheduled asynchronous events.

Events can be further classified according to the size and the redundancy character-
istics of the data that are reported. Depending on the size of the data events can be
classified into single data events and burst data events. A single data event requires a
report of a small data item such as the temperature or humidity, leading to the genera-
tion of a few data packets. On the contrary, a burst data event requires a report of a
large data such as images or videos, leading to the generation of a packet stream. The

 Event-Driven Power Management for Wireless Sensor Networks 421

redundancy characteristics of the data are closely related with the locality characteris-
tics of the event. When an event can be detected by multiple sensor nodes nearby, the
event is classified as a spatial locality event. For this type of event, only a single
source needs to report the event. If a node detects multiple consecutive events but
there exist a significant redundancy among the data reports, the events can be classi-
fied as a temporal locality event. In this case the node can summarize or aggregate the
data before sending out a report. This locality characteristic of an event determines
the type of aggregation that can be performed for the event.

The real-time characteristic of an event is related with the latency tolerance charac-
teristics of an application for the event. The events with hard or soft deadlines are
classified as a real-time event since the deadline must be met by the network. Events
that can tolerate a considerable latency are classified as a non-real time event.

Table 1. Event classification factors

Sink-driven non-scheduled event NSSink Non-scheduled
event Source-driven non-scheduled event NSSource

Periodic event SPeriodic

Event class

Scheduled event
Non-periodic event SNon-periodic
Single data DSingle Data size
Burst data DBurst
Spatial locality DRSpatial
Temporal locality DRTemporal
Spatial & temporal locality DRLocality

Data characteristic

Data redundancy

No locality DRNo-locality
Real time LReal Latency tolerance
Non-real time LNon-real

2.2 Application Model

Table 1 shows our event classification parameters and their corresponding notations.
Using the notation an event can be classified as a tuple, {event type, data size, data
redundancy, latency tolerance}. Table 2 classifies the major event types of several
well-known sensor network applications according to our classification parameters.
For example, the most common event of volcanic monitoring application is classified
as a source-driven, non-scheduled, single-data, real time event since the volcanic
alarm must be reported within a limited delay. However, this application may have a
periodic report of regional temperature and its image on an hourly basis, suggesting
that it may include a periodic scheduled, burst-data, non-real time event. Thus, a sen-
sor network application in general can be viewed as a set of different event classes
rather than a single event class.

2.3 Application State

An application state can be specified by the type of event that the application is cur-
rently processing. Figure 1 shows the state transition diagram of a general sensor
network application that has all three different event classes, i.e. scheduled event,

422 S.H. Lee et al.

Table 2. Event classification of several well-known sensor network applications

Applications Event class
Great Duck Island Project [6] { SPeriodic, DSingle, DRTemporal, LNon-real }
James Reserve Extensible Sensing
System [3]

Climate: { SPeriodic, DSingle, DRTemporal, LNon-real }
Wildlife: { SNon-periodic, DSingle, DRSpatial, LNon-real }

Volcanic monitoring [8] { NSSource, DSingle, DRNo-locality, LReal }
CORIE [2] { SPeriodic, DSingle, DRTemporal, LNon-real }
FabApp [5] { SPeriodic, DSingle, DRNo-locality, LNon-real }
CodeBlue [1] Monitoring: { SPeriodic, DSingle, DRNo-locality, LReal }

Alert: { NSSource, DSingle, DRNo-locality, LReal }
Traffic pulse technology [9] { SPeriodic, DSingle, DRTemporal, LReal }

source-driven event, and sink-driven event. On a deployment, the application starts
from the initial state. In the initial state the self-organizing nature of the network re-
quires all the network setup functions to be completed such as the routing path setup
and the global time synchronization. After the setup process is complete, the applica-
tion goes to the idle state and is ready to process any event. During this idle state, a
node may need to wake up to detect a non-scheduled event. As discussed, the sensing
activity is not regarded as an event and is processed locally by each node. Depending
on the event source, i.e. the report timer, query, or an asynchronous event triggered by
a sensing activity, the application goes to the corresponding state that handles the
particular event class. Sometimes, another event may occur during the processing of
an event. We assume that each event is processed in order. Thus, after the first event
is completed, the application goes back to the idle state, and immediately makes a
transition to process the second event.

Fig. 1. Event-driven state transition diagram of an application

3 Event-Driven Power Management Techniques

3.1 Application-Specific Protocol Customization

The parameters of a networking protocol must be customized according to the per-
formance requirements of a target application during the network design stage. We
call this process protocol customization. The application characteristics that can influ-

 Event-Driven Power Management for Wireless Sensor Networks 423

ence the protocol customization include the size of the network field, the maximum
tolerable latency for each event class, and the size of data types. In addition, the net-
work designer must consider the physical characteristics of the sensor node.

3.2 Event-Driven Dynamic Power Management

3.2.1 Scheduled Events
For a scheduled event, a node needs to wake up only during the scheduled report
period. Thus, the usual periodic wakeup and sleep employed by an existing MAC
protocol can be completely eliminated if there are no other event classes in the appli-
cation. The wakeup and sleep of a node can be controlled precisely by the report timer
since the report schedule is prescheduled. This is called the schedule-driven power
control. Both periodic and non-periodic events can be handled by the same technique.
To meet the delay requirement of the event, the wakeup time must account for the
worst-case communication delay, which can be computed by using the protocol cus-
tomization procedure described in Section 4.2. A node must wake up if it is on the
communication path from a source to a sink. If a single node is generating a report, all
the nodes in the path from the source to the sink must wake up. All the non-
participating nodes may not need to wake up at all. Thus, the idle listening can be
completely eliminated if a node is not participating. This is called a single-source
event. If multiple nodes are generating reports, the event is called a multiple-source
event. In this case the worst-case communication delay must consider the delay due to
the contention. If all the nodes in the network are generating reports, the scheduled
event is called a global event.

In the case of a global event, all the nodes may start transmitting the report mes-
sages simultaneously. This is called parallel transmission. Although this might reduce
the message delivery latency for each node, this may cause a significant delay in the
MAC layer due to the contention caused by simultaneous transmissions. An alterna-
tive approach is that each node waits until it combines the messages from all of its
descendants in the routing tree. If the event has a spatial locality, an aggregation can
also be applied and the size of the report message can be further reduced. This is
called global coordination. This technique reduces the number of transmissions by
reordering the transmissions in the sensor field.

3.2.2 Source-Driven Non-scheduled Events
A node cannot predict the timing of a source-driven non-scheduled event. In addition,
a node may not determine how many sources are participating in such an event. Thus,
neither the global coordination nor the schedule-driven power control can be applied.
Instead, a node must periodically wake up to check if such an event has occurred.

For the source-driven events, we can apply the source-driven power control. In this
scheme, a source detecting an event can notify the occurrence of the event to all the
nodes in the routing path from the source to the sink by sending a wakeup signal to
the sink. After receiving the signal, a node must fully wake up to process the message.
This full wakeup not only reduces the message delivery latency but also can increase
the cycle time of the periodic wakeup and sleep during an idle state. If the event has a
spatial locality, multiple sources can report the same event. Thus, a node must wake
up as long as there is an active wakeup signal from any of its descendants. After the

424 S.H. Lee et al.

report is complete, then each source can send a sleep signal to request the nodes on
the routing path to go back to an idle state. The RTS packet [10] can be used as a
wakeup signal since the destination address field of the packet can be used to desig-
nate the recipient to wake up. In addition, the fragment flag of the normal data packet
header can be used as a sleep signal since a source node can indicate if the current
packet is the last data packet of a message by setting this flag.

3.2.3 Non-scheduled Sink-Driven Events
A sink node may generate a sink-driven event by sending a query. Like a source-
driven event, a sensor node must check the occurrence of a sink-driven event by em-
ploying a periodic wakeup since it cannot predict the timing of such an event.

For the sink-driven events, we can apply the sink-driven power control. In this
scheme, the sink node sending a query can notify the occurrence of the event to the
sensor field. Thus, the query itself is considered as a wakeup signal and all the nodes
receiving the query must wake up to process the query message. The sink sends a
sleep signal after it receives all the report messages, signaling the completion of the
query processing. Thus, a separate power down message is needed to implement the
sink-driven power control.

4 Experimentation and Results

To evaluate both the energy efficiency and the network performance of EPM, we
have implemented all the proposed EPM techniques in the NS-2 simulator frame-
work. As a baseline routing protocol, we used the virtual sink rotation (VSR) routing
[4] which is able to support multiple mobile sinks using the tree-based routing topol-
ogy. Such a tree-based routing protocol is used since the global coordination assumes
a tree-based topology. In addition, we use S-MAC [10] as an underlying MAC proto-
col, which assumes a periodic wakeup. We have implemented the schedule-driven,
source-driven, and sink-driven power control to the underlying S-MAC protocol.

We use two metrics: average dissipated energy and average message delay. The
average dissipated energy measures the ratio of total dissipated energy per node in the
network to the number of distinct events seen by sinks. This metric computes the
average work done by a node in delivering useful sensor data to the sinks. The aver-
age message delay measures the average latency observed from the time when an
event is detected to the time when the last packet has arrived at the sink.

4.1 Benchmarks and Network Configurations

We use seven application scenarios as benchmarks as shown in Table 3. Applications
1 through 4 are a single event class application. Application 1 consists of a scheduled,
non-real time, single data event class with spatial locality and simulates a climate
monitoring system. Application 2 has the same event class as the application 1 but
without locality. Application 3 consists of a non-scheduled, source-driven, hard real
time, burst data event class and simulates an intrusion detection system with a camera.
Application 4 is an example of a non-scheduled sink-driven, soft real time, burst data

 Event-Driven Power Management for Wireless Sensor Networks 425

event class. This application can be viewed as a wildlife animal tracking system.
Applications 5, 6, and 7 are various combinations of these single-event classes.

Table 3 also shows the characteristics of the network configurations used for the
simulation. A 100-node sensor field is generated by placing the nodes in a 10x10 grid.
A sink node is located at the center of the field. The size of a MAC packet is 200
bytes. A sensor node spends 33mW, 15mW, and 0mW at transmit, receive/idle,
and sleep mode respectively. This is consistent with previous studies [10].

Table 3. Benchmarks and network configurations used for the simulation

App. 1

(scheduled)
App. 2

(scheduled)
App. 3

(source-driven)
App. 4

(sink-driven)
App. 5 App. 6 App. 7

Report period 1 hour -
Data size 32B 64KB

Aggregation no yes no no
latency tolerance 1 hour 10 minutes 30 minutes

App. 1+
App. 3

App. 2 +
App. 4

App. 2 +
App. 3 +
App. 4

Network Top. 10 * 10 grid

Num. of nodes 101 nodes (100 sensor nodes + 1 sink node)
MAC packet size 200 bytes
Routing protocol VSR

MAC protocol S-MAC
Power Cons. Tx: 31mW, Rx/Wakeup: 15mW, Idle: 0mW

4.2 Protocol Customization

At the network design stage, the network designer must determine the sleep and
wakeup schedule of each node which can guarantee the maximum tolerable latency.
For a MAC protocol employing a periodic wakeup and sleep, such as S-MAC, the
sleep and wakeup schedule can be expressed by the node’s cycle time (t). A cycle is
defined as the periodic interval, which consists of an active period and a sleep period
[7]. The cycle time t should be long enough to accommodate a single data packet
transaction, i.e. the sequence of SYNC, RTS, CTS, DATA and ACK packets. This is
called the minimum cycle time (tmin), which can be calculated from the size of each
packet, the contention window size for each packet, the transmission delay, and the
RF transmission parameters of a given node. To derive the maximum cycle time per-
mitted by the application, the longest path length in the network (N), the maximum
tolerable latency for each event class (L), and the size of a message (S) need to be
considered. Assuming that there is no other traffic, the latency of a single packet over
N hops [10] under both S-MAC and EPM can be given by

single-packet message delay under S-MAC / EPM = N*t (1)

If multiple packets are transmitted consecutively on the same path, each packet
needs to be separated at least 3 hops apart to avoid collision [10]. All the packets
except the first one suffer from this additional delay for a multi-packet message. The
delay of a multi-packet message assuming zero traffic can be given by

multi-packet message delay under S-MAC = N*t + 3(S-1)*t (2)

426 S.H. Lee et al.

While the multi-packet message delay of S-MAC can be expressed by (2), the mes-
sage delay of EPM is lower, because a node works at the full duty-cycle after receiv-
ing the first packet. The multi-packet message delay of EPM can be given by

multi-packet message delay under EPM = N*t + 3(S-1)*tmin (3)

Since the message delay must be smaller than L, the cycle time t can be derived
from the equations (1) through (3). Table 4 shows the derived cycle times and the
corresponding duty-cycles for our benchmarks under S-MAC and EPM. For applica-
tions 5, 6, or 7, the cycle time must be determined by the event class which requires
the lowest latency. Note that the cycle time is not applicable to EPM for scheduled
events since it does not employ the period wakeup and sleep for such events. How-
ever, due to the distributed clock synchronization required by S-MAC, each node
wakes up at least every 30 seconds even under EPM.

Table 4. The cycle times and the duty cycles of S-MAC and EPM derived for our benchmarks

 App. 1 App. 2 App. 3 App. 4 App. 5 App. 6 App. 7
S-MAC 15s(1%) 15s(1%) 0.6s(25%) 1.8s (8%) 0.6s(25%) 1.8s(8%) 0.6s(25%)

EPM N.A. N.A. 48s(0.3%) 288s(0.05%) 48s(0.3%) 288s(0.05%) 48s(0.3%)

4.3 Simulation Results

Figure 2 shows the average dissipated energy and the average message delay for each
event class in our benchmarks. For the scheduled events, EPM eliminates unnecessary
wakeup during an idle state, reducing the energy consumption by up to 39% com-
pared to S-MAC. Note that the global coordination is only effective for application 2
but the additional energy savings are relatively small. The average message delay of
EPM is substantially smaller than that of S-MAC since each node can act with full
performance during the event processing. For the source-driven event, the much
higher duty cycle (25%) required by the S-MAC substantially increases the idle lis-
tening compared to EPM, which has a duty cycle of only 0.3%. As a result, an idle
node with S-MAC requires 36.5 times more energy and a busy node with S-MAC
requires 2.4 times more energy compared to EPM in this simulation. The average
message delay of EPM is smaller than the maximum tolerable latency since the clock
synchronization requires each node to wake up more frequently than that required for
the tolerable latency. Like the source-driven power control, the sink-driven power
control increases the network performance and reduces the energy consumption for
the sink-driven event. EPM can eliminate 92% of the idle listening energy in S-MAC.

Figure 3 shows the case for multiple-event class applications. In the figure we only
show the result of EPM assuming global coordination. As show in Figure 3(a) EPM
can successfully eliminate up to 94% of the per-node dissipated energy compared to
S-MAC. Since the event class with the minimum tolerable latency determines the
cycle time of a node, usually a non-scheduled real-time event plays a dominant role in
determining both the dissipated energy and the message delay of an application.

 Event-Driven Power Management for Wireless Sensor Networks 427

 (a) (b) (c)

Fig. 2. Average energy consumption and average message delay (a) for a scheduled event, (b)
for a non-scheduled source-driven event, and (c) for a non-scheduled sink-driven event

(a) (b)

Fig. 3. (a) The average energy consumption for applications with multiple event classes. (b)
The average message delay for applications with multiple event classes.

Figure 3 (b), (c), and (d) compares the average message delay of both S-MAC and
EPM for a scheduled, source-driven, and sink-driven events respectively. Scheduled
events have lower delay compared to single-event cases since the protocol is custom-
ized to meet the lowest latency required by the non-scheduled events.

5 Conclusion

In this paper we explore ways of exploiting the application state information at
runtime to efficiently manage the energy and the performance of the networking
protocols. To accomplish this we model a sensor network application as a set of ap-
plication-specific events and propose various event-driven power management
(EPM) techniques. EPM dynamically controls the operating mode of the

428 S.H. Lee et al.

protocols depending on the event currently processed. Our detailed simulation
results show that EPM can substantially reduce the energy consumption of a node by
successfully removing unnecessary wakeups during an idle state while it also reduces
the message delay by employing a full duty-cycle operation during a busy state.

References

1. CodeBlue: http://www.eecs.harvard.edu/~mdw/proj/codeblue/
2. CORIE: http://www.ccalmr.ogi.edu/CORIE/
3. James Reserve Extensible Sensing System: http://www.jamesreserve.edu/
4. Choi, L., Choi, K., Kim, J., Park, B.J.: Virtual Sink Rotation: Low-Energy Scalable Rout-

ing Protocol for Ubiquitous Sensor Networks. In: Proceedings of the USN, pp. 1128–1137
(2005)

5. Ramanathan, N., Yarvis, M., Chhabra, J., Kushalnagar, N., Krishnamurthy, L., Estrin, D.:
A Stream-Oriented Power Management Protocol for Low Duty Cycle Sensor Network
Applications. In: Proceedings of the EmNets, pp. 53–62 (2005)

6. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large
scale habitat monitoring application. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pp. 214–226 (2004)

7. Lee, S.H., Park, J.H., Choi, L.: Traffic-adaptive Sensor Network MAC Protocol through
Variable Duty-Cycle Operations. In: The IEEE International Conference on Communica-
tions (to appear, 2007)

8. Sensor network for volcanic monitoring: http://www.eecs.harvard.edu/~mdw/proj/volcano
9. Traffic pulse technology: http://mobilitytechnologies.com/index.html

10. Ye, W., Heidemann, J., Estrin, D.: Medium Access Control with Coordinated Adaptive
Sleeping for Wireless Sensor Networks. In: IEEE Transactions on Networking (2004)

Time Synchronization in Wireless Sensor

Network Applications

Y.S. Hong and J.H. No

Department of Computer Engineering, Dongguk University, Seoul, Korea
{hongys, jhno}@dgu.ac.kr

Abstract. In most sensor network applications, events are time stamped
with node’s local time. However, energy is highly constrained resource
in sensor networks. The purpose of this paper is to present a time-
synchronization algorithm for sensor networks that aims at reducing the
computation and communication energy expended by the algorithm. We
use MAC-layer time stamping and estimate the clock drift rate and the
offset in order to obtain high precision performance. Our algorithm works
in two steps. In the first step, a spanning tree is built in the sensor net-
work. In the second step, all nodes in the network synchronize their clocks
to their parent nodes. We analyze and implement our time synchroniza-
tion algorithm on Berkeley MicaZ platform and show that it can synchro-
nize a pair of neighboring motes to an average accuracy of around one mi-
crosecond with communication complexity of O(log n).

Keywords: time synchronization, sensor network, wireless communica-
tion.

1 Introduction

Applications such as environmental monitoring deploys a sensing network con-
sisting of a large number of sensor nodes with limited energy resource. These
sensor nodes need to maintain local clocks in order to time-stamp events. Due
to the severe resource constraints in sensor nodes, the traditional time synchro-
nization algorithms for distributed systems should be reevaluated for the sensor
network. Register clocks used in wireless sensor networks, even initially synchro-
nized with a standard clock, gradually deviate from each other over a period
of time. Due to the unavoidable deviation of local clocks, network-wide time
synchronization can be achieved by synchronizing clocks.

This paper proposes a time synchronization algorithm for the wireless sensor
network. This approach is based on the accumulated time information in order to
estimate the clock drift rate and the clock offset of sensor nodes. Our algorithm
works in two steps. In the first step, a hierachical structure is built in the sensor
network. Finally, all nodes in the network synchronize their clocks to their parent
nodes.

This paper is organized as follows: Section 2 briefly describes existing time
synchronization algorithms. In Section 3, we present the proposed time synchro-
nization algorithm in detail and analyze the proposed algorithm. In Section 4, we

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 429–435, 2007.
c© IFIP International Federation for Information Processing 2007

430 Y.S. Hong and J.H. No

describe implementation and results from the experiment. The paper concludes
in Section 5.

2 Approaches to Time Synchronization Schemes

Clock synchronization algorithms have been extensively studied in the past to
ensure that the deviation between clocks remains bounded. Most clock syn-
chronization algorithms try to guarantee on the maximum clock deviation by
deterministic algorithms. Probabilistic clock synchronization algorithm is based
on a remote clock reading to read the clock at a remote node with a minimum
error [2]. Another probabilistic approach used the time transmission protocol
to estimate the time at a remote node. In the time transmission protocol, a
sequence of clock synchronization messages containing the transmitting node’s
time-stamp are sent to the target node [1]. The target node estimates the time on
the transmitting node’s clock based on the time-stamps on the synchronization
messages and the message delay statistics. An approach to synchronize clocks
via OS- or middleware architecture mechanism tried to reduce the scheduling
delay [10]. The Network Time Protocol have been widely used to synchronize
clocks in the internet domain.

In wireless sensor networks, however, nondeterminism in transmission time
caused by the Media Access Control(MAC) layer of radio stack can introduce
unexpected delay at each hop. In the Reference Broadcast Synchronization(RBS)
algorithm [5], a reference message is broadcasted. The receiver nodes record their
local time and exchange the recorded time between neighboring nodes. In this
approach, additional message is necessary to communicate the local time-stamp
between nodes. The Timing-sync Protocol(TPSN) [6] first creates a hierachical
structure in the network and then performs pair-wise synchronization between
parent and children nodes. Each node synchronize its local time to its reference
node by exchanging two synchronization messages with its parent node. The
Flooding Time Synchronization Protocol(FTSP) [12] synchronizes the time of a
sender by exchanging a single time-stamp message between the sender and the
receivers. Ideas from these protocols were used and enhanced in the proposed
time synchronization protocol.

3 Time Synchronization Using the Accumulated Time
Information

Our algorithm works in two steps. The first step of the algorithm is to create a
spanning tree in the sensor network by broadcasting a make-tree packet starting
from a root node. After a spanning tree is created, the root node initiates the
synchronization stage by broadcasting a sync packet.

Our algorithm makes the following assumptions.

(a) There are n sensor nodes in the network and each sensor node has a unique
identifier.

Time Synchronization in Wireless Sensor Network Applications 431

(b) Each sensor node maintains a 16-bit register as a clock that is triggered
by a crystal oscillator.

(c) The clock drift rate between two physical clocks is bounded.
(d) Delays of successive synchronization message are independent of each

other.

The time synchronization messages are periodically broadcasted by the sensor
nodes at the same level in the tree structure.

T2i-1

RPi+1

T2i

RPi

T2i+1

Node A Node B

t2i-1

t2i

t2i+1

Di

di

Fig. 1. Message exchange for time synchronization

Figure 1 shows the message exchange between node ‘A’ and node ‘B’ for time
synchronization. Here, T2i−1, T2i and T2i+1 represent the time measured by local
clock of node ‘A’. t2i−1, t2i and t2i+1 represent the time measured by local clock
of node ‘B’ . At time T2i−1, ‘A’ sends a sync packet to ‘B’ . Node ‘B’ receives
the packet at t2i−1. At time t2i, ‘B’ sends back an acknowledgement packet to
‘A’. Node ‘A’ receives the packet at T2i. These time variables satisfy following
equations:

T2i−1 + p = at2i−1 + b

T2i = at2i + b + p
(1)

Here p, a, and b denote the propagation delay, the clock drift rate and the
clock offset between the nodes respectively. Node ‘B’ can calculate the clock drift
rate, the clock offset and the accumulated time information Mi as:

Mi = (T2i+1 − T2i−1) − (t2i+1 − t2i−1) (2)

≈ (Di + di) ·
∑i

k=1(Dk + dk)∑i
k=1(Dk − dk)

(3)

a =
T2i+1 − T2i−1

T2i+1 − T2i−1 − Mi
(4)

432 Y.S. Hong and J.H. No

b =
(T2i+1 + T2i−1) − a(t2i+1 − t2i−1)

2
(5)

Knowing the clock drift rate and the clock offset, node ‘B’ can synchronize to
node ‘A’. The proposed protocol reduces the jitter of interrupt handling by main-
taining the accumulated time information Mi in each node.

The message exchange for the time synchronization at the sensor network
begins with the root node of level 0. The time synchronization starts by broad-
casting a sync packet. The sync packet contains 5 fields: the refTimeStamp, the
sendID, the childID, the levelID, and the driftRate. The refTimeStamp contains
the reference time for synchronization. The sendID and the childID contain the
ID of the sender and one of children nodes, respectively. The levelID contains
the level of the sender in the network. The driftRate is the estimated value of
the clock drift.

On receiving this sync packet, children nodes calculate the clock drift rate and
the clock offset and adjust their clock to the parent node. The children nodes
broadcast sync packets to the grand children node and the parent node will
overhear the sync packet. The parent node calculates a reference time-stamp by
utilizing the packet as an acknowledgement packet from the child node.

This process is carried out throughout the network and we can achieve the
network-wide time synchronization. Algorithm 1 describes the proposed time
synchronization algorithm.

Algorithm 1. Time synchronization

Step 1. Create a spanning tree.

Assign level number to each sensor node by

broadcasting a make-tree packet

Step 2. Synchronize to the parent node

The root node initiates time synchronization

by broadcasting a sync packet

Repeat

On receiving the sync packet, children

nodes at the same level calculate

the clock drift rate and the clock offset

and broadcast a sync packet

until all sensor nodes are synchronized.

Let us analyze the communication complexity of the Algorithm 1. Step 1 takes
O(log n) message exchanges. Step 2 also takes O(log n) message exchanges.
Hence, The communication complexity of Algorithm 1 will become O(log n).

Time Synchronization in Wireless Sensor Network Applications 433

Table 1 shows communication complexities for RBS, TPSN, FTSP and the pro-
posed algorithm. If the resynchronization period is T seconds, then each node
sends 1 message per T seconds in the proposed protocol. Each node sends 2 mes-
sages per T seconds in TPSN, 1.5 message per T seconds in RBS and 1 message
per T seconds in FTSP [12].

Table 1. Communication complexities

Time synchroniztion Algorithm Communication Complexity

RBS O(n2)

TPSN O(n)

FTSP O(n)

Proposed Algorithm O(logn)

Since the proposed protocol employs a single broadcast message, it does not
compensate for the propagation delay which is less than 1 microsecond for up
to 300 meters.

There may be failures in sensor nodes or links. This situation may arise,
when a level i node does not receive any sync packet from any neighbor at
level i-1. When a node does not receive new sync packet for TimeOut number
of resynchronization periods, it starts the root election process to select a new
root node. In addition, when a new node is introduced to the network, the root
election process will be needed in order to build a new spanning tree in the
network.

4 Implementation

The proposed algorithm is implemented in the platform of Berkeley motes. Fig-
ure 2 shows the system for evaluating the time synchronization scheme described
here.

The test system consists of four Berkeley MicaZ motes running Tiny OS 1.1.14.
Three motes were used for time synchronization test and one of the motes was
designated as a data collector connected to a PC running Windows XP in order
to record the measured data. One of three motes was designated as the parent
node and was responsible for broadcasting the synchronization message after ev-
ery 10 seconds. The parent node was broadcasting time-stamped synchronization
message to children nodes. The time-stamps were recorded on children nodes and
the clock drift rate and the clock offset were calculated based on the accumu-
lated time information. The synchronization error between a pair of motes is the
absolute value of the difference of the recorded time-stamp and the corrected
time-stamp.

The synchronization error from the experiment is summarized in Table 2. The
results are obtained after averaging over 100 independent runs. The average and
maximum time-stamping errors were 0.81 microsecond and 1.72 microsecond.

434 Y.S. Hong and J.H. No

Node1
(MICAz)

Node3
(MICAz)

Node2
(MICAz)

TOSBase node
(MICAz)

510CA

Time Sinchronization

Data Collection

Fig. 2. Test environment

Table 2. Synchronization error from the experiment

Synchronization error

Mean 0.81

Maximum 1.72

Variance 0.65

5 Conclusion

We have presented a time synchronization protocol for wireless sensor networks.
The protocol uses the accumulated time information in order to estimate the clock
drift rate and the offset. We have tested our protocol on the Berkely MicaZ plat-
form with four motes. The measurements indicate that the synchronization error
is in the range of one microsecond with communication complexity of O(logn).

We plan to extend our experiment to the multi-hop networks of motes.

Acknowledgments. This research was supported by the MIC(Ministry of Infor-
mation and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Informa-
tion Technology Assessment).

Time Synchronization in Wireless Sensor Network Applications 435

References

1. Arvind, K.: Probabilistic Clock Synchronization in Distributed Systems. In: IEEE
Trans. On Parallel and Distributed Systems, 5th edn, pp. 474–487 (1994)

2. Cristian, F., Fetzer, C.: Probabilistic Internal Clock Synchronization. In: Proc. of
thirteenth Symposium on Reliable Distributed Systems, pp. 22–31 (October 1994)

3. Dai, H., Han, R.: TSync: A Lightweight Bidirectional Time Synchronization Service
for Wireless Sensor Networks. Mobile Computing and Comm. Review 8, 125–139
(2004)

4. Dam, T.V., Langendoen, K.: An Adaptive Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In: The First ACM Conference on Embedded Networked
Sensor Systems (Sensys03), Los Angeles, CA, USA, pp. 171–180 (2003)

5. Elson, J.E., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization
using Reference Broadcasts. In: Proc. 5th Symp. Op. Sys. Design and Implemen-
tation, Boston, vol. 36, pp. 147–163 (2002)

6. Ganeriwal, S., Kumar, R., Srivastava, M.: Timing Sync Protocol for Sensor Net-
works. In: ACM SenSys, Los Angeles, CA, pp. 138–149 (2003)

7. Greunen, J.V., Rabaey, J.: Lightweight Time Synchronization for Sensor Networks.
In: Proc. 2nd ACM Int’l. Conf. Wireless Sensor Networks and Apps, San Diego,
CA, pp. 11–19 (2003)

8. Hong, Y.S., No, J.H.: Clock Synchronization in Wireless Distributed Embedded
Applications. In: IEEE Workshop on Software Technologies for Future Embedded
Systems, pp. 101–104. IEEE Computer Society Press, Los Alamitos (2003)

9. IEEE Computer Society. IEEE 802.15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs) (2003)

10. Kim, K.H(K.), Im, C., Athreya, P.: Realization of a Distributed OS Component for
Internal Clock Synchronization in a LAN Environment. In: Proc. of the fifth IEEE
Symposium on Object-Oriented Real-Time Distributed Computing, pp. 263–270
(2002)

11. Kopetz, H., Ochsenreiter, W.: Clock Synchronization in Distributed Real-Time
Systems. IEEE Transactions on Computers C-36(8), 933–939 (1987)

12. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization
protocol. In: Proc. 2nd international conference on Embedded networked sensor
systems, pp. 39–49 (2004)

13. Mills, D.L.: Internet time synchronization: the Network Time Protocol. IEEE
Transactions on Communications 39, 1482–1493 (1991)

14. Mock, M., Nett, E., Frings, R., Trikaliotis, S.: Clock Synchronization for Wireless
Local Area Networks. In: Proc. of the 12th Euromicro Conference on Real-Time
Systems, Stockholm, pp. 183–189 (2000)

15. Romer, K.: Time Synchronization in Ad Hoc Networks. In: ACM MobiHoc ’01,
Long Beach, CA, pp.173-182 (October2001)

16. The TinyOS Project, http://webs.cs.berkeley.edu/tos

http://webs.cs.berkeley.edu/tos

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 436–445, 2007.
© IFIP International Federation for Information Processing 2007

GENSEN: A Topology Generator for Real Wireless
Sensor Networks Deployment

Tiago Camilo, Jorge Sá Silva, André Rodrigues, and Fernando Boavida

Department of Informatics Engineering, University of Coimbra
Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

{tandre, sasilva, arod, boavida}@dei.uc.pt

Abstract. Network Simulators are important tools in network research. As the
selected topology often influences the outcome of the simulation, realistic
topologies are required to produce realistic simulation results. The topology
generator presented in this document, GenSeN, was created based on the
authors’ knowledge from several experiences. GenSeN is a tool capable of
generating realistic topologies of wireless sensor networks and, additionally,
auto-configuring important characteristics of sensor nodes, such as energy
parameters. The tool was validated by comparison with real deployment
strategies and experiences.

Keywords: Wireless Sensor Networks, Simulators, Sensor Node Deployments.

1 Introduction

Due to technology advances in telecommunications, microprocessors and monitoring,
it is now possible to design networks with special features, such as Wireless Sensor
Networks (WSNs) [1]. Such networks have specific requirements such as reduced
energy availability, low memory and reduced processing power. A WSN consists of a
number of sensors (e.g. from ~10 up to ~10000) spread across a geographical area.
Each sensor is equipped with a wireless communication system, and some level of
intelligence for signal processing and networking of the data.

Although they can be considered ad hoc networks, WSNs are in fact quite distinct
from these networks in the deployment phase. In typical ad hoc networks, devices are
mobile and their location is a random factor, since users of such equipment normally
cannot predict the place and time where the network will be stable. On the other hand,
in WSNs the deployment phase is critical and may require careful planning, due to the
singular characteristics of sensor nodes. As the authors demonstrated [2], the correct
distribution of sensor devices over the target monitoring area affects the entire WSN
deployment, from the choice of the correct sensor nodes, to the correct network
protocol, and the architecture/topology to use. When a WSN solution is designed, it is
important to define the main evaluation criteria that, in the end, will be used to
validate the obtained results. Lifetime, latency, fault-tolerance, scalability and
precision are some of the parameters used to evaluate WSN solutions.

 GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment 437

In optimal conditions, where radio interference does not exist, the terrain is plane
and no obstacles are present, the most effective deployment strategy would be the grid
strategy, where all devices are in range and evenly placed to cover the whole
monitoring area. However, due to their vast applicability, WSNs are commonly
deployed in unusual locations, where human accessibility is limited (e.g. inside a
volcano). In such environments it is necessary to place sensor nodes using different
strategies (e.g. dropping sensor nodes from a plane). Therefore, it becomes crucial to
develop the necessary tools to study such variables in a simulation environment,
before the tests in the final environment begin. In [13] the authors identified some
research issues / directions that influence the WSN MAC layer development. One of
them was the need to improve the simulation tools with better representations of the
reality (namely better radio models that account for terrain, antenna location, foliage
types, etc). This paper, based in data from [2,8], tries to address some of these
problems by developing a new WSN topology generator for Network Simulator 2
(NS-2).

The remainder of this paper is organized as follows: Section 2 presents the related
work regarding topology generators. Special focus is given to the topo_gen, which is
the only specific tool that covers WSNs. Section 3 identifies the main problems
regarding the deployment of WSN and presents six different deployment strategies. In
Section 4 the GenSeN is introduced. Special attention is given to the input and to the
output parameters of the generator. Results taken from the topology generator are
discussed in Section 5. Finally, conclusions and future work are addressed in the last
section.

2 Related Work

The development of topology generators that emulate real environment features is a
problem that attracted and still attracts the attention of the scientific community.
Nowadays there are a number of competing approaches to the construction of random
network topologies, for wired and wireless environments.

One of the most popular generators available is BRITE [3]. It is a flexible tool that
supports flat router and hierarchical topologies, allowing the configuration of several
important parameters such as bandwidth and delay.

GT-ITM [4], another topology generator, focuses on reproducing the hierarchical
structure of the topology of the Internet.

Finally, the Inet [5] is a network generator aiming to reproduce the connectivity
properties of Internet topologies, assigning node degrees from a power-law
distribution.

However, the referred approaches are specially designed to build well known
Internet network topologies, which present significant differences when compared to
WSNs.

The Topo_gen [11] is a topology generator designed by the ISI Laboratory for
Embedded Networked Sensor Experimentation, which intends to be a tool to generate
random sensor node locations. Although it was originally designed to be used in
directed diffusion experiments, it is an adaptable tool that can be easily ported to
support other protocols. Topo_gen has some configurable parameters such as map

438 T. Camilo et al.

dimensions, source and sink count. It allows the creation of topology files for NS-2
and EmSim [12]. Nonetheless, this topology generator does not take in account real
sensor network placements, since it only allows random or cluster node distribution.
Characteristics such as sensor node deployment strategies are not covered.

3 Wireless Sensor Network Deployment

WSNs differ from typical ad hoc networks by requiring a deployment phase, in
contrast with ad hoc networks, which are known to group spontaneously and move in
a random way. Sensor nodes are normally placed in special environments without
guarantee of position. This is why the deployment phase in a WSN project is
extremely important to the final experiment output. Due to its characteristics, the
WSN can be deployed in environments where the accessibility by humans is difficult,
and where ambient conditions can significantly vary.

The minimal number of sensor nodes required to monitor a specific area (A), is
provided by Equation 1, where r represents the sensing range of each sensor node [6].

27

.2
2r

A
NS

π= (1)

However, this approach considers that all nodes have the same monitoring
capabilities, which means that it cannot be applied to WSN with different types of
sensor nodes. Moreover, it does not take into account the existence of obstacles, such
as trees or walls.

As mentioned before, in order to optimize sensor node placement, sensor nodes
must be deployed as a grid, where all devices are meticulously and evenly spaced
according to their monitoring/transmitting range. Such method minimizes the number
of nodes needed to monitor a specific area, with full phenomenon coverage. However,
such scenario can only be applied when ideal radio environment characteristics are
present (i.e. no radio interference exists, the terrain is flat and there is no vegetation).
Moreover, sensor nodes deployment is often made in inhospitable locations, where it
becomes impossible to deploy a uniform distribution. In places such as the ocean bed,
it is not feasible to deploy sensor nodes in a grid arrangement. On the other hand,
applications such as monitoring a cyclone require a fast deployment phase, since this
kind of phenomenon is not predictable, and it is necessary to distribute sensor nodes
as quick as possible to maximize the coverage area, connectivity, etc.

For this reason, it is necessary to consider different deployment strategies, which
could be used in inhospitable areas or could be more suitable to different sensor
network applications. Therefore the authors suggested six different deployment
strategies in a previous piece of work [2], each one listed below:

• Grid: In this strategy it is important to create a network of sensors similar to the
one illustrated in Fig. 1, where each sensor device is evenly separated from
neighboring devices by r, which is the communication/monitoring range of each
sensor. An operator is responsible to place each sensor facing up (antenna point
up). A ribbon-metric is used so that the sensor location is determined as exactly
as possible;

 GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment 439

Fig. 1. Sensor nodes placed as a grid

• One-by-One: This strategy consists in deploying each sensor individually, but
without using metrics tools. The operator is responsible to throw each node using
only his knowledge regarding the average distance between nodes, not relying on
the node position;

• Two-by-two: The only difference between this strategy and the previous one, is
the fact that the operator, in this case, throws sensor nodes in pairs;

• Three-by-three: The technique is similar to that in the one-by-one and two-by-two
strategies, but in this case the operator drops the sensor nodes in groups of three
elements;

• Cliff: In this strategy the operator drops the nodes from a higher point, more
precisely from a 10 meters crag. Such strategy intends to simulate a WSN
experiment were the phenomenon is located far bellow the operator, or even to
simulate the deployment from inside a helicopter;

• Propellant: In this final strategy the sensors are spread in the area to monitor
through the help of a propellant. All sensors are spread at the same time. The
propellant is calibrated to send the sensors nodes to the middle of the monitored
area.

The different deployment strategies were compared using a real WSN implementation
[8]. In a 60 m2 monitoring area (6 per 10 meters), a set of Embedded Sensor Board
(ESB) sensor devices from the ScatterWeb [9] platform were used. The environment
was strategically chosen: plain, dry and with no natural or human made obstacles.
Each sensor was placed at ground level. For each strategy, the deployment time, cost
and network connectivity were analyzed. By dividing the rectangle area in 15 squares
the authors found the average node location per square, on each deployment strategy;
the results can be found in [2]. From this study it was possible to conclude that the
best results were obtained by the grid strategy, since it leads to an optimal node
distribution, (each of the 15 regions was covered by one node). Strategies such as cliff
and propellant, which have reduced deployment time, tend to concentrate the nodes in
the center of the scenario, decreasing the area covered by the sensors.

Another important difference in WSN deployment is the fact that it is not possible
to guaranty the correct node (antenna) orientation, contrary to normal ad hoc networks
behaviour. When a node is spread (e.g. by a propellant), depending on the device (the
ESB permits six different antenna orientations), it can be facing different positions:
antenna up, antenna down, etc. As presented in [2], such characteristic can be crucial
for WSNs, since a bad sensor node position can decrease the radio range by 30%.

440 T. Camilo et al.

4 GenSeN: A Generator for Sensor Networks

The need for a realistic WSN topology generator has long been recognized by sensor
network researchers. Such tool, associated to a network simulator, is the first
instrument to understand the behavior of new protocol prototypes. The existing
approaches, as described in Section 2, are not adequate to the WSN characteristics (ad
hoc network topology generators), or do not contemplate realistic node distribution
(TopoGen).

The GenSeN is a topology generator built in C++ that is specifically designed to
work with NS-2 [7]. It is based on real WSN deployments performed by the authors,
and described in Section 3. This generator has the capability to simulate the behaviour
of the presented deployment strategies: grid, one-by-one, two-by-two, three-by-three,
cliff, and propellant. It presents several input parameters which are used to
characterize each sensor node (Fig. 2).

Fig. 2. GenSeN – Topology Generator Architecture

As output, GenSeN provides a tcl format file containing the configuration of each
sensor and also its position in the monitoring area.

The following sub-chapters provide a detailed explanation on the input and output
parameters provided by GenSeN.

4.1 GenSeN Input

GenSeN provides variable input parameters, each one used in the characterization of
each sensor device. As illustrated in Fig. 2 the first parameter to be introduced is the
monitoring area dimension. Unfortunately NS-2 does not yet provide a tridimensional
scenario. For this reason only x and y parameters are used.

In the next step it is necessary to choose which will be the deployment strategy to
use in the sensor distribution. The user has the following options:

1 - Grid (You need to set the distance)
2 - Random (DEFAULT)
3 - One-by-one
4 - Two-by-two
5 - Three-by-three
6 – Propellant
7 - Cliff

 GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment 441

The user has the possibility to choose any of the deployment strategies presented in
the previous section, plus the random node distribution, which is in fact the default
option. This latter option will randomly distribute the sensors throughout the defined
monitoring area. Such option should be used in case the user does not know which
deployment strategy will be used in the final WSN implementation. In the grid
alternative the user must set the minimal distance between the nodes. Such distance
should be set to the smallest of two distances: the radio range and the sensing scope.
The node locations are determined by the probabilistic rules learnt from [2].

Regarding the node position, GenSeN enables the user to configure the number of
possible node orientations (regarding the antenna). The user should select how many
possible positions the sensor node device will have. As an example, the device used in
[2], the ESB, only supports four possible orientation-stages, contrary to the Mica
family (Mica2, Micaz), which presents only two. As default, only one position is
considered:

1 - One Position (DEFAULT)
2 - Two Positions
3 - Three Positions
4 - Four Positions

GenSeN will randomly choose the node position, which then will affect the
transmitting and receiving energy for each node. Due to restrictions in NS-2, it is not
possible to specify different radio propagation conditions in the same simulation.
Therefore, it was necessary to emulate such capability. This was achieved by
modifying the levels of transmitted energy in each node, although all the nodes have
the same transmitting range.

In terms of energy configuration, GenSeN allows to set the following parameters:
initial energy, idle energy, transmitting energy and receiving energy. Moreover, it
supports the configuration of four different levels of energy, meaning GenSeN can
generate different initial energy levels per sensor node. To allow such behavior, the
user needs to choose one of the following options:

1 - All nodes with same energy (DEFAULT)
2 - Two energy levels
3 - Three energy levels
4 - Four energy levels

For each node, GenSeN will randomly choose the initial energy based on the
option (initial energy) provided by the user.

In each iteration, GenSeN generates different results when compared to previous
iterations, since its random factors are associated to a variable seed. However, the
generator enables the user to configure its own seed, allowing debugging operations.
Finally, it is also possible to specify the final tcl output file.

4.2 GenSeN Output

GenSeN is NS-2 based, meaning it was created to produce a WSN topology which can
be used in a simulation experience in this simulator. As such, GenSeN outputs two tcl
script files. One of the files saves the information regarding the nodes location (x and y),
which is created as result of the chosen deployment strategy. The second file outputs the
node configurations, namely the energy parameters of each individual node.

442 T. Camilo et al.

Finally, GenSeN calculates the estimated time required to perform the deployment
of the entire sensor network which, once again, depends on the deployment strategy
chosen by the user. These values are based on the ones achieved by the authors in [8].

5 Results

In order to study the behaviour of GenSeN, this section presents the results produced
by this topology generator, and briefly validates them with the results achieved by the
authors in [2].

The main goal of this study is to compare the node distribution for the different
deployment strategies. Using a monitoring area of 6000 m2 (100 m per 60 m), a total
of 32 sensor nodes were spread using seven deployment strategies: grid, random, one-
by-one, two-by-two, three-by-three, cliff, and propellant, as described in Section 3.
The environment area was virtually cut into 16 equal squares, each one with 375 m2.
The number of nodes distributed on each square was registered and it is illustrated in
figures 3-9. Since there are 32 sensor nodes, it would be expected that the best
solution were to deploy 2 devices per region. Such result was achieved only by the
grid strategy (Fig. 3). This solution presents the best results in terms of connectivity
and sensing coverage.

Fig. 4 presents the results produced by the random distribution of nodes. This
technique is the most used by the scientific community when simulating new
protocols. However, the results are not very encouraging, since there exist enormous
differences in terms of area coverage per device, and it also does not really reflect a
real deployment strategy.

1

3

1
2

3
4

0

1

2

3

4

5

N
o
d
e
s

X
Y

1
2

3

4
1

2
3

4

0

1

2

3

4

5

N
o
d
e
s

X
Y

Fig. 3. Nodes per region for the Grid
Deployment Strategy

Fig. 4. Nodes per region for the Random
deployment strategy

On the other hand, the solution presented in Figure 5, shows a better placement
when compared to that of Figure 4. In Figure 5 the maximum numbers of nodes per
square is 3, and all the squares are covered by at least one device.

Fig. 6 and Fig. 7 present the two-by-two and three-by-three strategy deployments,
respectively. These strategies lead to poorer results when compared to the one-by-one
strategy. In the case of the three-by-three strategy, one of the square areas ends up
with no devices at all. On the other hand, a single region ends up with 5 devices.

 GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment 443

1
2

3
4 1

2
3

4
0

1

2

3

4

5

N
o
d
e
s

X
Y

Fig. 5. Nodes per region for the One-by-one deployment strategy

1
2

3

4
1

2
3

4

0

1

2

3

4

5

N
o
d
e
s

X
Y

1
2

3
4

1
2

3
4

0

1

2

3

4

5

N
o
d
e
s

X
Y

Fig. 6. Nodes per region for the Two-by-two
deployment strategy

Fig. 7. Nodes per region for the Three-by-
three deployment strategy

1
2

3
4

1
2

3
4

0

1

2

3

4

5

N
o
d
e
s

X
Y

1
2

3
4

1
2

3
4

0

1

2

3

4

5

N
o
d
e
s

X
Y

Fig. 8. Nodes per region for the Cliff
deployment strategy

Fig. 9. Nodes per region for the Propellant
deployment strategy

Finally, Fig. 8 and Fig. 9 show the worst sensor distribution results, mainly due to

the characteristics of the used strategies. It is notorious that there is an excessive node
density in the centre of the environment area, contrary to the edges, where several
regions without sensor nodes exist.

444 T. Camilo et al.

Looking at the presented results in terms of sensing coverage, there is a huge
difference between deployment strategies. This is why it is important to consider
realistic models when developing new network protocols. All the results are coherent
with the ones achieved in [2]. The strategies that require human intervention in the
monitoring area achieved the best results, as opposed to the last two approaches
where the nodes appear disorganized.

6 Conclusions

In a WSN project, it is important from an early stage to define the deployment
strategy to use. Decisions such as which architecture to use or what kind of nodes to
deploy, have to be in consonance with the deployment strategy. As an example, in an
environment where the human presence is not safe (e.g. biological contamination) it
becomes impossible to achieve the results from the grid deployment strategy.
Architectures that assume a rigid topology (e.g. one hop communication) become
impossible to deploy.

In this paper we presented a new tool to generate realistic network topologies,
GenSeN. It allows the user to create new WSN configurations, based on realistic
knowledge achieved in previous work performed by the authors. All the results
produced by this topology generator are based on real deployment experiences; each
placement strategy reflects some of the possible solutions when preparing a WSN
scenario.

Based in NS-2 configuration files, GenSeN outputs two tcl documents, which can
directly be used as part of a network configuration script. GenSeN allows the
specification of several parameters, such as different energy levels.

As future work, it would be important to extend the supported deployment
strategies. Solutions such as water environment are crucial for certain sensor network
applications. Another important extension would be the support of 3D environments.
However such extension is more difficult to achieve since the NS-2 core also does not
support such feature.

Acknowledgments. The work presented in this paper was partially financed by the
IST FP6 CONTENT Network of Excellence (IST-FP6-0384239).

References

1. Estrin, D., et al.: Embedded, Everywhere: A research Agenda for Network Systems of
Embedded Computers. National Research Council Report (2001)

2. Camilo, T., Rodrigues, A., Sa Silva, J., Boavida, F.: Lessons Learned from a Real Wireless
Sensor Network Deployment. In: Proceedings of the Workshop on Performance Control in
Wireless Sensor Networks, co-located with Networking 2006 - 5th International IFIP-TC6
Networking Conference, Coimbra, Portugal (2006)

3. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Universal Topology Generation from
a User’s Perspective (User Manual) BU-CS-TR-2001-003 (April 2005)

4. Calvert, K., Doar, M., Zegura, E.: Modeling Internet Topology. EEE Transactions on
Communications , 160–163 (1997)

 GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment 445

5. Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator. Technical Report Research
Report CSE-TR-433-00, University of Michigan at Ann Arbor (2000)

6. Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor networks.
In: ICC, Helsinki, Finland (June 2001)

7. The USB/LBNL Network Simulator – ns2 (2006); http://www.isi.edu/nsnam/ns
8. Camilo, T., Rodrigues, A., Silva, S.J, Boavida, F.: Redes de Sensores Sem Fios,

considerações sobre a sua instalação em ambiente real. In: Wireless Sensor Networks –
some Considerations on Deployment in Real Environments), CSMU2006 - Conferência
sobre Sistemas Móveis e Ubíquos, Guimarães, (Portugal) (June 2006) (in Portuguese)

9. Scatterweb; (2006), http://www.scatterweb.com/ESB/
10. CrossBow (2006), http://www.xbow.com
11. I-LENSE Topology Generator (topo_gen) http://www.isi.edu/ilense/software/topo_gen/

topo_gen.html (2005)
12. Arroyo, D., Lee, B., Yu, C.: EMSim: An Extensible Simulation Environment for Studying

High Performance Microarchitectures. In: SCI2002: International Conference Challenges
Ecoinformatics (2002)

13. Ali, M., Saif, U., Dunkels, A., Voigt, T., Römer, K., Langendoen, K., Polastre, J., Uzmi,
J.: Medium Access Control Issues in Sensor Networks. In: ACM SIGCOMM Computer
Communication Review (April 2006)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 446–455, 2007.
© IFIP International Federation for Information Processing 2007

Energy-Aware Routing for Wireless Sensor
Networks by AHP

Xiaoling Wu, Jinsung Cho, Brian J. d'Auriol, and Sungyoung Lee∗

Department of Computer Engineering, Kyung Hee University, Korea
{xiaoling,dauriol,sylee}@oslab.khu.ac.kr, chojs@khu.ac.kr

Abstract. Wireless sensor networks (WSNs) are comprised of energy con-
strained nodes. This limitation has led to the crucial need for energy-aware pro-
tocols to produce an efficient network. In this paper, we propose an energy
aware geographical multipath routing scheme for WSNs. The distance to the
destination location, remaining battery capacity, and queue size of candidate
sensor nodes in the local communication range are taken into consideration for
next hop relay node selection, and Analytical Hierarchy Process (AHP) is ap-
plied for decision making. Simulation results show that this scheme can extend
the network lifetime longer than the original geographical routing scheme
which only considers distance to the destination location. Moreover, the pro-
posed scheme can reduce the packet loss rate and link failure rate since the
buffer capacity is considered.

Keywords: Sensor networks, AHP, routing, lifetime, energy.

1 Introduction

Wireless sensor networks (WSNs) are expected to be widely employed in various
applications such as medical care, military, environmental monitoring and industry
since they have high flexibility, low production costs, and scalability [1]. The sensor
nodes can sense the physical environment in various modalities, including acoustic,
temperature, seismic, and infrared, etc. In WSNs, there exist some challenges, for
example,

• The routing path (link) failure may happen during data transmission because of
collision, node dying out (no battery), node busy, or other accidents. Some ap-
plications require real time information and data, which means retransmission
is not possible. This motivates us to design a multipath routing scheme for
wireless sensor networks.

• There exists energy constraint in WSNs because most sensors are battery oper-
ated. This motivates us to consider energy aware routing.

Many routing protocols have been developed for ad hoc networks, which can be
summarized into two categories: table-driven (e.g., destination sequenced distance

∗ Corresponding author.

 Energy-Aware Routing for Wireless Sensor Networks by AHP 447

vector [2], cluster switch gateway routing [3]) and source-initiated on-demand (e.g.,
ad hoc on-demand distance vector routing [4], dynamic source routing (DSR) [5]). In
[6], Lee and Gerla propose a Split Multipath Routing protocol that builds maximal
disjoint paths, where data traffic is distributed in two roots per session to avoid con-
gestion and to use network resources efficiently. A Multipath Source Routing (MSR)
scheme is proposed in [7], which is an extension of DSR. Their work focuses on dis-
tributing load adaptively among several paths. Nasipuri and Das [8] present the On-
Demand Multipath Routing scheme which is also an extension of DSR. In their
scheme, alternative routes are maintained, which can be utilized when the primary
one fails.

In sensor networks, location is often more important than a specific node ID. For
example, in sensor networks for target tracking, the target location is much more
important than the ID of reporting node. Therefore, some location-aware routing
schemes have been proposed for WSNs. A greedy geographic forwarding with limited
flooding to circumvent the voids inside the network is proposed in [9], and some
properties of greedy geographic routing algorithms are studied in [10]. Jain et al [11]
proposes a geographical routing using partial information for WSNs.

In this paper, we propose an Analytical Hierarchy Process (AHP) based Energy-
aware Geographical Multipath Routing (AE-GMR) scheme for WSNs, and compare
with Geographical Multipath Routing (GMR) scheme.

The rest of the paper is organized as follows. We define the basic assumptions and
state the problems in section 2. The third section presents the proposed AHP based
AE-GMR scheme. Section 4 evaluates and analyzes the performance of the proposed
method. Finally, we draw the conclusion and discuss future work in section 5.

2 Problem Statements

In this paper, we also investigate the multipath routing problem and propose an AHP
based Energy-aware Geographical Multipath Routing (AE-GMR) scheme. In the
existing geographical routing approach (e.g., [11]), the path selection doesn’t consider
the remaining battery capacity of each node, which is a very important factor for en-
ergy efficiency and network lifetime. In our AE-GMR, we consider distance to the
destination, remaining battery capacity, and queue size of each sensor node. Our
scheme is a fully distributed approach where each sensor only needs the above three
parameters, and we use AHP to handle these three parameters in the AE-GMR.

A. Energy Model

We adopt the same radio model as stated in [12] with fsε =10pJ/bit/m2 as amplifier

constant, Eelec=50nJ/bit as the energy being dissipated to run the transmitter or re-
ceiver circuitry. It is assumed that the transmission between the nodes follows a sec-
ond-order power loss model. The energy cost of transmission for common sensor
nodes at distance d in transmitting an l-bit data is calculated as:

2),(dllEdlE fselecT ε+= (1)

and to receive the message, the radio expends:

448 X. Wu et al.

elecR lElE =)((2)

and the energy for data aggregation is set as EDA = 5 nJ/bit.

B. Design Criteria

In our AE-GMR design, we set up three criteria for node selection, and they are:

1) Distance to Destination: Distance of a node to the destination. The geographi-
cal location of destination is known to the source node (as in [11]), and the
physical location of each sensor node can be estimated easily if the locations
of three sensor nodes (within a communication range) are known in wireless
sensor network. The node with shorter distance to the destination is preferred
to be selected.

2) Residual energy: Remaining battery of the sensor node. The initial energy is
predefined. In addition, the energy consumption for transmission and recep-
tion can be calculated using Eq. (1) and Eq. (2).

3) Queue size: It indicates the buffer capacity at the node. This parameter helps
avoid packet drops due to congestion at the receiver.

The optimized node selection in multipath routing is a multiple factors optimiza-
tion problem and can be achieved using the AHP approach which is introduced in the
next section.

3 Node Selection in Multipath Routing by AHP

In our AE-GMR for M-path routing, the source node select M nodes in its communi-
cation range for the first hop relay. Assume there are N (N > M) nodes in its commu-
nication range, nodes that are farther to the destination node than the source node are
not considered. Choosing M nodes from remaining eligible nodes is based on AHP (as
will be described in detail). Starting the second hop, each node in the M-path selects
its next hop node also using AHP.

The Analytical Hierarchy Process (AHP) [13] is a multiple criteria decision-
making method which decomposes a complex problem into a hierarchy of simple sub
problems (or factors), synthesizes their importance to the problem, and finds the best
solution. In this paper, AHP is used to determine the nodes which are eligible to be
selected as next hop relay. It is carried out in three steps:

Step 1: Collect information and formulate the next hop routing nodes selection prob-
lem as a decision hierarchy of independent factors.

Step 2: Calculate the relative local weights of decision factors or alternatives of each
level.

Step 3: Synthesize the above results to achieve the overall weight of each alternative
node and choose the nodes with largest weight as the eligible next hop relay
nodes.

 Energy-Aware Routing for Wireless Sensor Networks by AHP 449

A. Structuring Hierarchy

The goal of the decision “Next hop relay node selection” is at the top level of the
hierarchy as shown in Fig. 1. The next level consists of the decision factors which are
called criteria for this goal. At the bottom level there exist the N alternative sensor
nodes to be evaluated.

Next hop relay node
selection

Distance to
destination

Residual energy Queue size

Node 1
Node 2

.

.

.
Node N

Node 1
Node 2

.

.

.
Node N

Node 1
Node 2

.

.

.
Node N

Fig. 1. AHP hierarchy for next hop relay nodes selection

B. Calculating Local Weights

Local weights consist of two parts: the weight of each decision factor to the goal and
the weight of each nominee to each factor. Both of them are calculated with the same
procedure. Taking the former as an example, we describe the procedure as the follow-
ing three steps.

1) Making Pairwise Comparison

The evaluation matrices are built up through pairwise comparing each decision factor
under the topmost goal. The comparison results are implemented by asking the questions:
“Which is more important? How much?” and they may be presented in square matrix A as

()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==
×

nnnn

n

n

nnij

aaa

aaa

aaa

aA

h

hhhh

h

h

21

22221

11211

,

(3)

450 X. Wu et al.

where aij denotes the ratio of the ith factor weight to the jth factor weight, and n is the
number of factors. The fundamental 1 to 9 scale can be used to rank the judgments as
shown in Table 1.

Table 1. A fundamental scale of 1 to 9

Number Rating Verbal Judgment of Preferences
1 Equally
3 Moderately
5 Strongly
7 Very
9 Extremely

2, 4, 6, 8 indicate the medium value of above pairwise comparison.

2) Calculating Weight Vector

For the given matrix A in Eq. (3), we calculate its eigenvalue equation written as AW
= λmaxW, where W is non-zero vector called eigenvector, and λmax is a scalar called
eigenvalue. After standardizing the eigenvector W, we regard the vector element of W
as the local weight of each decision factor approximately, which can be denoted as:

{ }n
T
j www ,,, 21 h=w (4)

3) Checking for Consistency

If every element in Eq. (3) satisfies the equations jiij aa /1= and ijkjik aaa =⋅ , the

matrix A is the consistency matrix. Unfortunately, the evaluation matrices are often
not perfectly consistent due to people’s random judgments. These judgment errors can
be detected by a consistency ratio (CR), which is defined as the ratio of consistency
index (CI) to random index (RI). CI can be achieved by

CI = (λmax −n)/(n−1), (5)

where

∑
=

=
n

i
ii WAWn

1
max /)()/1(λ . (6)

The RI is given in Table 2 [14]. When CR ≤ 0.1 , the judgment errors are tolerable
and the weight coefficients of the global weight matrix Wj are the weights of decision
factor under the topmost goal. Otherwise, the pairwise comparisons should be ad-
justed until matrix A satisfies the consistency check.

Table 2. Random index

n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

 Energy-Aware Routing for Wireless Sensor Networks by AHP 451

C. Calculating Global Weights

From above steps, we can obtain not merely the weights of decision factors towards
the topmost goal from Wj but also the weights of alternative nodes towards each fac-
tor. If there are four candidate nodes in the communication range, all the four weight

matrixes of alternatives under three factors construct a 4×3 matrix, denoted as jni
W / ,

i=1, 2, …, 4, j=1, 2, 3.
The global weight of each senor node can be achieved through multiplying the lo-

cal weight by its corresponding parent. So the final weight matrix in the symbol of

inW is calculated as

jjnn WWW
ii

⋅= / , (7)

where the final weight of each alternative is calculated as

∑
=

⋅=
3

1
/

j
jjnn WWW

ii
. (8)

The larger the final weight of node, the higher the probability of node which is eli-
gible to be selected. Thus, the M nodes with the largest weight are selected as the next
hop relay nodes in multipath routing.

In this paper, we assume that each sensor node keeps a table which has some in-
formation about its neighbor nodes: locations, battery level, and queue size. The table
is updated periodically by the locally-broadcasted information (beacon) from each
neighbor node. We define a time interval T, during which the three parameters (loca-
tions, battery level, and queue size) do not change very much. This time interval T is
the shortest time duration that a sensor node will send another beacon. Each sensor
examines itself the status of the three parameters in every period T, and if a certain
parameter has changed above a threshold, it will locally broadcast a beacon.

D. Path Set Up

In the route discovery phase, the source node uses AHP model to evaluate all eligible
nodes (closer to the destination location) in its communication range based on the
parameters of each node: distance to the destination, remaining battery capacity, and
queue size. The source node chooses the top M nodes based on the local weight that
this node will be selected. The source node sends a Route Acknowledgement (RA)
packet to each desired node, and each desired node will reply using a REPLY packet
if it is available. The structure of RA and REPLY is summarized in Table 3. If after a
certain period of time, the source node did not receive REPLY from some desired
node, it will pick the node with highest weight among the remaining N-M ndoes. In
the second hop, the selected node in each path will choose its next hop node using the
same process. As illustrated in Fig. 2, node B needs to choose one node from four
eligible nodes C, D, E, and F based on their three parameters, and sends RA packet to
the selected node and waits for REPLY. If the top one node is unavailable (for exma-
ple, selected by another path), then the top second node will be selected. Conse-
quently, M paths can be set up.

452 X. Wu et al.

Table 3. RA and REPLY message structure

Type Desired Node ID Self Node ID Dest_X Dest_Y Src_ID

A

B

Source

Dest

C

D
E

F

Fig. 2. Illustration of next hop node selection

4 Performance Evaluations

4.1 Simulation Environment

In order to evaluate the nodes selection in multipath routing by AHP, we have used J-
Sim [15] as the simulation environment. 60 sensors are randomly deployed in an area
of 100m x 100m. The source and destination sensors are set as 2J initially, and 5 cou-
ples of source and destination nodes are communicating at the same time in this net-
work. All the other sensors have initial energy of 0-2J. The buffer capacity of each
sensor node has been taken as 5 packets with packet length 512 bit and bit rate
9.6kb/sec. The time interval T is set as 10s in our simulation. The source node select
M=3 nodes in its communication range for the first hop relay. From the second hop,
each node along the 3 paths selects only one node toward its next hop.

In AHP modeling, the matrix A is determined as follows according to Section 3:

 Distance

to Dest
(α)

Residual
energy

(β)

Queue
size
(γ)

α

β

A =

γ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12/13/1

1/212/1

1/31/21

where the three criteria are denoted by α, β and γ respectively.

 Energy-Aware Routing for Wireless Sensor Networks by AHP 453

The computed eigenvector W = [0.5396 0.2970 0.1634]. It indicates the local
weight of the distance to destination, remaining battery capacity, and queue size,
respectively, so that we can see clearly that the distance to destination is the most
important criterion, and queue size is the least. According to Eq. (6), we can get the
eigenvalue λmax = 3.0093. Consequently, consistency ratio can be calculated as CR=
0.0047 < 0. 1, thus matrix A satisfies the consistency check.

Each sensor node determines the weight matrixes of alternatives under three factors
and then gets global weight based on its specific situation. Its eligibility as next hop
relay node can be finally decided by the AHP hierarchy model.

4.2 Simulation Results

We compare our AE-GMR against the geographical multipath routing (GMR) [11]
scheme where only distance to the destination is considered. In Fig. 3, we plot the
simulation time versus the number of nodes dead. It shows that when 50% nodes (30
nodes) die out, the network lifetime for AE-GMR has been extended about 40%. In

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

Simulation time (s)

of

 n
od

es
 d

ea
d

AE-GMR

GMR

Fig. 3. Lifetime comparison

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

P
ac

ke
t

lo
ss

 r
at

e

AE-GMR

GMR

Fig. 4. Simulation time vs. packet loss rate

454 X. Wu et al.

Fig. 4, we compare the packet loss rate of these two schemes. Packets are dropped
either due to insufficient buffer capacity at the receiver or because of the lack of en-
ergy needed to transmit the packet. Observe that our AE-GMR outperforms the GMR
with about 20% less packet loss resulting in greater reliability. The average latency
during transmission (end-to-end) is 422.16ms for our AE-GMR and 407.5ms for
GMR, and link failure rate for AE-GMR is 6.24%, but for GMR is 10.42%.

5 Conclusion and Future Work

In this paper, we proposed an energy aware geographical multipath routing scheme
for WSNs. Three factors contributing to the next hop relay node selection are consid-
ered and they are the distance to the destination location, remaining battery capacity,
and queue size of candidate sensors in the local communication range, respectively.
Analytical Hierarchy Process (AHP) was applied for optimal decision making. We
evaluated the efficiency of our proposed scheme and the simulation results showed
that this scheme could extend the network lifetime longer than the original geographi-
cal routing scheme which only considered distance to the destination location. More-
over, the proposed scheme could reduce the packet loss rate and link failure rate since
the buffer capacity was considered.

In the future work, we may consider the node mobility as another factor for routing
decision making and design such routing protocol.

Acknowledgments. This research was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2006-C1090-0602-0002).

References

1. Wu, X., Heo, H., Shaikh, R.A., Cho, J., Chae, O., Lee, S.: Individual Contour Extraction
for Robust Wide Area Target Tracking in Visual Sensor Networks. In: Proc. of 9th IEEE
International Symposium on Object and component-oriented Real-time distributed Com-
puting (ISORC), Gyeongju, Korea, pp. 179–185 (2006)

2. Bhagwat, C.P.: Highly dynamic destination-sequenced distance vector routing. In: Proc. of
ACM SIGCOMM, pp. 234–244. ACM Press, New York (1994)

3. Chiang, C.-C., Wu, H.-K., Liu, W., Gerla, M.: Routing in clustered multihop mobile wire-
less networks with fading channel. In: Proc. IEEE Singapore Intl Conference on Networks
(1997)

4. Perkins, C.E., Royer, E.: Ad hoc on demand distance vector routing. In: Proc. 2nd IEEE
Workshop o Mobile Computing Systems and Applications, IEEE Computer Society Press,
Los Alamitos (1999)

5. Johnson, D., Maltz, D.: Mobile Computing. Kluwer Academic Publishers, Dordrecht
(1996)

6. Lee, S.J., Gerla, M.: Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc
Networks. ICC (2001)

 Energy-Aware Routing for Wireless Sensor Networks by AHP 455

7. Wang, L., Shu, Y.T., Dong, M., Zhang, L.F., Yang, W.W.: Multipath Source Routing in
wireless Ad Hoc Networks. In: Canadian Conference on Electrical and Computer Engi-
neering, vol.1, pp. 479–483 (2000)

8. Nasipuri, A., Das, S.R.: On-Demand Multipath Routing for Mobile Ad Hoc Networks. In:
IEEE ICCCN, pp. 64–70. IEEE Computer Society Press, Los Alamitos (1999)

9. Finn, G.G.: Routing and addressing problems in large metropolitanscale internetworks.
USC ISI Report ISI/RR-87-180 (1987)

10. Xing, G., Lu, C., Pless, R., Huang, Q.: On Greedy Geographic Routing Algorithms in
Sensing-Covered Networks. In: Xing, G., Lu, C., Pless, R., Huang, Q. (eds.) ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Japan
(2004)

11. Jain, R., Puri, A., Sengupta, R.: Geographical routing using partial information for wireless
sensor networks. In: IEEE Personal Communications, pp. 48–57 (2001)

12. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific Proto-
col Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless
Communications 1(4), 660–670 (2002)

13. Saaty, T.L.: The Analytic Hierarchy Process. NY, McGraw Hill (1980)
14. Song, Q.Y., Jamalipour, A.: A network selection mechanism for next generation networks.

In: IEEE Int. Conf. Communication (ICC), vol.2, pp. 1418–1422 (2005)
15. J-Sim, http://www.j-sim.org/

A Wireless System for Real-Time Environmental and
Structural Monitoring�

Valerio Plessi1, Filippo Bastianini2, and Sahra Sedigh1

1 Department of Electrical and Computer Engineering
2 Center for Infrastructure Engineering Studies

University of Missouri-Rolla
Rolla, MO 65409-0040

{vp427,fbroptic,sedighs}@umr.edu

Abstract. Accurate real-time monitoring of structural health can result in sig-
nificant safety improvements, while providing data that can be used to improve
design and construction practices. For bridges, monitoring of water level, tilt, dis-
placement, strain, and vibration can provide snapshots of the state of the structure.
Real-time measurement and communication of this information can be invaluable
in guiding decisions regarding the safety and remaining fatigue life of a bridge.

This paper describes the real-time data acquisition, communication, and alert-
ing capabilities of the Flood Frog, an autonomous wireless system for remote
monitoring. Battery power and utilization of the GSM cellular network result in
a completely wireless system. Coupled with the low cost of the device, the elimi-
nation of cables allows deployment in locations where autonomous monitoring is
hindered by cost or infeasibility of installation. The first prototype of the system
was deployed in Osage Beach, MO in November 2006.

1 Introduction

Early warning and advanced preparation for emergency are two of the most effective
lines of defense against natural disasters such as floods, earthquakes, and hurricanes.
The impact of catastrophic events, including the recent hurricanes Katrina and Rita,
underscores the limits of established early warning systems, especially with regard to
rapidly evolving situations. Environmental monitoring, which refers to measuring and
recording parameters such as temperature, humidity, salinity, water level, acoustic emis-
sion and pollution for a selected site, enables early detection of potentially disastrous
events. Timely provision of information facilitates recovery efforts and aids in the con-
tainment of aftereffects.

Structural monitoring is another important issue, as periodic collection of informa-
tion about the health of a structure, such as a bridge or a building, can prevent sudden
breakdown, save money, and most importantly, protect human lives. In this context,
changes in tilt, displacement, strain and vibration can serve as warnings for impending
structural damage or even collapse. Regardless of the phenomenon being monitored,
the information should be collected and communicated with resolution and frequency
sufficient to enable accurate and timely knowledge of the situation.

� This research was supported in part by the United States Department of Transportation.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 456–465, 2007.
c© IFIP International Federation for Information Processing 2007

A Wireless System for Real-Time Environmental and Structural Monitoring 457

In monitoring applications, one major challenge is the infeasibility of installing the
necessary devices in remote areas or hostile environments. As an example, low water
bridges, which are prone to flooding, are typically located in rural areas that lack acces-
sible power and communication lines. The problem is further exacerbated by the costs
associated with digging trenches and drawing the wires needed for a wired system.
Physical installation challenges have been addressed in our previous work [1].

The aforementioned challenges underscore the necessity of a novel monitoring sys-
tem that is less costly, more dependable, and more flexible in terms of locations where
it can be installed. Furthermore, for a broad range of environmental and structural phe-
nomena, there is a critical need for autonomous real-time acquisition and communica-
tion of data.

The solution proposed in this paper is a wireless embedded system, termed the Flood
Frog. The ultra-low power design of the system enables several years of operation with
a standard battery pack. The data is acquired using embedded sensors, then aggregated,
processed, and reported by the device. In batch production, the device can be manu-
factured for less than $300 per unit, which is orders of magnitude less than existing
solutions, the majority of which have to be embedded in a structure at the time of con-
struction. The wireless nature of the system makes it more robust, and eliminates the
considerable cost of drawing cables to the site. The savings achieved in installation and
maintenance costs facilitate large scale deployment of the system.

The design of the Flood Frog is general, and includes an onboard digital signal pro-
cessing unit with an embedded A/D converter (ADC), which allows the use of digital
or analog sensors. Communication is completely wireless and uses the existing GSM
cellular infrastructure. Despite being battery-powered, the device acquires and commu-
nicates data in real time. The first prototype of the system was deployed in Osage Beach,
MO in November 2006, and has been communicating accurately since, as validated by
data provided by the United States Geological Service (USGS).

Recent years have witnessed the development of a number of platforms for wireless
sensor networks (WSNs), including motes manufactured by Intel and Crossbow. Our
device is not intended to serve as a mote. It is an autonomous embedded system with an
onboard power source, long-range communication capability, considerable computing
power, data storage, embedded sensors, and an embedded signal conditioner that can
support a wide range of additional sensors, such as load cells, or strain and displace-
ment gauges. Furthermore, our system supplies multi-purpose software that enables the
plug-and-play addition of other sensors. The simplicity of this software leads to more
dependable operation than that of motes with complex operating systems. Encapsu-
lation of the system in a rugged waterproof and dustproof case further increases the
dependability. Utilization of a general-purpose mote for structural monitoring would
require considerable effort in software and hardware development, with the end result
being a more expensive system that is inferior in terms of unattended field life, long-
range communication, computing power, and sensor support.

The remainder of this paper is organized as follows. Section 2 presents relevant re-
search in real-time monitoring systems. Sections 3 and 4 describe the hardware and soft-
ware of the system, respectively. The prototype and field test are discussed in
Section 5. Section 6 concludes the paper.

458 V. Plessi, F. Bastianini, and S. Sedigh

2 Related Work

Accurate monitoring of structures and their surrounding environment is an area of criti-
cal need, and the development of embedded systems for this purpose has been of interest
to the research community. This section presents several relevant studies.

In FloodNet [2], wireless sensor nodes deployed in a river bed are used to collect
data that is later used for flood prediction. The system does not operate in real time,
as the main purpose is collection of data to be fed to a simulator. A related system,
described in [3], also uses a WSN to collect data for flood prediction, but carries out the
computation locally, using a grid-based approach.

A study performed by the Meteorological Development Laboratory of the US Na-
tional Weather Service is described in [4]. The approach taken involves the processing
of current radar information and monitoring of precipitation to predict flood. Other stud-
ies, presented in [5] and [6], use satellite and microwave images to monitor floods. The
main disadvantage of such approaches is the prohibitively high cost of acquiring radar
and satellite data. Moreover, the predictions are not made in real time, and are subject
to human error.

Another flood monitoring device is described in [7], which describes a flash flood
alerting system that uses a WSN to track a flood as it evolves. This system is still in the
conceptual design phase, and as of the date of this publication, a prototype does not ap-
pear to be under development. Two predictive flood monitoring systems are presented
in [8] and [9]. In both studies, measurement of the extent and distribution of flooding
during severe weather conditions is utilized to generate maps for future analysis and
prediction. IN4MA [10] manufactures commercial systems for monitoring rainfall and
river levels in order to minimize the damage caused by flooding. The data collected is
communicated over the GSM network. In contrast to the Flood Frog, which has been
designed to be easily expanded by wireless nodes to create a local WSN, the IN4MA de-
vice can only operate as a standalone unit. Campbell Scientific [11] is another company
that develops monitoring systems for flood and other environmental phenomena. They
offer precipitation, wind speed, soil moisture and water quality measurement through
a set of modular devices. The cost of a complete system is orders of magnitude higher
than that of our proposed system.

A wireless environmental monitoring system is presented in [12]. It describes the
design and implementation of a reactive and event-driven network for monitoring soil
moisture. The study presents data about the field life of the device; the maximum dura-
tion is approximately one month, whereas the Flood Frog can operate for several years
on a standard battery pack. A similar system is presented in [13]. This study introduces
the “Sensor Web,” which is a platform that combines in situ and remote sensing to col-
lect information about the environment. One significant difference between this project
and our work is their use of satellites as a means of long-range communication, which
is very costly and incapable of frequent updates. Low power consumption has not been
addressed for the system, which again constrains unattended operation.

The study in [14] presents a wireless strain sensing system for structural health mon-
itoring. This system shares a number of features with the Flood Frog, but is limited to
strain sensing and does not allow for the addition of other sensors. Another structural
monitoring system is presented in [15], where a wireless base station and several sensor

A Wireless System for Real-Time Environmental and Structural Monitoring 459

nodes are deployed in a building. The system is not capable of long-range communi-
cation and requires periodic inspections for data collection. An improvement to this
system is presented in [16]. The communication range of this system is still limited,
as it cannot utilize the cellular phone system, and the field life of less than one year is
considerably shorter than that of our system.

An important difference between the work proposed in this paper and other exist-
ing systems is that the Flood Frog has been designed as a general-purpose monitoring
system that can be customized for various applications. Data acquisition, communica-
tion and alarm generation occur in real time for all monitored phenomena. Considering
the high power consumption typically associated with real-time operation, the ultra-low
power consumption of the system is a significant achievement.

The studies mentioned above demonstrate the wide range of applications that can
benefit from a device such as the Flood Frog. Each application presents different re-
quirements, from site monitoring to collection of data for forecasting.

3 Hardware Implementation and Features

In the context of this paper, monitoring refers to continuous evaluation of the quantities
under consideration. If the data is acquired, and any necessary alarms are generated
within acceptable time limits, real-time monitoring has been accomplished. The spe-
cific time limits imposed depend on the monitored phenomena, and can range from
seconds to hours, based on the urgency of subsequent countermeasures. For example,
closing a bridge in case of flooding should happen within an hour, while the inspec-
tion needed to investigate excessive strain on the bridge can occur within several days
without compromising the safety of the structure.

The structural and environmental phenomena monitored by the Flood Frog generally
evolve slowly. Quantities such as temperature, humidity, water level, tilt, displacement,
and strain vary slowly; therefore, a sampling period on the order of seconds or minutes
will suffice.

Flash flooding is an example of a critical situation well-suited to the monitoring and
alerting capabilities of the Flood Frog. According to the National Oceanic and Atmo-
spheric Administration [17], flash floods can occur within a few minutes of excessive
rainfall, dam or levee failure, or sudden release of water held by an ice jam. For such
phenomena, a sensor sampling period of minutes can easily provide for real-time mon-
itoring, with prompt alarm generation whenever a threshold is exceeded.

In contrast, the monitoring of vibration makes real-time operation more challenging,
as it is a rapidly-evolving event. The Flood Frog incorporates additional hardware to
enable timely acquisition of such data. Signal conditioning is carried out to reduce the
amount of data communicated over the GSM network, resulting in a significant decrease
in power consumption.

The device has been designed to overcome the limitations of current monitoring
systems, including high cost, high power consumption, extensive use of cabling and
lack of real-time data acquisition and communication capabilities. The low cost of the
Flood Frog facilitates installation in areas where monitoring has been rendered infeasi-
ble due to the associated cost. Ultra-low power consumption enables the use of batteries

460 V. Plessi, F. Bastianini, and S. Sedigh

instead of traditional power lines, while reducing the cost of installation and allowing
deployment in locations that are off the power grid. Wireless communication through
an existing infrastructure such as the GSM cellular network greatly increases flexibility
and ease of installation.

To avoid frequent battery replacements and allow several years of unattended field
life, the Flood Frog utilizes hardware and software mechanisms for reducing power con-
sumption. These techniques include event-driven execution, code optimization, switch-
ing off hardware peripherals when not in use, and varying the clock frequency used
based on the circumstances.

The device includes onboard sensors for water level, temperature, acceleration, tilt,
and vibration. Flood detection is carried out by a magnetic switch used to sense the
position of a magnetic floater in the water. The actual level of the water is measured
by a capacitive sensor. Acceleration and tilt are sensed with a MEMS three-axis ac-
celerometer that supplies three analog signals, one for each direction. Lastly, vibrations
are captured by a piezoelectric sensor. Excluding the magnetic sensor, which is a simple
on/off switch, all other sensors are analog, and therefore their output needs to be dig-
itized. This is accomplished by the internal ADC of the onboard microcontroller unit
(MCU). Several additional analog channels have been included to allow the addition of
sensors such as load cells, strain gauges and motion potentiometers.

4 Software Implementation and Features

The Flood Frog is an embedded device built from the ground up, and its unique require-
ments necessitated the development of a custom real-time operating system (RTOS).
We chose not to use an off-the-shelf RTOS to keep the software as simple as possible,
implementing only necessary features. The main requirements for the software are real-
time functionality, compact code, reliability, efficiency, and power-awareness. In devel-
oping the software, the main objective was to create the smallest and least complex OS
capable of carrying out all required operations within specified time constraints.

The software design takes into account the limited energy available to the device
by reducing computation and keeping the device in sleep mode for as long as possi-
ble. This can be achieved by writing efficient code and by manipulating the hardware
capabilities, e.g., placing the peripherals in “off” state when they are not in use. Dis-
abling the peripherals poses a significant challenge in view of the real-time capabilities
of the Flood Frog, as the device may not be able to access available resources imme-
diately. The challenge is to find the best tradeoff between power consumption and the
monitoring duty cycle, while meeting timing constraints.

The powerful onboard computational unit eliminates the need for multitasking. The
MCU has a 16-bit 30-MIPS processor, which is more powerful than an Intel 80486 (20-
MIPS) chip. Sequential operation results in greater dependability, due to the relative
ease of troubleshooting a single flow of execution. The only task that may require a
fast real-time reaction is the vibration alarm; in that case, the device is switched on as
quickly as possible in order to avoid loss of information.

The Flood Frog can be used in either time-driven or event-driven fashion. As a time-
driven device, the data collected by the sensors is recorded periodically, and the device

A Wireless System for Real-Time Environmental and Structural Monitoring 461

remains in sleep mode unless it is recording data or an exception occurs. The recorded
data is compared with preset thresholds, and alarms are triggered as necessary. In event-
driven mode, the device wakes up in response to specified events, the occurrence of
which is detected by the sensors. An interrupt is configured for each event, and causes
a wake up of the device and the activation of its interrupt service routine (ISR). The
current prototype of the system provides ISRs for timer, flood, and vibration interrupts.

Vibrations occur suddenly, and can happen during the long sleep periods when data
cannot be recorded. To overcome this problem, once vibration is detected, the analog
signal is immediately sent into an analog delay line that provides enough lag to allow the
sampling circuit to be switched on. Meanwhile, the MCU senses the vibration interrupt
and invokes the appropriate ISR, which immediately wakes up the Flood Frog. In case
the oscillation exceeds the specified threshold (e.g., during an earthquake), an alarm
is triggered. This technique allows real-time monitoring of sudden phenomena such as
vibration with limited battery power.

To maintain autonomy, the device must retain minimal functionality even when in
sleep mode. As a result, the software must run continuously, but the system should be
kept in low-power mode whenever possible. In the event of an exception (e.g., math,
stack, or oscillator errors) or other failure, a complete hardware and software reset (i.e.,
reboot) of the device may be necessary for returning it to a safe and predictable state.

Figure 1 depicts the software state diagram of the device. The software execution
flow has a single entry point, where the software begins initial operation and to which
the software returns in the event of system reset. The source of each system reset is
determined immediately and flagged in an internal register.

Fig. 1. Software state diagram

462 V. Plessi, F. Bastianini, and S. Sedigh

At the entry point to the software, after the reset source is determined, an initializa-
tion routine is performed to prepare the various hardware components for operation.
A complete execution cycle of the infinite loop is comprised of two phases: the sleep
period and the scheduler check.

The first task of the infinite loop is to place the device in sleep mode. When its sleep
timer expires (i.e., every 1 second) the device wakes up and updates the internal clock
and counters. Other interrupts (e.g., flood, vibration) may also wake up the system and
demand immediate service.

The task queue is implemented as an array where ready processes are placed, ordered
by priority, with the highest priority being assigned to vibration, as it requires a rapid
response. If the scheduler stack is not empty, the first task is popped and executed;
when it is completed, the next task, if any, is popped. If the queue is empty, the device
is returned to sleep mode. This design results in a very simple and computationally
efficient execution flow.

In real-time monitoring, it is important to communicate the data in a timely man-
ner. As explained in Section 1, we utilize the existing GSM network infrastructure to
increase flexibility and ease of installation, while meeting delay constraints. The Flood
Frog is equipped with a worldwide-compatible quad-band GSM module, which allows
GPRS data transfer of 8-24 kbps upstream and 24-48 kbps downstream, and provides
SMTP and FTP capabilities, in addition to email. The GSM module is the main source
of power consumption in the Flood Frog, therefore it is normally kept off. The commu-
nication time is dictated by the GSM network.

In order to communicate, the GSM module needs to be switched on and enrolled in
the network. These two steps require about 15 seconds. After enrollment, an SMS can
be sent in 5 seconds, a 512-character email in 10 seconds, and a 5000-character text file,
through FTP, in 20 seconds. The limitation on email length is due to the particular GSM
module used. There is no limit on the amount of data exchanged by FTP. A text file of
5000 characters suffices for most situations, as numerical sensor data is compact. In
case a 10000-character file is needed, the total transmission time becomes 27 seconds.

Timing of the GSM transmission is affected by network conditions such as signal
strength, electromagnetic noise and traffic volume in the mobile cell and the entire
network. If the signal is weak, enrollment can be delayed or interrupted, while exter-
nal electromagnetic noise can temporarily disrupt the communication. Traffic is also an
issue, as a congested cell can prevent the device from communicating. Successful trans-
mission of an SMS by the GSM module implies delivery to the message server, and not
to the final recipient; this message server can sporadically be backlogged, delaying de-
livery to the final recipient. Similarly, email communication is through an SMTP server,
which can delay delivery during high-traffic periods. The delay values discussed above
were measured on the prototype, and reflect worst-case estimates.

To increase the reliability of communication, any alerts generated are sent by SMS
to more than one recipient. For email, redundant SMTP servers are used to diminish the
probability of delayed deliveries. The FTP communication does not have this problem,
as once the connection is established, the file is delivered directly to the final server.
This advantage can be leveraged by developing a PC application that constantly checks
for the presence of new files.

A Wireless System for Real-Time Environmental and Structural Monitoring 463

Assuming no unusual delays in communication, delivery of an alarm composed of
SMS, email and FTP, takes a total time of 50 seconds from when the device exits sleep
mode. This is a very good result, mainly because the first alarm, sent by SMS, is most
likely received after 20 seconds, and the second alarm, which is sent by email, after 30
seconds. Considering that even for severe flash floods the water takes several minutes
to reach a dangerous level [17], our device is satisfying real-time constraints.

A large amount of data can be sent by FTP in a relatively short period of time. Once
an alarm is received by SMS and/or email, the data uploaded to the FTP server can
provide a complete picture of parameter trends in the period before the alarm, allow-
ing analysis of the situation. Implementing the aforementioned PC application would
provide an additional means of triggering alarms in real time.

5 Prototype and Field Test

In its first field study, the Flood Frog was installed on Bridge A6531 in Osage Beach,
MO in November 2006. The objective was to detect flooding and measure water level,
temperature, battery level, and tilt of the structure along three axes. The case chosen for
the prototype is 7.5x5x4 inches and completely sealed, with the exception of a small
perforation for the water level probe. The entire system is enclosed in the case and
operates wirelessly. The flood sensor is implemented as a floater inside a hollow vertical
pipe affixed to the pier; the position of the floater indicates the water level. In order to
communicate this information to the device, a magnet is embedded inside the floater
and magnetic switches are installed inside the case.

The case design is depicted in Fig. 2. Figure 3 shows the device, circled in red,
affixed to the pier. The yellow cable is the probe used to measure the water level. Since
being installed, the Flood Frog has delivered a daily heartbeat message through SMS
and email and has uploaded the acquired data to the FTP server. The water level data
has been validated with values published by the USGS, and is accurate within 10%,
which is an acceptable result given the margin of error of the USGS values.

Fig. 2. Block diagram of the Flood Frog

464 V. Plessi, F. Bastianini, and S. Sedigh

Fig. 3. Installation on Bridge A6531 in Osage Beach, MO

6 Conclusions

This paper describes an autonomous real-time device for environmental and structural
monitoring. The device incorporates embedded sensors, is battery-powered and com-
municates using the GSM/GPRS cellular phone network, eliminating the need for ca-
bles of any type. The data collected, any alarms triggered, and software anomalies are
automatically reported to designated recipients through SMS messages, email, and FTP
file upload. The specific application discussed is flood monitoring, for which the device
meets real-time constraints on data acquisition and communication.

The cost reduction achieved by the Flood Frog has the potential to expand the prac-
tice of structural health monitoring to a significantly higher number of existing and
new structures. This improvement will increase safety and reduce the cost of operations
by facilitating real-time monitoring, which in turn yields a more efficient maintenance
schedule. Additionally, the general design of the device facilitates adaptation to alter-
native applications. Its low cost and ease of installation enable deployment in a broad
range of locations, facilitating early warning of catastrophic events and potentially re-
ducing casualties.

References

1. Plessi, V., Bastianini, F., Sedigh-Ali, S.: An autonomous and adaptable wireless device for
flood monitoring. In: Proc. 30th Annual IEEE Int’l. Computer Software and Applications
Conference (COMPSAC06), vol. 2, pp. 378–379 (2006)

2. Roure, D.D.: Improving flood warning times using pervasive and grid computing,
http://envisense.org/floodnet/ingenia/ingenia.htm

3. Hughes, D., et al.: GridStix: Supporting flood prediction using embedded hardware and next
generation grid middleware. In: Proc. IEEE Int’l Symp. World of Wireless, Mobile and Mul-
timedia Networks (WoWMoM) (2006)

http://envisense.org/floodnet/ingenia/ingenia.htm

A Wireless System for Real-Time Environmental and Structural Monitoring 465

4. NOAA - National Weather Service: Flash flood monitoring and prediction (FFMP) (March
2006) http://www.nws.noaa.gov/mdl/ffmp/index.htm

5. Galantowicz, J.F.: High-resolution flood mapping from low-resolution passive microwave
data. In: Proc. IEEE Int’l. Geoscience and Remote Sensing Symposium (IGARSS ’02),
vol. 3, pp. 1499–1502 (2002)

6. Temimi, M., et al.: Near real time flood monitoring over the Mackenzie River basin using
passive microwave data. In: Proc. IEEE Int’l. Geoscience and Remote Sensing Symposium
(IGARSS 04), vol. 3, pp. 1862–1865 (2004)

7. Castillo-Effen, M.: Wireless sensor networks for flash-flood alerting. In: Proc. 5th IEEE Int’l.
Caracas Conference on Devices, Circuits and Systems, Dominican Republic, pp. 142–146
(2004)

8. Dellepiane, S., et al.: SAR images and interferometric coherence for flood monitoring. In:
Proc. IEEE Int’l. Geoscience and Remote Sensing Symposium (IGARSS ’00), pp. 2608–
2610 (July 2000)

9. Shao, Y., et al.: Chinese SAR for Yangtze River flood monitoring in 1998. In: Proc. IEEE
Int’l. Geoscience and Remote Sensing Symposium (IGARSS 00), pp. 2495–2497 (2000)

10. IN4MA Remote Monitoring Solutions: Wireless outstations for flood warnings,
http://www.in4ma.co.uk

11. Campbell Scientific, Inc.: ALERT flood warning (2001),
http://www.campbellsci.com/flood-warning

12. Cardell-Oliver, R., et al.: A reactive soil moisture sensor network: design and field evaluation.
In: Int’l J. Distributed Sensor Networks, pp. 149–162 (2005)

13. Delin, K.A., et al.: Sensor Web for spatio-temporal monitoring of a hydrological environ-
ment. In: Proc. 35th Lunar and Planetary Science Conf. (2004)

14. Arms, S.W., Townsend, C.P.: Wireless strain measurement systems - applications and solu-
tions (2003)

15. Lynch, J.P., et al.: Advanced wireless structural monitoring: Past, present and future. The
John A. Blume Earthquake Engineering Center (28) (2001)

16. Wang, Y., Lynch, J.P., Law, K.H.: A wireless structural health monitoring system with mul-
tithreaded sensing devices: Design and validation. Structure and Infrastructure Engineering
- Maintenance, Management and Life-Cycle Design & Performance 3(2), 103–120 (2007)

17. National Oceanic and Atmospheric Administration (NOAA) and National Weather Service
(NWS): Flash floods: a preparedness guide (1992),
http://www.nws.noaa.gov/om/brochures/ffbro.htm

http://www.nws.noaa.gov/mdl/ffmp/index.htm
http://www.in4ma.co.uk
http://www.campbellsci.com/flood-warning
http://www.nws.noaa.gov/om/brochures/ffbro.htm

Integrated Notification Architecture Based on

Overlay Against DDoS Attacks on Convergence
Network�

Mihui Kim, Jaewon Seo, and Kijoon Chae

Dept. of Computer Science and Engineering, Ewha Womans University, Korea
{mihui,seojw}@ewhain.net, kjchae@ewha.ac.kr

Abstract. The distributed denial of service (DDoS) attack that is one
of the most threatening attacks in the wired network has been already
extended in the wireless mobile network, owing to the appearance of
DDoS attack tool against mobile phone. In the future, the latent threats
for the converged form of DDoS attack should be resolved for the induc-
tion of successful convergence network. However, because of the current
problems in defending against converged DDoS attacks on convergence
network, such as the absence of a converged defense, research on coop-
eration architecture between defense processes is critical. In this paper,
we analyze possible converged attacks, thus we propose a scalable and
dynamic notification architecture based on overlay routing against DDoS
attacks in consideration of the capacity of each node. A main feature of
this architecture is the speedy notification of attack detection to each
highest defense system in the network of the attack agents as well as
in the victims. Thus it makes it possible not only to fast defense at the
network of victims but also to identify attack agents. We analyzed the
overhead for constructing our hierarchical overlay, simulated the trans-
mission rate and speed of detection notification, and found a marked
improvement using our defense compared to general routes.

1 Introduction

Recently, the International Telecommunication Union-Telecommunication (ITU-
T) standardization sector recognized ”next generation network” (NGN) factors
in the telecommunication industry, including the need to converge and optimize
the operating networks and the extraordinary expansion of digital traffic. Among
other research topics such as quality of service (QoS), interoperability, general-
ized mobility, and service capabilities and architecture, security issues are as
crucial to the NGN as they are to today’s network environment. In Korea, a
broadband convergence network (BcN) is being created to provide seamless and

� ”This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)”
(IITA-2006-C1090-0603-0028).

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 466–476, 2007.
c© IFIP International Federation for Information Processing 2007

Integrated Notification Architecture 467

secure, quality-guaranteed broadband multimedia service, which includes con-
verged communication, broadcasting, and Internet access. Because of security
threats and defense problems in this converged environment, security is thus a
main area of research.

A converged network is characterized by factors such as host heterogeneity,
dynamic topology, and scalability, and services that are provided should consider
these characteristics. Although each network has existing security systems, they
are insufficient to defend against converged attacks on the nodes of other net-
works, such as a short message service (SMS) Flooder attack. This was the first
DDoS attack tool on computers in a wired network directed at mobile phones.
The attack commanded all infected Microsoft Outlook software to send SMS
messages to a certain victim’s mobile phone, to inundate it. In a converged at-
tack, the victims and the attack agents are located in different types of networks.
Because of the power of the converged attack and the damage it could cause, the
converged DDoS attack may be the most threatening of the various attacks in
a converged network, that is in a ubiquitous environment. In addition, because
of the open network structure of ubiquitous environments, it is easy to access
the communication network, raising the imminent possibility of hacking and the
dissemination of the virus. In the case of a converged attack, the defense sys-
tems on each network should collaborate to provide a fast defense. Therefore,
a systematic integrated defense system is needed, but until now has been lack-
ing because of the difficulty in gathering information and distributing it in a
heterogeneous environment [1].

In this paper, we design an overlay structure for notification of converged
DDoS attacks on converged networks. Most defenses against DDoS attack con-
sists of detection, identification of attack agents, and filtering of attack traffic.
However, our overlay structure is mainly used for notification of the detection
of an attack. Both defense systems in the networks of victims and attack agents
are notified, making possible not only fast defense in the network of victims but
also the identification of attack agents. This overlay has hierarchical structure
like the hierarchy of the most networks, such as wired network, NEMO (NEt-
work MObility) network, and hierarchical sensor networks. The each overlay of
networks is connected through the overlay nodes with multiple interfaces, for
example, Ethernet and wireless LAN interfaces. Also, each overlay is composed
in consideration of the capacity of the each node. This structure pursues the
following design goals and we will confirm the performance by simulation and
analytical results.

• Speedy notification of attack detection to each highest defense system
in the network of attack agents, as well as victims.

• Scalable and dynamic defense structure of overlay in consideration of
the capacity of each node

This paper is divided into five sections. In Section 2, we explain the threats
of DDoS attacks on converged networks. We introduce in Section 3 our inte-
grated notification architecture. And next, we evaluate our mechanism in various

468 M. Kim, J. Seo, and K. Chae

views, and explain the analysis of simulation results. Finally, a brief conclusion is
presented.

2 Threats of DDoS Attacks on Converged Networks

Convergence could be considered from three viewpoints: user services conver-
gence, device convergence and network convergence. Among them, network con-
vergence implies consolidation of the network to provide different user services,
with telecom-grade quality of service, to several access types with an empha-
sis on operator cost efficiency. In this paper, we mainly consider the network
convergence. The characteristics of converged network are as follows, and the
converged network services should consider these characteristics.

• Host heterogeneity Nodes may vary widely in their capacities in terms of
CPU power, memory, or network bandwidth.

• Dynamic topology Nodes may join and leave to a network at any time by
mobility or by node redeployment. The system must be able to efficiently
maintain a dynamic topology.

• Scalability The system must be able to scale to very large nodes in con-
verged networks.

• Convergence Results of management service can be properly linked and
merged.

In future ubiquitous environments, the following converged DDoS attacks are
likely. We therefore need to design integrated defense service against these po-
tential converged attacks.

(1) Wired network → Mobile network
For example, SMS Flooder is a DDoS attack tool against mobile telephones

that has already emerged in wired networks. Because most mobile devices have
extremely limited functionalities and bandwidth, a host with a powerful capacity
in the wired network could easily break down the mobile network.

(2) Mobile network → Wired network
Most mobile networks are interconnected with a wired network, to allow the

connection of distant mobile nodes or to provide mobile nodes with the various
Internet services in a wired network. Mobile nodes, for example, a mobile phone
using a RFID reader, can severely request these connections to the servers in
the wired network, thus threatening the availability of servers.

(3) Sensor network → Mobile network
Numerous technologies exist for mobility support, such as the Mobile Internet

protocol (MIP), code division multiple access (CDMA), International Mobile
Telecommunications-2000 (IMT-2000), and so on. Network mobility has been
realized among these after the foundation of the Network Mobility (NEMO)
Working Group (WG) in the IETF. This WG is concerned with managing the
mobility of an entire network that changes, as a unit, its point of attachment to
the Internet. NEMOs can include a sensor network, for example, a vehicle that

Integrated Notification Architecture 469

includes sensors for its control. In this case, compromised sensors in a NEMO
can generate a great deal of sensing information that will congest the NEMO.

(4) Mobile network → Sensor network
Mobile routers or nodes performing as a mobile sink are infected with virus,

then can request the sensing information in a sensor network, pretending other
mobile sinks. In this case, the flood of request traffic can affect all of the sensor
nodes, aggregator nodes, and sink nodes in the sensor network.

(5) Wired network → Sensor network
Static nodes in a wired network can severely request the sensing information

to sinks in a sensor network to induce tremendous traffic from sensors.

(6) Sensor network → Wired network
Compromised sensors in the sensor network can transmit the sensing infor-

mation to the server in the wired network that manages the sensor network,
creating sudden traffic that influences the server or the wired network connected
to the server.

3 Notification Mechanism Using Overlay

We introduce integrated notification architecture against DDoS attack on con-
verged network using overlay as shown in the figure 1, in order to fast notify
the attack detection to both highest defense systems in the network of victims
and attack agents, through detouring victims. In figure 1, three overlays are
connected through the connection of overlay nodes, and we assume the highest
defense system exists at the highest overlay. However, our defense can apply
to networks that are different from that of figure 1 if the overlay nodes know
the location and overlay level of the defense systems. In the converged network,
each hierarchical overlay networks are interconnected by the overlay nodes with
multiple interfaces. We also assume secure communication between the high-
est defense systems and the overlay nodes. We will explain our defense overlay
architecture in detail below.

Attack detection notification msg.

Highest defense system

Overlay node

Victim

Normal node (Not overlay node)

Detection/defense node

Overlay network

Connection btw. overlay nodes

Connection btw. normal and
overlay node

D1 D2
(1)

(2)

(3)

(4)
(5)

(6)

(7)

Fig. 1. Basic architecture for our notification

470 M. Kim, J. Seo, and K. Chae

3.1 Chord Overlay Routing

Our defense architecture uses chord overlay routing to transmit the attack detec-
tion message and detour normal traffic, before excluding attack agents. The chord
protocol is a distributed lookup protocol that efficiently locates the node that
stores a particular data item. In the N -node chord system, each node maintains
information only about O(logN) nodes, and resolves all lookups via O(logN)
messages to other nodes. The chord maintains its routing information as nodes
join and leave the system. A high probability exists that each event will result
in no more than O(log2N) messages. The chord protocol resolves the inability of
previous methods to scale to a large number of nodes, and is referenced in more
than 1000 papers using overlay routing in various fields.

In chord, each node is assigned a numerical ID via a hash function in the
range [0, 2m-1] for some predetermined value of m. The nodes in the overlay
are ordered by these identifiers. The ordering is cyclic (i.e., wraps around) and
can be viewed conceptually as a circle, where the next node in the ordering
is the next node along the circle in the clockwise direction. Each overlay node
maintains a table that stores the identities of other overlay nodes. The ith entry
in the table is the node whose identifier equals or, in relation to all other nodes in
the overlay, most immediately follows x+2i−1 (mod 2m). When the overlay node
receives a packet destined for ID y, it forwards the packet to the overlay node
in its table (called a finger table) with the ID that precedes it by the smallest
amount.

As other overlay routing applications, the chord protocol has multicasting [2]
or attack defense [3,4]. Secure overlay services (SOS) architecture using chord
overlay [3] was proposed to proactively prevent DDoS attacks. SOS architecture
is geared toward supporting emergency services or similar types of communica-
tion and introduces randomness and anonymity into the forwarding architecture,
making it difficult for an attacker to target nodes along the path to a specific
SOS-protected destination. HOURS [4] using hierarchical overlays achieved DoS
resilience in an open service hierarchy, such as a domain name server (DNS),
lightweight directory access protocol (LDAP), or public key infrastructure (PKI).
However, the former is for the protection of a specific server against a DDoS at-
tack and the latter is for DDoS defense between servers with the specific service
hierarchy; thus, their goals are different from our goal, which is the transmission
protection of control and normal traffic in converged DDoS attacks.

3.2 Hierarchical Overlay Construction

Our defense overlay is hierarchically constructed according to the capacity and
connections of the nodes. Two methods exist of joining the overlay network, one
set up by the operator and the other by messages. The former is applied at the
beginning of the network setup, while the chord overlay construction method
is used after the overlay level and capacity are configured. The latter redeploys
newly joined nodes or supporting mobile nodes in the dynamic topology, with
the following join inquiry message (JIM) and join response message
(JRepM). We will explain the latter steps in detail.

Integrated Notification Architecture 471

A newly joining node nnew first sends the JIM, including the node’s capacity,
to neighbor nodes. Neighbor nodes are the upper or lower nodes directly con-
nected to the nnew, or in the Ethernet case, the nodes in the broadcast domain.
The overlay nodes nis receiving the JIM send JRepM s, including their capac-
ity (Capacityi) and overlay Level (Leveli). The newly joining node nnew waits
a specified amount of time for the JRepM s, then determines its own overlay
level with reference to Capacityis and Levelis according to table 1, and sends a
join request message (JReqM) to an overlay node in that overlay level. If no
JRepM s is received in the specified time period, the node nnew sends a JReqM
directly to the highest defense system.

The join process through the JReqM is based on the chord method, but
the JRepM also includes the connection information (to high, low, and other
networks), and if a direct connection to other overlay nodes exists, their over-
lay level joins information. In the join process, joining overlay nodes should
update the information of the upper/lower/other interface successor node, if
necessary, so that information can be used in the attack detection notifica-
tion. The information stored at each overlay node contains the predecessor
in the overlay network (used for the join process), the routing table (called
the finger table), the high/low successor directly connected to the higher and
lower layer, and the otherif succcessor directly connected to other type net-
works. The high/low/otherif succcessor is the first node directly connected to
the higher/lower layer/other network in a clockwise direction in the ring.

The modified join process sets up the predecessor, finger table, and high/low/
otherif successor at node nnew, and then updates their information at pre-
viously joined overlay nodes, if necessary. The configuration method for the
high/low/otherif successor is as follows. If the already joined overlay nodes ni

receive the JReqM, they compare their high/low/otherif successori, and up-
date themselves with those in the JReqM when high successori > new > i,
low successori > new > i, or otherif successori > new > i. Figure 2 shows
an example of an overlay and finger table after the joining of node 6. In this
example, the high successor3 of node 3 and otherif successors are updated. In
addition, for a more practical overlay construction, the modified chord can be
used to reduce routing latency if IPv6 is used [7].

3.3 Notification of Attack Detection

In our defense structure, we assume that existing distributed detection methods
are used. For example, there are a monitoring method for IP address or the
change rate of IP/MAC address using the network configuration information
at the middle nodes[5], a data mining method[6], and so on. Thus detection
mechanism is beyond the research scope of our defense structure.

If overlay nodes detect a DDoS attack, they send an attack detection mes-
sage (ADM) to the highest defense system through hierarchical overlays, that
is, to its high successor using the finger table. To defend against and identify
attack agents, the ADM includes detection node information (IP address and
overlay level), victim information (IP address and overlay level, if it exists), the

472 M. Kim, J. Seo, and K. Chae

0

1

2

3

4

5

6

7

1

3

0

[1,2)

[2,4)

[4,0)

1

2

4

suc.int.start
h_suc./

l_suc.

1/3

3

3

0

[2,3)

[3,5)

[5,1)

2

3

5

suc.int.start h_suc./

l_suc.

1/3

0

0

0

[4,5)

[5,7)

[7,3)

4

5

7

suc.int.start
h_suc./

l_suc.

1/3

(a) Example of overlay with node 0,1, and 3(m=3)

Node connected with

higher overlay node

Node connected with

lower overlay node

0

1

2

3

4

5

6

7

1

3

6

[1,2)

[2,4)

[4,0)

1

2

4

suc.int.start

1

3

6

[1,2)

[2,4)

[4,0)

1

2

4

suc.int.start h_suc./

l_suc.

1/3

3

3

6

[2,3)

[3,5)

[5,1)

2

3

5

suc.int.start

3

3

6

[2,3)

[3,5)

[5,1)

2

3

5

suc.int.start h_suc./

l_suc.

1/3

6

6

0

[4,5)

[5,7)

[7,3)

4

5

7

suc.int.start

6

6

0

[4,5)

[5,7)

[7,3)

4

5

7

suc.int.start
h_suc./

l_suc.

6/3

0

0

3

[7,0)

[0,2)

[2,6)

7

0

2

suc.int.start

0

0

3

[7,0)

[0,2)

[2,6)

7

0

2

suc.int.start
h_suc./

l_suc.

6/3

(b) Finger tables after node 6 joins in black and unchanged in gray

Fig. 2. Example of overlay and finger table after node 6 joins

Table 1. Level decision method of a newly joining node

if(Capacityi ≤ Capacitynew < Capacity(i+1)) (Levelnew = Leveli)
elseif(Capacity1 ≥ Capacitynew) (Levelnew = Level1)
elseif(CapacityK ≤ Capacitynew) (Levelnew = LevelK)

• ni(1 ≤ i ≤ K, K : Number of nodes sending JRepM)
• Capacityi: Capacity of node ni (capacities in increasing order, thus Capacityi ≤

Capacity(i+1))
• Leveli: Overlay level of node ni

• Capacitynew: Capacity of a newly joining node nnew

• Levelnew: Determined level of a newly joining nod nnew

connection relationship of the detection node and the victim, and information
about the neighbors of the detection nodes (connection information of neigh-
bors). The high successor receiving the ADM also sends its high successor, and
finally the highest defense node receives the ADM, after repeating this transmis-
sion through the hierarchical overlay. In the example shown in Figure 1, after
overlay nodes D1 and D2 detect a victim, they send the ADM through (1)-(5),
and finally the ADM arrives at the highest defense node (6).

In the converged network, hierarchical overlays such as depicted in Figure 1
are constructed for each network, and are connected with each other through
the overlay node with multiple interfaces. Each overlay node manages successors
that connect to other networks in the finger table. If the converged attack is
detected, the attack detection is relayed to the highest defense system (node (8)
in Figure 3) in the network of the attack agents as well as in its own network
(node (2)). The route (node (1)-(2)) of notification in the network of detection
node D follows the pattern described in the previous paragraph. The network
of the attack agents is notified; first, the detection node sends the ADM to
successors connecting to the network in its overlay layer (node (3)-(5)), then the
ADM is routed through the hierarchical overlay (node (6)-(8)). The notification
to the highest defense system in the network of the attack agents provides the

Integrated Notification Architecture 473

Attack traffic

Route of ADM

ADM

D

(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

Fig. 3. Attack detection notification in the case of converged attack

information for follow-up measures against the attack agents. The route through
this hierarchical overlay makes it possible to randomize the notification route for
all detection nodes, in comparison to a direct route between each highest defense
system, which can be a point of failure or attack.

4 Evaluation

In this chapter, we attempt to provide an analysis of the advantages and useful-
ness of our defense architecture. At first, we analyze the construction overhead
of hierarchical overlay relative to only one big overlay, and we simulate the
detection notification speed in converged DDoS attack on converged network
with GloMoSim that provides a scalable simulation environment for wireless
and wired network systems[8].

4.1 Overhead of Overlay Construction

We assume that our defense overlay is hierarchically constructed based on node
capacity. To provide scalability or heterogeneity, one of the design issues in a
converged network, the defense architecture should support a variety of nodes,
making the construction of several overlays profitable. Moreover, a small overlay
can be favorable for nodes with low capacity, such as the aggregators on the sen-
sor network. Our defense overlay is based on the construction method of chord,
thus O(log2N) message transmission is required for a node join/leave in N-size

Table 2. Decision method of defense nodes

Construction of one overlay
≥ Construction of β overlays with the different number of nodes
≥ Construction of β overlays with the same number of nodes,

N · logN ≥
�β

i=1 αi · logαi ≥ β · N/β · log(N/β)

474 M. Kim, J. Seo, and K. Chae

Fig. 4. Comparison for construction overhead

overlay network, and this can be reduced to O(logN) with practical optimiza-
tion[3]. The construction overhead of our hierarchical overlays is smaller than
for the construction of one overlay, and the construction overhead of overlays
with the same number of nodes is smaller than that of overlays with a different
number of nodes, as shown in table 2. The bigger the N in an N-node network is,
the larger the overhead difference is, as shown in figure 4. In figure 4, the hier-
archical overlay is made with three overlays; for example, a hierarchical overlay
(1:10:100) in a 1000-node network is composed of an overlay with 10 nodes, an
overlay with 100 nodes, and an overlay with 890 nodes.

4.2 Simulation Results

We configured the converged network as in Figure 5 to analyze the influence
on the converged attack. In figure 5, we depict the wired and wireless networks
differently to clearly differentiate them, but they share the same area, and wired
nodes 2, 3, 5, 9, 11, and 15 are the same as the wireless nodes with the same

16 26

92

11

7 8 12 13 14 1565

4 10

1

3

17 18

19 20 21 22 23 24 25 29 30 31 32 33 34 35

27 28

16 26

92

11

7 8 12 13 14 1565

4 10

1

3

17 18

19 20 21 22 23 24 25 29 30 31 32 33 34 35

27 28

Wired

Wireless

Overlay

Layer 1

Overlay

Layer 2

Overlay

Layer 3

Overlay

Layer 1

Overlay

Layer 2

Overlay

Layer 3

Detection Node(Overlay node) General Node The highest defense node

Route by general routing Route of attack traffic General route of notification

Detection node

Detour of notification

Fig. 5. Simulation network for converged network

Integrated Notification Architecture 475

respective numbers. We mounted the DDoS attack from the wired node 26, 27
and 27 to wireless node 27, and attack traffic is generated at 1-ms intervals. If
overlay nodes detected the converged DDoS attack, they sent five ADM s at 1-s
intervals to the highest defense nodes n1 of the networks of both victims and
attack agents, through overlay routing.

In results, general routes incur the low transmission rate and long delay of
notification to the highest defense system (Wireless, Wl n1) in comparison with
overlay routes like table 3, because the general routes pass via victims. Moreover,
the overlay route provides the fast and exact notification to highest defense
system (Wired node, Wd n1) in wired network where attack agents exist, to
take immediate follow-up measure such as the identification of attack agents.

Table 3. Key re-distribution message

Node Transmission rate (pkts or %) Transmission time (sec)
ID General Overlay routing General Overlay routing

routing Wl n1 Wd n1 routing Wl n1 Wd n1

12 1 5 5 0.436562669 0.019297497 0.037087675

13 0 1 5 - 1.219606000 0.025713102

10% 60% 100% 0.436562669 0.019297497 0.025713102

5 Conclusion

In this paper, we proposed an integrated notification architecture using hierar-
chical overlay in consideration of node capacity, in order to interconnect defense
systems on each network, and guarantee the speedy notification for attack de-
tection through detour victims. It is especially important to defense possible
converged attacks in the future. We constructed hierarchically the overlay in
due consideration of the various capacities of nodes and lots of nodes on con-
verged environment, and we extended the chord overlay routing to interconnect
overlay layers and hierarchical overlays on different networks. The hierarchical
overlays can decrease the overhead for construction in comparison with the con-
struction of a big overlay. In simulation results on converged environment, we
gained the fast and high notification rate for the attack detection. Moreover, our
overlay route could notify the fast and exact attack detection to highest defense
system where attack agents exist, to take immediate follow-up measure.

References

1. Won, Y.: BcN security Issues. In: Proc of Korea Internet Conference (KRNET)
(2006)

2. Zhang, Z., Chen, S., Ling, Y., Chow, R.: Capacity-Aware Multicast Algorithms on
Heterogeneous Overlay Networks. IEEE Transactions on Parallel and Distributed
Systems 17(2), 135–147 (2006)

476 M. Kim, J. Seo, and K. Chae

3. Keromytis, A., Misra, V., Rubenstein, D.: SOS: An Architecture for Mitigating
DDoS Attacks. IEEE JSAC 22(1) (2004)

4. Yang, H., Luo, H., Yang, Y., Lu, S., Zhang, L.: HOURS: Achieving DoS Resilience
in an Open Service Hierarchy. In: Proc. of DSN, pp. 83–92 (2004)

5. Kim, M., Chae, K.: Detection and Identification Mechanism against Spoofed Traffic
Using Distributed Agents. In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 673–682. Springer,
Heidelberg (2004)

6. Kim, M., Na, H., Chae, K., Bang, H., Na, J.: A Combined Data Mining Approach
for DDoS Attack Detection. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS,
vol. 3090, pp. 943–950. Springer, Heidelberg (2004)

7. Xiong, J., Zhang, Y., Hong, P., Li, J., Guo, L.: Reduce Chord Routing Latency Issue
in the Context of IPv6. IEEE comm.letters 10(1) (2006)

8. GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

http://pcl.cs.ucla.edu/projects/glomosim/

Making Middleware Secure on Embedded

Terminals

Yoshiharu Asakura, Atsushi Honda, Satoshi Hieda, Hiroshi Chishima,
and Naoki Sato

NEC Corporation
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan

Abstract. Recently more embedded terminals have begun to use a
general-purpose OS such as Linux. These terminals can perform vari-
ous functions, such as downloading applications. Since these applications
maybe malicious, it is necessary to protect terminals against them and to
ensure stability of services provided by the terminals. We have proposed
a security enhanced middleware model for embedded terminals based on
Linux (SEMMETL). The SEMMETL offers client identification, access
control for each application and resource control for each application.
The security enhanced X server (SEN XServer) is an example of our
proposed SEMMETL. By applying the SEMMETL to middleware, we
can enhance the security of embedded terminals and ensure stability.

1 Introduction

Recently more embedded terminals have begun to use a general-purpose OS such
as Linux 1. These terminals have functions that include downloading content
data and applications. Since the content or applications downloaded may be
malicious, they can have an adverse affect on terminals. Therefore, it is necessary
to protect embedded terminals against such problems and to ensure the stability
of services they provide.

Access control and resource control are functions that ensure the stability of
services provided by terminals. The former is a function to restrict the kinds
of resources that applications can access. The latter is a function to restrict
the amount of resources that applications can consume. Server-type middleware
such as the X Server[1] accepts connections from client applications and provides
services for them. Therefore, middleware needs to identify each client application.

Access control – To implement access control, it is a good idea to introduce a
secure OS such as SELinux[2]. Although a secure OS can control accesses to re-
sources provided by the OS itself, it cannot control accesses to resources provided
by middleware. Therefore, middleware needs access control for its resources.

Resource control – Many embedded terminals have only limited resources.
Server-type middleware allocates resources for client applications to provide ser-
vices for them. Hence, if one client application consumes a large amount of
1 All trademarks and registered trademarks referenced herein are the property of their

respective owners.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 477–485, 2007.
c© IFIP International Federation for Information Processing 2007

478 Y. Asakura et al.

resources, other client applications cannot be allocated sufficient resources[3].
Therefore, middleware needs resource control to restrict resource consumption
for each client application.

In this paper, we focus on making middleware for embedded terminals based
on Linux secure. This is because Linux has become popular in embedded ter-
minals recently. In Sect. 2, we propose a model that enables middleware for
embedded terminals based on Linux to enhance security. In this paper, we call
this model Security Enhanced Middleware Model for Embedded Terminals based
on Linux (SEMMETL). In Sect. 3, we give an example of the SEMMETL being
applied to the X Server.

2 SEMMETL

The SEMMETL ensures the services provided by an embedded terminal are
stable. The SEMMETL is a middleware model that satisfies the following three
requirements:

R1: client identification. The SEMMETL must identify each client
application.

R2: access control. The SEMMETL must check whether a client ap-
plication has permission to access resources.

R3: resource control. The SEMMETL must restrict resource consum-
ption for each client application and each kind of resource.

Figure 1 shows middleware to which the SEMMETL is applied. The middleware
accepts connections from client applications and identifies client applications to
control access and resources. When the middleware receives and processes re-
quests from client applications, the middleware controls accesses to its resources
and restricts resource consumption for each client application.

2.1 R1: Client Identification

There are several kinds of connections, such as the Internet domain connections
and the UNIX domain connections between the SEMMETL and client appli-
cations. In the case of a UNIX domain connection, the SEMMETL can obtain
a process ID of a connected client application via a UNIX domain socket[4].
However, the UNIX domain connection can only be utilized for internal commu-
nication within a terminal. If the SEMMETL needs to accept connections from
outside a terminal, a new reliable communication method to obtain client iden-
tifiers is required. For example, labeled IPSec is a candidate for this purpose[5].
This functionality enables terminals to control communication with applications
on other terminals based on the security label defined in SELinux. This security
label can be used as a client identifier.

After obtaining a client identifier, the SEMMETL performs the following two
activities:

Making Middleware Secure on Embedded Terminals 479

Linux

Resources

Resource Control

Client
Identification

Access Control

Middleware Client
Application

Request

connection

access/
allocate

Accepter

Middleware
Engine

Fig. 1. Middleware to which the SEMMETL is applied

A1: deciding whether the SEMMETL accepts a connection according
to a given criteria, e.g. connection types.

A2: classifying the accepted client application into domains according
to the client identifier.

To process A1 and A2, the SEMMETL must define rules that specify relations
between client identifiers and domains in advance. We call these rules a domain
policy.

2.2 R2: Access Control

The SEMMETL provides services to client applications and allows access to
none or more of its resources depending on the service required. Therefore, the
SEMMETL can implement access control at different levels. The SEMMETL
implements AC1 or AC2 or both of them.

AC1: restricting use of services provided by the SEMMETL
AC2: restricting access to resources provided by the SEMMETL

In AC1, the SEMMETL controls whether client applications have permission to
use services. In AC2, the SEMMETL controls whether client applications have
permission to access resources. The SEMMETL must define rules that specify
services or resources that client applications have permission to use or access.
We call the rules an access control policy. To reduce the size of an access control
policy, we specify an access control policy in a domain unit. Permission for a
client application is given by the domain to which the client application belongs.

480 Y. Asakura et al.

The flow of access control is as follows:

1. The SEMMETL receives a request from a connection and identifies a domain
by the connection.

2. The SEMMETL checks whether the domain has permission to use the ser-
vices or access the resources according to its access control policy.

3. If the SEMMETL concludes that the domain has permission, the SEMMETL
processes the request. If not, the SEMMETL does not entirely process the
request, that is, the SEMMETL processes only the permitted part of the
request or discards the request.

2.3 R3: Resource Control

The SEMMETL allocates resources according to a request that a client appli-
cation has sent. To implement resource control, the SEMMETL must identify
which client applications possess the resources. We define the following three
resource types from the point of view of which possess the resources:

RT1: The resources possessed by one client application
RT2: The resources possessed by several client applications
RT3: The resources possessed by middleware

The SEMMETL must classify allocated resources into the above three resource
types, which are described in more detail below:

RT1. Some kinds of resources are allocated to one client application, that is,
the resources are accessed by the client application. In this resource type, we
consider that the client application that has sent the request possesses allocated
resources. The SEMMETL sums the amount of allocated resources in respective
client applications and respective kinds of resources.

RT2. Some kinds of resources are shared and accessed by several client ap-
plications. In this resource type, we consider that the domain to which those
client applications belong possesses allocated resources or middleware possesses
them as a shared resources whichever client application has sent the request.
The SEMMETL sums the amount of allocated resources in respective domains
and respective kinds of resources or as shared resources.

RT3. The SEMMETL allocates resources to itself to work and manage client
applications and no client application can access this resource type. In this re-
source type, we consider that middleware possesses the allocated resources.

For RT1 and RT2, the SEMMETL must define rules that specify maximum
amount of resources in each domain and at each kind of resource. We call the rules
a resource control policy. The maximum amount of resources a client application
has is that of the domain to which the client application belongs.

3 Security Enhanced X Server

The X Server is middleware that provides GUI services to X clients. When an
X client sends an X request to the X Server, the X Server allocates and accesses

Making Middleware Secure on Embedded Terminals 481

X resources, such as windows and pixmaps, while the X Server processes the X
request. However, as the X Server has no access control and resource control, an
X client can access and consume X resources unrestrictedly. Hence, a malicious
X client can obstruct services provided by an embedded terminal by accessing
X resources iniquitously or consuming a large amount of a resource. In order to
protect against these attacks, we use the SEMMETL on the X Server. We call
this X Server the Security Enhanced X Server (SEN XServer).

We define one concept as ”an owner of an X resource” here. We can classify
X resources into a non-shared X resource, which is classified as RT1, and a
shared X resource, which is classified as RT2. An example of the former is a
window that is allocated to one X client. An example of the latter is a font that
is allocated to all X clients. Therefore, we define the owner of a non-shared X
resource as the X client that has sent the X request and the owner of a shared
X resource as the SEN XServer.

The SEN XServer satisfies the three requirements described in Sect. 2. The
policy file is composed of a domain policy, an access control policy and a resource
control policy.

3.1 Client Identification in the SEN XServer

The SEN XServer only accepts UNIX domain connections that satisfy R1. Since
few embedded terminals are required to accept connections outside of terminals,
we consider that this restriction is acceptable.

The SEN XServer identifies an X client as follows. The SEN XServer obtains a
process ID of an X client via a UNIX domain socket first, and then obtains a full
pathname of the X client via a /proc/[process ID]/exe link file. After obtaining
the full pathname, the SEN XServer processes A1 and A2 as follows. The SEN
XServer only accepts the UNIX domain connections as A1 and classifies the X
client into a domain as A2. In order to classify the X client into a domain, we
specify relations between full pathnames of X clients and domains in a domain
policy. If the full pathname is not classified as any domain, the SEN XServer
regards the X client as an invalid client and refuses the connection.

3.2 Access Control in the SEN XServer

The X Server defines several kinds of access to each X resource. When the X
Server receives an X request from an X client, the X Server accesses none or more
X resources to process the X request. To implement access control, the X Server
must conclude whether a received X request needs processing, that is, whether
the X client that has sent the X request has permission to access necessary X
resources. Namely, AC2 is suitable for the SEN XServer.

We define the kinds of access in respective X resources as a primitive access
control unit. We call the primitive access control unit the operation. Table 1
shows part of the operation for an X resource. We define operations that an X
request needs in respective X requests. That is because the SEN XServer must
conclude whether an X client has permission to execute the necessary operations

482 Y. Asakura et al.

Table 1. Operations (extract)

operations explanations

Window:addchild append a child window to a parent window

Window:destroy destroy a window

Window:map display a window on the screen

Drawable:draw draw on a drawable

Drawable:copy copy pixels from a drawable

Cursor:assign relate a cursor to a window

Table 2. Sets of X request and operations for an X resource (extract)

X requests operations X resources

CreateWindow Window:addchild a parent window
Drawable:copy using a drawable
Cursor:assign using a cursor

CreatePixmap nothing –

for an X resource to process the X request. Table 2 shows part of the sets of
the X request and the operations for X resources. We specify operations that
domains have permission to execute for an X resource in an access control policy.

The SEN XServer processes an X request only if a domain to which an X client
that has sent the X request belongs has permission to execute all operations
that the X request needs for an X resource. For example, CreateWindow needs
three operations: Window:addchild for the parent window; Drawable:copy for
the using pixmap; and Cursor:assign for the using cursor. The SEN XServer
checks whether the domain has these three operations for the X resource. If
the domain has permission to execute the three operations, the SEN XServer
processes CreateWindow.

The SEN XServer processes an X request as follows.

1. Identifying a connection from which the SEN XServer receives the X request.
2. Identifying a domain by the connection.
3. Identifying all X resources.
4. Checking whether the domain has permission to execute all the operations

that the X request needs for the X resource.
5. If the domain has permission, the SEN XServer processes the X request. If

not, the SEN XServer discards the X request.

3.3 Resource Control in the SEN XServer

The SEN XServer manages X resource usage as a resource control. Since the
X Server consumes memory when the X Server creates X resources, the SEN
XServer manages memory consumption for each X client. For resource control,
we specify the maximum amount of memory in each domain in a resource control

Making Middleware Secure on Embedded Terminals 483

policy. We classify the memory types into the following three types as described
in Sect. 2.3.

Non-shared memory (RT1): The memory that is consumed when
the SEN XServer creates non-shared X resources.

Shared memory (RT2): The memory that is consumed when the SEN
XServer creates shared X resources.

Working memory (RT3): The memory that is consumed when the
SEN XServer works and manages X clients.

For the non-shared memory, when the SEN XServer creates a non-shared X
resource, the SEN XServer adds a given amount of the non-shared memory to
the memory consumption of the owner of the non-shared X resource. If memory
consumption of an X client exceeds the specified maximum amount of memory,
the SEN XServer does not allocate memory to the X client.

For the shared memory and the working memory, since the owner of a shared
X resource is the SEN XServer and the working memory is also used for the SEN
XServer, the SEN XServer adds a given amount of the shared memory and the
working memory to the memory consumption of the SEN XServer.

3.4 The Policy File in the SEN XServer

The policy file is composed of a domain policy, an access control policy and a
resource control policy. Hence, the policy file defines the following three elements.

1. Relations between full pathnames of X clients and domains (a domain pol-
icy)
The policy file defines full pathnames of X clients in each domain. The SEN
XServer can identify a domain to which an X client belongs by its full path-
name.

2. Operations that X clients have permission to execute (an access control pol-
icy)
The policy file defines operations that domains have permission to execute
for an X resource. We call a domain that has permission to execute oper-
ations a source domain. We also call a domain to which an owner of an X
resource belongs a target domain. The policy file defines operations for a
target domain on each source domain.

3. Maximum amount of memory (a resource control policy)
The policy file defines the maximum amount of memory in each domain per
byte unit.

Figure 2 shows an example of a policy file. In this example, the policy file
defines 2 domains, the SYSTEM domain and the DOWNLOAD domain. In this
policy, /usr/X11R6/bin/xcalc and /usr/X11R6/bin/xclock belong to the SYS-
TEM domain and /usr/local/bin/dlbrowser and /usr/local/bin/dlmessenger be-
long to the DOWNLOAD domain. xcalc and xclock can each consume memory
up to 2097152 bytes. In the same way, dlbrowser and dlmessenger can also each

484 Y. Asakura et al.

[SYSTEM 2097152] /usr/X11R6/bin/xcalc /usr/X11R6/bin/xclock
[DOWNLOAD 1048576] /usr/local/bin/dlbrowser

/usr/local/bin/dlmessenger

domain SYSTEM {
{SYSTEM Window:addchild}
{SYSTEM Drawable:copy}
{SYSTEM Cursor:assign}
{DOWNLOAD Window:addchild}
{DOWNLOAD Drawable:copy}
{DOWNLOAD Cursor:assign}

}
domain DOWNLOAD {

{DOWNLOAD Window:addchild}
{DOWNLOAD Drawable:copy}
{DOWNLOAD Cursor:assign}

}

Fig. 2. An example of a policy file

consume memory up to 1048576 bytes. xcalc and xclock have permission to exe-
cute Window:addchild for X resources possessed by the X clients that belong to
the SYSTEM and the DOWNLOAD domains. dlbrowser and dlmessenger have
permission to execute Window:addchild only for X resources possessed by the
X clients that belong to the DOWNLOAD domain. If the SEN XServer receives
CreateWindow that uses a drawable possessed by xclock from dlbrowser, the
SEN XServer discards CreateWindow because dlbrowser does not have permis-
sion to execute Drawable:copy for the drawable possessed by xclock.

4 Conclusion

In this paper, we have discussed a proposed model called the SEMMETL. The
SEMMETL enables the enhancing of security of middleware by satisfying three
requirements: client identification, access control for each application, and re-
source control for each application. Moreover, we have given the SEN XServer
as an example of the SEMMETL. By applying the SEMMETL to middleware,
we can enhance the security of the middleware.

References

1. X.Org Foundation.http://www.x.org/
2. NSA: Security-Enhanced Linux.http://www.nsa.gov/selinux
3. Hieda, S., et al.: Resource Management in Linux for Mobile Terminals. IPSJ Trans-

actions on Computing System 46(SIG3), 1–10 (2005)

 http://www.x.org/
 http://www.nsa.gov/selinux

Making Middleware Secure on Embedded Terminals 485

4. Wheeler, D.A.: Secure Programming for Linux and Unix HOWTO,
http://www.linux.org/docs/ldp/howto/Secure-Programs-HOWTO/index.html

5. Jaeger, T.R., et al.: Leveraging IPSec for Mandatory Access Control of Linux Net-
work Communications. Technical Report RC23642 (W0506-109), IBM (June 2005)

6. Kilpatrick, D., Salamon, W., Vance, C.: Securing The X Window System With
SELinux. http://www.nsa.gov/selinux/papers/X11 Study.pdf

http://www.linux.org/docs/ldp/howto/Secure-Programs-HOWTO/index.html
http://www.nsa.gov/selinux/papers/X11_Study.pdf

Dynamic Translator-Based Virtualization

Yuki Kinebuchi1, Hidenari Koshimae1, Shuichi Oikawa2, and Tatsuo Nakajima1

1 Department of Computer Science, Waseda University
{yukikine, hide, tatsuo}@dcl.info.waseda.ac.jp

2 Department of Computer Science, University of Tsukuba
shui@cs.tsukuba.ac.jp

Abstract. Microkernels and virtual machine monitors are both utilized
as platforms for running operating systems. Although there are many
similarities in their designs and features, they have opposite advantages
and drawbacks. A microkernel based system is highly portable. How-
ever, the interface it exposes is inflexible and incompatible with other
real hardware interfaces. In contrast, a virtual machine monitor inter-
face is identical to a specific real hardware interface. However, the im-
plementation of virtual machine monitors highly depends on processor
architectures and specific hardwares.

In this paper, we present a new model of virtual machine monitor, a
flexible dynamic translator constructed on a portable microkernel. Our
model offers both high portability and compatibility. Moreover, its flexi-
ble interface could be reconfigured to support various types of hardware
interfaces. The results of the evaluation show that the performance of
our prototype system is unsatisfactory, so we propose some techniques
to improve its performance as future work.

1 Introduction

Microkernels and virtual machine monitors (VMMs) have common purpose which
is to run operating systems on them. There are many similarities in their designs
and features. However, since their primary aims differ from each other, they have
opposite advantages and drawbacks in a point of portability and compatibility.

Microkernels started with the redesigning of conventional operating systems.
In order to reduce the size and the complexity of a kernel, the number of its
functions was minimized and some traditional kernel functionality were moved
to the application level. The resulting system realizes a moduled and highly
portable structure. Since their interfaces differ from real hardwares interface,
there is a drawback that a guest operating system needs to be modified to run
on a microkernel.

In contrast, VMMs aim to the reuse of commodity operating systems. Like a
microkernel, VMM is a small and simple program running in privileged mode,
but provides an interface identical or almost identical to the underlying real hard-
ware. Thus, operating systems can run on VMM without any or with minimum
modification. Since its implementation highly depends on a processor architec-
ture and a specific hardware, the portability of itself is low.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 486–495, 2007.
c© IFIP International Federation for Information Processing 2007

Dynamic Translator-Based Virtualization 487

In this paper, we propose a new model of constructing a VMM, which is a flex-
ible dynamic translator constructed on a portable microkernel. The past virtual
execution platforms have implemented their interfaces directly on hardware in-
terfaces. They have a hardware dependent, not portable and inflexible interface
implementation. In our model the hardware dependent layer is split from the
interface implementation. The underlying hardware interface is abstracted by
the microkernel, which provides a uniform interface on different architectures to
the machine emulator running on it. The machine emulator provides an flexible
interface implementation, which enables the execution of unmodified operating
systems and can be reconfigured to support different hardware interfaces. We im-
plemented a prototype system by porting an existing portable machine emulator
to an existing microkernel, and made some evaluations on its performance.

The next section compares microkernels and VMMs. Section 3 introduces
some related work. Section 4 introduces the implementation of our prototype
system. Section 5 proposes some applications using our model. Section 6 intro-
duces the results of the evaluation. Section 7 discusses some performance issues
and future directions. Finally Section 8 concludes the paper.

2 Microkernel vs VMM

This section compares advantages and disadvantages of microkernels, VMMs,
and propose our new virtualization model which integrates the advantages of
both of them.

A microkernel is a small operating system supporting only a minimum set
of API. Microkernels are used as bases for constructing operating systems. The
interface provided by a microkernel is an abstract hardware interface, which is
different from any existing hardware interfaces. Therefore, when running an ex-
isting operating system on a microkernel, its architecture dependent part must
be modified as shown in Figure 1 (a). This is the drawback of the microkernel-
based approach. The advantage of using microkernels is their portability. Since a
microkernel-based system splits the hardware dependent layer and operating sys-
tem services, the system could be supported on a different hardware by porting
only a part of the microkernel.

A virtual machine monitor is a software that enables multiple operating sys-
tems to run on a single hardware by giving the illusion of using a whole hardware
to each operating system. The interface provided by a virtual machine monitor
is almost identical to a specific existing hardware interface. The advantage to use
VMMs is that they do not require the modification of guest operating systems to
be run on it. Figure 1 (b) shows the operating system for architecture A running
directly on the hardware of architecture A. The operating system could run on
the virtual machine monitor without modifying its architecture dependent part
as shown on in Figure 1 (c). The drawback of the virtual machine monitor-based
approach is strong dependency to the underlying hardware interface. Moreover,
the architecture offered by the virtual machine monitor and the interface of the
underlying hardware should be the same.

488 Y. Kinebuchi et al.

Fig. 1. OS on VMM and a microkernel

Fig. 2. Machine Emulator on a microkernel

We propose a new virtualization architecture, which has the advantages of
both microkernels and virtual machine monitors, the portability and the compat-
ible interface with existing hardware architectures. Figure 2 shows the overview
of our model. Flexible machine emulators are running on a portable microker-
nel. The emulator provides an interface compatible with an existing architecture
interface. The emulator on the lefthand side of the figure offers the interface of
architecture A, which executes an unmodified operating system. In addition, the
emulator could be reconfigured to execute operating systems on various differ-
ent architectures. The emulator on the lefthand side of the figure is reconfigured
to offer the interface of architecture B. The implementation of the emulator de-
pends on the microkernel interface but not the host architecture. The underlying
microkernel hides the hardware interface from the emulator and offers a uniform
interface. When the underlying hardware changes, only the small architecture
dependent part of the microkernel is modified. Therefore the porting cost of the
system is decreased dramatically.

Dynamic Translator-Based Virtualization 489

3 Related Work

In this section, we introduce an existing machine emulator and some existing
virtual machines.

Bochs[6] is a machine emulator which emulates the x86 architecture machine.
It has a capability to run guest operating systems built for the x86 architecture
without any modifications. The code of Bochs is written in C++, which can
be compiled to run on various operating systems. Although it supports a high
portability over operating systems, the portability of supporting new hardware
platform depends on the host operating system implementation.

Xen[1] is VMM leveraging a virtualization technique called para-virtualization.
Using para-virtualization increases the performance of guest operating system,
but it requires the modification of guest operating systems to be virtualized. In
addition, the implementation of Xen highly depends on the x86 architecture, it
has low portability.

VMware Workstation[8] is VMM that can run unmodified operating systems
built for the x86 architecture. It runs as an application running on commodity
operating systems such as Linux and Windows. It installs VMM running in the
privileged level as a device driver in order to use privileged level instructions.
This is to increase the performance of running guest operating systems. At the
same time it increases the dependency on both the host operating system and
the host hardware architecture.

4 Constructing Machine Emulator on Microkernel

4.1 Overview

We implemented a prototype system of our proposed model by porting the
QEMU machine emulator[2] to the L4Ka::Pistachio microkernel[9] (L4 for short)
with the Kenge[4] environment. The architecture of the prototype system is
shown in Figure 3. QEMU, originally running on Linux, is modified to run as
an application on L4. Each of QEMU can run a single guest operating system
on it. By running multiple QEMU, multiple guest operating systems can run
simultaneously on a single hardware. Kenge provides some libraries and servers
that facilitate the constructions of applications on L4.

The following subsections briefly introduce QEMU, L4 and Kenge followed by
the description of virtual devices.

4.2 QEMU

QEMU is a portable machine emulator, which emulates entire computer inter-
face including CPU, memory and hardware devices. It runs as an application
on commodity operating systems such as Linux, Windows, Mac OS X and Free
BSD. Since QEMU emphasizes a portability, it supports various processor ar-
chitectures as the host and the guest architecture. Currently, it supports x86,
x86 64, ARM, SPARC, PowerPC and MIPS for the guest architecture, x86,

490 Y. Kinebuchi et al.

Fig. 3. A machine emulator on a microkernel

x86 64 and PowerPC for the host architecture. In addition, the host and the
guest architecture can be different.

In order to provide a virtual CPU running guest programs, QEMU leverages
the technique of a dynamic translation. It splits a guest instruction into pseudo
microcodes that consists of host instructions. The translation is continued up to
the next jump instruction, and the chunk of translated codes is put in a buffer
as a unit of translated block (TB). TBs are reused when corresponding codes are
executed again. Each microcode is written in the C language that is compiled
to native code by GCC on the building stage of QEMU. Since the C codes can
be compiled for various architectures by using different compilers, the porting
costs are kept low.

QEMU also provides virtual devices that offer interfaces of existing hardware
devices. The virtual devices for original QEMU are implemented using functions
and libraries of the host commodity operating system. For example, data con-
tained in a virtual hard disk is saved to a file on a host filesystem as a hard-disk
image. In addition, the inputs and outputs of a guest operating system for a dis-
play, keyboard and mouse are processed using host graphic libraries and window
systems. Since these libraries are not supported on L4, we modified the virtual
devices to run in the L4 environment. The implementation of virtual devices on
L4 is described in Section 4.5.

4.3 L4Ka::Pistachio

L4Ka::Pistachio is a portable microkernel. L4 itself only provides primitive func-
tions to support thread management, address space management and IPC. Fa-
cilities supported by modern operating systems are moved to the user level and
implemented as servers and libraries. For example, device management is moved
to the user level, and implemented as device servers. Applications running on
the microkernel interface with device servers to access hardwares.

4.4 Kenge and Iguana

Since L4 offers only primitive functions, we worked on the Kenge environment
which helps the development of applications for L4. Kenge consists of a system

Dynamic Translator-Based Virtualization 491

build environment, libraries and servers, including the Iguana server[3] and some
device servers. The libraries provide some POSIX functions, device drivers and
some RPC stubs to interact with servers. The detail of device servers is described
in the next section.

Iguana is a privileged server which manages resources such as memory, CPU
and capabilities to access those resources. It also provides some high-level func-
tions for applications running in L4 to create and delete threads, map and unmap
memory regions.

QEMU on L4 uses some POSIX functions provided by these libraries, but not
all the POSIX functions used by QEMU are provided by Kenge. Therefore we
added some POSIX functions used by QEMU to help the porting.

4.5 Virtual Devices

This section describes the two different models of virtual hardware implementa-
tion. The first implementation is the model which virtual devices interact with
device servers running beside QEMU and other applications. The second imple-
mentation is the model which links virtual devices with device driver libraries
which let them directly interact with hardwares.

Device Server. A device server is a special application running on L4 which
manages a device I/O to a specific hardware device. Although device servers are
running in unprivileged mode, they are given a permission to access hardware
devices. Therefore device drivers contained in device server can directly interact
with hardware devices.

QEMU interact with device servers through the IPC function provided by
L4. When a guest operating system writes to a virtual hardware, it transfers
the written data to a corresponding device server using IPC. The device server
receives the data, it invokes the device driver function, and perform an actual
device output (Figure 4 (a)).

When multiple guest operating systems are sharing a single real device, the
device server should arbitrate inputs and outputs. For example, the console
server we made, can switch to which QEMU it transfers data, and let multiple
guest operating systems to share a single display and keyboard. The drawback
of this model is that frequent IPC between a guest operating system and device
servers triggers frequent context switch.

Internal Device Driver. The other is the model using device driver library.
QEMU, using the module linked to itself, interfaces with hardware directly (Fig-
ure 4 (b)). In this model there is no overhead of IPC because the data does not
go through the device server, however a real device cannot be shared among
multiple guest operating systems. For example, the ported QEMU accesses the
VGA device using VGA device driver library. In this case, the guest operating
system directly writes to real VRAM.

492 Y. Kinebuchi et al.

Fig. 4. The implementation of virtual devices

5 Applications Using QEMU on L4

This section propose some applications using our system.

5.1 Emulating Multiple Architectures

The primary use of our system is the reuse of existing operating systems on top
of various types of architectures. Since QEMU exposes an interface compatible
with existing hardwares, guest operating systems can run on top of it without
any modifications. QEMU can run a guest operating system even if the host
and the guest architecture are different as shown in Figure 5. The console server
splits the monitor into four parts and makes each guest Linux to use one of them.

5.2 Anomaly Detection/Recovery

Alex Ho et al. proposed a taint-based protection using a machine emulator[5]. In
normal times, an operating system runs on VMM. When the CPU is executing
a code that interacts with data downloaded through the internet, the execution
is dynamically switched on to the machine emulator. In this way, it reduces the
performance degradation and protect the system from tainted data.

Using our system, we propose a similar system that offers an anomaly de-
tection and recovery (Figure 6). In normal times, applications run directly on
L4. When the system finds the symptom of application anomaly, the application
is migrated to run on QEMU. QEMU runs the application and analyzes it in
detail. When it detects an anomaly, it stops the execution of the application,
and if possible, it recovers the application and puts it back to run directly on L4
again. In this way, the system can realize the anomaly detection and recovery
with near-to-native performance.

6 Evaluation

In this section, we evaluate the performance of Linux running on QEMU on
L4. We used LMbench[7] to measure their performance. LMbench is a cross
platform benchmark to measure the performance of operating system primitives.
We built LMbench for three different architectures; x86, SPARC and ARM.

Dynamic Translator-Based Virtualization 493

Fig. 5. SPARC, PowerPC, ARM and
x86 Linux on the prototype system

Fig. 6. Anomaly detection

Table 1. LMbench measurement result

x86(Native) x86 ARM SPARC

lat syscall (μsec) 0.2634 3.0967 18.9526 3.0504
lat ctx (μsec) 0.54 48.10 80.13 83.09

bw mem rd (MB/s) 9328.49 1051.80 618.39 508.50
bw mem wr (MB/s) 5509.96 597.21 436.50 379.23
bw file rd (MB/s) 1557.27 36.29 45.42 41.47

The measurements were performed on non-virtualized (native) Linux for x86
architecture, virtualized Linux for x86, ARM and SPARC. For non-virtualized
and virtualized Linux for x86, we used the same kernel and root filesystem. The
machine we used for the measurement is IBM ThinkPad R40, with 1.3GHz CPU
and 768MB memory. Dynamic frequency control is disabled for accuracy.

Table 1 shows the result of the measurement. We measured the system call
latency, context switch latency, the bandwidth of reading from and writing to
the memory, and the bandwidth of reading a file. The first row of the table shows
the system call performance. Comparing non-virtualized and virtualized Linux
for x86, the performance is decreased by a factor of 11. The second row shows
the latency of the context switch. The performance decreased by approximately
a factor of 90. The third and forth row show the bandwidth of reading and
writing a memory. The throughput decreased by a factor of 10. The memory
access speed of programs running on QEMU is the one of the major overhead of
QEMU, which we describe in more detail in Section 7.2. The last row shows the
bandwidth of reading a file. Comparing non-virtualized and virtualized Linux
for x86, the performance is decreased by approximately a factor of 40.

7 Discussion

Running QEMU on L4 realizes the running of multiple operating systems simul-
taneously on a single hardware, isolation between the guest operating systems
with giving them the illusion of using a hardware by itself, and the reuse of

494 Y. Kinebuchi et al.

operating systems without modification even for the operating system for dif-
ferent architectures. However, as shown in Section 6, the performance of guest
operating systems is degraded comparing to native Linux. In this section we
propose techniques to improve the performance of dynamic translators running
on microkernels. Furthermore we propose future directions of this research.

7.1 Hypercall

As described in Section 4.2, QEMU translates guest codes to host codes with
dynamic translation before executing them. The dynamic translation produce
two types of overheads, the direct and the indirect. The direct overhead is the
processing time of dynamic translation itself. Since every single instruction is
translated to corresponding microcodes at the execution time, the execution of
a code is significantly delayed. When the guest code is executed again, it is
executed without any translation by reusing TB. The indirect overhead derives
from the inefficient code contained in TB. Since the guest code is translated
to microcode which consists of several host codes, the number of instructions
contained in TB is longer than the corresponding original guest code.

In order to reduce these overheads, we propose to implement a hypercall by ex-
tending an instruction set provided by QEMU. In time of execution an extended
instruction is translated to a host instruction which directly calls a QEMU func-
tion. For instance, we propose the implementation of efficient device driver for
guest operating systems using these extended instructions. We replace the code
included in a function exposed by the device driver, say write(), with a single
extended instruction. When the function is executed, the instruction is trans-
lated to a host instruction which directly invokes a function in QEMU which
may be a device driver function or RPC stub calling a device server function. In
this way, the direct and the indirect overhead of the dynamic translation can be
decreased.

7.2 MMU with Map Function

Since many modern processors has MMU, virtual machines and emulators needs
to support a function equal to MMU in some fashion.

QEMU provides software MMU which emulates MMU only with software
function. Software MMU interposes every single memory access done by guest
programs running on top of QEMU. When the guest program accesses a mem-
ory, software MMU perform a lookup through the page tables constructed by a
guest operating system and translates a virtual address to a physical address.
Therefore, single memory access expands to multiple memory accesses including
the access to page tables. The resulting time for memory access would be factor
of ten.

Unlike commodity operating systems, L4 provides APIs to manage address
spaces. Using these APIs, an application on L4 can create new address spaces
and map memory section into them. We propose the implementation of new
virtual MMU which employs L4 APIs. The virtual MMU creates and maps

Dynamic Translator-Based Virtualization 495

memory regions into the space according to page tables constructed by a guest
operating system. A guest program is executed in a separate address space,
so it can access memory directly without interposed by software MMU. The
implementation should dramatically decrease the overhead of software MMU.

8 Conclusion

In this paper, we proposed the model of running a dynamic translator on a
microkernel and implemented the prototype system. We also proposed some
sample applications using our model and evaluated the performance.

The model we proposed has a greater flexibility and higher portability than
existing VMMs and microkernels. The prototype has shown it by running multi-
ple guest operating systems for different architectures simultaneously on a single
hardware. Our model is expected to be useful for the basis for reusing existing
operating systems and applications, debugging and a system that requires high
degree of security and reliability.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems principles, pp. 164–177.
ACM Press, New York (2003)

2. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
USENIX Annual Technical Conference, FREENIX Track (June 2005)

3. Embedded, Real-Time, and Operating Systems. Iguana,
http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/

4. Embedded, Real-Time, and Operating Systems. Kenge,
http://www.ertos.nicta.com.au/software/kenge/

5. Ho, A., Fetterman, M., Clark, C., Warfield, A., Hand, S.: Practical taint-based
protection using demand emulation and intel research cambridge. In: Proceedings
of the EuroSys 2006, April 18–21 2006, Belgium (2006)

6. Lawton, K.P.: Bochs: A portable pc emulator for unix/x. Linux J., (29), 7 (1996)
7. McVoy, L., Staelin, C.: Lmbench - tools for performance analysis,

http://www.bitmover.com/lmbench/
8. Sugerman, J., Venkitachalam, G., Lim, B.-H.: Virtualizing I/O devices on VMware

workstation’s hosted virtual machine monitor. In: Proceedings of the General Track:
USENIX Annual Technical Conference, pp. 1–14, Berkeley, CA, USA, 2001. USENIX
Association (2002)

9. System Architecture Group. L4Ka:Pistachio microkernel,
http://l4ka.org/projects/pistachio/

http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://www.ertos.nicta.com.au/software/kenge/
http://www.bitmover.com/lmbench/
http://l4ka.org/projects/pistachio/

Mesovirtualization: Lightweight Virtualization
Technique for Embedded Systems

Megumi Ito and Shuichi Oikawa

Department of Computer Science, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Abstract. These days, embedded and ubiquitous devices are becoming feature
rich, and multiprocessor architectures for those devices are on the horizon. In
order to utilize the resources of multiprocessor systems efficiently and securely,
virtual machine monitors (VMMs) have been common among servers and desk-
top systems. The same can be applied if the cost of virtualization becomes much
less expensive. In this paper, we introduce mesovirtualization, a new lightweight
virtualization technique. Mesovirtualization makes VMMs smaller and requires
only a few modifications for the guest operating system (OS) source code. We de-
signed and implemented a VMM named Gandalf according to mesovirtualization.
Our experimental results show that Linux on Gandalf performs better than Xen-
Linux. Therefore, mesovirtualization makes virtualization environments suitable
for embedded and ubiquitous devices.

1 Introduction

Expectations for virtualized execution environments to be used in embedded and ubiq-
uitous devices are becoming higher and higher day by day. While the provision of se-
cure and reliable, yet efficient execution environments is a must for those devices, users’
desire for using applications of their own choices is rapidly growing. In order to deal
with both requirements, safe programming languages, Java for most cases, have been
employed. Such a language based solution restricts applicable applications because of
its performance limitation.

Servers and desktop systems adopt virtual machine monitors (VMMs) [6] for mostly
the same requirements. Figure 1 shows the structure of a VMM with two guest oper-
ating systems (OSes). The physical machine underlying the VMM is a host machine.
The VMM operates directly on top of the host machine. Guest OSes can use functions
of the host machine only via virtual machines (VMs) realized by the VMM. Because
the VMM constructs a VM for each guest OS by virtualizing the functions of a host
machine, the guest OSes can operate independently for better security and reliability.
On the other hand, because there is no intervention needed to execute applications code
on a guest OS, the execution performance of applications on the VMM is much better
than that of safe programming languages, such as Java.

A major barrier of applying such virtualization to embedded and ubiquitous devices
is the limited resources of those devices. Therefore, we propose a new lightweight virtu-
alization technique, mesovirtualization, in order to enable virtualization on them. Meso-
virtualization does not require a huge VMM as full virtualization and a huge amount

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 496–505, 2007.
c© IFIP International Federation for Information Processing 2007

Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems 497

Virtual Machine

Guest OS Guest OS

Host Machine

Virtual Machine Monitor

Virtual Machine

Fig. 1. The Structure of a Virtual Machine Monitor based System

of modifications to the guest OS source code as paravirtualization. Mesovirtualization
provides sufficiently virtualized environments for guest OSes with fewer overheads.

This paper describes the design and implementation of a VMM, named Gandalf,
which was constructed according to mesovirtualization. It currently operates on x86
processors, and two Linux OSes concurrently run on it as its guest OSes. The code size
and memory footprint of Gandalf is much smaller than that of full virtualization. The
number of the modified parts and lines shows that the cost to bring up a guest OS on
Gandalf is significantly fewer than paravirtualization. Our experimental results show
that Linux on Gandalf performs better than XenLinux; thus, Gandalf is an efficient and
lightweight VMM that suits resource constraint embedded and ubiquitous devices.

We have done two other studies on Gandalf. First, we applied Gandalf to construct a
Linux/RTOS hybrid environment, which enables two OSes, Linux and RTOS, to coexist
on Gandalf [10]. Second, we also have an experimental implementation that uses only
two protection levels of x86 processors since processor architectures with two protec-
tion levels are more common among embedded processors. Those studies also support
the high feasibility of Gandalf to be used on embedded and ubiquitous devices. This
paper focuses on the rationale of mesovirtualization.

1.1 Related Work

There are two well-known techniques to virtualize a physical environment to support
several OSes on the same machine. One technique is full virtualization, and the other is
paravirtualization. Each of them has advantages and disadvantages. Full virtualization
provides VMs that are identical to a host machine for guest OSes. In this case, guest
OSes do not require any modifications because VMMs create VMs which works in the
same way as the host machines from guest OSes’ point of view. However, in order to
virtualize the whole ability of the host machine, VMMs become huge and complicated;
thus, the cost to virtualize a physical environment is expensive. IBM VM [2] is one of
VMMs using full virtualization. IBM VM implements many of virtualization functions
in its proprietary hardware in order to lower the cost of full virtualization.

On the other hand, paravirtualization does not virtualize the whole ability of a host
machine, but rather artificially creates VMs which are advantageous to guest OSes for
efficiency. VMMs become smaller and simpler; thus, VMs can achieve higher

498 M. Ito and S. Oikawa

performance. However, it requires a huge amount of modifications to the guest OS
source code because the VMs on which guest OSes run are different from the host
machine. Xen [1] is one of VMMs using paravirtualization. While the performance of
Linux on Xen, called XenLinux, is comparable with the original Linux on a physical
machine for some workloads, it requires a lot of modifications to the guest OS source
code.

Mesovirtualization differs from both full virtualization and paravirtualization in many
ways. Mesovirtualization enables small and simple VMMs to support guest OSes, which
makes it possible to provide virtual machines to guest OSes with higher performance.
The number of modifications to guest OS source code which mesovirtualization requires
is significantly less than paravirtualization. It means that we can use an OS as a guest
OS with much few costs.

Pre-virtualization [8] is a new virtualization technique that addresses the cost to
bring up an OS on a VMM. It needs much less modifications to a guest OS than para-
virtualization, and eases the adoption to a different VMM by having a virtualization
module that transforms the standard platform API into the VMM API. Although pre-
virtualization shares one of the goals of mesovirtualization, it does not address the code
size and memory footprint of a VMM as mesovirtualization does.

The use of virtual machine monitors is not only the way to execute an OS above the
processor’s most privileged level. Microkernels, such as Mach3 [4] and L4 [5], provides
simplified abstractions to run OSes as their applications. More recently, even Linux
showed the capability to execute another Linux as its application [3]. The approach of
running OSes as applications is close to paravirtualization in terms of the high costs of
modifications needed for the guest OS source code.

Partitioning an OS environment into multiple management domains with indepen-
dent name spaces is also possible. FreeBSD jails [7], Linux VServer, and Solaris con-
tainers are the examples. The key difference between those OS partitioning and virtu-
alization is that the OS partitioning has a single kernel shared among multiple domains
while virtualization runs multiple kernels, which are not shared. Such sharing of a single
kernel makes difficult to maintain predictability required by embedded systems.

1.2 Paper Organization

The rest of this paper is organized as follows. In Section 2 we propose mesovirtualization,
a new virtualization technique we introduced to build a lightweight VMM. Section 3 de-
scribes the design and implementation of a VMM, named Gandalf, which we built ac-
cording to mesovirtualization. Section 4 describes the current status of its development,
and also shows its evaluation results. Finally, Section 5 concludes the paper.

2 Mesovirtualization

We propose mesovirtualization, a new lightweight virtualization technique to construct
a VMM. Mesovirtualization opts to modify a few parts of the guest OS source code
in order to enable lightweight configuration of a VMM, but the cost of modifications

Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems 499

can be kept as low as possible to make the modifications easily manageable. Therefore,
it does not require the complicated work typically needed for full virtualization and
paravirtualization. We must configure huge VMMs for full virtualization and modify
a huge amount of the guest OS source code for paravirtualization. Mesovirtualization
does not require such complicated work, yet it can provide guest OSes with sufficient
virtualization environments, in which guest OSes can manage their environments, use
processors, memory and devices as if they run on a physical machine.

Mesovirtualization is based on the principle of minimalism. We do not need to vir-
tualize the entire of the host machine to provide identical environments to guest OSes
as full virtualization. We do not need to modify many of the guest OS source code to
trap into a VMM and to handle it in the VMM as paravirtualization. Mesovirtualization
is a technique which supports guest OSes just enough to run it on a VMM. For some
parts of the host machine that are considered safe to be dedicated or shared, a VMM
does not virtualize these parts and allows guest OSes touch them directly. This rationale
keeps a VMM as simple as possible, so that the code size and memory footprint of the
VMM small and also the costs of virtualization can be kept cheap; thus, it can be used
on embedded and ubiquitous systems, of which computing resources are not as rich as
desktop and server systems.

One significant characteristic of mesovirtualization is how a VMM handles sensitive
instructions used in guest OSes. While they are emulated by a VMM very much like in
full virtualization, only the essentials are emulated. There are some cases that sensitive
instructions which are not emulated by a VMM produces unexpected results for a guest
OS. Such cases are actually very rare. Rather than having every sensitive instruction
changed to trap to a VMM and handled it with hard work, mesovirtualization modifies
guest OS source code a little and manages without causing an interrupt to a VMM.

Such a characteristic leads to a lightweight VMM. Because it does not need to virtu-
alize the full ability of the host machine, such a VMM is released from the jobs to spend
a number of lines providing exactly the same machine to guest OSes. It also leads to the
reduction of VMM’s use of processor time, which makes it possible to provide higher
performance to guest OSes.

A decrease in the number of modifications of guest OS source code is another char-
acteristic. While it requires just a few modifications concerned to memory management,
it does not need to change the most parts, which is required in Xen. Because we modify
a few lines of the source code concerned to sensitive instructions rather than change all
of them, we can decrease the modifications to the guest OS source code. Such charac-
teristic also reduces the cost to use an OS as a guest OS on a VMM. Although a guest
OS must be modified a little before bringing it up on a VMM, the cost of the required
modifications is much less than paravirtualization.

3 Design and Implementation

According to mesovirtualization, we designed and implemented a VMM named Gan-
dalf. Gandalf currently operates on x86 processors, and provides virtual machines for

500 M. Ito and S. Oikawa

Linux. The next section describes the architectural design of Gandalf, and the following
section describes its implementation. The last section shows the modifications we made
to the Linux source code.

3.1 Architectural Design

In order to execute guest OSes on a VMM and to make guest OSes not to invade it, it
is essential to control the behavior of guest OSes. It can be achieved by combining the
following two means. One is to use the ring protection architecture with 4 privilege lev-
els of x86 processors. A VMM can control guest OSes if it has a higher privilege level
than guest OSes. The other is the segmentation and paging architecture for memory
management. A VMM can manage accesses of guest OSes to memory by setting limi-
tation to the available memory for guest OSes. The VMM decides the physical memory
partitions and constructs the first mapping. It also manages the page directory pointer
in CR3 register, which implies the base address of the page directory.

An x86 processor employs the ring protection architecture with 4 different privilege
levels from Ring 0 to 3. Ring 0 is the most privileged and Ring 3 is the least privileged;
thus, guest OSes usually use Ring 0 for kernel and Ring 3 for user processes. In our
design, Gandalf uses Ring 0 because it has the strongest privilege in the system so that
Gandalf can manage the behavior of guest OSes. Therefore, we changed guest OSes
kernel to operate in Ring 1 from Ring 0.

We also modified the segment limit and the privilege level in the segment descriptors
of guest OSes, so that the guest OSes do not access the memory for Gandalf and do not
use Ring 0 used by Gandalf. Both the segment limit and the privilege level are essential
to manage the access to the memory.

Gandalf is in the role of setting up all the memory for itself and guest OSes. It stati-
cally partitions the physical memory for itself and guest OSes. It allocates the top most
part of the physical memory for itself and the other parts for guest OSes. It changes the
start and end addresses of the usable memory for guest OSes to those of the allocated
physical memory. Gandalf sets up the first version of the page table using the allocated
memory for each OS, and enables paging before booting it. Gandalf maps itself on the
top of the virtual memory in every Guest OS’s virtual memory space. This first mapping
emulates the physical memory; thus, it enables every guest OS starts from the same ad-
dress as the physical memory. Such provision of the initial mapping reduces the guest
OS modifications. In general OSes, they boot with paging disabled and then enable
paging during the boot sequence. A guest OS on Gandalf boots with paging enabled
in order to make the address of the guest OS look the same as it boots directly on the
processor. After guest OSes starts running, they are responsible for the most part of the
memory management. Except for setting a new page directory pointer to CR3 register
and managing a page fault caused in Gandalf, guest OSes care for the page table.

As far as the memory management is concerned, Gandalf is invoked only to handle
general protection faults and page faults after guest OSes starts running. Guest OSes’
attempts to execute privileged instructions cause general protection faults, and Gandalf
emulates them. There are two cases for page faults. Page faults caused by a guest OS
can be handled only by the guest OS; thus, Gandalf simply passes the control back to
it. Gandalf handles page faults caused by itself. When guest OSes attempt to set a new

Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems 501

page directory pointer to CR3 register of the processor in order to change a page table, a
general protection fault is reported because the instructions to write to control registers
are privileged instructions. In response to the general protection fault, Gandalf takes
control and sets the page directory pointer appropriately.

3.2 Gandalf

Based on the mesovirtualization technique and the architectural design described above,
we implemented a VMM named Gandalf. By employing mesovirtualization, Gandalf
provides noticeably lightweight virtual environments to guest OSes. As we described
in Section 2, Gandalf does not virtualize the entire ability of a host machine. Such a
decision decreases the number of the interactions between guest OSes and Gandalf.
It enables guest OSes to process most of their jobs without Gandalf’s interventions;
thus, it leads to the reduction of the virtualization overheads. Since Gandalf targets on
a multiprocessor systems, their support is included.

Gandalf first sets up the environment for one guest OS, and builds the environments
for the other guest OSes later. It is done during the initialization phase before the first
guest OS starts booting. The initialization module has two sub-modules, the setup sub-
module and the SMP sub-module. The setup sub-module is executed for every guest
OS. On the other hand, the SMP sub-module is executed only once. In the setup sub-
module, Gandalf creates an E820 memory map for a guest OS based on the multiboot
information, which is a collection of structures containing physical memory map infor-
mation provided by a boot loader. It changes the start and end addresses of the E820
memory map to the allocated physical memory to the guest OS. The arguments to the
guest OS kernel passed from the boot loader are also copied for it. Because the virtual
address of the E820 memory map and the arguments used by a guest OS are fixed to
static addresses, Gandalf sets up the memory map and the arguments to be placed at the
same virtual addresses for every guest OS. Gandalf also relocates each guest OS and its
modules to individual memory regions.

In SMP sub-module, Gandalf wakes up the other processors in turn and starts each
processor to boot assigned guest OS. In order to wake up the other processors, Gandalf
checks the SMP configuration table and sends startup inter-processor interrupts to them.

3.3 Guest OS Modifications

In order to execute guest OSes on Gandalf, we need to modify only a small number
of lines of their source code. The cost of such modifications is much less than build-
ing a full virtualization VMM or guest OSes’ modifications for paravirtualization. The
modifications are concerned to three points, the segment descriptor, the judgment of
the privilege level, and the memory management. The segment descriptors include the
segment limit and the privilege level, which are especially important for Gandalf to
manage memory access. The problem on judging the privilege level occurs due to the
changes we made in the segment descriptors. There are also some issues in guest OSes
memory management because it usually assumes the physical memory is available from
the address 0x0.

502 M. Ito and S. Oikawa

The first modification is made to the segment descriptors. As we mentioned in Sec-
tion 3.1, we need to change the value of the segment limit and the privilege level to avoid
guest OSes invading Gandalf. We modified the segment limit from 0xfffffffff to
0xfc400000 and the privilege level from 0 to 1 so that guest OSes do not access
the Gandalf’s memory accidentally or intentionally and interfere with its processing.
Either the segment limit or the privilege level in the segment descriptors affects to the
management of the memory access.

Secondly, we changed the judging value used to examine the privilege level of the
trapped execution in order to decide if it executed in kernel mode or user mode. In order
to judge it, guest OSes perform a logical AND operation on the saved privilege level
and 3 as shown in the following pseudo code:

if (regs->xcs & 3) { /* for user mode */ }

In this example, the saved privilege level of the previously executed code segment is
stored in xcs. The result of the logical AND will be 0 in case the privilege level is 0.
In this case the guest OS executed in kernel mode; thus, the code in the braces is not
executed. On Gandalf, however, the privilege level of the kernel mode in guest OSes
is changed to 1. It changes the result of the logical AND, and leads to taking a wrong
action. The result remains to be 0 if the judging value was 2. In order to decide the
trapped execution mode correctly, we changed such judging values in guest OSes.

Finally, we modified several parts of the guest OS source code concerned to the phys-
ical memory management. We changed the codes in setting up the page table, initial-
izing memory zone sizes, and converting the physical address to/from virtual address.
Guest OSes usually assume that the physical memory is available from the address 0x0,
which causes a problem if the memory starts from another address. On Gandalf, every
OS except for one are allocated a physical memory region that starts with a different
address. In order to deal with this problem, we added a hypercall to guest OSes for
the purpose to ask Gandalf the actual start address of the physical memory it allocated.
Guest OSes use this address to construct the page table, initialize zone sizes, and convert
physical/virtual address.

4 Current Status and Evaluation

In this section, we describe the current status of Gandalf and show its evaluation results.
We evaluated the basic cost of modifying a guest OS to boot on Gandalf. We also
measured the costs of issuing a null hypercall and processing a privileged instruction,
compared with Xen. Finally, we describe the evaluation result using a benchmark.

4.1 Current Status

We implemented Gandalf from scratch on x86 processors and brought up the Linux OS
as a guest OS on it. We first used a single processor system for the development, and
moved to a dual processor system after the Linux OS on Gandalf started working on a
single processor system. Currently, we can have two configurations. One is that a single
Linux OS as a guest OS on a single processor system, and the other is that two Linux
OSes as guest OSes on a dual processor system.

Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems 503

Table 1. The Costs of Modifications

Modified parts Modified lines
Single Linux OS 15 parts 28 lines
Two Linux OSes 28 parts 73 lines

Since a dual processor system configuration has not been matured enough, the quan-
titative evaluation was performed on a single processor system configuration.

4.2 Qualitative Evaluation

This section presents the cost of modifying the Linux kernel in order to bring it up on
Gandalf. The version of the Linux kernel we used is 2.6.12.3. Table 1 shows the number
of parts and lines we modified or added to the Linux source code in order to use it as
a guest OS. We evaluated the modification cost for two cases. One is when only one
Linux OS runs on Gandalf and the other is when two Linux OSes run simultaneously.
The former contains the modifications concerned to segment descriptors and the judging
value to examine the privilege level. The latter includes the modifications concerned to
memory management in addition to the former modifications.

The results show that the cost to modify the Linux source code is obviously very few.
Only 28 lines for 15 parts of modifications are enough to run one Linux OS on Gandalf,
and it requires no more than 73 lines for 28 parts to modify to execute two Linux OSes
simultaneously. In contrast, Xen requires 2995 lines of modifications to use a Linux
OS as its guest OS [1], of which cost is more expensive than Gandalf by two orders of
magnitude.

Table 1 also shows that the required modifications for the single Linux OS case are
fewer than those for the case of two Linux OSes, which includes the changes to deal
with different physical memory start address. There can be other OSes, of which kernel
architecture allows physical memory starting with various addresses. If we use such an
OS as a guest OS, the modifications we added to the parts for memory management in
the Linux source code is not required, therefore the cost of modifications will be fewer
than the results in Table 1.

Please note that those modifications need to bring up Linux on Gandalf were made at
very obvious places in the Linux source code. Although we made those modifications by
hand, it should not be too difficult to make necessary modifications semiautomatically.

4.3 Quantitative Evaluation

In this section, we present the quantitative evaluation of Linux on Gandalf. All mea-
surements reported below were performed on the Dell Precision 470 Workstation with
Intel Xeon 2.8GHz CPU.1 Hyper-threading was turned off, so that all measurements
were performed on a single CPU.

We first measured the basic performance related to running a guest OS on a VMM.
We measured the costs of issuing a hypercall, and processing a privileged instruction.

1 Linux reports this CPU as 2794.774 MHz. We use this number to convert cycle counts obtained
from RDTSC instruction to micro seconds for accuracy.

504 M. Ito and S. Oikawa

Table 2. Basic Performance Comparisons

Xen Gandalf
Null Hypercall 0.43 µ sec 0.37 µ sec

Ignored Privileged Instruction N/A 0.56 µ sec

Table 2 shows the measurement results obtained from Xen and Gandalf. We used cy-
cle counts obtained from RDTSC instruction for these measurements on both Xen and
Gandalf. The all numbers shown were the average costs after repeating 1,000 times.
The cost of processing a privileged instruction was measured only for Gandalf since
Xen uses only hypercalls to handle requests that are usually handled by privileged in-
structions.

The results show that the costs of hypercalls on Xen and Gandalf are very similar.
Although handling a hypercall on Gandalf is slightly faster, the difference is negligi-
ble if we take account of other runtime overheads, which frequently happen during the
execution of programs, including cache misses. Since hypercalls use the processor’s
software interrupt mechanism, there is relatively small room for software implementa-
tions to make a difference. It is more interesting that how much processing a privileged
instruction takes longer than handling a hypercall. Processing a privileged instruction
involves more steps than handling a hypercall. It consists of identifying the instruction
address that caused an exception, fetching an instruction from the address, decoding the
instruction, and emulating it. The measurement was done with HLT instruction, which
is a simple one-byte instruction, and it does not include the emulation cost. In case of
processing a longer privileged instruction, it will take longer to decode and fetch an
emulating instruction.

Finally, in order to evaluate our mesovirtualization method used for Linux, we ran
several programs included in lmbench benchmark suite [9]. Figure 2 (a) and (b) show
the results of lmbench programs. We ran the same programs on the original Linux (with-
out virtualization), XenLinux (Dom0), and Gandalf for comparison of performance.

The measurement results show that our mesovirtualization method reduces the run-
time costs significantly as a Linux OS on Gandalf outperforms XenLinux in all cases.

Fig. 2. Linux Performance Comparison

Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems 505

The costs of process fork and exec are even close to the original non-virtualized Linux
and significantly better than XenLinux.

5 Conclusion

We introduced mesovirtualization, a new technique that enables lightweight virtualiza-
tion. It does not require a huge VMM as full virtualization and a huge amount of modi-
fications to the guest OS source code as paravirtualization. Mesovirtualization provides
sufficient virtualized environments for guest OSes without complicated work; thus, it
makes a whole system more reliable. According to mesovirtualization, we implemented
a lightweight VMM, Gandalf. It currently operates on x86 processors and two Linux
OSes successfully run on it as guest OSes. The number of the modified parts and lines
shows that the cost to modify the Linux source code to bring up Linux OSes on Gandalf
is significantly few. The performance evaluations show that the cost for virtualization
is also reduced. From the evaluation results, we conclude Gandalf makes virtualization
environments suitable for embedded and ubiquitous devices.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM Symposium
on Operating System Principles, pp. 164–177. ACM Press, New York (2003)

2. Creasy, R.J.: The Origin of the VM/370 Time-Sharing System. IBM Journal of Research and
Development 25(5) (1981)

3. Dike, J.: A User-mode Port of the Linux Kernel. In: Proceedings of the 4th Annual Linux
Showcase and Conference (October 2000)

4. Golub, D., Dean, R., Forin, A., Rashid, R.: UNIX as an Application Program. In: Proceedings
of the USENIX Summer Conference (June 1990)

5. Hartig, H., Hohmuth, M., Liedtke, J., Schonberg, S., Wolter, J.: The Performance of µ-
Kernel-Based Systems. In: Proceedings of the 16th ACM Symposium on Operating System
Principles, ACM Press, New York (1997)

6. Goldberg, R.P.: Survey of Virtual Machine Research. IEEE Computer (June 1974)
7. Kamp, P., Watson, R.: Jails: Confining the Omnipotent Root. In: Proceedings of the 2nd

International System Administration and Networking Conference (May 2000)
8. LeVasseur, J., Uhlig, V., Chapman, M., Chubb, P., Leslie, B., Heiser, G.: Pre-Virtualization:

Slashing the Cost of Virtualization. Fakultät für Informatik, Universität Karlsruhe, Technical
Report 2005-30 (November 2005)

9. McVoy, L., Staelin, C.: lmbench: Portable Tools for Performance Analysis. In: Proceedings
of the USENIX Annual Technical Conference, pp. 279–294 (January 1996)

10. Oikawa, S., Ito, M., Nakajima, T.: Linux/RTOS Hybrid Operating Environment on Gandalf
VMM. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.H., Yang, L.T., Xiao, B. (eds.) EUC 2006.
LNCS, vol. 4096, pp. 287–296. Springer, Heidelberg (2006)

Building a Customizable User Interface

Framework Using Hyperlinks for Smart Devices

Mitsuko Sato, Eigo Okada, and Yukikazu Nakamoto

Graduate School of Applied Informatics, University of Hyogo
1-3-3, Higashi-Kawasaki-cho, Chuou-ku, Kobe 650-0044, Japan

nakamoto@ai.u-hyogo.ac.jp

Abstract. A new customizable user interface for smart devices based
on hyperlink associability is presented. Although mobile devices should
be easy to use, many current devices have complex and widely vary-
ing interfaces. The proposed framework, Hyrax, attempts to improve the
menu structure and accessibility of functions while considering user pref-
erences. In Hyrax, the user interface is constructed and customized using
hyperlinks for access to application functions. We focus herein on the user
interface of a phone and present the customizable menu structure of the
phone using XLink defined in W3C and the External Function Interface
(EFI) defined in the WAP Forum specifications. To implement the pro-
posed framework, we have developed a design tool to customize the user
interface with hyperlinks and a runtime environment, which manages
the objects generated by the tool with the hyperlinks, to evaluate the
framework.

1 Introduction

Smart devices such as information appliances and mobile devices should be con-
venient enough to use on a daily basis. However, many products have user inter-
faces that are difficult to use. For example, with current mobile phones, users are
required to navigate a complex menu structure to access even simply function-
alities. To overcome this inconvenience, customization mechanisms with greater
flexibility are expected to be introduced to allow users to organize functionalities
more easily and flexibly according to personal preferences.

Recently more sophisticated mobile phones have the ability to provide user-
preferred functionalities. However, the flexibility of such functionalities is limited.
Thus, the user interface should be made more customizable and flexible to better
handle individual user preferences.

The fixed menu structures of smart devices force users to adapt to the user inter-
face of each device. Mobile phone manufactures often manufacture different types
of phones with different menu structures, and users may have difficulty adapting to
the different interfaces. Ideally, the menu structure should be the same regardless
of how often the user changes phones, that is, the user-preferred menu should be
portable. In addition to portability of the menu structure among the same device

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 506–515, 2007.
c© IFIP International Federation for Information Processing 2007

Building a Customizable User Interface Framework 507

class, portability among different device classes, for example, phone and televi-
sion, is expected. In this scenario, a user is able to interact with a television in the
same menu as a mobile phone according to the user’s personal preferences.

In the present paper, the menu structure contains menus for invoking pro-
grams as well as menus for calling a function inside the program. In this sense,
the menu structure can be used to form an application program framework that
determines the structure of applications. Thus, the customizability and flexibility
of the menu structure affects the software structure of the device.

Some software vendors utilize XML in implementing phone functions primar-
ily to improve the productivity of phone software [1,2,3,4,5]. Such vendors sepa-
rate GUI functionalities implemented by XML from phone functionalities. Sep-
arating the GUI functionalities gives the following benefits. First, single phone
hardware can be utilized for various phones by changing the GUI. Second, the
GUI design of the phone can be performed not only by programmers but by web
designers as well. Since the number of web designers is larger than the number
of programmers, a productivity increase is expected.

In the present study, a customizable user interface framework based on hy-
perlinks is presented for use with smart devices, particularly smart phones. The
proposed user interface framework, Hyrax, attempts to solve the problems of
customizability and portability mentioned above. Hyperlinks are widely used
throughout the World Wide Web, and can be regarded as a formulation of hu-
man associative memory. Thus, hyperlinks are well suited to the improvement of
user interface functionality in smart devices. We herein focus on user customiz-
ability and framework, which enables customizability by hyperlink structure.

In a previous paper, we described the concept and the design of the hyperlink-
based user interface framework [6]. In the present paper, we present design and
implementation issues of the hyperlink-based customizable user interface frame-
work.

Section 2 summarizes the requirements for the customizable user interface
framework with respect to ease of use. We present a customizable user interface
framework to meet these requirements in Sect. 2. To implement the proposed
user framework, we have developed a design tool to customize the user interface
with the hyperlinks and a runtime environment that manages objects generated
by the tool with the hyperlinks. Section 4 and Section 5 present specifications
and an evaluation of the design tool and the runtime environment, respectively.
Conclusions are presented in Sect. 6.

2 Requirements of a Customizable User Interface
Framework in Smart Phones

In the present study, we examine the requirements for a customizable user inter-
face by examining examples of such a customizable menu structure of a smart
phone. We can describe the customizability of the user interface as follows:

– To make a menu structure in the smart phone customizable.
– To assign phone functionalities to programmable keys easily and flexibly.

508 M. Sato, E. Okada, and Y. Nakamoto

Fig. 1. Example of a customizable user interface

Figure 1 shows an example of a menu structure of a smart phone. The large
area is the main screen of the phone, and the two smaller areas are soft keys. The
main screen shows the user’s preferred menu. We assume that the interface has
three programmable keys: two soft keys and one ‘select’ key, which is used for
the default action. The menu shown in Fig. 1(a) is the root menu and contains
five items: Mail, Alice, Time Table, Online News, and Address Book. When the
first item, Mail, is selected, the programmable keys have two functions: receiving
mails of the mail program, which is assigned to the center ‘select’ key, and change-
sending mails, which is assigned to the soft key on the right. Since a user often
receives mails, the user assigns this function to one of the programmable ‘select’
keys on the Mail item in the root menu. This means that the user can initiate the
two actions with only one click from the Mail menu. For the user, it is convenient
to issue commands with one click, without having to navigate through multiple
menus. In Fig. 1, the item ‘Alice’ appears because the user communicates with Al-
ice frequently. Since the user communicates with Alice mainly by mail, the ‘Mail’
operation is assigned to the select key (Fig. 1(b)). Since the user also frequently
accesses a timetable, an online news service, and an address book, the items Time
Table, Online News, and Address Book appear in the root menu.

The framework for the above described customizable menu structure, or user
interface, has the following requirements:

F1: Flexible structure and linking between menu items
An item that the user clicks is a functional item or a data item. Clicking a
functional item invokes a function, and clicking a data item specifies either
actual data or a directory to the data. A menu may contain both functional
items and data items. In the example menu shown in Fig. 1(a), Mail is a
functional item that invokes the mail function and Alice, Time Table, Online
News, and Address Book are data items, each of which has links to the related
information.

F2: Enabling multiple operations from one item
A single menu item may have multiple operations. The example menu shown
in Fig. 1(a) indicates that when a user chooses to execute Mail program or

Building a Customizable User Interface Framework 509

Fig. 2. Object structure for Fig. 1

send a mail to the ‘team mate’, the user wants to perform the operation by
a single click. Moreover, multiple operation functionality for a single item
is preferable because the display size of smart devices, particularly smart
phones, is limited.

F3: Enabling a customizable menu structure in the usage time
It is preferable for the user to be able to customize the user interface of the
smart phone while using the phone. It is because access frequencies to menu
items of functional objects and information items in information objects
changes in the usage time.

3 Hyperlink-Based Customizable User Interface
Framework

In Hyrax, menus are linked by hyperlinks and users select functions by traversing
the hyperlink. The menu structure in the user interface functions is constructed
in the form of an object structure linking functional and information objects as
follows.

Functional objects: Functional objects are program entities that correspond
to expected functions and are implemented by sets of functions or methods.

Information objects: Information objects include menu items and links to
other information objects or functional objects and are implemented in ex-
tensible markup language (XML).

Requirement F1 is satisfied by implementing an object structure. An
object structure provides menu structure for application programs and enables
a consistent and unified user interface for the programs. Figure 2 shows an object

510 M. Sato, E. Okada, and Y. Nakamoto

Fig. 3. XLink description for Fig. 2

structure to realize menus in the user interface shown in Fig. 1. The information
object of the root menu contains four items: Mail, Alice, Time Table, Online
News, and Address Book. Operations assigned to soft keys, or selection opera-
tions for items, are represented as links between objects in an object structure.
The first item, Mail, has two ending objects, which correspond to the two op-
erations ‘receive’ and ‘send’ mail functions. The Alice information object has
two links to Send Mail and Phone Call and is embedded in the root menu. An
embedded object is displayed simultaneously when an object that has a link to
the embedded object, the root menu in this case, is displayed.

Figure 3 shows a description of the hyperlink structure in Fig. 2. Links be-
tween objects are implemented using XLink [7] because XLink has strong and
flexible link mechanisms. The itemList tag denotes a functional or an informa-
tion object, and the item tag denotes an item contained in the object. The dest
tag denotes a remote object that is linked to an object defined by an item tag.
An object defined in an item tag or a dest tag has labels with the xlink:label
attribute1 In the arc definition xlink:type="arc" in the go tag of (3), the
xlink:from and xlink:to attributes have labels of the starting object and the
ending object, respectively. The arc definition specifies a link from the starting
object to the ending object.

Function invocation: A link is defined between a menu item and a function
invoked from that item and is implemented using the External Functionality
Interface (EFI) scheme [8]. In the EFI, a program can access functionalities
inside a device through the uniform resource identifier (URI) naming scheme.

1 In this paper, an attribute in the XLink namespace has the xlink: prefix, e.g.
xlink:type.

Building a Customizable User Interface Framework 511

Multiple links between objects: As shown in Fig. 2, the Mail item has multiple
links to remote objects. Multiple links enable Requirement F2 to be satisfied.
To implement a multiple-link object, we utilize an extended link in XLink. The
extended link enables a link that associates an arbitrary number of linked objects.
A multiple link is described as follows. Starting and ending objects are declared
with the xlink:type="locator" and the xlink:label attribute. Multiple tags
with arc values define links between the starting objects and the ending objects.
For example, there are two go tags in (3) as multiple links. One is a link to invoke
the main service in the mail server, and the other is a link to invoke the Send Mail
service in the mail server with Team Mate parameter. Multiple arc definitions
realize multiple links in the object structure.

Next, we consider how to deal with multiple implementation-dependent links.
In Hyrax, we introduce key and help attributes for (4) in Fig. 3 to denote a key
that is assigned to a link object and a string, shown at the bottom of the main
screen to display its functionality.

– key attribute: A key attribute specifies a programmable key when the linked
object is traversed. The value of the attribute is “left”, “select,” or “right,”
which denotes the left-hand soft key, the ‘select’ key of the pointing device,
and the right-hand soft key, respectively.

– help attribute: A help attribute must be used with a key attribute. The
value of the attribute is displayed at the soft key display area at the bottom
of the phone screen to indicate the meaning of the programmable key.

4 User Interface Design Tool: Hyrax Builder

We have developed the Hyrax Builder to design and customize the user interface
in a smart phone. The builder manages an object structure and reconfigures the
structure by changing the links between functional objects and information objects
manually on a PC, according to the preferences of the user. The builder generates
object descriptions in the XML format from the object structure with hyperlinks.
The main display of the builder is shown in Fig. 4 and contains the following panes:

Main pane (1): The main pane shows an image of the menu of the smart
phone. We provide two types of menu layouts: a list layout and a picture
layout. The two layouts can be exchanged with the layout change item in
the menu. The main pane in Fig. 4 shows the picture layout.

Programmable key pane (2): Help messages for the three programmable
keys are displayed in the programmable pane.

Operation pane (3): The user can change the order or location of an item in
the main pane using the operation pane.

Object selection pane (4): The user can select an object description file,
which represents an information object and a functional object, to appear
in the main pane.

Item pane (5): An object description file selected in the object selection pane
may contain several items. In an object pane, a list of the items is shown.

512 M. Sato, E. Okada, and Y. Nakamoto

Fig. 4. Hyrax Builder

Destination pane (6): Destinations linked from the item selected in the item
pane are shown in the destination pane. The destination includes the items
linked from an information object and the provided method names contained
in a functional object.

Parameter pane (7): In this pane, the parameters needed for a method invo-
cation are specified.

Set buttons (8) and (9): An item selected in the item pane is set to the se-
lected programmable key in pane (2) with the parameters specified in pane
(7).

5 Hyrax Runtime Environment

5.1 Functionalities

The Hyrax runtime environment provides the program execution environment
and the framework for a customizable user interface on a target machine. The
Hyrax runtime environment loads the object description files and provides such a
user interface. Figure 5 shows the runtime environment of Hyrax, which includes
a micro browser, a builder, and an execution environment.

Browser: The browser loads the object descriptions generated by the builder
and provides functionalities such as XML browsing and XML document
management libraries, the application programming interface (API) of which
invokes the XML parser and builds the data structure representing the XML

Building a Customizable User Interface Framework 513

Fig. 5. Architecture of Builder and Hyrax runtime environment

document. The browser handles the manipulation and invocation of objects
in the object structure.

Micro Builder: The Micro Builder is a runtime subset version of the Hyrax
Builder and manages an object structure and reconfigures the structure by
changing the links between functional objects and information objects man-
ually or automatically, according to the preference of the user while using the
phone. As an example of automatic reconfiguration, if an object is accessed
frequently for communication, the object may be moved closer to an entry
object for easier access. The micro builder is required to satisfy Requirement
F3.

Hyrax Execution Framework: In Hyrax, a functional object has the follow-
ing requirements. First, a functional object should have a main method that
starts the execution of a program. Other methods can be exported from
the functional object (from the Server in EFI terminology) and used in the
specific service in the EFI scheme.

5.2 Implementation and Evaluation

We have implemented the Hyrax runtime environment, with the exception of
the micro builder, in the Java programming language on a PC emulator, which
is contained in the J2ME Wireless Toolkit provided by Sun Microsystems, and a
smart phone Nokia 6680 as a target machine. The Java runtime environments of
both are CLDC 1.0 and MIDP 2.0 [9]. The parser is based on kXML2 (version
2.2.2)2. Photographs of a sample program on the Hyrax runtime environment
on the target machine are shown in Fig. 6.

In order to evaluate the Hyrax user interface framework in terms of overhead,
we develop a program that shows menus and invokes programs directly without
the XML document, which is called a direct implementation version. We have
measured two response times: the first display time and the redisplay time of
the Hyrax browser and the direct implementation version.
2 http://kxml.sourceforge.net/kxml2/

514 M. Sato, E. Okada, and Y. Nakamoto

Fig. 6. Picture of sample user interface of Hyrax on a smart phone

Fig. 7. Evaluation of the display time

First display time : the period of time starting from when the object descrip-
tion of a menu in the memory has been processed and ending when the menu
is initially displayed. The result is shown in Fig. 7(a) 3 . The display time
and the increasing ratio of the display time in the Hyrax browser are larger
than those in the direct implementation version. This is because the browser
parses the object description by kXML parser, and links to objects from the
menu items, and places the items into the form during the time.

Redisplay time: the period of time for redisplaying the display using the gen-
erated form. The result is shown in Fig. 7(b). The redisplay time and the
increasing ratio of the response time in the Hyrax browser are also larger
because a form in the Hyrax browser has more information. This amount of
time is not considered to be lengthy in ordinary usage.

3 In the current implementation, in order to avoid asking for user permission each file
access, the browser loads all of the object description into memory. However, this
implementation results in larger memory consumption at the start-up time. In order
to reduce the memory consumption, we can modify the Hyrax browser, which reads
object description files on-demand. The additional file access overhead are 176, 270,
and 325 ms for 4, 8 and 12 items, respectively.

Building a Customizable User Interface Framework 515

Since the Hyrax browser caches a form generated in the first display time and
displays in the redisplay time, the menu display time in actual usage becomes
the average of the first display time and the redisplay time.

6 Conclusions and Remarks

Hyrax is a hyperlink-based customizable user interface framework for smart
devices. The architecture and implementation of Hyrax were presented in the
present paper. The user interface realized by Hyrax is readily customizable ac-
cording to user preferences. We have developed a design tool to customize the
user interface with hyperlinks and a runtime environment that manages objects
generated by the tool with hyperlinks, and evaluated the framework. We have
demonstrated that the features of XLink in W3C and EFI in WAP enable user
customization.

In the future, we will examine the customization pattern of the user interface
using the builder. Based on this result, we will be able to prepare a template
to customize the user interface more easily. Moreover, we should implement the
micro builder and evaluate the usability of the customizability.

References

1. Access: Netfront Dynamic Menu (2005) http://www.access-sys-eu.com/
fileadmin/user upload/PDF documentation ASE NFDM 2005-02-24.pdf

2. Microsoft: (Windows Automotive 5.0 Datasheet)
http://www.microsoft.com/windows/embedded/windowsautomotive/about.mspx

3. Qualcomm: (uiOne) http://brew.qualcomm.com/brew/en/about/uione.html
4. UIEvolution (UIEngine), http://www.uievolution.com/products/uiengine.html
5. Acrodea (VIVID UI), http://www.acrodea.co.jp/en/product vividui.html
6. Nakamoto, Y., Sato, M.: Design of A Hyperlink-based Software Architecture for

Smart Devices. In: Proc. 9th IEEE International Symposium on Object and
component-oriented Real-time distributed Computing, pp. 261–268. IEEE Com-
puter Society Press, Los Alamitos (2006)

7. W3C: XML Linking Language (XLink) Version 1.0 (2001)
8. Open Mobile Alliance: External Functionality Interface Framework, Candidate Ver-

sion 1.1 9-Jun-2004 (2004)
9. Riggs, R., Taivalsaari, A., Huopaniemi, J., Patel, M., VanPeursem, J., Uotila, A.:

Programming Wireless Devices with the Java2 Platform, Micro Edition, 2nd edn.
Addison-Wesley, Reading (2003)

http://www.access-sys-eu.com/fileadmin /user_upload/PDF_documentation ASE_NFDM_2005-02-24.pdf
http://www.access-sys-eu.com/fileadmin /user_upload/PDF_documentation ASE_NFDM_2005-02-24.pdf
 http://www.microsoft.com /windows/embedded/windowsautomotive/about.mspx
http://brew.qualcomm.com/brew/en/about/uione.html
http://www.uievolution.com/products/uiengine.html
http://www.acrodea.co.jp/en/product_vividui.html

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 516–526, 2007.
© IFIP International Federation for Information Processing 2007

An Efficient Location Index for the Semantic Search of
Moving Objects

Dong-Oh Kim, Jung-Su Shin, Hong-Koo Kang, and Ki-Joon Han

School of Computer Science & Engineering, Konkuk University,
1, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea

{dokim, jssinn, hkkang, kjhan}@db.konkuk.ac.kr

Abstract. In moving object databases, researches on the spatio-temporal access
method are very important for the efficient search of moving object location in
ITS, LBS, and Telematics. Recently, researches are being made actively on the
efficient management of the current location of moving objects and on the
estimation of future location using information such as the current location and
moving pattern of moving objects. In this paper, we propose Map-Based R-
tree(MBR-tree), which is a new current location index structure for indexing the
current location of moving objects in an urban area, a 2-dimentional space.
MBR-tree is an index which forms the MBR(Minimum Bounding Rectangle) of
R-tree nodes using static objects(or fixed objects) on the map. Because moving
objects generally moves within a static object, if the MBR is formed using static
objects, we can reduce the cost of updating the index of the current location of
moving objects. In addition, it shows superior performance in semantic search
that searches in a specific building or place (e.g. “Who are in Konkuk
university?”) rather than in an arbitrary area. Finally, to test the index proposed
in this paper, we compared its performance with that of hashing technique and
Lazy Update R-tree using various datasets and proved the superiority of its
performance.

Keywords: Location Index, Semantic Search, Moving Object, MBR, MBR-
tree.

1 Introduction

With the development of location positioning systems such as GPS(Global
Positioning System), application systems using the location of moving objects are
widely used including ITS(Intelligent Transportation System), LBS(Location Based
Service) and Telematics. In addition, a moving object database has emerged to
manage the location of moving objects efficiently in application systems. In
particular, researches are being made actively on the spatio-temporal access method
for the efficient search of moving object location[2,4].

In general, spatio-temporal access methods are divided into past location index,
current location index and future location index according to the type of query.
Recently, hashing technique[6], Lazy Update R-tree(LUR-tree)[1], etc. have been

 An Efficient Location Index for the Semantic Search of Moving Objects 517

proposed for the efficient management of the current location of moving objects.
However, hashing technique, though its update cost is low, has low search
performance due to node chaining that takes place on overflow. LUR-tree improves
the update performance of R-tree, which is superior in the search performance, but
still has high update load from node reconstruction.

Thus, we propose Map-Based R-tree(MBR-tree), which is a new current location
indexing technique for indexing the current location of moving objects(e.g. persons)
in an urban area, a 2-dimensional space. MBR-tree is an index that forms the
MBR(Minimal Bounding Rectangle) of R-tree[3] nodes using static objects(e.g.
buildings) on the map. Because moving objects generally move within a static object,
if the MBR is formed using static objects, we can reduce the cost of index update for
the current location of moving objects.

In addition, MBR-tree shows superior performance in semantic search that
searches in a specific building or place(e.g. “Who are in Konkuk University?”) rather
than in an arbitrary area. Lastly, to test the index proposed in this paper, we compare
its performance with that of hashing technique and LUR-tree using various
datasets[7]. According to the results, MBR-tree is superior in the search and update
performance and particularly excellent in semantic search.

The structure of this paper is as follows. Chapter 2 reviews related works,
examining hashing technique and LUR-tree as well as semantic search. Chapter 3
explains MBR-tree in detail, and Chapter 4 analyzes the results of performance
evaluation using various datasets. Finally, Chapter 5 draws conclusions.

2 Related Works

This chapter reviews hashing technique and LUR-tree, whose performance will be
compared with that of MBR-tree. In addition, it examines semantic search.

2.1 Hashing Technique

In order to reduce the cost of update, hashing technique uses a location pre-processing
module that plays the role of a filter between a database and moving objects reporting
their locations[6]. The location pre-processing module synchronizes its own hashing
function with the hashing function used in the database and stores the location of
moving objects into the database using bucket information obtained by entering the
location of moving objects into the hashing function. When moving object location is
updated, if new bucket information obtained using the hashing function is the same as
existing bucket information, the new information is not reported to the database but is
recorded only in the location pre-processing module.

Hashing functions used in hashing technique are composed of an overlap-free
space partition function that removes redundant hashing nodes while maintaining
constant the number of moving objects managed in the bucket, an augmented space
partition function that allows the overlapping of hashing nodes and expands hash
nodes to the specified size, a quad-tree hashing function that utilizes quad-tree
division to resolve the uneven distribution of moving objects, etc.

Hashing technique improves the scalability and the performance of update because
it is possible to do distributed processing of moving objects using multiple location

518 D.-O. Kim et al.

pre-processing modules, but if the number of moving objects managed in a bucket is
large, the search performance is lowered due to node chaining on overflow.

2.2 LUR-Tree

LUR-tree is an index that can reduce update cost by improving an update algorithm and,
as a result, reducing the number of times of index reconstruction in R-tree[1]. LUR-tree
is composed of R-tree for indexing the current location of moving objects and Direct
Link for direct reference to leaf nodes of the index where moving objects are stored.
Direct Link, which is an auxiliary index that uses the ID of moving objects as the key,
refers to the leaf node in R-tree where the moving object of the corresponding ID is
stored. Therefore, it effectively reduces the cost of tree search caused by update of R-tree.

In addition, LUR-tree reduces the cost of updating moving objects that travel
zigzag using the extended MBR, which extended the MBR value of index nodes.
When updating the location of a moving object, LUR-tree can directly refer to the
index node containing the corresponding object using Direct Link. Thus, if the new
location of the moving object is in the extended MBR of the current extended node,
R-tree is not reconstructed and only information in the node is changed and, in this
way, the cost of update can be reduced. LUR-tree has lower update cost than R-tree
but its search performance is lowered by node redundancy and its update load
increases due to node reconstruction.

2.3 Semantic Search

A semantic space can correspond to a physical space expressed with one or more
coordinates, and the expression of the semantic space is easily understandable to
users. That is, it has a logical name like “Konkuk University” or “National Road No.
13” corresponding to a physical space expressed with coordinates like “15,13,18,17”.
The semantic space is often used as a search keyword in the database[5]. Figure 1
shows examples of correspondence between physical spaces and semantic spaces.

Fig. 1. Correspondence between Physical Spaces and Semantic Spaces

Semantic search is generally used to execute a query which contains semantic
spaces in the query condition. Examples of query for semantic search are “Who are in
Konkuk University?”, “What cars are on the road where car K is running?”, “Who are
passing by Konkuk University?”, etc.

 An Efficient Location Index for the Semantic Search of Moving Objects 519

3 MBR-Tree

This chapter explains motivation for MBR-tree proposed in this paper as well as its
index structure and data structure. Lastly, it examines the insert, update, delete, and
search algorithms of MBR-tree in detail.

3.1 Motivation

Real moving objects do not move in a free space as in Figure 2(a) but their movement
is restricted by surrounding environments as in Figure 2(b). That is, the movement of
a moving object is restricted by buildings and roads on the map. Thus, if the MBR of
nodes in R-tree is formed with the MBR of static objects on the map, the index on the
location of moving objects is not updated in case the moving object moves within a
static object.

Fig. 2. Movement of Moving Objects

Figure 3 shows differences in insert and update between R-tree and MBR-tree.
Figure 3(b) shows the result of inserting O1 to R-tree in Figure 3(a). In Figure 3(b), R1 is
expanded to minimize the MBR of the node to which O1 was inserted. Figure 3(f) shows
the result of creating the MBR in MBR-tree with static objects in Figure 3(e) and
inserting O1. Because the MBR is fixed in MBR-tree, the index is not reconstructed.

Fig. 3. Insert and Update in R-tree and MBR-tree

520 D.-O. Kim et al.

In the same way, R-tree is reconstructed as location is updated as in Figure 3(c)
and Figure 3(d), but only the location of O1 is updated in MBR-tree without changing
the information of R2 when updating the location of O1 within a static object as in
Figure 3(g) and Figure 3(h) and, by doing so, it can reduce the cost of update. In
addition, because the MBR that manages moving objects uses static objects that have
semantic spaces, MBR-tree can be more efficient in semantic search than R-tree.

3.2 Structure of MBR-Tree

Figure 4 shows the overall structure of MBR-tree. MBR-tree is composed of Base R-
tree and Quad-tree. Base R-tree is an index constructing the nodes of R-tree using
the MBR of static objects on the map. Quad-tree is an index, connected to Base R-
tree, to store the ID and location of moving objects, enabling efficient search even
when a leaf node in Base R-tree manages a large number of moving objects. The
Secondary Index is an auxiliary index for high-speed update using the ID of moving
objects as the key, pointing the nodes of Base R-tree to which moving objects are
inserted.

Fig. 4. Structure of MBR-tree

In Base R-tree in Figure 4, moving objects are divided into two types: an In-
Object moving inside a static object, and an Out-Object moving outside static
objects. The In-Object is managed in BRANCH of the leaf node containing the object
in Base R-tree, and the Out-Object is managed in the node with the smallest MBR
size containing the object among the nodes of Base R-tree.

Figure 5 shows the data structure of MBR-tree. In Figure 5, RNODE is the data
structure of Base R-tree nodes. RNODE has ParentPt a pointer to the parent node,
Level information on node level, Branch information on child nodes, Count the
number of child nodes, and MObjCount the number of moving objects inserted into
the child nodes. It also has OutMObjQuad a pointer to a Quad-tree node to store Out-
Objects.

BRANCH has ChildPt a pointer to the child node of RNODE, mbr to store the
MBR of child nodes, and InMObjQuad a pointer to a Quad-tree node to store In-
Objects. QUADNODE, which is the data structure of Quad-tree nodes, has Count the

 An Efficient Location Index for the Semantic Search of Moving Objects 521

number of moving objects stored, MObj a pointer to the first moving object, and
ChildPt a pointer to the child node of Quad-tree. MOBJECT, which is the data
structure to store information on moving objects, has Oid the ID of the object, Loc
location information, and NextPt a pointer to the next moving object.

Fig. 5. Data Structure of MBR-tree

3.3 Algorithms

This section examines the insert, update, delete, and search algorithms of MBR-tree in
detail.

3.3.1 Insert Algorithm
The insert algorithm of MBR-tree is as in Figure 6. It is executed with input oid the
ID of a moving object and loc the location of the object.

 Fig. 6. Insert Algorithm Fig. 7. Update Algorithm

The insert algorithm inserts a moving object, distinguishing it between In-Object
and Out-Object. As in Figure 6, if the input moving object is an In-Object, the
algorithm finds the leaf node in Base R-tree containing loc using Find_InNode(loc)
function and inserts the moving object into the InMObjQuad of the corresponding
branch. If the moving object is an Out-Object, it finds the node with the smallest
MBR among Base R-tree nodes containing loc using Find_OutNode(loc) function and

522 D.-O. Kim et al.

inserts the moving object into OutMObjQuad. After insertion, it increases
MObjCount by 1 from the root node to the node to which the object has been inserted.

3.3.2 Update Algorithm
The update algorithm of MBR-tree is as in Figure 7. It is executed with input oid
the ID of a moving object and new_loc the new location. The update algorithm does
not reinsert the moving object to be updated within the same static object into
MBR-tree. As in Figure 7, the update algorithm finds the pointer to the
corresponding node and Branch ID in the secondary index using oid. If the input
moving object is an In-Object and the updated location does not deviate from the
MBR of the corresponding branch, the object is not reinserted into InMObjQuad but
only the location information of the moving object is updated. However, if it
deviates from the MBR, the moving object is reinserted. If the input object is an
Out-Object, it is reinserted into MBR-tree.

3.3.3 Delete Algorithm
The delete algorithm of MBR-tree is as in Figure 8. It is executed with input oid the
ID of a moving object.

 Fig. 8. Delete Algorithm Fig. 9. Search Algorithm

The delete algorithm accesses the corresponding node using the secondary index
and deletes the moving object. As in Figure 8, the delete algorithm finds the pointer to
the corresponding node and Branch ID in the secondary index using oid. If the
moving object is an In-Object, it is deleted from InMObjQuad of the corresponding
branch, and if it is an Out-Object, it is deleted from OutMObjQuad of the
corresponding node. After deletion, it decreases MObjCount by 1 from the node from
which the object has been deleted to the root node.

 An Efficient Location Index for the Semantic Search of Moving Objects 523

3.3.4 Search Algorithm
The search algorithm of MBR-tree is as in Figure 9. It is executed with input RNodePt
a node pointer in Base R-tree and Rectangle a window range. The search algorithm
retrieves all moving objects included in Rectangle among nodes managing moving
objects. As in Figure 9, the search algorithm retrieves Out-Object included in
Rectangle if there are moving objects in OutMObjQuad of input RNodePt. Next, it
checks if the current node is a leaf node and, if it is, the algorithm retrieves moving
objects included in Rectangle among In-Objects stored in MObjQuad of the branches.
If the current node is not a leaf node, it checks if there are moving objects in its child
nodes, and the search algorithm is executed recursively for child nodes.

4 Performance Evaluation

This chapter compares MBR-tree with LUR-tree and hashing technique through
evaluating their performance. Performance evaluation was made by comparing update
performance, window query performance and semantic search performance in terms
of time and memory usage.

4.1 Experiment Environment

Performance evaluation was made using a PC with Intel Pentium4 2.53GHz CPU and
1GB memory. Data used in performance evaluation was generated from City
Simulator and GSTD. Figure 10(a) shows the map used in City Simulator and data
generated from it, and Figure 10(b) shows data generated from GSTD.

Fig. 10. Data Generated from City Simulator and GSTD

In performance evaluation, we used hashing with 144 buckets (12X12) and hashing
with 324 buckets (18X18) to compare with MBR-tree. The number of buckets in
hashing (12X12) is similar to the number of leaf nodes in MBR-tree.

4.2 Update Performance Evaluation

Update performance evaluation uses trajectory data in which 1000/3000/5000 moving
objects move 300 times as generated from City Simulator and GSTD. Figure 11
shows graphs that compare the index update performance according to the number of
moving objects.

The results of performance evaluation show that MBR-tree is much superior to
LUR-tree in the update performance and not much inferior to hashing, which
generally has high update performance.

524 D.-O. Kim et al.

Fig. 11. Update Performance

4.3 Query Performance Evaluation

Query performance evaluation was made using the data of 50,000 moving objects
generated from City Simulator and GSTD.

4.3.1 Window Query Performance Evaluation
Figure 12 shows graphs that compare the window query performance according to
window size.

Fig. 12. Window Query Performance

The results of performance evaluation show that the window query performance of
MBR-tree is 2.1 times higher than that of hashing on the average and higher than that
of LUR-tree based on R-tree, which generally has high window query performance.

4.3.2 Semantic Search Performance Evaluation
Figure 13 is a graph that compares the semantic search performance.

The results of performance evaluation show that the semantic search performance
of MBR-tree is 2.1 times higher than that of LUR-tree and 3.4 times higher than that
of hashing on the average.

4.4 Memory Usage

Because memory usage is closely related to the number of moving objects regardless
of the type of dataset, we use data of 1000/3000/5000 moving objects generated from

 An Efficient Location Index for the Semantic Search of Moving Objects 525

GSTD. Figure 14 is a graph that compares the size of memory usage according to the
number of moving objects.

 Fig. 13. Semantic Search Performance Fig. 14. Memory Usage

In the comparison of memory usage, MBR-tree shows a slight difference from
LUR-tree in memory usage but uses 1.4 times larger memory space than hashing,
which generally uses a small size of memory.

5 Conclusions

This paper proposed MBR-tree that can index location data of moving objects by
forming R-tree nodes using the MBR of static objects on the map. MBR-tree reduced
update cost and improved the semantic search performance by managing moving
objects in the unit of static object.

In the results of performance experiment, hashing showed advantage in memory
usage and update speed but was much inferior in the search performance, and LUR-
tree showed advantage in the search performance but its update cost was high. MBR-
tree reduced update cost effectively compared to LUR-tree while guaranteeing search
speed higher than hashing. Particularly in semantic search, MBR-tree showed much
higher performance than all the other methods. Accordingly, MBR-tree can have high
utility in the environment where search transactions are as important as update
transactions and where high semantic search performance is required.

Acknowledgements

This research was supported by the Seoul Metropolitan Government, Korea, under the
Seoul R&BD Program supervised by the Seoul Development Institute.

References

1. Kwon, D.S., Lee, S.J., Lee, S.H.: Indexing the Current Positions of Moving Objects Using
the Lazy Update R-tree. In: Proc. of the Third International Conference on Mobile Data
Management, pp. 113–120 (2002)

526 D.-O. Kim et al.

2. Inam, O., Matin, A.: A Survey of Indexing Techniques for Moving Object Trajectories.
Technical Report, University of Waterloo (2003)

3. Mokbel, M.F., Ghanem, T.M., Aref, W.G.: Spatio-Temporal Access Methods. IEEE Data
Eng. Bull. 26(2), 40–49 (2003)

4. Roddick, J.F., Hoel, E., Egenhofer, M.J., Papadias, D.: Spatial, Temporal and Spatio-
Temporal Databases: Hot Issues and Directions for PhD Research. ACM SIGMOD
Record 33(2), 126–131 (2004)

5. Roth, J.: Novel Architectures for Location-Based Services. Annual Meeting for Information
Technology & Computer Science, 5–8 (2004)

6. Song, Z., Roussopoulos, N.: Hashing Moving Objects. In: Proc. of the 2nd International
Conference on Mobile Data Management, pp. 161–172 (2001)

7. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the Generation of Spatiotemporal
Datasets. In: Proc. of the 6th International Symposium on Advances in Spatial Databases,
pp. 147–164 (1999)

Model-Driven Development of Ubiquitous

Applications for Sensor-Actuator-Networks with
Abstract State Machines

Sebastian Schuster and Uwe Brinkschulte

Institute for Process Control and Robotics,
Universität Karlsruhe(TH), Kaiserstraße 12, 76128 Karlsruhe

{sschu, brinks}@ira.uka.de

Abstract. The development of applications in the domain of Ubiqui-
tous Computing has to deal with some unique challenges. The target en-
vironment consists of very heterogeneous and partly low-power devices.
It changes rapidly due to wireless communication and mobile users. We
propose to use model-driven development based on Abstract State Ma-
chines to deal with these challenges. Applications are defined on high
levels of abstraction and efficient implementations tailored to the target
platform are automatically generated.

1 Introduction

Mark Weiser’s vision of Ubiquitous Computing (UC) [9] describes a world where
computers are everywhere and support your everyday life. They relieve you from
routine work, which makes UC attractive to many people, as it does to us.

Today, users have to tell the computer what to do and enter information in
the way the machine wants it - the main issue Weiser had with the way we use
computers. To realize UC, computers and other devices must be enhanced to
detect the user’s needs and to support him actively.

Wireless sensor networks (WSNs) [3] consist of simple, low power, and cheap
sensor nodes, working together to monitor their environment. Thus, they can
serve the purpose of detecting the user’s actions. By adding nodes with the
capabilities to influence their environment, a sensor and actuator network (SAN)
can be established and serve as an infrastructure for ubiquitous applications.

SANs will include all kinds of devices from different vendors, ranging from
full-featured PCs over PDAs and Smartphones to tiny, low-power sensor nodes
and embedded devices tailored to specific needs. Some of these nodes are station-
ary, and some will be mobile. Different kinds of applications are possible: there
will be applications bound to a specific environment, like controlling the lighting
based on user presence. Other applications will be bound to a specific user and
will control the environment based on the user’s preferences, like controlling TV,
heating or air condition. Some applications will mainly provide information, e.g.
cooking recipes or traffic guidance. All of these applications will run simulta-
neously and have to share resources. They must possibly interoperate without

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 527–536, 2007.
c© IFIP International Federation for Information Processing 2007

528 S. Schuster and U. Brinkschulte

knowing each other. They must adapt themselves in an ever-changing environ-
ment, from switching input and output devices when the user moves to showing
a very different behavior depending on the current context.

At a first glance, using established development techniques from traditional
distributed systems for SANs, like middleware, may seem to be a good idea.
For a number of reasons discussed in section 2, this is not feasible for SANs.
However, without powerful tools raising software development productivity of
ubiquitous applications, there is no chance that Weiser’s vision will ever be
realized. Ubiquitous applications will stay a toy for the wealthy people instead.

After introducing the major challenges in the area of ubiquitous applica-
tion development in section 2, we discuss related development tools tailored
to ubiquitous applications in section 3. Afterwards, we present our arguments
for model driven techniques in this application field in section 4. Furthermore,
we sketch our approach to realize a model-driven development process. The work
of implementing this approach is in progress. We are optimistic our ideas will
prove to be valuable in practice. This paper concludes with a summary in sec-
tion 5.

2 Challenges

There are a number of challenges to be addressed when developing ubiquitous
applications. Obviously, a ubiquitous application is a distributed one. Multiple
processes run within the SAN and communicate by exchanging messages. Typical
challenges of distributed applications include partial failures, transmission errors,
and synchronization. All of these are well researched. Furthermore, solutions to
deal with these problems are incorporated in middleware, ready to be reused by
the developer. However, what are the challenges that do not allow to transfer
existing solutions to the domain of Ubiquitous Computing?

2.1 Efficiency

Since nothing comes for free, the advantages of using a middleware introduce
costs. The computation steps done in the middleware consume time and energy,
while the necessary code takes memory space and energy. The resources of sensor
nodes in computation power, memory space, and energy, are very constrained.
This, putting an upper bound on the amount of work that can be done on a
sensor node, becomes a challenge of efficiency when using a middleware.

Middleware is supposed to offer flexible solutions to a diverse range of appli-
cations. The tailoring to the needs of the application happens mostly at runtime,
e.g. when the application feeds parameters to middleware function calls. Select-
ing the proper middleware functionality according to these parameters takes
extra computation steps. Furthermore, many functions are unused, despite tak-
ing memory space. One can generally say – with a classical middleware – higher
flexibility decreases efficiency (while facilitating reuse). How to deal with this
tradeoff for SANs is an open question.

Model-Driven Development of Ubiquitous Applications 529

2.2 Heterogeneity and Interoperability

A typical task of middleware is to deal with a heterogeneous system consisting
of nodes with different properties. Its goal is to hide the differences from the
programmer and make the system look like a homogeneous one, easing software
development. When the nodes of the network are not too different in terms of
processing power and storage space, this can be achieved by including standard
communication protocols, conversion of different data representations etc. within
the middleware. In a system with nodes ranging from tiny sensor nodes to full-
featured personal computers, with resources differing by orders of magnitudes,
this is nearly impossible. However, in the absence of powerful abstractions, pro-
grammers would have to write specific code for every kind of node, manually
adding functions to make the nodes interoperate. It means resolving problems
already solved for traditional distributed systems – surely not the best way to go.

2.3 Dynamics

Traditional distributed applications often assume to run upon a fixed network.
Processes communicate directly and reliably – the developer does not see de-
tails like network routing or location information. A node unreachable for some
reason is treated as a failure and handled by the middleware or the application.
However, in ubiquitous environments, users carry nodes around, nodes use un-
reliable wireless communication, their energy can be exhausted, and the user
can interfere with the system in unforeseen ways. Communication failures are
common and network connectivity changes rapidly. Since the user should not be
bothered to deal with exceptions, self-organizing algorithms that make the sys-
tem adapt itself to changes autonomously are necessary. These algorithms should
be generic and flexible enough to make them available for reuse for a wide range
of ubiquitous applications. At the same time, efficiency must be preserved.

2.4 Goals

For a productive development of ubiquitous applications, solutions for efficiently
dealing with heterogeneity and the dynamics of the system must be available for
reuse. The developer should describe system behavior on a high level of abstrac-
tion, hiding differences between nodes and network changes. Applications cannot
be custom made for each environment – this would be much too expensive. The
developer might not even know the system his application has to run on. Speci-
fying in abstract terms that can be found in any ubiquitous environment is the
only way possible. Instead of specifying on the level of individual nodes, stating
node X turn the light on, the developer must be able to code an equivalent of
turn on the light in the user’s room. Detecting the presence of the user in a
room and finding a node with a certain capability – like turning on the light – is
something that will happen regularly in ubiquitous applications. Implementing
these functions adaptable to different environments once and reusing them is a
prerequisite for high development productivity.

530 S. Schuster and U. Brinkschulte

However, the target application must not only be adaptable to different en-
vironments. People may have different requirements regarding privacy issues or
they want their daily life support to be a little different. Applications must be
customizable to the varying needs of the users.

3 Related Work

Since the research area of Ubiquitous Computing is quite young, most of the
work has been carried out in trying to solve certain problems and not in making
these solutions available for reuse. However, two proposals explicitly dealing with
some of the identified challenges had a major influence on our work.

The first one is PCOM [8], a component-oriented middleware for pervasive
applications. PCOM applications consist of a tree of components, each imple-
menting parts of the application functionality. The actual layout of tree instances
is determined by the PCOM middleware at runtime – based on capabilities of
the different nodes and requirements of each component given by the developer
in some XML-dialect. Thus, the application can also be adapted to changes in
the environment. Motivated by the development-by-composition-paradigm, com-
ponents implemented once can be reused in other applications as well. PCOM is
built upon another middleware layer, BASE [1], offering communication services
in heterogeneous and dynamic environments, relieving the developer from deal-
ing with network routing. BASE and PCOM transfer the traditional approach
– using layers of middleware – to the development of ubiquitous applications,
explicitely considering highly dynamic and heterogeneous environments. Their
memory footprint is about 120-160KB, preventing to use them on sensor nodes.
The level of abstraction that can be achieved depends on the available com-
ponents. Specifying tree composition in some XML-dialect and using general
purpose programming languages to implement components without further sup-
port is still way off developing applications in terms of the target domain.

An approach motivated by the OMG’s Model Driven Architecture (MDA) is de-
scribed in [7].TheOMGproposes tousemodels andnot codeas theprimaryartifact
of software development. While models are widely used in software development,
serving as a sketch for the real code, they tend to get out of synch as code develop-
ment evolves.The resulting code is always a mix of parts dealing with the real busi-
ness problems and, to a large amount, of parts due to the way these problems have
to be solved on a specific platform. Problem domain and realization domain should
be clearly separated instead, bydescribing the application inplatform-independent
models (PIM) containing application logic only. Afterwards, they are transformed
to platform-specific models, enriched with platform details. In the last step, exe-
cutable code can be generated. These transformations can be performed manually
or automatically – the latter one being the preferred way.

In [7] a language with a fancy graphical representation to describe platform-
independent models of applications for home automation is defined. The devel-
oper describes the behavior of the system using several communicating state
machines running in the system. When deploying the application in a target

Model-Driven Development of Ubiquitous Applications 531

environment, the state machines of the PIM are split up into roles, which can
be assigned to nodes of the target system. These roles are transformed to exe-
cutable code and installed on the target nodes, depending on their capabilities.
Our lighting application would consist of two roles, one for detecting the presence
of a user, and one for turning on the light. The first one would be installed on all
nodes with a motion detector, the second on all connected to the lighting. The
system can adapt to changes by activating and deactivating nodes, e.g. roles of
failing nodes can be taken over by others. Multiple platforms can be supported
by developing the necessary transformers and code generators. The generative
model-driven approach allows to generate efficient code specifically tailored to
the target nodes, avoiding the overhead of a middleware. At the same time,
the roles-based approach can deal with a dynamic system, suggesting a way to
deal with the flexibility vs. efficiency tradeoff in classical middleware. Our ap-
proach is based on this idea too. The described development method lacks ways
of ensuring interoperability. On the highest level, descriptions based on finite
state machines can probably be improved with terms more closely resembling
the domain of Ubiquitous Computing.

4 Proposed Solution

We propose to use model-driven development to handle the identified challenges.
The aim is to combine the advantages of using a middleware, development on a
high level, with the generation of code tailored to different platforms for higher
efficiency. The functionality provided by a middleware is added by model trans-
formations instead. At the same time, the overhead introduced by a middleware
is avoided. Applications can be developed in a coherent way for heterogeneous
target environments that include devices as resource-constrained as sensor nodes.
When installing an application, it is transformed automatically, taking user pref-
erences and properties of the target environment into account.

While realizing this vision will surely be appreciated, a lot of work lies ahead.
The main questions that have to be answered include: How do the models look
like? How to define transformations? How to guide them? We present first ans-
wers to these questions in the following sections. We are currently at the start of
developing and implementing our development process, following a bottom-up
approach. Our concept certainly needs further refinements.

4.1 Process Overview

Different kinds of models are involved in the development process: models de-
scribing user preferences, models describing the target environment, and models
describing the behavior of some entity. At the top-level, the developer implements
the application by specifying a platform-independent behavior model, describing
how the environment reacts to what the user is doing. On lower levels, the behav-
ior of parts of the system down to individual nodes is specified. Compared to the
MDA, we propose to use multiple transformation steps from top-level models to

532 S. Schuster and U. Brinkschulte

executable code. The available transformations are arranged in a hierarchy, each
transformation bridging a smaller gap. Models are transformed along the edges,
starting at the highest level of the hierarchy and yielding executable code at the
leaves. The direction to take when traversing and how to transform is controlled
by the target environment and user preferences – the available devices decide
which transformations to take. Wether to add encryption algorithms depends on
the user preferences for example.

An extract of the transformation hierarchy is given in figure 1. On the high-
est level, different modeling languages can be used to describe different kinds of
applications. These can be transformed to a language where application func-
tionality is decomposed into distributed roles, dealing with the dynamics of the
environment – similar to [7]. Several transformations not shown here add com-
munication and interoperability support or customizations. After that, transfor-
mations generate models for different platforms, containing the roles the target
node can take. At first, these models will be generated for generic platforms
like Sensor Node or PC, using features offered by all types of sensor nodes or
PCs respectively. The generic models are then transformed to models for specific
device types, like Mica or Scatterweb ESB sensor nodes. Eventually, executable
code can be generated.

An example transformation process is given in figure 2, showing the instal-
lation of an application controlling the lighting based on user presence. The
transformation processor (a device with less resource constraints like a PC) rec-

Fig. 1. Transformation Hierarchy

Model-Driven Development of Ubiquitous Applications 533

Fig. 2. Example Transformation

ognizes ten Scatterweb ESB [6] sensor nodes able to detect user presence. Six of
the nodes can control a light. When transforming to the next role-based modeling
layer, it deduces there will be two types of roles necessary. The first (DetectAnd-
Send) detects user presence and informs the second role (SwitchLight) able to
control the light. These roles are then converted into models for generic sensor
nodes, describing how nodes communicate and activate their roles. In the last
step, C-code is generated from these descriptions and flashed onto the nodes.

Composing the transformation chain of smaller transformations facilitates
their reuse. Introducing a new type of sensor node only needs a less expen-
sive transformation from the generic platform to the new platform for example.
The role-based decomposition of application functionality allows to adapt at run-
time. By adding additional roles, e.g. for data conversion, interoperability can be
assured. Finally, the generated code is more efficient than a middleware-based
approach, leaving out unnecessary features.

4.2 Abstract State Machines as Behavior Models

Models are defined in terms of a modeling language, describing what models
look like (syntax) and how to interpret those (semantics). At the top-level, we
need expressive languages specific to Ubiquitous Computing. Since ubiquitous
applications let the environment support the user, reacting to what the user
is doing, this language will feature an event-driven control flow. A language
suitable for home automation would offer terms like Room, Lighting or TV. At
lower levels, we need languages to describe roles and the behavior of nodes.

When transforming models, we have to make sure that the resulting model
describes a behavior equivalent to the source model. A top-level model that
includes an abstract action Alert the user, may be correctly transformed to a
ringing Smartphone or a message shown on screen of a TV – depending on the

534 S. Schuster and U. Brinkschulte

target environment and the current situation. Turning on the washing machine
is most likely not an equivalent action. While ambiguity can be intended as a
consequence of abstract specifications on a higher level, unwanted ambiguity
must be avoided. The key is a precise – formally specified – semantics of the
modeling languages. Many errors made in software development are due to in-
formal natural language specifications, interpreted differently by different people
working on the same project. In a multi-step transformation as we propose it,
using formally specified languages is even more important.

Abstract state machines (ASMs) [4] can be used to formally describe every
algorithm on any level of abstraction. Formally specifying behaviors on differ-
ent levels of abstraction is exactly what we need, making ASMs an appealing
candidate to be used on the different levels of our multi-step transformation.

ASM structure. An ASM consists of two parts: the description of the state of
the machine and a set of rules governing the transitions from one state to the
next. The state is described in terms of an algebra – sets with operations and
relations. The author of [5] argued that ...every static mathematic reality can
be described as a structure in the sense of mathematical logic.... The rules are
made up of conditions guarding the firing of the rule and of updates describing
how to change the state of the machine. Starting in an initial state, the machine
performs step by step, in each step executing all matching rules and updating
the state of the machine in one atomic step.

ASMs for Ubiquitous Applications. The following example shows an ex-
cerpt from a high level ASM describing our lighting application.

enum Rooms = {Livingroom, Bathroom, Kitchen, Bedroom}
function Light: Rooms -> BOOLEAN
function Occupied: Rooms -> BOOLEAN

rule Main = par
forall room in Rooms do Light(room):=Occupied(room) endforall
endpar

A set Rooms is defined consisting of the different rooms in the ubiquitous
environment. The function Light can be used to control the lighting in every
room. A function Occupied returns true if anybody is in a room. The only rule
Main states, the lights should be switched according to user presence.

This is a description on a very high level. It contains what could be called
the business logic of the application. Since ubiquitous applications are about
relieving people from routine tasks, we argue that their business logic is not too
complex and compact descriptions on a high level are possible. ASMs can also
be used on a lower level to describe the behavior of a role or of a single node. A
sensor node can be described in terms of the state of its sensors and functions
yielding current sensor values.

Model-Driven Development of Ubiquitous Applications 535

In order to use ASMs for behavior descriptions, a vocabulary to describe the
ASM states has to be defined at the different levels. At the highest level, there
will be sets and functions like the ones shown above. For lower levels, functions
showing the state of sensors have to be defined for example. We are currently
investigating possible vocabularies for sensor nodes.

Transforming ASMs. The vocabularies of the different levels essentially de-
scribe our modeling languages – the terms that can be used to describe the state
of system with ASM rules describing the behavior of its entities. How to define
the transformations, mapping the abstract function Occupied to ASMs describ-
ing roles, that observe the motion detection sensor and transmit a message when
movements are detected?

The ASM method [2] describes a software development process based on
ASMs. According to this method, a developer starts with a high-level ASM
describing the application under construction. This ASM is refined stepwise –
gradually enriching it with details describing how to implement what was speci-
fied on the higher level. Functions can be replaced by additional ASMs computing
this function or ASMs can be composed of sub-ASMs. Sequential ASMs can be
refined by adding agents, making it a distributed ASM. All of these steps have to
be performed manually by the developer. What we need is a way of automating
these steps - this would eventually yield our transformation chain.

To establish our approach in practice, an expressive specialized language to
describe ASM transformations would be necessary. We are currently consider-
ing general purpose languages using established model transformation and code
generation patterns only. We first want to investigate how to apply transforma-
tions and how to parametrize them. The application of special transformation
languages is planned for the future.

5 Summary

We proposed to use model-driven development techniques to deal with the pri-
mary challenges of developing ubiquitous applications: high degrees of hetero-
geneity, the need for efficiency, and high dynamism in ubiquitous environments.
Applications are described as high level models independent of a specific plat-
form and are automatically transformed to platform-specific models matching
the target environment. The core idea of our approach is to use a chain of trans-
formations with small transformation steps. Building new transformations and
including new platforms will be less expensive and reuse is facilitated.

Introducing multiple transformation steps, unwanted ambiguity through spec-
ifications given in languages with informally defined semantics becomes an even
bigger problem. Therefore, we proposed to use Abstract State Machines to for-
mally describe the behavior on all levels of abstraction. We sketched how ASMs
can be used on different levels and why they are suitable for transformations.

The next step will be define vocabularies for ASMs on the different levels.
Afterwards we will investigate how transformations can be defined. We plan to

536 S. Schuster and U. Brinkschulte

implement a complete transformation chain based on ASMs – including decom-
position of application functionality and adapting the composition at runtime.

Acknowledgements

Sebastian Schuster is supported by the German Research Foundation (DFG)
within the Research Training Group GRK 1194 Self-organizing Sensor-Actuator-
Networks.

References

1. Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: BASE - A micro-broker-based
middleware for pervasive computing. In: Proceedings of the First IEEE International
Conference on Pervasive Computing and Communication (PerCom), pp. 443–451.
IEEE Computer Society, Los Alamitos (2003)

2. Börger (Egon), E., Stärk, R.F.: Abstract state machines: a method for high-level
system design and analysis. Springer, Heidelberg (2003)

3. Estrin, D., Pottie, G., Girod, L., Srivastava, M.: Instrumenting the world with wire-
less sensor networks. In: ICASSP 2001 (June 2001)

4. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

5. Gurevich, Y.: Abstract state machines: An overview of the project. In: Seipel, D.,
Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 6–13. Springer, Heidel-
berg (2004)

6. Schiller, J.H., Liers, A., Ritter, H., Winter, R., Voigt, T.: Scatterweb - low power
sensor nodes and energy aware routing. In: HICSS 2005 (2005)

7. Ulbrich, A., Weis, T., Mühl, G., Geihs, K.: Application development for actuator-
and sensor-networks. In: 4. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze,
Zurich, Switzerland (2005)

8. Weis, T., Handte, M., Knoll, M., Becker, C.: Customizable pervasive applications.
In: PERCOM ’06: Proceedings of the Fourth Annual IEEE International Conference
on Pervasive Computing and Communications (PERCOM’06), pp. 239–244. IEEE
Computer Society, Washington (2006)

9. Weiser, M.: The computer for the twenty-first century. Scientific American 265(3),
94–104 (1991)

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 537–546, 2007.
© IFIP International Federation for Information Processing 2007

Design and Implementation of Peripheral Sharing
Mechanism on Pervasive Computing with Heterogeneous

Environment

Wonhong Kwon, Han Wook Cho, and Yong Ho Song

College of Information and Communications, Hanyang University,
Seoul, Korea

{whkwon, hwcho, yhsong}@enc.hanyang.ac.kr

Abstract. As pervasive computing permeate into user’s lives, many embedded
devices based on Linux exist around the users. In this circumstance, the
heterogeneousness of operating systems causes incompatibility problems in
sharing peripherals since the users and the devices have a different operating
system. In this paper, we propose a USB Cross-platform Extension to share
peripherals in a heterogeneous environment via a TCP/IP network. Using our
approach, the users can access remote peripherals with different operating
systems as if they were attached to a local computer. According to our
evaluation results, our approach has some overhead, but sufficient performance
for practical usage.

Keywords: Peripheral sharing, Heterogeneous operating system environment,
Pervasive computing.

1 Introduction

Recent advances in computing technology have enabled ubiquitous computing
environments to permeate users’ lives rapidly. In such an environment, a number of
embedded devices such as PDA, MP3 player, or cell phone, exist around the users.
These devices usually use Linux as their operating system because of its
characteristics such as reconfigurability, flexibility, lightweight size, and cheap price.
However those who use these devices are more familiar with Microsoft Windows
rather than Linux.

The heterogeneousness of operating systems causes incompatibility problems in
sharing peripherals between users and embedded devices. For instance, a user who
uses Windows may want to access an external storage device in a PDA based on
Linux. Also, the user may want to use a speaker connected to a MP3 player or a
DVD-RW in home appliances. In these scenarios, if the user’s computer and the
embedded devices use a same operating system, they can easily share peripherals. If
the devices do not use the same operating system, however, they need a way of
sharing peripherals in a heterogeneous environment.

538 W. Kwon, H. W. Cho, and Y. H. Song

Many peripheral sharing mechanisms have been proposed for heterogeneous
environments. For instance, SAMBA [1] is a well-known file and print service
protocol between Windows clients and non-Windows servers via a TCP/IP network.
Using the SAMBA, a user can access files or printers located at remote machine with
a non-Windows operating system. However, traditional approaches including
SAMBA depend on specific peripherals. Therefore, these approaches are
inappropriate for the recent variety of sophisticated peripherals in pervasive
computing. In these circumstances, there is a great need of peripheral-independent
sharing mechanism in heterogeneous operating system environment.

In this paper, we propose USB Cross-platform Extension (UCE) to share
peripherals in a heterogeneous environment via a TCP/IP network. We assume that all
computers and embedded devices are connected together via the network and they
have heterogeneous operating systems. In this environment, our approach enables
users to access remote USB peripherals with different operating systems as if they
were attached to a local machine. USB was chosen because it supports almost all
devices including storage, keyboard, speaker, and printer. This characteristic gives
peripheral-independence to our approach.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 describes the general concepts of Windows USB System and Section 4
explains the USB Cross-platform Extension. Section 5 explains our evaluation results.
We conclude this paper in Section 6.

2 Related Works

USB Cross-platform Extension is based on USB over IP technology to provide
sharing mechanism in a heterogeneous environment. Takahiro et al. proposed USB/IP
[2][3] is a peripheral bus extension over a TCP/IP network in a homogeneous
environment. Virtual Host Controller Interface (VHCI) Driver and Stub Driver were
added to Linux to extend the peripheral bus via the network. VHCI located at a client-
side which required to access remote devices, is responsible for processing enqueued
USB Request Block (URB) like legacy USB Host Controller in Linux. When VHCI
receives the URBs, they are converted into USB/IP packets and sent to a remote
machine. Stub Driver is a new USB Per-Device Driver and located at the remote
machine. It decodes incoming USB/IP packets, extracts the URBs and submits them
to devices. These new drivers enable users to share a large range of devices over the
network without any modification in existing components. This mechanism supports
all USB transfer features such as bulk, interrupt, control, and isochronous mode and
its I/O performance is sufficient for practical usage.

We extend this mechanism to heterogeneous environment. In the context of our
approach, the operating system of a client is Windows instead of Linux in USB/IP.
This requires that the VHCI is migrated to Windows for processing URBs and
sending them to the remote machine. Therefore, we create UCE Bus in Windows as a
new USB bus architecture to extend peripheral bus to other operating systems.

 Design and Implementation of Peripheral Sharing Mechanism 539

In the next section, we use Windows USB System to explain how UCE is designed
and implemented.

3 Windows USB System

Windows supports USB in various ways such as system-provided USB Function
Driver (usbhid.sys, usbstor.sys), USB Bus Driver (usbhub.sys), USB Host Controller
Driver (usbohci.sys, usbuhcd.sys, usbehci.sys), and USB common library (usbd.sys)
to provide convenience for users and developers. Fig. 1 shows the architecture of
these drivers in Windows USB System.

Fig. 1. Windows USB System Architecture

USB Function Driver has the information about specific hardware and provides
controlling methods of the hardware to applications. When a device is attached, Windows
dynamically loads the appropriate USB Function Driver with the information of the
device. While this driver is active, it provides an interface to applications supporting I/O
requests and translates these requests to a USB-specific format called URB.

USB Bus Driver manages USB devices that are currently attached and supports self-
identifying of newly attached devices. Self-identifying, one of the important features of
USB, is where configuring a device automatically occurs without additional steps taken
by the user. This driver cooperates its work with PnP (Plug and Play) Manager because
managing and self-identifying require various PnP operations. USB Host Controller
Driver is responsible for the notification of device attachment. USB Root Hub on this
controller sends a message to the USB Bus Driver when a device is arrived.

Fig. 2 shows that how these drivers work together. When a USB device is attached
to the host, USB Host Controller Driver senses this attachment and sends a message
to USB Bus Driver called Hot-plug Notification in MSDN [4]. If that happens, USB
Bus Driver allocates resources for the device and sends a message indicating that a
relation of attached devices is changed to PnP Manager using a Windows kernel API

540 W. Kwon, H. W. Cho, and Y. H. Song

called IoInvalidateDeviceRelations(). Because a change of relation is generated when
a device is attached or removed, PnP Manager needs to confirm the cause of a change.
Therefore, PnP Manager requests a list of devices to USB Bus Driver to identify the
changes. USB Bus Driver responds to this message with an updated device list, and
PnP Manager recognizes the cause of a change and performs various PnP operations
as required. Then the PnP Manager loads the proper USB Function Driver based on
previous PnP operations, allocates resources for the device, and starts the device.
Even if the USB Function Driver has been loaded, it does not know device-specific
information but only general information about the device. For instance, usbhid.sys is
system-provided USB Function Driver for a USB keyboard. It has routines for general
USB keyboard processes but does not know that how many keys are in the keyboard
or which information is displayed on the LED. USB specification [5] provides USB
descriptors to USB Function Driver to support this device-specific information. USB
Function Driver is self-configured with USB descriptors and performs additional
device-specific operations as required. After all of the processes have been completed,
the architecture of these drivers for supporting the device is established and
applications can use the device.

PnP Manager USB Bus Driver USB Host Controller USB Device

Attach a USB device

Notify a new device

Invalidate
device relations

Request a list
of devices

Update a list

Plug and Play
operations

PnP Manager USB Function
Driver USB Bus Driver USB Host Controller

& USB Device

Load a proper
function driver

Starting the device

Plug and Play
operations

Get USB
Descriptors,

Configure the
device, &

device-specific
operations

Fig. 2. Initialization process of a local device

4 USB Cross-Platform Extension

USB Cross-platform Extension (UCE) is a peripheral sharing mechanism via a TCP/IP
network for heterogeneous environment. In this section, we explain the architecture of
UCE and describe UCE Bus which is a main component of our approach.

 Design and Implementation of Peripheral Sharing Mechanism 541

4.1 UCE Architecture

Using the UCE, a user can use a remote device in heterogeneous operating system as
if the device were attached locally and working in the same operating system. It
means that UCE provides transparency to the user by hiding a location and an
operating system of the device. To achieve this, we attach the device to a local
machine not physically but conceptually and we call this “virtual device.”

UCE has different device driver architecture than the Windows USB System due to
the virtual device. This is because the virtual device has some extraordinary
characteristics compared to the local one. Therefore, Windows USB System as we
mentioned in Section 3 is not directly applicable to our approach in two ways. First,
the virtual device is not a real device. A legacy system sometimes needs to get the
information from a device like USB Descriptors. However, the virtual device does not
have this information because it only exists conceptually. In addition, the Windows
USB Bus cannot receive a notification message indicating that a new device is
attached from USB Host Controller because no devices are attached to local machine
physically. Second, the real location of the virtual device is not local but remote.
Therefore, a remote machine must be accessed via the network but a legacy system
does not support this. Because of these problems, a legacy system needs modification
supporting the virtual device. Fig. 3 shows our proposed methods.

Fig. 3. Design candidates of UCE

Method 1 and 2 are quite a simple and easy to implement compared to others
because these methods reuse large portions of the legacy system. For instance, UCE

542 W. Kwon, H. W. Cho, and Y. H. Song

needs a communication module to access a remote device, so we added a TCP/IP
module to the legacy system. The TCP/IP module is attached to USB Host Controller
in method 1 and USB Bus Driver in method 2. This approach requires less
modification to UCE. However, Microsoft does not release source codes for the USB
Bus Driver and Host Controller because of their security policies. That is, we cannot
modify the USB Bus Driver or Host Controller to add the TCP/IP module. In this
respect, these methods are inappropriate for our approach.

Method 3 uses USB Bus Upper Filter Driver to cooperate with the TCP/IP module.
Because it is located between USB Function Driver and USB Bus driver, every packet
generated from USB Function Driver is arrives in it. If that happens, it has three
methods for processing the enqueued packets: passing packets to a lower layer,
processing and passing packets, or processing and completing packets. Among these
methods, we chose the processing and completing method when USB Function Driver
requests the information from a remote USB device. That is, packets are delivered to
a remote machine in which a remote device resides and are completed after receiving
a response from a remote machine. In other cases such as device initialization or PnP
operations, we chose a passing method which is simply transfers packets to the
Windows USB Bus. However, this two-way approach has a serious problem. When
Windows USB Bus needs information from the device, this approach does not pass
the packets to a remotely-attached device because of the lack of connection between
the Windows USB Bus and the TCP/IP module.

Consequently, we proposed method 4 using UCE Bus for connecting with the
TCP/IP module. Unrevealed source codes for USB Bus Driver and USB Host
Controller do not need anymore because of creating a new USB bus. And we
eliminate a two-way problem in terms of attaching a TCP/IP module to UCE Bus
directly. However, the abandonment of lots of portion in a legacy system causes the
difficulty of implementation and several other problems.

4.2 Implementation of UCE Bus

The UCE Bus is the main component of our approach. We implemented our approach
based on Windows to access remote devices connected to non-Windows operating
systems. Although there are many non-Windows OS, this paper focuses on Linux
which is commonly used for embedded systems.

We extend the Windows USB System to UCE Bus to support virtual devices, but
they are completely independent and do not interfere with each other. For instance,
the existing local devices are attached to Windows USB Bus and virtual devices are
attached to UCE Bus. The independence of these buses does not affect the upper
layers of them such as USB Function Drivers or applications. This means that UCE
Bus provides transparency to upper layers and they are still available without any
changes.

UCE Bus is composed of three components for supporting transparency to upper
layers and communicating with Linux. They are IRP Virtual Processing, URB
Conversion, and the Transport Driver Interface.

IRP Virtual Processing. IRP (I/O Request Packet) is a data structure to communicate
between Windows and kernel-mode device drivers. In order to provide transparency
to upper layers, UCE Bus handles IRPs like Windows USB Bus. However, we cannot

 Design and Implementation of Peripheral Sharing Mechanism 543

know the behaviors of USB Bus Driver exactly because of its unrevealed source
codes, so these IRPs are handled virtually. In order to make this easier, we use USB
Bus Upper Filter Driver to analyze behaviors of USB Bus Driver. As we mentioned
before, filter driver receives all IRPs which pass through itself. We get these IRPs
using WinDBG [6], and make UCE Bus more likely to act as Windows USB Bus. For
instance, an IRP named with IRP_MN_QUERY_CAPABILITIES is requested by
PnP Manager to get the information of a device such as power status, approval of
removing suddenly from a host without ejection process. UCE Bus receives this IRP
when the device is enumerated, but before the USB Function Driver is loaded for the
device. In most case, USB Bus Driver sets any relevant values in the
DEVICE_CAPABILITIES structure and returns it to the PnP Manager. However,
UCE Bus does not know the information related to the device because it has a virtual
device. Therefore, we handle this IRP virtually based on our analysis of the results
with USB Bus Upper Filter Driver. Table 1 shows IRPs handled virtually in UCE
Bus.

Table 1. IRPs with IRP_MJ_PNP as a major function code

IRPs
IRP_MN_QUERY_DEVICE_RELATIONS
IRP_MN_QUERY_ID
IRP_MN_QUERY_CAPABILITIES
IRP_MN_DEVICE_TEXT
IRP_MN_QUERY_RESOURCE_REQUIREMENTS
IRP_MN_QUERY_BUS_INFORMATION
IRP_MN_RESOURCES
IRP_MN_QUERY_LEGACY_BUS_INFORMATION
IRP_MN_FILTER_RESOURCE_REQUIREMENTS

URB Conversion. USB Request Block is a packet format used by device drivers
related to USB when a driver needs communication with other drivers. Windows and
Linux use URB but the structure and data types are different. For instance, URB has
pipe information which indicates direction of transfer (host-to-device or device-to-
host), type of pipe (isochronous, interrupt, control, or bulk), and endpoint address.
Both operating systems have this information but different presentation. The variable
that indicates the interrupt type of pipe has a value 3 in Windows and 1 in Linux. To
solve this problem, UCE Bus has URB Conversion component to convert URB for
Linux Stub Driver. This conversion process is based on USB over IP technique in
USB/IP.

Transport Driver Interface. UCE Bus needs to use a TCP/IP network to
communicate with Linux. Therefore, we apply Transport Driver Interface (TDI) to
UCE Bus. TDI is a kernel-mode network interface in Windows and it supports all
transport protocol stacks and is used particularly for a TCP network in our approach.

Fig 5 shows the attachment and initialization of a virtual device. In a legacy case,
Windows USB Bus notices the attachment of a device by a message from the USB
Host Controller Driver. However, UCE Bus does not have a method of confirming the

544 W. Kwon, H. W. Cho, and Y. H. Song

attachment. In this respect, UCE Bus sends a message to a remote machine to identify
available remote devices. Once this process is done, the remaining processes are the
same compared with Fig 2 excluding virtually processing IRP and converting URB.

PnP Manager UCE Bus Remote device

Invalidate
device relations

Request a list
of devices

Update a list

Plug and Play
operations

PnP Manager USB Function
Driver UCE Bus Remote device

Load a proper
function driver

Starting the device

Plug and Play
operations

Get USB
Descriptors,

Configure the
device, &

device-specific
operations

TCP/IP network

Request a list of
available remote

devices

IRP Virtual
Processing

IRP Virtual
Processing

URB Conversion

Fig. 5. Initialization process of a virtual device

UCE Bus needs to confirm the type of IRP before using these components. IRP has
major and minor function codes to indicate its type. USB Function Driver sends URB
to UCE Bus via IRP which has IRP_MJ_INTERNAL_DEVICE_CONTROL in a
major function code. In other words, UCE Bus receives general IRP when it receives
IRP without IRP_MJ_INTERNAL_DEVICE_CONTROL. Based on this information,
UCE Bus activates the IRP Virtual Processing component for general IRP and the
URB Conversion component for URB.

IRP Virtual Processing component receives general IRPs related to power
management or PnP operation. These IRPs are completed immediately after
processing because they are processed virtually in a local machine. This process is
simple and does not require much time. However, URB Conversion component
receives URBs and most of them need complicated works. For instance, USB
Function Driver requests a read operation to an USB storage device. This operation
requires serialized I/O and it has a great deal of overhead even if it is processed
locally. In our situation, received URBs are not completed after processing because
we transmit URBs to a remote machine in addition to the original overhead.
Therefore, URBs are pending immediately when they are arrive and are completed
after processing with a remote machine.

Once URB is pending, URB Function Driver can request another URB. To handle
this, we maintain IRPs in pending IRP queue until they are completed. URB
Conversion component checks this queue repeatedly and when IRP is found it starts a

 Design and Implementation of Peripheral Sharing Mechanism 545

process with receiving and sending modules in TDI Client. URB Conversion
component and two modules in TDI Client are made by thread for concurrency
process.

5 Evaluation

In order to evaluate the performance of our approach, following environment was
used as shown in Table 2.

Table 2. Evaluation environment

Client
CPU Intel Pentium 4 3.20GHz (dual core)

Memory 1024MB
OS Microsoft Windows XP Professional

Server
CPU Mobile Intel Celeron 2.0GHz

Memory 510MB
OS Linux 2.6.13

USB has four transfer features which are isochronous, interrupt, bulk, and control.
Among these features, we evaluate interrupt transfer mode for human interface
devices like mouse or keyboard. Our target device is a SAMSUNG USB SEM-DT35
keyboard. We measured response time which indicates the period of processing
enqueued URB. We tested the device when it was attached to local and remote in
order to evaluate our approach compared with legacy Windows USB System.

0

20

40

60

80

100

120

140

160

180

200

Local Remote

R
e
s
p
o
n
s
e
 tim
e
 (m
s
)

Min

Average

Fig. 6. Evaluation results

First, we evaluated the local device. When URB is generated, it is processed by
USB Bus Driver, USB Host Controller Driver, and USB device. And it is completed
in reverse direction. Response time in this evaluation includes all of these processes.

546 W. Kwon, H. W. Cho, and Y. H. Song

According to our measurement, the average response time was 116ms. In second
evaluation, the device was attached to a remote machine with Linux. Therefore,
generated URB was processed by UCE Bus, TCP/IP network, Stub Driver in Linux,
and remote USB device. Average response time was 186ms. As Fig. 6 shows,
response time of the remote device was 1.6 times longer than one of the local device.
Although performance of UCE was lower than Windows USB System, it is sufficient
for practical use.

6 Conclusion

This paper proposed USB Cross-platform Extension that is a peripheral sharing
mechanism in a heterogeneous environment via a TCP/IP network. Our approach
enables users to access remote USB devices as if they were attached to a local
machine using the same environment.

In order to design and implement our approach, we apply UCE to Windows and
exploit Linux as the target heterogeneous environment. UCE Bus is a virtual
peripheral bus based on Windows and provides virtual attachment and transparency to
local machine for accessing remote devices regardless of concerning their location
and operating systems. According to our evaluation results, performance of remote
USB devices attached to UCE Bus virtually is 1.6 times less than local one, but it is
sufficient for practical use.

Acknowledgments. This research work has been supported by Nano IP/SoC
Promotion Group of Seoul R&BD Program in 2006 and the Brain Korea 21 Project in
2006.

References

1. SAMBA, http://us1.samba.org/samba/
2. Hirofuchi, T., Kawai, E., Fujikawa, K., Sunahara, H.: USB/IP – a Peripheral Bus Extension

for Device Sharing over IP Network. In: the Proceedings of the FREENIX Track: USENIX
Annual Technical Conference, pp. 47–60 (2005)

3. Hirofuchi, T., Kawai, E., Fujikawa, K., Sunahara, H.: USB/IP: A Transparent Device
Sharing Technology over IP Network. In: IPSJ Transactions on Advanced Computing
Systems, pp. 349–361 (2005)

4. MSDN, http://msdn2.microsoft.com/en-us/library/default.aspx
5. Universal Serial Bus Revision 2.0 specification, http://www.usb.org/developers/docs/
6. WinDBG, http://www.microsoft.com/whdc/devtools/debugging/debugstart.mspx

A Review on System Architectures for Sensor

Fusion Applications

Wilfried Elmenreich

Vienna University of Technology
Treitlstrasse 3, 1040 Vienna, Austria

wil@vmars.tuwien.ac.at

Abstract. In the literature there exist many proposed architectures
for sensor fusion applications. This paper briefly reviews some of the
most common approaches, i. e., the JDL fusion architecture, the Wa-
terfall model, the Intelligence cycle, the Boyd loop, the LAAS archi-
tecture, the Omnibus model, Mr. Fusion, the DFuse framework, and
the Time-Triggered Sensor Fusion Model, and categorizes them into ab-
stract models, generic and rigid architectures. While an abstract model
does not guide the designer in the concrete implementation, the generic
architectures provide a generic design but leave open several design deci-
sions regarding operating system, hardware, communication system, or
database system. Rigid architectures specify at least some of these as-
pects and therefore provide existing hardware designs, tools, and source
code at the cost of flexibility.

1 Introduction

Sensor fusion, “the combining of sensory data or data derived from sensory data
such that the resulting information is in some sense better than would be possible
when these sources were used individually” [1], encompasses a wide variety of dif-
ferent application types (e. g., automation, automotive driver assistance systems,
autonomous robots, C3I (command, control, communications, and intelligence)).
An example for sensor fusion applications are current innovations in automotive
electronic driver assistant systems [2].

Due to the fact that sensor fusion models heavily depend on the application,
there exists no generally accepted model of sensor fusion. According to Kam,
Zhu, and Kalata, it is unlikely that one technique or one architecture will provide
a uniformly superior solution [3]. Thus, there exist numerous architectures and
models for sensor fusion in the literature. In order to use sensor fusion for an
application, it is of interest which models and architectures can be used as design
patterns.

It is the objective of this paper to review several sensor fusion models and
architectures that have been used for sensor fusion. The different approaches will
be assessed with respect to their eligibility for real-time applications.

The rest of the paper is structured as follows: The following section briefly
describes nine sensor fusion architectures or architectures that have been used
to implement sensor fusion applications. Section 3 introduces a classification
and discusses the implications of design decisions and design freedom for an
implementation. The paper is concluded in Section 4.

R. Obermaisser et al. (Eds.): SEUS 2007, LNCS 4761, pp. 547–559, 2007.
c© IFIP International Federation for Information Processing 2007

548 W. Elmenreich

2 Architectures for Sensor Fusion

2.1 The JDL Fusion Architecture

A frequently referred fusion model originates from the US Joint Directors of Lab-
oratories (JDL). It was proposed in 1985 under the guidance of the Department
of Defense (DoD). The JDL model [4] comprises five levels of data processing and
a database, which are all interconnected by a bus. The five levels are not meant
to be processed in a strict order and can also be executed concurrently. Figure 1
depicts the top level of the JDL data fusion process model. The elements of the
model are described in the following:

Sources: The sources provide information from a variety of data sources, like
sensors, a priori information, databases, human input.

Source preprocessing (Level 0): The task of this element is to reduce the
processing load of the fusion processes by prescreening and allocating data to
appropriate processes. Source preprocessing has later been labelled level 0 [5].

Object refinement (Level 1): This level performs data alignment (transfor-
mation of data to a consistent reference frame and units), association (using
correlation methods), tracking actual and future positions of objects, and
identification using classification methods.

Situation refinement (Level 2): The situation refinement tries to find a con-
textual description of the relationship between objects and observed events.

Threat refinement (Level 3): Based on a priori knowledge and predictions
about the future situation this processing level tries to draw inferences about
vulnerabilities and opportunities for operation.

Process refinement (Level 4): Level 4 is a meta process that monitors sys-
tem performance (e. g., real-time constraints) and reallocates sensor and
sources to achieve particular mission goals.

Database management system: The task of the database management sys-
tem is to monitor, evaluate, add, update, and provide information for the
fusion processes.

Man-machine interaction: This part provides an interface for human input
and communication of fusion results to operators and users.

Fig. 1. JDL fusion model (from [4])

A Review on System Architectures for Sensor Fusion Applications 549

The JDL model has been very popular for fusion systems. Despite its origin in
the military domain it can be applied to both military and commercial applica-
tions. The JDL model also has categorized processes related to a fusion system.
However, the model suffers from the following drawbacks:

– It is a data-centered or information-centered model, which makes it difficult
to extend or reuse applications built with this model.

– The model is very abstract, which makes it difficult to properly interpret its
parts and to appropriately apply it to specific problems.

– The model is helpful for common understanding, but does not guide a de-
veloper in identifying the methods that should be used [4] – thus, the model
does not help in developing an architecture for a real system.

The basic JDL model has also been improved and extended for various ap-
plications. Waltz showed, that the model does not address multi-image fusion
problems and presented an extension that includes the fusion of image data [6].
Steinberg, Bowman, and White proposed revisions and expansions of the JDL
model involving broadening the functional model, relating the taxonomy to fields
beyond the original military focus, and integrating a data fusion tree architecture
model for system description, design, and development [7].

2.2 Waterfall Fusion Process Model

The waterfall model, proposed in [8], emphasizes on the processing functions on
the lower levels. Figure 2 depicts the processing stages of the waterfall model. The
stages relate to the levels 0, 1, 2, and 3 of the JDL model as follows: Sensing and
signal processing correspond to source preprocessing (level 0), feature extraction
and pattern processing match object refinement (level 1), situation assessment
is similar to situation refinement (level 2), and decision making corresponds to
threat refinement (level 3).

Being thus similar to the JDL model, the waterfall model suffers from the
same drawbacks. While being more exact in analyzing the fusion process than
other models, the major limitation of the waterfall model is the omission of any
feedback data flow. The waterfall model has been used in the defense data fusion
community in Great Britain, but has not been significantly adopted elsewhere [5].

 Signal Processing

Sensing

 Feature Extraction

 Pattern Processing

 Situation Assessment

Decision Making

Fig. 2. The waterfall fusion process model (from [8])

550 W. Elmenreich

2.3 The Intelligence Cycle

Another approach to model a fusion application is to line out its cyclic character.
Representatives of such an approach are the intelligence cycle [9] and the Boyd
control loop [10].

The Intelligence Cycle [9] comprises the following five stages:

Planning and Direction: This stage determines the intelligence requirements.
Collection: Gathering of appropriate information, e. g., through sensors.
Collation: Here the collected information is lined up.
Evaluation: The actual fusion is done and the information gets analyzed.
Dissemination: Dissemination distributes the fused intelligence.

2.4 Boyd Model

Boyd has proposed a cycle containing four stages [10]. This Boyd control cycle or
OODA loop (depicted in figure 3) represents the classic decision-support mech-
anism in military information operations. Because decision-support systems for
situational awareness are tightly coupled with fusion systems [11], the Boyd loop
has also been used for sensor fusion. Bedworth and O’Brien compared the stages
of the Boyd loop to the JDL [5]:

Observe: This stage is broadly comparable to source preprocessing in the JDL
model.

Orientate: This stage corresponds to functions of the levels 1, 2, and 3 of the
JDL model.

Decide: This stage is comparable to level 4 of the JDL model (Process refine-
ment).

Act: This stage has no direct counterpart in the JDL model.

The Boyd model represents the stages of a closed control system and gives an
overview on the overall task of a system, but the model lacks of an appropriate
structure for identifying and separating different sensor fusion tasks.

Decide

Orientate

Observe

Act

Fig. 3. The Boyd (or OODA) loop

A Review on System Architectures for Sensor Fusion Applications 551

Fig. 4. LAAS Architecture (from [12])

2.5 The LAAS Architecture

The LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes) architec-
ture [12] was developed as an integrated architecture for the design and imple-
mentation of mobile robots with respect to real-time and code reuse. Due to the
fact that mobile robot systems often employ sensor fusion methods, we briefly
discuss the elements of the LAAS architecture (depicted in figure 4).

The architecture consists of the following levels [12]:

Logical robot level: The task of the logical robot level is to establish a hard-
ware independent interface between the physical sensors and actuators and
the functional level.

Functional level: The functional level includes all the basic built-in robot ac-
tion and perception capabilities. The processing functions, such as image
processing, obstacle avoidance, and control loops, are encapsulated into sep-
arate controllable communicating modules.

552 W. Elmenreich

Execution control level: The execution control level controls and coordinates
the execution of the functions provided by the modules according to the task
requirements.

Decision level: The decision level includes the capabilities of producing the
task plan and supervising its execution while being at the same time reac-
tive to other events from the execution control level. Depending on the ap-
plication, the decision level can be composed of several layers that provide
different representation abstractions and have different temporal properties.

The LAAS architecture maps low-level and intermediate-level sensor fusion
to modules at the functional level. High-level sensor fusion is represented in
the decision level. The timing requirements are different at the decision level
and the functional level. In contrast to the JDL model, the LAAS architecture
guides a designer well in implementing reusable modules as part of a real-time
application.

2.6 The Omnibus Model

The Omnibus model [5] has been presented in 1999 by Bedworth and O’Brien.
The model was created after analyzing the strengths and weaknesses of existing
models and integrates most of the beneficial features of other approaches.

Figure 5 depicts the architecture of the Omnibus model. Unlike the JDL
model, the Omnibus model defines the ordering of processes and makes the
cyclic nature explicit. It uses a general terminology that does not assume that
the applications are defense-oriented. The model shows a cyclic structure com-
parable to the Boyd loop, but provides a much more fine-grained structuring
of the processing levels. The model is intended to be used multiple times in
the same application recursively at two different levels of abstraction. First, the
model is used to characterize and structure the overall system. Second, the same
structures are used to model the single subtasks of the system.

Although the hierarchical separation of the sensor fusion tasks is very sophis-
ticated in the Omnibus model, it does not support a horizontal partitioning into
tasks that reflect distributed sensing and data processing. Thus, the model does
not support a decomposition into modules that can be separately implemented,
separately tested, and reused for different applications.

2.7 Mr. Fusion

Mr. Fusion [13] is a middleware framework supporting data fusion. Mr. Fusion
is not exactly tailored to the communication and processing of sensor measure-
ments but aims at data at application level, as for example the output from
several network servers.

The architecture consists of two main subsystems, a fusion core running a
Fusion Virtual Machine (FVM) and a Fusion Status Service (FSS). The commu-
nication between the main components is done via CORBA (Common Object
Request Broker Architecture). The FVM gathers so-called ballots, i. e., messages
from the replicas and evaluates a given policy in order to create an output ballot
or an exception. The FSS monitors the output from the fusion core and col-
lects information about value and timing errors for each fusion session into a

A Review on System Architectures for Sensor Fusion Applications 553

Decision making

Context processing

Control

Resource tasking

Signal processing

Sensing

Pattern processing

Feature extraction

Soft decision

fusion

Hard decision

fusion

Sensor

management

Sensor

data fusion

Decide

Observe

O
ri

e
n

ta
te

A
c
t

Fig. 5. The Omnibus model (from [5])

database. Information from this database is used by a component named Fusion
VM Manager in order to eventually adjust a policy for the FVM.

2.8 DFuse Framework

The DFuse framework for distributed data fusion [14] has been designed to sup-
port data fusion applications in heterogeneous ad hoc wireless sensor networks.
DFuse models an application as a task graph of data sources, fusion points and
data sinks. DFuse assumes data sources to have data available, whenever it is re-
quired. If requested data does not arrive at a fusion point in time due to extended
computation time or communication failures, the fusion points may perform the
fusion over an incomplete set of data.

Figure 6 depicts the two main components of the DFusion architecture, the
fusion module implementing the fusion API and the placement module that
tries to find a good mapping of the fusion functions within the sensor network.
DFuse provides an automatic deployment of applications on the network. An
application is launched by passing the task graph and fusion code to a designated
root node. The DFuse architecture then performs a distributed algorithm that
automatically deploys the application onto the network nodes.

While being a very powerful approach, DFuse requires an underlying hardware
and middleware that provides support for timestamping data and a reliable

Application
task graph

Fusion
function code

Fusion module

Placement module

Resource monitor
Routing layer interface

Operating system / Routing layer

Fig. 6. DFuse Architecture (from [14])

554 W. Elmenreich

transport layer. Therefore, DFuse cannot be deployed in small wireless sensor
architectures such as the Mica platform [15]. Kumar et al. present a case study
running on a set of iPAQ 3870 handheld computers providing each at least 32
MB RAM and a 206 MHz StrongARM processor.

2.9 Time-Triggered Sensor Fusion Model

The Time-Triggered Sensor Fusion Model [16] proposes the implementation of a
sensor fusion application on top of the Time-Triggered Architecture [17].

The Time-Triggered Architecture proposes a strictly synchronous design,
where each task and communication activity is planned a priori in a static
schedule. All distributed nodes are synchronized to a global time base, which
enables the nodes to perform coordinated actions like measurement or actua-
tor settings. Furthermore, the design supports an easy verification of the timing
constraints.

The Time-Triggered Sensor Fusion Model describes a set of jobs that rep-
resent all necessary activities like measurement, data processing, decision, and
actuation. The jobs are represented as vertexes in a distributed graph, whereas
each communication activity is represented by an edge between the service pro-
viding linking interface (SPLIF) of the job that provides the data and the service
requesting linking interface (SRLIF) of the job that receives the data. A physical
node may host one or several jobs, thus two logically different tasks may be split
up into two jobs but still executed on the same microcontroller subsequently.

The job graph is furthermore structured hierarchically into three levels in
order to distinguish between transducers (direct interfaces to the environment),
fusion and dissemination activities, and decision activities.

Figure 7 depicts a control loop modelled by the time-triggered sensor fusion
model. Interfaces are illustrated by a disc with arrows indicating the possible
data flow directions across the interface. Physical sensors and actuators are
located on the borderline to the process environment and are represented by
circles. All other components of the system are outlined as boxes. The model
distinguishes three levels of data processing with well-defined interfaces between
them. The transducer level contains the sensors and actuators that interact di-
rectly with the controlled object. A smart transducer interface provides a consis-
tent borderline to the above fusion/dissemination level. This level contains fault
tolerance and sensor fusion tasks. The control level is the highest level of data
processing within the control loop. The control level is fed by a dedicated view of
the environment (established by transducer and fusion/dissemination level) and
outputs control decisions to a fault-tolerant actuator interface. User commands
from an operator interact with the control application via the man-machine
interface.

The breakdown into these three levels is justified by the different tasks the
three levels have to fulfill and the different knowledge necessary for designing the
corresponding hard- and software. Table 1 describes the task and the attributes
of the different levels. The following sections describe the three levels in detail.

Prerequisites for implementing an application in the Time-Triggered Sensor
Fusion Model are a deterministic time-triggered communication system that sup-
ports coordinated task execution and a known upper bound for the computation
time of each job in the real-time control loop. Thus, the Worst-Case-Execution

A Review on System Architectures for Sensor Fusion Applications 555

Fig. 7. Data flow in the time-triggered sensor fusion model

Table 1. Properties of transducer, fusion/dissemination, and control level

Level Task Implementer Knowledge

Transducer level Deliver sensor
measurements, in-
strument actuators

Transducer manu-
facturer

Internals of sen-
sor/actuator

Fusion/Dissemina-
tion level

Gather, process,
and represent sen-
sor information;
disseminate con-
trol decisions to
actuators

System integrator Sensor fusion algo-
rithms, fault toler-
ance concepts

Control level Find a control deci-
sion, navigation and
planning

Application pro-
grammer

Mission goals, con-
trol theory, deci-
sion finding

Operator Definition of goals — Conceptual model
of system

Time (WCET) has to be determined for each job, an overview of appropriate
methods and tools for WCET estimation can be found in [25].

556 W. Elmenreich

There are several protocols available for wired time-triggered systems [18,
19,20,21,22] but only a few solutions are available for wireless systems. Notable
exceptions are Kim and Li’s work on time-triggered tasks [23] that have also been
implemented on the wireless Mica platform [15] and the work on time-triggered
wireless communication by Huber and Elmenreich [24].

The time-triggered approach works well with typical sensor fusion algorithms,
such as:

– Kalman Filtering [26] requires periodic sets of measurements. The measure-
ments have to be taken at the same instant and the communication system
should avoid out-of-sequence behavior of messages.

– Abstract reliable sensors [27] and the confidence-weighted averaging algo-
rithm [1] require measurements to be taken at approximately the same in-
stant with respect to the change rate of the measured variable.

3 Comparison

3.1 Classification

The presented sensor fusion architectures can be roughly classified into the fol-
lowing categories:

Abstract Models: These approaches serve as a way to think of or explain an
aspect of a fusion system without guiding the engineer in its implementation.
As a consequence, a fusion system may contain references to several abstract
models. Members of this group are the Waterfall model, the Boyd control
loop.

Generic Architectures: A generic architecture gives an outline how to im-
plement an application, but for example does not specify which operating
system, hardware, communication system or database should be used. Ex-
amples for this group are the JDL model and the Omnibus Model.

Rigid Architectures: These systems guide the engineer well in its implemen-
tation, but at the cost that several design decisions have already been taken.
While new systems can be realized quickly by taking advantage of exist-
ing hardware designs, tools, and source code, the cost of migrating a design
from one rigid architecture to another is unnecessarily high. Examples for
this group are the LAAS architecture, Mr. Fusion, DFuse, and the Time-
Triggered Sensor Fusion Model.

The three categories should not imply a valuation. Abstract models are very
important to understand and model the problem statement at the beginning.
Using a generic architecture will provide the necessary designer’s freedom if a
special solution for a special problem is required. On the other hand, selecting a
rigid solution will be often the best way to avoid unnecessary re-implementations
of already available solutions.

3.2 Real-Time Support

Typically, sensor fusion applications interact with a real environment where it
is necessary to fulfill some timing constraints, e. g., for a timely reaction on a
particular situation.

A Review on System Architectures for Sensor Fusion Applications 557

For most architectures, especially the abstract and generic ones, it is possible
to support real-time behavior, if the implementation of the system is provided
with the respective means, like timestamping, deterministic communication, etc.
Thus, these architectures neither support nor hinder real-time behavior. How-
ever, in order to reduce system complexity such real-time issues should be in-
trinsic to the architecture.

We will quickly review the rigid architectures regarding this issue:
The LAAS architecture provides real-time support within the functional level

by the Generator of Modules (GenoM) [28]. Modules are annotated by the user
stating period, delay, and priority properties. GenoM creates the concrete real-
time architecture for the application.

Mr. Fusion has been designed at a higher network level, where several sources
of indeterminism like possible network delays or unpredictable execution time of
the virtual machines jeopardize hard real-time behavior. Therefore, Mr. Fusion
is not suited to real-time control applications.

The DFuse framework does not provide predictable timing due to the na-
ture of the underlying wireless communication network. One cannot predict how
the heuristic placement algorithm assigns the roles in the networks. Moreover,
a wireless transmission may be arbitrary delayed due to inference from other
wireless nodes. Therefore, the DFuse framework will not fulfill hard real-time
requirements.

The Time-Triggered Sensor Fusion Model is very rigid regarding the timing
assumptions and therefore well apt to design real-time fusion applications. How-
ever, in applications with soft real-time requirements, the approach still requires
a strict analysis and design of the communication schedule. Although this is
supported by tools like [29], this strictness comes with some overhead.

4 Conclusion

The large number of proposed sensor fusion architectures makes it difficult for
a system engineer to decide which model best fits his or her needs.

While some fusion models are too vague in order to support and guide an
implementation, the more concrete models propose different interfaces that do
not interoperate with each other. Some systems, especially the ones that stem
from the robotic domain are in principle compatible regarding their basic data
items and the role of time (that is supporting real-time communication and
being implementable on small embedded devices). In contrast, high-level network
systems such as Mr. Fusion are tailored to their specific application requirements.

For the future it would be advantageous to elaborate ways that provide inter-
operation between components of existing fusion architectures instead of creating
even more isolated systems anew.

Acknowledgments

This work was supported by the Austrian FWF project TTCAR under contract
No. P18060-N04.

558 W. Elmenreich

References

1. Elmenreich, W.: Sensor Fusion in Time-Triggered Systems. PhD thesis, Technische
Universität Wien, Institut für Technische Informatik, Vienna, Austria (2002)

2. Kirchner, A., Obojski, A., Philipps, H., Rotaru, C., Stueker, D., Weiss, K.: Devel-
opment of an environmental server for advanced driver assistance systems. In: 5th
Eur. Congr. and Exhibition on Intel. Transportation Systems and Services (2005)

3. Kam, M., Zhu, X., Kalata, P.: Sensor fusion for mobile robot navigation. Proceed-
ings of the IEEE 85(1), 108–119 (1997)

4. Llinas, J., Hall, D.L.: An introduction to multi-sensor data fusion. In: Proceedings
of the International Symposium on Circuits and Systems, vol. 6, pp. 537–540 (1998)

5. Bedworth, M.D., O’Brien, J.: The omnibus model: A new architecture for data
fusion? In: Proceedings of the 2nd International Conference on Information Fusion
(FUSION’99), Helsinki, Finnland (1999)

6. Waltz, E.: The principles and practice of image and spatial data fusion. In: Pro-
ceedings of the 8th National Data Fusion Conference, Dallas (1995)

7. Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion
model. In: Proceedings of the 1999 IRIS Unclassified National Sensor and Data
Fusion Conference (NSSDF) (May 1999)

8. Markin, M., Harris, C., Bernhardt, M., Austin, J., Bedworth, M., Greenway, P.,
Johnston, R., Little, A., Lowe, D.: Technology foresight on data fusion and data
processing. The Royal Aeronautical Society (1997)

9. Shulsky, A.N.: Silent Warfare: Understanding the World of Intelligence. Brassey’s,
New York (1991)

10. Boyd, J.R.: A discourse on winning and losing. Unpublished set of briefing slides,
Air University Library, Maxwell AFB, AL, USA, (May 1987)

11. Bass, T.: Intrusion detection systems and multisensor data fusion: Creating cy-
berspace situational awareness. Comm. of the ACM 43(4), 99–105 (2000)

12. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. International Journal of Robotics Research 17(4), 315–337 (1998)

13. Franz, A., Mista, R., Bakken, D., Dyreson, C., Medidi, M.: Mr. fusion: A pro-
grammable data fusion middleware subsystem with a tunable statistical profiling
service. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN’02), pp. 273–278 (2002)

14. Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul, A., Ramachan-
dran, U.: DFuse: A framework for distributed data fusion. In: Proceedings of the
Intl. Conference on Embedded Networked Sensor Systems, pp. 114–125 (2003)

15. Hill, J.L., Culler, D.E.: Mica: A wireless platform for deeply embedded networks.
IEEE Micro 22(6), 12–24 (2002)

16. Elmenreich, W., Pitzek, S.: The time-triggered sensor fusion model. In: Proceed-
ings of the 5th IEEE International Conference on Intelligent Engineering Systems,
Helsinki–Stockholm–Helsinki, Finland, pp. 297–300 (September 2001)

17. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the
IEEE 91(1), 112–126 (2003)

18. Kopetz, H., et al.: Specification of the TTP/A protocol. Research Rep. 61/2002,
TU Vienna, Inst. of Comp. Engineering, Vienna, Austria, Version 2.00 (September
2002)

19. TTAGroup. Specification of the TTP/C Protocol V1.1 (2003), Available at
http{www.ttagroup.org}

http{www.ttagroup.org}

A Review on System Architectures for Sensor Fusion Applications 559

20. Flexray Consortium. FlexRay Communications System Protocol Specification Ver-
sion 2.1 (2005), Available at http{www.flexray.com}

21. Hartwich, F., Müller, B., Führer, T., Hugel, R.: Time triggered communication on
CAN. In: Proc. of the Intl. CAN Conference, Amsterdam (2000)

22. Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The Time-Triggered Eth-
ernet (TTE) design. In: Proceedings of the Intl. Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), pp. 22–33 (May 2005)

23. Kim, K., Li, Y.: Toward easily analyzable sensor networks via structuring of time-
triggered tasks. In: Proceedings of the Ninth IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS’03), pp. 344–351. IEEE Computer
Society Press, Los Alamitos (2003)

24. Huber, B., Elmenreich, W.: Wireless time-triggered real-time communication. In:
Proceedings of the Second Workshop on Intelligent Solutions for Embedded Sys-
tems (WISES’04), Austria, pp. 169–182 (June 2004)

25. Puschner, P., Burns, A.: A review of worst-case execution-time analysis. Journal
of Real-Time Systems 18(2/3), 115–128 (2000)

26. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
action of the ASME, Series D, Journal of Basic Engineering 82, 35–45 (1960)

27. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Transactions
on Computer Systems 8(4), 284–304 (1990)

28. Fleury, S., Herrb, M., Chatila, R.: Genom: A tool for the specification and the im-
plementation of operating modules in a distributed robot architecture. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Grenoble, France, pp. 842–848 (September 1997)

29. Elmenreich, W., Paukovits, C., Pitzek, S.: Automatic generation of schedules for
time-triggered embedded transducer networks. In: Proceedings of the 10th IEEE
Conference on Emerging Technologies and Factory Automation (ETFA05), Cata-
nia, Italy, vol. 2, pp. 535–541 (September 2005)

http{www.flexray.com}

Author Index

Alonso, Alejandro 93
Altangerel, Baatarbileg 394
Anderson, Jonathan S. 67
Asakura, Yoshiharu 477
Ayabe, Masaaki 202

Bae, Hae-Young 329
Baek, Jang Woon 399
Bastianini, Filippo 456
Boavida, Fernando 436
Brinkschulte, Uwe 339, 527

Camilo, Tiago 436
Cha, Youngrock 368
Chae, Heung Seok 114
Chae, Kijoon 466
Chae, Songah 149
Chang, Chun-Hyon 192
Chaudhry, Junaid Ahsenali 348
Chen, Ya-Shu 301
Chishima, Hiroshi 477
Cho, Byong-Ha 419
Cho, Han Wook 537
Cho, Jinsung 446
Cho, Sangyoung 171
Choi, Byung-Uk 243
Choi, Ki-Seok 181
Choi, Lynn 419
Chung, Yoo Chul 368
Cinque, Marcello 409

d’Auriol, Brian J. 446
de Miguel, Miguel Ángel 93
de Oliveira, Rômulo Silva 273
Deng, Qingxu 263
Dittmann, Florian 358

Elmenreich, Wilfried 159, 547
Eo, Sang-Hun 329

Fernández Briones, Javier 93

Gao, Shuaihong 263
Großmann, Jürgen 125
Gu, Zonghua 263
Guan, Nan 263

Han, Jonghyeong 30
Han, Ki-Joon 516
Han, Sunyoung 311
Heimfarth, Tales 319
Hieda, Satoshi 477
Honda, Atsushi 477
Hong, Jun Hee 293
Hong, Y.S. 429
Hwang, Jaeil 30
Hyun, Soon J. 20

Imaeda, Takuya 11
In, Hoh Peter 233
Ito, Megumi 496
Iwai, Masayuki 11

Janacik, Peter 319
Jensen, E. Douglas 67
Jeon, Paul Barom 384
Jeong, Chang-Won 223
Jeong, Jinkyu 283
Joo, Su-Chong 223
Jung, Changhee 149
Jung, Youna 47
Jung, Young J. 389
Jung, Youngjin 171
Jung, Yung-Joon 283

Kang, Hong-Koo 516
Kang, Un-Gu 213
Kang, Yongbin 181
Kei, Suzuki 11
Kim, Cheong-Ghil 1
Kim, Dong-Oh 516
Kim, Donghwan 283
Kim, Dongsung 283
Kim, Doo-Hyun 149, 192
Kim, Heemin 311
Kim, Hie-Cheol 1
Kim, Ho-Jun 114
Kim, Jin-Soo 283
Kim, Jong-Hun 213
Kim, Jong Il 389
Kim, Jung-Guk 192
Kim, Junhyeong 384

562 Author Index

Kim, K.H. (Kane) 181
Kim, Kanghee 283
Kim, Keechon 192
Kim, Mihui 466
Kim, Minkoo 47
Kim, Moon Hae 192
Kim, Sanghoon 293
Kim, Shin-Dug 1
Kim, Sun-Joong 419
Kim, Sung-Jin 181
Kimura, Hiroaki 202
Kinebuchi, Yuki 486
Kirner, Raimund 137
Ko, Yangwoo 368
Koshimae, Hidenari 486
Kucera, Markus 82
Kwon, Jinbaek 171, 389, 394
Kwon, Wonhong 537

Lee, Bogju 378
Lee, Dong-Wook 329
Lee, Dongman 20, 368
Lee, Jeong B. 389
Lee, Jeongbae 171, 394
Lee, Joonwon 283
Lee, Joonwoo 30
Lee, Jun-Hwan 1
Lee, Jung-Hyun 213
Lee, Jungtae 47
Lee, Min-Gu 253
Lee, Sang-Yun 243
Lee, Sang Hoon 419
Lee, Seungkeun 40
Lee, Sunggu 253
Lee, Sungyoung 446
Lee, Taek 233
Lee, Woo Jin 114
Lee, Yonghwan 348
Lee, Young R. 389
Lien, Cheng-Min 301
Lim, Chaedeok 149
Liu, Sheng 181

Mauser, Hans 82
Min, Dugki 348
Min, Youngkun 378
Mok, Hyung-Soo 293
Montez, Carlos 273

Nah, Yunmook 30, 378
Nakajima, Tatsuo 202, 486
Nakamoto, Yukikazu 506
Nam, Young Jin 399
Nang, Jongho 181
No, J.H. 429

Obermaisser, Roman 159
Oikawa, Shuichi 486, 496
Okada, Eigo 506
Osawa, Ryo 11

Pacher, Mathias 339
Park, Hansol 192
Park, Insuk 20
Park, Jiyong 233
Park, Kyung-Lang 1
Park, Sangdo 384
Park, Seungkyu 348
Park, Seungyong 30
Plessi, Valerio 456
Puschner, Peter 137
Pyo, Donghak 253

Rammig, Franz J. 319
Ravindran, Binoy 67
Rieder, Bernhard 137
Rim, Kee-Wook 171, 213, 389
Rodrigues, André 436
Russo, Stefano 409
Ryu, Hoseok 20

Sato, Mitsuko 506
Sato, Naoki 477
Satria, Hadipurnawan 394
Schieferdecker, Ina 125
Schlager, Martin 159
Schoeberl, Martin 105
Schuster, Sebastian 527
Sedigh, Sahra 456
Seo, Dae-Wha 399
Seo, Euiseong 283
Seo, Jaewon 466
Shih, Chi-Sheng 301
Shin, Chang-Sun 223
Shin, Jung-Su 516
Silva, J.P. 93
Silva, Jorge Sá 436
Son, Byung-Kook 1
Son, Sung-Yong 293

Author Index 563

Song, Jungwook 311
Song, Yong Ho 537
Steiner, Wilfried 57
Sukmana, Husni Teja 389

Tatibana, Cássia Yuri 273
Tokuda, Hideyuki 11
Tokunaga, Eiji 202

von Renteln, Alexander 339

Wenzel, Ingomar 137
Woo, Duk-Kyun 149
Wu, Xiaoling 446

You, Byeong-Seob 329
Yu, Ge 263

Zha, Wei 329
Zhang, Zhen 181

	Title Page
	Preface
	Organization
	Table of Contents
	An Efficient Method to Create Business Level Events Using Complex Event Processing Based on RFID Standards
	Introduction
	Related Works
	Proposed Complex Event Processing
	Primitive Event
	Event Operators

	CEP Architecture and Operation Flow
	Architecture and Operation Flow

	Examples of Complex Event Detection
	Scenario 1 (Shopping in the Market)
	Scenario 2 (Recognition of Right Path)

	Experience Results
	Conclusion
	References

	Physical/Cyber Objects Management Framework for Multiple-Area Detectable RFID
	Introduction
	Hardware Architecture
	Desktop-Size Furoshiki
	Mobile-Size Furoshiki

	Software Framework of Smart-Furoshiki
	Total Framework of Smart-Furoshiki Middleware
	Algolism of Shape Recognition

	Applications
	Supporting Collaborative Works by Laying Smart-Furoshiki on A Desk
	Managing Objects Covered with Smart-Furoshiki
	Wall Type Task Schedular Using Smart-Furoshiki

	Related Work
	Conclusion
	References

	A Task Decomposition Scheme for Context Aggregation in Personal Smart Space
	Introduction
	Motivation
	Requirements for Context Aggregation in Personal Smart Space
	Context Management Architecture for Personal Smart Space
	System Architecture
	Decomposition Algorithm

	Implementation
	Performance Analysis
	Related Works
	Conclusion
	References

	Distributed k-NN Query Processing for Location Services
	Introduction
	A Naïve Scheme for Distributed Processing of k-NN Queries
	Overall Scheme
	Query Distribution over Neighboring Nodes

	Hybrid k-NN Query Processing
	Experiments
	Conclusion
	References

	Ontology Based Context Alignment for Heterogeneous Context Aware Services
	Introduction
	Relative Works
	Context Alignment Model
	Hierarchical Context Ontology
	Context Alignment

	Experiment
	Conclusion
	References

	Community Computing Model Supporting Community Situation Based Strict Cooperation and Conflict Resolution
	Introduction
	Related Works
	Previous Community Computing Model
	Existing Cooperation Models

	Community Situation Based Cooperation Model
	Community Situation Model
	Community Situation Based Strict Cooperation Model

	Community Computing Models with Community Situation Based Strict Cooperation
	The Community Situation Based Community Computing Model
	The Community Situation Based Platform Independent Community Implementation Model Supporting Conflict Resolution
	The Community Situation Based Platform Specific Community Implementation Model Supporting Conflict Resolution

	Case Study
	Conclusion
	References

	Advancements in Dependable Time-Triggered Communication
	Introduction
	Time-Triggered Communication
	Layered Time-Triggered Protocol (LTTP)
	Protocol Startup
	Synchronized Operation
	External Synchronization
	Clique Resolution Algorithms
	Formal Analysis of (L)TTP Services

	The Central Guardian Concept
	Dependable Communication on Ethernet
	Conclusion
	References

	On Distributed Real-Time Scheduling in Networked Embedded Systems in the Presence of Crash Failures
	Introduction
	Models
	Distributable Thread Abstraction
	Timeliness Model
	System and Failure Models
	Scheduling Objectives

	The CUA Algorithm
	Rationale and Design
	Algorithm Description
	Constructing Section Schedules

	Algorithm Properties
	Conclusions and Future Work
	References

	Probabilistic Optimization and Assessment of Voting Strategies for X-by-Wire Systems
	Introduction
	Signal Voting
	System Description
	Automatic Generation of Voting Strategies
	Analysis of the Voting Strategy
	Conclusion
	References

	Application of Safety Analyses in Model Driven Development
	Introduction
	Application of Safety Analyses in Model-Driven Development
	Using MDA in the Process

	Creation of Safe-Aware Architectures
	Safety Concepts

	Safety Analysis Meta-models
	FMECA
	FTA

	Safety Analyses
	FMECA Models Creation
	FTA Models Creation
	Example
	Results

	Current Implementation Scenario
	Related Work
	Summary and Discussion
	References

	Mission Modes for Safety Critical Java
	Introduction
	A Safety Critical Java Profile
	Mission Modes

	Mode Changes
	Application Level
	Dynamic Threads
	Predefined Modes

	Implementation
	Shutdown
	The Mode Change
	An Example

	Discussion
	Analysis
	Runtime Overhead

	Conclusion
	References

	Safety Property Analysis Techniques for Cooperating Embedded Systems Using LTS
	Introduction
	Related Works
	Modeling System Behaviors and Properties
	Slicing System Model Based on State Variables
	Compositional Verification of Safety Properties
	State Space Evaluation of Slice Model Approach
	Conclusion and Future Work
	References

	Testing Embedded Control Systems with TTCN-3 An Overview on TTCN-3 Continuous
	Introduction
	Testing Automotive Control Systems
	Continuous TTCN-3
	Type Definitions
	Control Flow Structure for Continuous Behavior
	Construction of Streams
	Stream Templates

	Case Study
	The System Under Test
	The Informal Test Specification
	The TTCN-3 Test Specification

	Summary and Conclusions
	References

	Cross-Platform Verification Framework for Embedded Systems
	Introduction
	Contribution
	Structure of This Paper

	Related Work
	Basic Concepts
	Cross-Platform Verification
	Remote Testing
	Cross-Platform Testing
	Reference Platform Testing
	Functional Equivalence Between Two Platforms
	Verification of Embedded Systems

	Cross-Platform Verification Framework
	Overview
	Code Transformation
	Test Data Generation
	Communication and Test Data Representation

	Experiments
	Summary and Conclusion
	References

	Experimental Analysis on Time-Triggered Power Consumption Measurement with DVS-Enabled Multiple Power Domain Platform
	Introduction
	Backgrounds and Related Works
	Power Consumption of Software
	Software Power Measurement Tool
	Related Works

	Time-Triggered Power Measurement
	Architectural Mechanism
	Software Energy Measurement
	Timing Analysis

	Experimental Analysis
	Conclusions
	References

	A Framework for Hardware-in-the-Loop Testing of an Integrated Architecture
	Introduction
	Related Work
	Integrated System
	Communication Network
	Node Computers
	Input/Output

	Environmental Simulation
	Simulator Architecture
	Reproducibility of Simulation Results

	Case Study
	Exemplary Application Using the Integrated Architecture
	Exemplary Environmental Simulation

	Conclusion
	References

	An Embedded Integration Prototyping System Based on Component Technique
	Introduction
	Related Works
	Physical Prototyping
	Virtual Prototyping

	The Design of Integration Prototyping Component System
	The Design of Physical Prototyping
	The Design of Virtual Prototyping
	The Design of Component Module

	The Test and Evaluation of Integration Prototyping Component System
	System Test
	Evaluation

	Conclusion and Future Studies
	References

	TMO Structuring of a Networked System for Seamless Streaming and Tiled Display of High-Definition Movies
	Introduction
	Backgroud
	TMO Scheme
	RMMC
	Non-Blocking Buffer (NBB)
	Direct Show

	Global-Time-Based Approach for HD Video Streaming and Tiled Display
	TMO-Based HD Tiled Display System
	System Architecture
	Design of the Master Node
	Design of Worker Nodes
	Synchronous Play of the Video Stream in All Worker Nodes

	Performance Measurement
	Conclusion
	References

	Design and Experimental Validation of UAV Control System Software Based on the TMO Structuring Scheme
	Introduction
	Backgrounds
	TMO Structuring Scheme
	Unmanned Aerial Vehicle (UAV) Control System
	FlightGear Flight Simulator Project

	Experimental System Design and Implementation
	Hardware Architecture
	Modeling of a UAV Control System Based on TMO Model
	Implementation

	Validation
	Step 1: Test with an Environment Simulator
	Step 2: Real Flight Test

	Conclusion and Future Work
	References

	Lifestyle Ubiquitous Gaming: Computer Games Making Daily Lives Fun
	Introduction
	Lifestyle Ubiquitous Gaming Framework
	Human Daily Activities

	Case Studies
	A Virtual Aquarium Improving Toothbrushing Activity
	A Virtual Fine Art Improving Book Arrangement Activity

	Discussion and Future Work
	Related Work
	Conclusion
	References

	Speech Recognition System Using DHMMs Based on Ubiquitous Environment
	Introduction
	OSGi
	Domain-Separated Hidden Markov Models (DHMMs)
	HMM Topology
	HMM Domain

	Speech Recognition System Design
	Context Manager
	Service Manager
	Speech Recognition Manager

	System Evaluation
	Conclusions
	References

	Healthcare Information Management System in Home Environment
	Introduction
	Healthcare Information Management System
	System Architecture
	The Interaction of System Components

	Healthcare Database
	Procedure for Healthcare Information Management System
	Collection of Healthcare Information
	Management of Healthcare Information
	Executing Results of Healthcare Home Service

	Conclusions and Future Works
	References

	Effective Appliance Selection by Complementary Context Feeding in Smart Home System
	Introduction
	Situation Awareness in Smart Home System
	Situation Awareness
	Appliance Selection Using Situation Awareness

	The Proposed Appliance Selection Method
	Selection Problem Interpretation Using Bayes Theorem
	Selection Problem Resolution

	Experiment and Evaluation of the Proposed Method
	Experiment Environments
	Experiment Result and Evaluation

	Related Work
	Conclusion
	References

	Vector Graphic Reference Implementation for Embedded System
	Introduction
	Design of OpenVG and EGL Engine
	System Architecture
	Structure of the EGL Engine
	Structure of the OpenVG Engine
	Requirement for Designing the OpenVG/EGL Engine

	Novel Features of OpenVG Reference Implementation
	Mathematical Function
	Sort Algorithm
	Improved Raster Rendering Algorithm

	The Design Point for the Embedded Environment
	The Coherence of OpenVG and EGL
	The Language Dependency
	The Singleton Pattern Design

	Implementation and Experimental Results
	Implementation
	CTS Test Result
	Performance Evaluation

	Conclusion
	References

	A QoS Routing Protocol for Mobile Ad Hoc Networks Based on a Reservation Pool
	Introduction
	Related Work
	Proposed QoS Routing Protocol
	Assumptions
	Multihop TDMA
	Reservation Pool Method

	Simulation Results
	Conclusion
	References

	Exact Schedulability Analysis for Static-Priority Global Multiprocessor Scheduling Using Model-Checking
	Introduction
	Related Work
	Utilization Bound Tests
	Formal Methods for Schedulability Analysis

	TA Model for Restricted Migration Scheduling
	TA Model for Full Migration Scheduling
	Performance Evaluation
	Conclusions
	References

	Soft Real-Time Task Response Time Prediction in Dynamic Embedded Systems
	Introduction
	Related Work
	Problem Description
	Proposed Approach
	Approach Description

	Example Application
	Experiment Results

	Conclusions
	References

	Transparent and Selective Real-Time Interrupt Services for Performance Improvement
	Introduction
	Related Work
	Linux Complete Preemption
	Transparent and Selective Real-Time Interrupt Services
	Suppressing the Preemptions by Normal Tasks
	Selective Handling of Real-Time Interrupt Threads
	Transparent Association of Interrupts with Real-Time Tasks

	Evaluation
	Methodology
	Latency
	Throughput

	Conclusion
	References

	An Approach for Energy-Aware Management in Ubiquitous Home Network Environment
	Introduction
	System Configurations
	System Analysis and Results
	Conclusions
	References

	On-Chip Bus Architecture Optimization for Multi-core SoC Systems
	Introduction
	Background and Formal Model
	On-Chip Bus Synthesis Algorithms Design
	Performance Evaluations
	Conclusion and Future Work
	References

	An Effective Path Selection Method in Multiple Care-of Addresses MIPv6 with Parallel Delay Measurement Technique
	Introduction
	Path Selection Problem of MCoA-MIPv6
	Current Problem
	Current Implementations of MCoA

	Parallel Delay Measurement Technique
	Binding Timestamp Sub-option
	Parallel Binding Update
	Selecting Effective Path on the Home Agent and the Correspondent Node
	Selecting Effective Path on the Mobile Node

	Analysis
	Concluding Remarks
	References

	Self-organizing Resource-Aware Clustering for Ad Hoc Networks
	Introduction
	Related Work
	The Minumum-Intracommunication Clustering Problem
	Emergent Clustering
	Clusterhead Selection
	Members Selection

	Simulation and Results
	Conclusion
	References

	Intelligent Context-Awareness System Using Improved Self-adaptive Back Propagation Algorithm
	Introduction
	Related Works
	Context-Awareness System Using SABPA
	Learning Middleware
	SABPA (Self-adaptive BP Algorithm)
	Learning Steps

	Implementation
	Performance Evaluations
	Conclusion and Future Work
	References

	Towards an Artificial Hormone System for Self-organizing Real-Time Task Allocation
	Introduction
	Using an Artificial Hormone System to Obtain Self-X-Properties
	Dynamics of the Artificial Hormone System
	Dynamics of Task Allocation
	Self Configuration: Worst Case Timing Behavior

	Simulation Results
	Related Work
	Conclusion and Further Work
	References

	On Self-aware Delay Time Based Service Request Optimization for Gateway Stability in Autonomic Self-healing Systems
	Introduction
	Related Work
	System Architecture
	Self-aware Service Request Optimization
	Simulation Results
	Concluding Remarks and Future Work
	References

	Algorithmic Skeletons for the Programming of Reconfigurable Systems
	Introduction
	Related Work
	Problem Definition
	Problem Solution
	Algorithmic Skeletons
	Application in Reconfigurable Systems
	Execution Environment

	Stream Parallelism
	Farm Paradigm
	Pipeline Paradigm
	Stream-Iterative Paradigm

	Dynamic Reconfiguration
	Conclusion
	References

	A Framework for Supporting the Configuration and Automatic Integration of Heterogeneous Location Sensors
	Introduction
	Related Work
	Approach
	Overview
	System Components
	Configuration and Integration Protocol
	User Actions

	Evaluation
	Test Environment
	Results and Analysis

	Conclusion
	References

	Searching Visual Media Service Providers Using ASN.1-Based Ontology Reasoning
	Introduction
	Existing Matchmaking Methods
	Visual Media Service Ontology and ASN.1-Based Matchmaking
	Experimental Results
	Conclusions
	References

	SharedSpace Based Service Discovery Mechanism and Its Implementation for Ubiquitous Environments
	Introduction
	Service Discovery Using ShardSpace
	Practical Implementation
	Conclusion
	References

	A Study of Developing Virtual Prototyping by Using JavaBean Interface Tool and SystemC Engine
	Introduction
	Related Works
	Client Side
	SCJLib API

	System Environment
	RapidPLUS Testing
	Adding Object
	Insert Triggers, Actions and Activities

	Conclusion
	References

	Configurable Virtual Platform Environment Using SID Simulator and Eclipse
	Introduction
	Background
	SID Simulation Framework
	Eclipse Platform

	Architecture
	Implementation
	Conclusion
	References

	An Energy-Efficient k-Disjoint-Path Routing Algorithm for Reliable Wireless Sensor Networks
	Introduction
	Background
	The Proposed Algorithm
	Performance Evaluations
	Simulation Environment
	The Average Dissipated Energy
	The Event Delivery Ratio of Critical Events
	The Average Delay

	Concluding Remarks
	References

	Supporting Mobile Ubiquitous Applications with Mobility Prediction and Soft Handoff
	Introduction
	Related Work
	Handoff Management and Mobility Prediction
	The LSSH Scheme
	The Novel Octopus Scheme

	Experimental Results
	Prototype and Experimental Setting
	Results

	Conclusions
	References

	Event-Driven Power Management for Wireless Sensor Networks
	Introduction
	Application Model
	Event Classification
	Application Model
	Application State

	Event-Driven Power Management Techniques
	Application-Specific Protocol Customization
	Event-Driven Dynamic Power Management

	Experimentation and Results
	Benchmarks and Network Configurations
	Protocol Customization
	Simulation Results

	Conclusion
	References

	Time Synchronization in Wireless Sensor Network Applications
	Introduction
	Approaches to Time Synchronization Schemes
	Time Synchronization Using the Accumulated Time Information
	Implementation
	Conclusion
	References

	GENSEN: A Topology Generator for Real Wireless Sensor Networks Deployment
	Introduction
	Related Work
	Wireless Sensor Network Deployment
	GenSeN: A Generator for Sensor Networks
	GenSeN Input
	GenSeN Output

	Results
	Conclusions
	References

	Energy-Aware Routing for Wireless Sensor Networks by AHP
	Introduction
	Problem Statements
	Node Selection in Multipath Routing by AHP
	Performance Evaluations
	Simulation Environment
	Simulation Results

	Conclusion and Future Work
	References

	AWireless System for Real-Time Environmental and Structural Monitoring
	Introduction
	Related Work
	Hardware Implementation and Features
	Software Implementation and Features
	Prototype and Field Test
	Conclusions

	Integrated Notification Architecture Based on Overlay Against DDoS Attacks on Convergence Network
	Introduction
	Threats of DDoS Attacks on Converged Networks
	Notification Mechanism Using Overlay
	Chord Overlay Routing
	Hierarchical Overlay Construction
	Notification of Attack Detection

	Evaluation
	Overhead of Overlay Construction
	Simulation Results

	Conclusion

	Making Middleware Secure on Embedded Terminals
	Introduction
	SEMMETL
	R1: Client Identification
	R2: Access Control
	R3: Resource Control

	Security Enhanced X Server
	Client Identification in the SEN XServer
	Access Control in the SEN XServer
	Resource Control in the SEN XServer
	The Policy File in the SEN XServer

	Conclusion

	Dynamic Translator-Based Virtualization
	Introduction
	Microkernel vs VMM
	Related Work
	Constructing Machine Emulator on Microkernel
	Overview
	QEMU
	L4Ka::Pistachio
	Kenge and Iguana
	Virtual Devices

	Applications Using QEMU on L4
	Emulating Multiple Architectures
	Anomaly Detection/Recovery

	Evaluation
	Discussion
	Hypercall
	MMU with Map Function

	Conclusion

	Mesovirtualization: Lightweight Virtualization Technique for Embedded Systems
	Introduction
	Related Work
	Paper Organization

	Mesovirtualization
	Design and Implementation
	Architectural Design
	Gandalf
	Guest OS Modifications

	Current Status and Evaluation
	Current Status
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion

	Building a Customizable User Interface Framework Using Hyperlinks for Smart Devices
	Introduction
	Requirements of a Customizable User Interface Framework in Smart Phones
	Hyperlink-Based Customizable User Interface Framework
	User Interface Design Tool: Hyrax Builder
	Hyrax Runtime Environment
	Functionalities
	Implementation and Evaluation

	Conclusions and Remarks

	An Efficient Location Index for the Semantic Search of Moving Objects
	Introduction
	Related Works
	Hashing Technique
	LUR-Tree
	Semantic Search

	MBR-Tree
	Motivation
	Structure of MBR-Tree
	Algorithms

	Performance Evaluation
	Experiment Environment
	Update Performance Evaluation
	Query Performance Evaluation
	Memory Usage

	Conclusions
	References

	Model-Driven Development of Ubiquitous Applications for Sensor-Actuator-Networks with Abstract State Machines
	Introduction
	Challenges
	Efficiency
	Heterogeneity and Interoperability
	Dynamics
	Goals

	Related Work
	Proposed Solution
	Process Overview
	Abstract State Machines as Behavior Models

	Summary

	Design and Implementation of Peripheral Sharing Mechanism on Pervasive Computing with Heterogeneous Environment
	Introduction
	Related Works
	Windows USB System
	USB Cross-Platform Extension
	UCE Architecture
	Implementation of UCE Bus

	Evaluation
	Conclusion
	References

	A Review on System Architectures for Sensor Fusion Applications
	Introduction
	Architectures for Sensor Fusion
	The JDL Fusion Architecture
	Waterfall Fusion Process Model
	The Intelligence Cycle
	Boyd Model
	The LAAS Architecture
	The Omnibus Model
	Mr. Fusion
	DFuse Framework
	Time-Triggered Sensor Fusion Model

	Comparison
	Classification
	Real-Time Support

	Conclusion

	Author Index

