Isomorphisms between C^{*}-ternary algebras

Choonkil Park ${ }^{1}$
Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea

Received 28 March 2006
Available online 6 May 2006
Submitted by William F. Ames

Abstract

of derivations on C^{*}-ternary algebras for the following Cauchy-Jensen additive mappings: $$
\begin{align*} & f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x-y}{2}+z\right)=f(x)+2 f(z), \tag{0.1}\\ & f\left(\frac{x+y}{2}+z\right)-f\left(\frac{x-y}{2}+z\right)=f(y), \tag{0.2}\\ & 2 f\left(\frac{x+y}{2}+z\right)=f(x)+f(y)+2 f(z) . \tag{0.3} \end{align*}
$$

In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras and

These are applied to investigate isomorphisms between C^{*}-ternary algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper [Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300].
© 2006 Elsevier Inc. All rights reserved.
Keywords: Cauchy-Jensen functional equation; C^{*}-ternary algebra isomorphism; Hyers-Ulam-Rassias stability; C^{*}-ternary derivation

[^0]
1. Introduction and preliminaries

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics. Some significant physical applications are as follows (see [14,15]):
(1) The algebra of 'nonions' generated by two matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & \omega \\
\omega^{2} & 0 & 0
\end{array}\right) \quad\left(\omega=e^{\frac{2 \pi i}{3}}\right)
$$

was introduced by Sylvester as a ternary analog of Hamilton's quaternions (cf. [1]).
(2) The quark model inspired a particular brand of ternary algebraic systems. The so-called 'Nambu mechanics' is based on such structures (see [6]).

There are also some applications, although still hypothetical, in the fractional quantum Hall effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation (cf. [1,15, 33]).

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=$ $[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leqslant\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see $[2,34]$). Every left Hilbert C^{*}-module is a C^{*}-ternary algebra via the ternary product $[x, y, z]:=\langle x, y\rangle z$.

If a C^{*}-ternary algebra $(A,[\cdot, \cdot, \cdot])$ has an identity, i.e., an element $e \in A$ such that $x=$ $[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a unital C^{*}-algebra, then $[x, y, z]:=x \circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. If, in addition, the mapping H is bijective, then the mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra isomorphism. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see $[2,16]$).
In 1940, S.M. Ulam [32] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms:

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$ exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

In 1941, D.H. Hyers [9] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leqslant \epsilon
$$

In 1978, Th.M. Rassias [24] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias) Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leqslant \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leqslant \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.
In 1990, Th.M. Rassias [25] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geqslant 1$. In 1991, Z. Gajda [7] following the same approach as in Th.M. Rassias [24], gave an affirmative solution to this question for $p>1$. It was shown by Z. Gajda [7], as well as by Th.M. Rassias and P. Šemrl [30] that one cannot prove a Th.M. Rassias' type theorem when $p=1$. The counterexamples of Z. Gajda [7], as well as of Th.M. Rassias and P. Šemrl [30] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings, cf. P. Găvruta [8], S. Jung [13], who among others studied the Hyers-UlamRassias stability of functional equations. The inequality (1.1) that was introduced for the first time by Th.M. Rassias [24] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (cf. the books of P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Rassias [10]).
J.M. Rassias [22] following the spirit of the innovative approach of Th.M. Rassias [24] for the unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p} \cdot\|y\|^{q}$ for $p, q \in \mathbb{R}$ with $p+q \neq 1$ (see also [23] for a number of other new results).
P. Găvruta [8] provided a further generalization of Th.M. Rassias' Theorem. In 1996, G. Isac and Th.M. Rassias [12] applied the Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study some new applications in Nonlinear Analysis. In [11], D.H. Hyers, G. Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers-Ulam stability of mappings. During the several papers have been published on various generalizations and applications of HyersUlam stability and Hyers-Ulam-Rassias stability to a number of functional equations and mappings, for example: quadratic functional equation, invariant means, multiplicative mappingssuperstability, bounded nth differences, convex functions, generalized orthogonality functional
equation, Euler-Lagrange functional equation, Navier-Stokes equations. Several mathematician have contributed works on these subjects; we mention a few: C. Baak and M.S. Moslehian [4], C. Park [17-21], Th.M. Rassias [26-29], F. Skof [31].

In Section 2, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras for the Cauchy-Jensen additive mappings.

In Section 3, we investigate isomorphisms between unital C^{*}-ternary algebras, associated to the Cauchy-Jensen additive mappings.

In Section 4, we prove the Hyers-Ulam-Rassias stability of derivations on C^{*}-ternary algebras for the Cauchy-Jensen additive mappings.

2. Stability of homomorphisms in C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and that B is a C^{*}-ternary algebra with norm $\|\cdot\|_{B}$.

For a given mapping $f: A \rightarrow B$, we define

$$
\begin{aligned}
& C_{\mu} f(x, y, z):=f\left(\frac{\mu x+\mu y}{2}+\mu z\right)+\mu f\left(\frac{x-y}{2}+z\right)-\mu f(x)-2 \mu f(z), \\
& D_{\mu} f(x, y, z):=f\left(\frac{\mu x+\mu y}{2}+\mu z\right)-\mu f\left(\frac{x-y}{2}+z\right)-\mu f(y) \\
& E_{\mu} f(x, y, z):=2 f\left(\frac{\mu x+\mu y}{2}+\mu z\right)-\mu f(x)-\mu f(y)-2 \mu f(z)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x, y, z \in A$.
We prove the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras for the functional equation $C_{\mu} f(x, y, z)=0$.

Theorem 2.1. Let $r>3$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|C_{\mu} f(x, y, z)\right\|_{B} \leqslant \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{2.1}\\
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leqslant \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{2.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leqslant \frac{3 \theta}{2^{r}-2}\|x\|_{A}^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $y=z=x$ in (2.1), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leqslant 3 \theta\|x\|_{A}^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leqslant \frac{3 \theta}{2^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leqslant \frac{3 \theta}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}}\|x\|_{A}^{r} \tag{2.5}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (2.5) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.5), we get (2.3).
It follows from (2.1) that

$$
\begin{aligned}
& \left\|H\left(\frac{x+y}{2}+z\right)+H\left(\frac{x-y}{2}+z\right)-H(x)-2 H(z)\right\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)+f\left(\frac{x-y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\|_{B} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
H\left(\frac{x+y}{2}+z\right)+H\left(\frac{x-y}{2}+z\right)=H(x)+2 H(z)
$$

for all $x, y, z \in A$. By Lemma 2.1 of [3], the mapping $H: A \rightarrow B$ is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping $H: A \rightarrow B$ is \mathbb{C}-linear.

It follows from (2.2) that

$$
\begin{aligned}
& \|H([x, y, z])-[H(x), H(y), H(z)]\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{[x, y, z]}{2^{n} \cdot 2^{n} \cdot 2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), f\left(\frac{y}{2^{n}}\right), f\left(\frac{z}{2^{n}}\right)\right]\right\|_{B} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$.
Now, let $T: A \rightarrow B$ be another Cauchy-Jensen additive mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\|H(x)-T(x)\|_{B} & =2^{n}\left\|H\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\|_{B} \\
& \leqslant 2^{n}\left(\left\|H\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{B}+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{B}\right) \\
& \leqslant \frac{6 \cdot 2^{n} \theta}{\left(2^{r}-2\right) 2^{n r}}\|x\|_{A}^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $H(x)=T(x)$ for all $x \in A$. This proves the uniqueness of H. Thus the mapping $H: A \rightarrow B$ is a unique C^{*}-ternary algebra homomorphism satisfying (2.3).

Theorem 2.2. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (2.1) and (2.2). Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leqslant \frac{3 \theta}{2-2^{r}}\|x\|_{A}^{r} \tag{2.6}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (2.4) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leqslant \frac{3 \theta}{2}\|x\|_{A}^{r}
$$

for all $x \in A$. So

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leqslant \frac{3 \theta}{2} \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}}\|x\|_{A}^{r} \tag{2.7}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (2.7) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.7), we get (2.6).
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|C_{\mu} f(x, y, z)\right\|_{B} \leqslant \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r}, \tag{2.8}\\
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leqslant \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r} \tag{2.9}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leqslant \frac{\theta}{8^{r}-2}\|x\|_{A}^{3 r} \tag{2.10}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $y=z=x$ in (2.8), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leqslant \theta\|x\|_{A}^{3 r} \tag{2.11}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leqslant \frac{\theta}{8^{r}}\|x\|_{A}^{3 r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leqslant \frac{\theta}{8^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{8^{r j}}\|x\|_{A}^{3 r} \tag{2.12}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (2.12) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.12), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.4. Let $r<\frac{1}{3}$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (2.8) and (2.9). Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leqslant \frac{\theta}{2-8^{r}}\|x\|_{A}^{3 r} \tag{2.13}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (2.11) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leqslant \frac{\theta}{2}\|x\|_{A}^{3 r}
$$

for all $x \in A$. So

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leqslant \frac{\theta}{2} \sum_{j=l}^{m-1} \frac{8^{r j}}{2^{j}}\|x\|_{A}^{3 r} \tag{2.14}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (2.14) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.14), we get (2.13).
The rest of the proof is similar to the proof of Theorem 2.1.

One can obtain similar results for the functional equations $D_{\mu} f(x, y, z)=0$ and $E_{\mu} f(x, y, z)=0$.

3. Isomorphisms between C^{*}-ternary algebras

Throughout this section, assume that A is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and unit e, and that B is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{B}$ and unit e^{\prime}.

We investigate isomorphisms between C^{*}-ternary algebras, associated to the functional equation $D_{\mu} f(x, y, z)=0$.

Theorem 3.1. Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a bijective mapping such that

$$
\begin{align*}
& \left\|D_{\mu} f(x, y, z)\right\|_{B} \leqslant \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{3.1}\\
& f([x, y, z])=[f(x), f(y), f(z)] \tag{3.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. If $\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{e}{2^{n}}\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. Letting $\mu=1$ and $y=z=x$ in (3.1), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leqslant 3 \theta\|x\|_{A}^{r} \tag{3.3}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leqslant \frac{3 \theta}{2^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leqslant \frac{3 \theta}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}}\|x\|_{A}^{r} \tag{3.4}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (3.4) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.4), we get

$$
\|f(x)-H(x)\|_{B} \leqslant \frac{3 \theta}{2^{r}-2}\|x\|_{A}^{r}
$$

for all $x \in A$.

It follows from (3.1) that

$$
\begin{aligned}
& \left\|H\left(\frac{x+y}{2}+z\right)-H\left(\frac{x-y}{2}+z\right)-H(y)\right\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x-y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right\|_{B} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
H\left(\frac{x+y}{2}+z\right)-H\left(\frac{x-y}{2}+z\right)=H(y)
$$

for all $x, y, z \in A$. By Lemma 2.1 of [3], the mapping $H: A \rightarrow B$ is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping $H: A \rightarrow B$ is \mathbb{C}-linear.

Since $f([x, y, z])=[f(x), f(y), f(z)]$ for all $x, y, z \in A$,

$$
\begin{aligned}
H([x, y, z]) & =\lim _{n \rightarrow \infty} 8^{n} f\left(\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]\right)=\lim _{n \rightarrow \infty}\left[2^{n} f\left(\frac{x}{2^{n}}\right), 2^{n} f\left(\frac{y}{2^{n}}\right), 2^{n} f\left(\frac{z}{2^{n}}\right)\right] \\
& =[H(x), H(y), H(z)]
\end{aligned}
$$

for all $x, y, z \in A$. So the mapping $H: A \rightarrow B$ is a C^{*}-ternary algebra homomorphism.
It follows from (3.2) that

$$
\begin{aligned}
H(x) & =H([e, e, x])=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{1}{4^{n}}[e, e, x]\right)=\lim _{n \rightarrow \infty} 4^{n} f\left(\left[\frac{e}{2^{n}}, \frac{e}{2^{n}}, x\right]\right) \\
& =\lim _{n \rightarrow \infty}\left[2^{n} f\left(\frac{e}{2^{n}}\right), 2^{n} f\left(\frac{e}{2^{n}}\right), f(x)\right]=\left[e^{\prime}, e^{\prime}, f(x)\right]=f(x)
\end{aligned}
$$

for all $x \in A$. Hence the bijective mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.
Theorem 3.2. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (3.1) and (3.2). If $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} e\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. It follows from (3.3) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leqslant \frac{3 \theta}{2}\|x\|_{A}^{r}
$$

for all $x \in A$. So

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leqslant \frac{3 \theta}{2} \sum_{j=l}^{m-1} \frac{2^{r j}}{2^{j}}\|x\|_{A}^{r} \tag{3.5}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (3.5) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.5), we get

$$
\|f(x)-H(x)\|_{B} \leqslant \frac{3 \theta}{2-2^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let $r>\frac{1}{3}$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (3.2) such that

$$
\begin{equation*}
\left\|D_{\mu} f(x, y, z)\right\|_{B} \leqslant \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r} \tag{3.6}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. If $\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{e}{2^{n}}\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. Letting $\mu=1$ and $y=z=x$ in (3.6), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\|_{B} \leqslant \theta\|x\|_{A}^{3 r} \tag{3.7}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{B} \leqslant \frac{\theta}{8^{r}}\|x\|_{A}^{3 r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{B} \\
& \leqslant \frac{\theta}{8^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{8^{r j}}\|x\|_{A}^{3 r} \tag{3.8}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (3.8) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), we get

$$
\|f(x)-H(x)\|_{B} \leqslant \frac{\theta}{8^{r}-2}\|x\|_{A}^{3 r}
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1.

Theorem 3.4. Let $r<\frac{1}{3}$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (3.2) and (3.6). If $\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} e\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. It follows from (3.7) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{B} \leqslant \frac{\theta}{2}\|x\|_{A}^{3 r}
$$

for all $x \in A$. So

$$
\begin{align*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{B} & \leqslant \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{B} \\
& \leqslant \frac{\theta}{2} \sum_{j=l}^{m-1} \frac{8^{r j}}{2^{j}}\|x\|_{A}^{3 r} \tag{3.9}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (3.9) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.9), we get

$$
\|f(x)-H(x)\|_{B} \leqslant \frac{\theta}{2-8^{r}}\|x\|_{A}^{3 r}
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1.
One can obtain similar results for the functional equations $C_{\mu} f(x, y, z)=0$ and $E_{\mu} f(x, y, z)=0$.

4. Stability of derivations on C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$.
We prove the Hyers-Ulam-Rassias stability of derivations on C^{*}-ternary algebras for the functional equation $E_{\mu} f(x, y, z)=0$.

Theorem 4.1. Let $r>3$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping such that

$$
\begin{align*}
& \left\|E_{\mu} f(x, y, z)\right\|_{A} \leqslant \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{4.1}\\
& \|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \\
& \quad \leqslant \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{4.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leqslant \frac{3 \theta}{2^{r+1}-4}\|x\|_{A}^{r} \tag{4.3}
\end{equation*}
$$

for all $x \in A$.

Proof. Letting $\mu=1$ and all $y=z=x$ in (4.1), we get

$$
\begin{equation*}
\|2 f(2 x)-4 f(x)\|_{A} \leqslant 3 \theta\|x\|_{A}^{r} \tag{4.4}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{A} \leqslant \frac{3 \theta}{2^{r+1}}\|x\|_{A}^{r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{A} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{A} \\
& \leqslant \frac{3 \theta}{2 \cdot 2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{r j}}\|x\|_{A}^{r} \tag{4.5}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (4.5) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since A is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $\delta: A \rightarrow A$ by

$$
\delta(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (4.5), we get (4.3).
It follows from (4.1) that

$$
\begin{aligned}
& \left\|2 \delta\left(\frac{x+y}{2}+z\right)-\delta(x)-\delta(y)-2 \delta(z)\right\|_{A} \\
& \quad=\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\|_{A} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
\delta\left(\frac{x+y}{2}+z\right)=\delta(x)+\delta(y)+2 \delta(z)
$$

for all $x, y, z \in A$. By Lemma 2.1 of [3], the mapping $\delta: A \rightarrow A$ is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of [19], the mapping $\delta: A \rightarrow A$ is \mathbb{C}-linear.

It follows from (4.2) that

$$
\begin{aligned}
& \|\delta([x, y, z])-[\delta(x), y, z]-[x, \delta(y), z]-[x, y, \delta(z)]\|_{A} \\
& \quad=\lim _{n \rightarrow \infty} 8^{n} \| f\left(\frac{[x, y, z]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right] \\
& \quad-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}\right)\right] \|_{A} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$.
Now, let $T: A \rightarrow A$ be another Cauchy-Jensen additive mapping satisfying (4.3). Then we have

$$
\begin{aligned}
\|\delta(x)-T(x)\|_{A} & =2^{n}\left\|\delta\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\|_{A} \\
& \leqslant 2^{n}\left(\left\|\delta\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{A}+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{A}\right) \\
& \leqslant \frac{3 \cdot 2^{n} \theta}{\left(2^{r}-2\right) 2^{n r}}\|x\|_{A}^{r},
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $\delta(x)=T(x)$ for all $x \in A$. This proves the uniqueness of δ. Thus the mapping $\delta: A \rightarrow A$ is a unique C^{*}-ternary derivation satisfying (4.3).

Theorem 4.2. Let $r<1$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (4.1) and (4.2). Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leqslant \frac{3 \theta}{4-2^{r+1}}\|x\|_{A}^{r} \tag{4.6}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (4.4) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{A} \leqslant \frac{3 \theta}{4}\|x\|_{A}^{r}
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 4.1.
Theorem 4.3. Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping such that

$$
\begin{align*}
& \left\|E_{\mu} f(x, y, z)\right\|_{A} \leqslant \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r}, \tag{4.7}\\
& \|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \\
& \quad \leqslant \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r} \tag{4.8}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z \in A$. Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leqslant \frac{\theta}{2\left(8^{r}-2\right)}\|x\|_{A}^{3 r} \tag{4.9}
\end{equation*}
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $y=z=x$ in (4.7), we get

$$
\begin{equation*}
\|2 f(2 x)-4 f(x)\|_{A} \leqslant \theta\|x\|_{A}^{3 r} \tag{4.10}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\|_{A} \leqslant \frac{\theta}{2 \cdot 8^{r}}\|x\|_{A}^{3 r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{A} & \leqslant \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{A} \\
& \leqslant \frac{\theta}{2 \cdot 8^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{8^{r j}}\|x\|_{A}^{3 r} \tag{4.11}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in A$. It follows from (4.11) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since A is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $\delta: A \rightarrow A$ by

$$
\delta(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (4.11), we get (4.9).
The rest of the proof is similar to the proof of Theorem 4.1.
Theorem 4.4. Let $r<\frac{1}{3}$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (4.7) and (4.8). Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leqslant \frac{\theta}{2\left(2-8^{r}\right)}\|x\|_{A}^{3 r} \tag{4.12}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (4.10) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\|_{A} \leqslant \frac{\theta}{4}\|x\|_{A}^{3 r}
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorems 4.1 and 4.3.
One can obtain similar results for the functional equations $C_{\mu} f(x, y, z)=0$ and $D_{\mu} f(x, y, z)=0$.

References

[1] V. Abramov, R. Kerner, B. Le Roy, Hypersymmetry: A \mathbb{Z}_{3}-graded generalization of supersymmetry, J. Math. Phys. 38 (1997) 1650-1669.
[2] M. Amyari, M.S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys., in press.
[3] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica, in press.
[4] C. Baak, M.S. Moslehian, On the stability of J^{*}-homomorphisms, Nonlinear Anal. 63 (2005) 42-48.
[5] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, 2002.
[6] Y.L. Daletskii, L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebras, Lett. Math. Phys. 39 (1997) 127-141.
[7] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991) 431-434.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222-224.
[10] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] D.H. Hyers, G. Isac, Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998) 425-430.
[12] G. Isac, Th.M. Rassias, Stability of ψ-additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci. 19 (1996) 219-228.
[13] S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996) 221-226.
[14] R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997) A203-A225.
[15] R. Kerner, Ternary algebraic structures and their applications in physics, preprint.
[16] M.S. Moslehian, Almost derivations on C^{*}-ternary rings, preprint.
[17] C. Park, Lie $*$-homomorphisms between Lie C^{*}-algebras and Lie $*$-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004) 419-434.
[18] C. Park, Homomorphisms between Lie $J C^{*}$-algebras and Cauchy-Rassias stability of Lie $J C^{*}$-algebra derivations, J. Lie Theory 15 (2005) 393-414.
[19] C. Park, Homomorphisms between Poisson $J C^{*}$-algebras, Bull. Braz. Math. Soc. 36 (2005) 79-97.
[20] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belg. Math. Soc. Simon Stevin, in press.
[21] C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, Math. Nachr., in press.
[22] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984) 445-446.
[23] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989) 268-273.
[24] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[25] Th.M. Rassias, Problem 16; 2, in: Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990) 292-293; 309.
[26] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000) 352-378.
[27] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
[28] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[29] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003.
[30] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989-993.
[31] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
[32] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
[33] L. Vainerman, R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996) 2553-2565.
[34] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117-143.

[^0]: E-mail address: baak@hanyang.ac.kr.
 ${ }^{1}$ Supported by the research fund of Hanyang University (HY-2006-N).

