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Abstract

In this paper, we prove the Hyers–Ulam–Rassias stability of homomorphisms in C∗-ternary algebras and
of derivations on C∗-ternary algebras for the following Cauchy–Jensen additive mappings:

f

(
x + y

2
+ z

)
+ f

(
x − y

2
+ z

)
= f (x) + 2f (z), (0.1)

f

(
x + y

2
+ z

)
− f

(
x − y

2
+ z

)
= f (y), (0.2)

2f

(
x + y

2
+ z

)
= f (x) + f (y) + 2f (z). (0.3)

These are applied to investigate isomorphisms between C∗-ternary algebras. The concept of Hyers–
Ulam–Rassias stability originated from the Th.M. Rassias’ stability theorem that appeared in his paper
[Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978)
297–300].
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1. Introduction and preliminaries

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes
in view of their applications in physics. Some significant physical applications are as follows
(see [14,15]):

(1) The algebra of ‘nonions’ generated by two matrices(0 1 0
0 0 1
1 0 0

)
and

( 0 1 0
0 0 ω

ω2 0 0

) (
ω = e

2πi
3

)
was introduced by Sylvester as a ternary analog of Hamilton’s quaternions (cf. [1]).

(2) The quark model inspired a particular brand of ternary algebraic systems. The so-called
‘Nambu mechanics’ is based on such structures (see [6]).

There are also some applications, although still hypothetical, in the fractional quantum Hall
effect, the nonstandard statistics, supersymmetric theory, and Yang–Baxter equation (cf. [1,15,
33]).

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) �→ [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable, and associative in the sense that [x, y, [z,w,v]] = [x, [w,z, y], v] =
[[x, y, z],w, v], and satisfies ‖[x, y, z]‖ � ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [2,34]).
Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product [x, y, z] := 〈x, y〉z.

If a C∗-ternary algebra (A, [·, · ,·]) has an identity, i.e., an element e ∈ A such that x =
[x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦y := [x, e, y]
and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A,◦) is a unital C∗-algebra, then
[x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

A C-linear mapping H :A → B is called a C∗-ternary algebra homomorphism if

H
([x, y, z]) = [

H(x),H(y),H(z)
]

for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the mapping H :A → B is
called a C∗-ternary algebra isomorphism. A C-linear mapping δ :A → A is called a C∗-ternary
derivation if

δ
([x, y, z]) = [

δ(x), y, z
] + [

x, δ(y), z
] + [

x, y, δ(z)
]

for all x, y, z ∈ A (see [2,16]).
In 1940, S.M. Ulam [32] gave a talk before the Mathematics Club of the University of Wis-

consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms:

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does there
exist a δ > 0 such that if f :G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then
a homomorphism h :G → G′ exists with ρ(f (x),h(x)) < ε for all x ∈ G?

In 1941, D.H. Hyers [9] considered the case of approximately additive mappings f :E → E′,
where E and E′ are Banach spaces and f satisfies Hyers inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
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for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and that L :E → E′ is the unique additive mapping satisfying∥∥f (x) − L(x)
∥∥ � ε.

In 1978, Th.M. Rassias [24] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias) Let f :E → E′ be a mapping from a normed vector space E into
a Banach space E′ subject to the inequality∥∥f (x + y) − f (x) − f (y)

∥∥ � ε
(‖x‖p + ‖y‖p

)
(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f (2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies∥∥f (x) − L(x)
∥∥ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y �= 0 and (1.2) for x �= 0.

In 1990, Th.M. Rassias [25] during the 27th International Symposium on Functional Equa-
tions asked the question whether such a theorem can also be proved for p � 1. In 1991,
Z. Gajda [7] following the same approach as in Th.M. Rassias [24], gave an affirmative solu-
tion to this question for p > 1. It was shown by Z. Gajda [7], as well as by Th.M. Rassias and
P. Šemrl [30] that one cannot prove a Th.M. Rassias’ type theorem when p = 1. The coun-
terexamples of Z. Gajda [7], as well as of Th.M. Rassias and P. Šemrl [30] have stimulated
several mathematicians to invent new definitions of approximately additive or approximately
linear mappings, cf. P. Găvruta [8], S. Jung [13], who among others studied the Hyers–Ulam–
Rassias stability of functional equations. The inequality (1.1) that was introduced for the first
time by Th.M. Rassias [24] provided a lot of influence in the development of a generalization of
the Hyers–Ulam stability concept. This new concept is known as Hyers–Ulam–Rassias stability
of functional equations (cf. the books of P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Ras-
sias [10]).

J.M. Rassias [22] following the spirit of the innovative approach of Th.M. Rassias [24] for the
unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor
‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p,q ∈ R with p + q �= 1 (see also [23] for a number of other
new results).

P. Găvruta [8] provided a further generalization of Th.M. Rassias’ Theorem. In 1996, G. Isac
and Th.M. Rassias [12] applied the Hyers–Ulam–Rassias stability theory to prove fixed point the-
orems and study some new applications in Nonlinear Analysis. In [11], D.H. Hyers, G. Isac and
Th.M. Rassias studied the asymptoticity aspect of Hyers–Ulam stability of mappings. During
the several papers have been published on various generalizations and applications of Hyers–
Ulam stability and Hyers–Ulam–Rassias stability to a number of functional equations and map-
pings, for example: quadratic functional equation, invariant means, multiplicative mappings—
superstability, bounded nth differences, convex functions, generalized orthogonality functional
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equation, Euler–Lagrange functional equation, Navier–Stokes equations. Several mathematician
have contributed works on these subjects; we mention a few: C. Baak and M.S. Moslehian [4],
C. Park [17–21], Th.M. Rassias [26–29], F. Skof [31].

In Section 2, we prove the Hyers–Ulam–Rassias stability of homomorphisms in C∗-ternary
algebras for the Cauchy–Jensen additive mappings.

In Section 3, we investigate isomorphisms between unital C∗-ternary algebras, associated to
the Cauchy–Jensen additive mappings.

In Section 4, we prove the Hyers–Ulam–Rassias stability of derivations on C∗-ternary alge-
bras for the Cauchy–Jensen additive mappings.

2. Stability of homomorphisms in C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A and that B is
a C∗-ternary algebra with norm ‖ · ‖B .

For a given mapping f :A → B , we define

Cμf (x, y, z) := f

(
μx + μy

2
+ μz

)
+ μf

(
x − y

2
+ z

)
− μf (x) − 2μf (z),

Dμf (x, y, z) := f

(
μx + μy

2
+ μz

)
− μf

(
x − y

2
+ z

)
− μf (y),

Eμf (x, y, z) := 2f

(
μx + μy

2
+ μz

)
− μf (x) − μf (y) − 2μf (z)

for all μ ∈ T
1 := {λ ∈ C | |λ| = 1} and all x, y, z ∈ A.

We prove the Hyers–Ulam–Rassias stability of homomorphisms in C∗-ternary algebras for
the functional equation Cμf (x, y, z) = 0.

Theorem 2.1. Let r > 3 and θ be positive real numbers, and let f :A → B be a mapping such
that ∥∥Cμf (x, y, z)

∥∥
B

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
, (2.1)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
(2.2)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism

H :A → B such that∥∥f (x) − H(x)
∥∥

B
� 3θ

2r − 2
‖x‖r

A (2.3)

for all x ∈ A.

Proof. Letting μ = 1 and y = z = x in (2.1), we get∥∥f (2x) − 2f (x)
∥∥

B
� 3θ‖x‖r

A (2.4)

for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
B

� 3θ

2r
‖x‖r

A

for all x ∈ A. Hence
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∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
B

� 3θ

2r

m−1∑
j=l

2j

2rj
‖x‖r

A (2.5)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.5) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.5), we get (2.3).

It follows from (2.1) that∥∥∥∥H

(
x + y

2
+ z

)
+ H

(
x − y

2
+ z

)
− H(x) − 2H(z)

∥∥∥∥
B

= lim
n→∞ 2n

∥∥∥∥f

(
x + y

2n+1
+ z

2n

)
+ f

(
x − y

2n+1
+ z

2n

)
− f

(
x

2n

)
− 2f

(
z

2n

)∥∥∥∥
B

� lim
n→∞

2nθ

2nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

for all x, y, z ∈ A. So

H

(
x + y

2
+ z

)
+ H

(
x − y

2
+ z

)
= H(x) + 2H(z)

for all x, y, z ∈ A. By Lemma 2.1 of [3], the mapping H :A → B is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping H :A → B is

C-linear.
It follows from (2.2) that∥∥H

([x, y, z]) − [
H(x),H(y),H(z)

]∥∥
B

= lim
n→∞ 8n

∥∥∥∥f

( [x, y, z]
2n · 2n · 2n

)
−

[
f

(
x

2n

)
, f

(
y

2n

)
, f

(
z

2n

)]∥∥∥∥
B

� lim
n→∞

8nθ

2nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

for all x, y, z ∈ A. So

H
([x, y, z]) = [

H(x),H(y),H(z)
]

for all x, y, z ∈ A.
Now, let T :A → B be another Cauchy–Jensen additive mapping satisfying (2.3). Then we

have ∥∥H(x) − T (x)
∥∥

B
= 2n

∥∥∥∥H

(
x

2n

)
− T

(
x

2n

)∥∥∥∥
B

� 2n

(∥∥∥∥H

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
B

+
∥∥∥∥T

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
B

)

� 6 · 2nθ

r nr
‖x‖r

A,

(2 − 2)2
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which tends to zero as n → ∞ for all x ∈ A. So we can conclude that H(x) = T (x) for all x ∈ A.
This proves the uniqueness of H . Thus the mapping H :A → B is a unique C∗-ternary algebra
homomorphism satisfying (2.3). �
Theorem 2.2. Let r < 1 and θ be positive real numbers, and let f :A → B be a mapping satis-
fying (2.1) and (2.2). Then there exists a unique C∗-ternary algebra homomorphism H :A → B

such that∥∥f (x) − H(x)
∥∥

B
� 3θ

2 − 2r
‖x‖r

A (2.6)

for all x ∈ A.

Proof. It follows from (2.4) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
B

� 3θ

2
‖x‖r

A

for all x ∈ A. So∥∥∥∥ 1

2l
f

(
2lx

) − 1

2m
f

(
2mx

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

) − 1

2j+1
f

(
2j+1x

)∥∥∥∥
B

� 3θ

2

m−1∑
j=l

2rj

2j
‖x‖r

A (2.7)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.7) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.7), we get (2.6).

The rest of the proof is similar to the proof of Theorem 2.1. �
Theorem 2.3. Let r > 1 and θ be positive real numbers, and let f :A → B be a mapping such
that ∥∥Cμf (x, y, z)

∥∥
B

� θ · ‖x‖r
A · ‖y‖r

A · ‖z‖r
A, (2.8)∥∥f

([x, y, z]) − [
f (x), f (y), f (z)

]∥∥
B

� θ · ‖x‖r
A · ‖y‖r

A · ‖z‖r
A (2.9)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism

H :A → B such that∥∥f (x) − H(x)
∥∥

B
� θ

8r − 2
‖x‖3r

A (2.10)

for all x ∈ A.

Proof. Letting μ = 1 and y = z = x in (2.8), we get∥∥f (2x) − 2f (x)
∥∥ � θ‖x‖3r

A (2.11)

B
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for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
B

� θ

8r
‖x‖3r

A

for all x ∈ A. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
B

� θ

8r

m−1∑
j=l

2j

8rj
‖x‖3r

A (2.12)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.12) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.12), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.4. Let r < 1
3 and θ be positive real numbers, and let f :A → B be a mapping satis-

fying (2.8) and (2.9). Then there exists a unique C∗-ternary algebra homomorphism H :A → B

such that∥∥f (x) − H(x)
∥∥

B
� θ

2 − 8r
‖x‖3r

A (2.13)

for all x ∈ A.

Proof. It follows from (2.11) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
B

� θ

2
‖x‖3r

A

for all x ∈ A. So∥∥∥∥ 1

2l
f

(
2lx

) − 1

2m
f

(
2mx

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

) − 1

2j+1
f

(
2j+1x

)∥∥∥∥
B

� θ

2

m−1∑
j=l

8rj

2j
‖x‖3r

A (2.14)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.14) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (2.14), we get (2.13).

The rest of the proof is similar to the proof of Theorem 2.1. �
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One can obtain similar results for the functional equations Dμf (x, y, z) = 0 and
Eμf (x, y, z) = 0.

3. Isomorphisms between C∗-ternary algebras

Throughout this section, assume that A is a unital C∗-ternary algebra with norm ‖ · ‖A and
unit e, and that B is a unital C∗-ternary algebra with norm ‖ · ‖B and unit e′.

We investigate isomorphisms between C∗-ternary algebras, associated to the functional equa-
tion Dμf (x, y, z) = 0.

Theorem 3.1. Let r > 1 and θ be positive real numbers, and let f :A → B be a bijective mapping
such that∥∥Dμf (x, y, z)

∥∥
B

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
, (3.1)

f
([x, y, z]) = [

f (x), f (y), f (z)
]

(3.2)

for all μ ∈ T1 and all x, y, z ∈ A. If limn→∞ 2nf ( e
2n ) = e′, then the mapping f :A → B is a

C∗-ternary algebra isomorphism.

Proof. Letting μ = 1 and y = z = x in (3.1), we get∥∥f (2x) − 2f (x)
∥∥

B
� 3θ‖x‖r

A (3.3)

for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
B

� 3θ

2r
‖x‖r

A

for all x ∈ A. Hence

∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
B

� 3θ

2r

m−1∑
j=l

2j

2rj
‖x‖r

A (3.4)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (3.4) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (3.4), we get

∥∥f (x) − H(x)
∥∥

B
� 3θ

2r − 2
‖x‖r

A

for all x ∈ A.
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It follows from (3.1) that∥∥∥∥H

(
x + y

2
+ z

)
− H

(
x − y

2
+ z

)
− H(y)

∥∥∥∥
B

= lim
n→∞ 2n

∥∥∥∥f

(
x + y

2n+1
+ z

2n

)
− f

(
x − y

2n+1
+ z

2n

)
− f

(
y

2n

)∥∥∥∥
B

� lim
n→∞

2nθ

2nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

for all x, y, z ∈ A. So

H

(
x + y

2
+ z

)
− H

(
x − y

2
+ z

)
= H(y)

for all x, y, z ∈ A. By Lemma 2.1 of [3], the mapping H :A → B is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping H :A → B is

C-linear.
Since f ([x, y, z]) = [f (x), f (y), f (z)] for all x, y, z ∈ A,

H
([x, y, z]) = lim

n→∞ 8nf

([
x

2n
,

y

2n
,

z

2n

])
= lim

n→∞

[
2nf

(
x

2n

)
,2nf

(
y

2n

)
,2nf

(
z

2n

)]
= [

H(x),H(y),H(z)
]

for all x, y, z ∈ A. So the mapping H :A → B is a C∗-ternary algebra homomorphism.
It follows from (3.2) that

H(x) = H
([e, e, x]) = lim

n→∞ 4nf

(
1

4n
[e, e, x]

)
= lim

n→∞ 4nf

([
e

2n
,

e

2n
, x

])

= lim
n→∞

[
2nf

(
e

2n

)
,2nf

(
e

2n

)
, f (x)

]
= [

e′, e′, f (x)
] = f (x)

for all x ∈ A. Hence the bijective mapping f :A → B is a C∗-ternary algebra isomorphism. �
Theorem 3.2. Let r < 1 and θ be positive real numbers, and let f :A → B be a bijective map-
ping satisfying (3.1) and (3.2). If limn→∞ 1

2n f (2ne) = e′, then the mapping f :A → B is a
C∗-ternary algebra isomorphism.

Proof. It follows from (3.3) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
B

� 3θ

2
‖x‖r

A

for all x ∈ A. So∥∥∥∥ 1

2l
f

(
2lx

) − 1

2m
f

(
2mx

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

) − 1

2j+1
f

(
2j+1x

)∥∥∥∥
B

� 3θ

2

m−1∑ 2rj

2j
‖x‖r

A (3.5)

j=l
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for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (3.5) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (3.5), we get∥∥f (x) − H(x)

∥∥
B

� 3θ

2 − 2r
‖x‖r

A

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 3.3. Let r > 1
3 and θ be positive real numbers, and let f :A → B be a bijective map-

ping satisfying (3.2) such that∥∥Dμf (x, y, z)
∥∥

B
� θ · ‖x‖r

A · ‖y‖r
A · ‖z‖r

A (3.6)

for all μ ∈ T
1 and all x, y, z ∈ A. If limn→∞ 2nf ( e

2n ) = e′, then the mapping f :A → B is a
C∗-ternary algebra isomorphism.

Proof. Letting μ = 1 and y = z = x in (3.6), we get∥∥f (2x) − 2f (x)
∥∥

B
� θ‖x‖3r

A (3.7)

for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
B

� θ

8r
‖x‖3r

A

for all x ∈ A. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
B

� θ

8r

m−1∑
j=l

2j

8rj
‖x‖3r

A (3.8)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (3.8) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (3.8), we get∥∥f (x) − H(x)
∥∥

B
� θ

8r − 2
‖x‖3r

A

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1. �
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Theorem 3.4. Let r < 1
3 and θ be positive real numbers, and let f :A → B be a bijective map-

ping satisfying (3.2) and (3.6). If limn→∞ 1
2n f (2ne) = e′, then the mapping f :A → B is a

C∗-ternary algebra isomorphism.

Proof. It follows from (3.7) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
B

� θ

2
‖x‖3r

A

for all x ∈ A. So∥∥∥∥ 1

2l
f

(
2lx

) − 1

2m
f

(
2mx

)∥∥∥∥
B

�
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

) − 1

2j+1
f

(
2j+1x

)∥∥∥∥
B

� θ

2

m−1∑
j=l

8rj

2j
‖x‖3r

A (3.9)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (3.9) that the
sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{ 1

2n f (2nx)} converges. So one can define the mapping H :A → B by

H(x) := lim
n→∞

1

2n
f

(
2nx

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (3.9), we get∥∥f (x) − H(x)

∥∥
B

� θ

2 − 8r
‖x‖3r

A

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1. �
One can obtain similar results for the functional equations Cμf (x, y, z) = 0 and

Eμf (x, y, z) = 0.

4. Stability of derivations on C∗-ternary algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A.
We prove the Hyers–Ulam–Rassias stability of derivations on C∗-ternary algebras for the

functional equation Eμf (x, y, z) = 0.

Theorem 4.1. Let r > 3 and θ be positive real numbers, and let f :A → A be a mapping such
that ∥∥Eμf (x, y, z)

∥∥
A

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
, (4.1)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� θ
(‖x‖r

A + ‖y‖r
A + ‖z‖r

A

)
(4.2)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary derivation δ :A → A

such that∥∥f (x) − δ(x)
∥∥

A
� 3θ

2r+1 − 4
‖x‖r

A (4.3)

for all x ∈ A.
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Proof. Letting μ = 1 and all y = z = x in (4.1), we get∥∥2f (2x) − 4f (x)
∥∥

A
� 3θ‖x‖r

A (4.4)

for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
A

� 3θ

2r+1
‖x‖r

A

for all x ∈ A. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
A

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
A

� 3θ

2 · 2r

m−1∑
j=l

2j

2rj
‖x‖r

A (4.5)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (4.5) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping δ :A → A by

δ(x) := lim
n→∞ 2nf

(
x

2n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (4.5), we get (4.3).
It follows from (4.1) that∥∥∥∥2δ

(
x + y

2
+ z

)
− δ(x) − δ(y) − 2δ(z)

∥∥∥∥
A

= lim
n→∞ 2n

∥∥∥∥2f

(
x + y

2n+1
+ z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− 2f

(
z

2n

)∥∥∥∥
A

� lim
n→∞

2nθ

2nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

for all x, y, z ∈ A. So

δ

(
x + y

2
+ z

)
= δ(x) + δ(y) + 2δ(z)

for all x, y, z ∈ A. By Lemma 2.1 of [3], the mapping δ :A → A is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping δ :A → A is

C-linear.
It follows from (4.2) that∥∥δ

([x, y, z]) − [
δ(x), y, z

] − [
x, δ(y), z

] − [
x, y, δ(z)

]∥∥
A

= lim
n→∞ 8n

∥∥∥∥f

( [x, y, z]
8n

)
−

[
f

(
x

2n

)
,

y

2n
,

z

2n

]

−
[

x

2n
, f

(
y

2n

)
,

z

2n

]
−

[
x

2n
,

y

2n
, f

(
z

2n

)]∥∥∥∥
A

� lim
8nθ

nr

(‖x‖r
A + ‖y‖r

A + ‖z‖r
A

) = 0

n→∞ 2
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for all x, y, z ∈ A. So

δ
([x, y, z]) = [

δ(x), y, z
] + [

x, δ(y), z
] + [

x, y, δ(z)
]

for all x, y, z ∈ A.
Now, let T :A → A be another Cauchy–Jensen additive mapping satisfying (4.3). Then we

have ∥∥δ(x) − T (x)
∥∥

A
= 2n

∥∥∥∥δ

(
x

2n

)
− T

(
x

2n

)∥∥∥∥
A

� 2n

(∥∥∥∥δ

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
A

+
∥∥∥∥T

(
x

2n

)
− f

(
x

2n

)∥∥∥∥
A

)

� 3 · 2nθ

(2r − 2)2nr
‖x‖r

A,

which tends to zero as n → ∞ for all x ∈ A. So we can conclude that δ(x) = T (x) for all x ∈ A.
This proves the uniqueness of δ. Thus the mapping δ :A → A is a unique C∗-ternary derivation
satisfying (4.3). �
Theorem 4.2. Let r < 1 and θ be positive real numbers, and let f :A → A be a mapping satis-
fying (4.1) and (4.2). Then there exists a unique C∗-ternary derivation δ :A → A such that∥∥f (x) − δ(x)

∥∥
A

� 3θ

4 − 2r+1
‖x‖r

A (4.6)

for all x ∈ A.

Proof. It follows from (4.4) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
A

� 3θ

4
‖x‖r

A

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 4.1. �

Theorem 4.3. Let r > 1 and θ be positive real numbers, and let f :A → A be a mapping such
that ∥∥Eμf (x, y, z)

∥∥
A

� θ · ‖x‖r
A · ‖y‖r

A · ‖z‖r
A, (4.7)∥∥f

([x, y, z]) − [
f (x), y, z

] − [
x,f (y), z

] − [
x, y,f (z)

]∥∥
A

� θ · ‖x‖r
A · ‖y‖r

A · ‖z‖r
A (4.8)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary derivation δ :A → A

such that∥∥f (x) − δ(x)
∥∥

A
� θ

2(8r − 2)
‖x‖3r

A (4.9)

for all x ∈ A.

Proof. Letting μ = 1 and y = z = x in (4.7), we get∥∥2f (2x) − 4f (x)
∥∥ � θ‖x‖3r

A (4.10)

A
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for all x ∈ A. So∥∥∥∥f (x) − 2f

(
x

2

)∥∥∥∥
A

� θ

2 · 8r
‖x‖3r

A

for all x ∈ A. Hence∥∥∥∥2lf

(
x

2l

)
− 2mf

(
x

2m

)∥∥∥∥
A

�
m−1∑
j=l

∥∥∥∥2j f

(
x

2j

)
− 2j+1f

(
x

2j+1

)∥∥∥∥
A

� θ

2 · 8r

m−1∑
j=l

2j

8rj
‖x‖3r

A (4.11)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (4.11) that the
sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since A is complete, the sequence
{2nf ( x

2n )} converges. So one can define the mapping δ :A → A by

δ(x) := lim
n→∞ 2nf

(
x

2n

)
for all x ∈ A. Moreover, letting l = 0 and passing the limit m → ∞ in (4.11), we get (4.9).

The rest of the proof is similar to the proof of Theorem 4.1. �
Theorem 4.4. Let r < 1

3 and θ be positive real numbers, and let f :A → A be a mapping satis-
fying (4.7) and (4.8). Then there exists a unique C∗-ternary derivation δ :A → A such that∥∥f (x) − δ(x)

∥∥
A

� θ

2(2 − 8r )
‖x‖3r

A (4.12)

for all x ∈ A.

Proof. It follows from (4.10) that∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥
A

� θ

4
‖x‖3r

A

for all x ∈ A.
The rest of the proof is similar to the proofs of Theorems 4.1 and 4.3. �
One can obtain similar results for the functional equations Cμf (x, y, z) = 0 and

Dμf (x, y, z) = 0.
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