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As improvements in cortical surface modeling allowed accurate
cortical topology in brain imaging studies, surface-based methods for
the analysis of functional magnetic resonance imaging (fMRI) were
introduced to overcome the topological deficiency of commonly used
volume-based methods. The difference between the two methods is
mainly due to the smoothing techniques applied. For practical
applications, the surface-based methods need to quantitatively validate
the accuracy of localizing activation. In this study, we evaluated the
spatial accuracy of activation detected by the volume- and surface-
based methods using simulated blood oxygenation level-dependent
(BOLD) signals and MRI phantoms focusing on the influence of their
smoothing techniques. T1- and T2-weighted phantoms were acquired
from BrainWeb (http://www.bic.mni.mcgill.ca/brainweb/) and used
to extract cortical surfaces and to generate echo planar imaging (EPI)
data. Simulated BOLD signals as the gold standard of activation in our
experiment were applied to the surfaces and projected to the volume
space with random noise. Three-dimensional isotropic Gaussian kernel
smoothing and two-dimensional heat kernel smoothing were applied to
the volume- and surface-based methods. Sensitivity and 1-specificity,
which are truly and falsely detected activations, and similarity
measures, which are spatially and statistically similar for the gold
standard and detected activations, were calculated. In the results, the
surface-based method showed the sensitivity and similarity scores of
about 12% higher than the volume-based method. In conclusion, the
surface-based method guarantees better spatial accuracy for the
localization of BOLD signal sources within the cortex than the volume-
based method.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

In functional magnetic resonance imaging (fMRI) studies,
volume-based methods have been widely used to detect human
brain activation (Friston et al., 1995; Acton and Friston, 1998). The
topology of the human cortex, having a highly convoluted 2-
dimensional structure (Zilles et al., 1988), is seldom considered in
the detection procedures of volume-based methods (Kiebel et al.,
2000). In most previous studies, however, cortical surface mapping
has been used only for visualization purposes and further analyses
(e.g., multiple comparisons, group statistics) using the efficiency of
surface registration (Van Essen and Drury, 1997; Fischl et al.,
1999; Tzourio-Mazoyer et al., 2002; Desai et al., 2005; Argall
et al., 2006). To overcome the topological insufficiency of volume-
based methods, surface-based methods were proposed using
accurate cortical topology in the entire analysis procedure
(Andrade et al., 2001).

The volume- and surface-based methods use different proce-
dures to one another (see Fig. 1). Andrade et al. (2001) showed
that the two procedures used to analyze fMRI data do not make
any statistical difference (namely voxel-versus nodewise statistics)
and that the spatial smoothing procedure is the main cause of any
topological differences in activation detected by the two methods.
Spatial smoothing is one of the most important procedures used to
increase the signal-to-noise ratio (SNR) of blood oxygenation
level-dependent BOLD signals and to provide statistical smooth-
ness to image data (Worsley, 2005). For volume-based methods,
smoothing is usually implemented as an isotropic convolution with
a 3-dimensional Gaussian kernel and applied uniformly over the
entire intracranial area of volumic data (Cox, 1996). As this leads
to averaging of signals emanating from both the cortex and the
white matter (WM) or cerebrospinal fluid (CSF), the resultant
signal can be influenced not only by sources that are close to each
other in a Euclidean sense, but also those that are geodetically
distant (e.g., two points, each on opposite sides of a sulcus)
(Andrade et al., 2001). To reduce this problem, some improved
smoothing techniques have been proposed to account for the
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Fig. 1. Procedures for volume- and surface-based fMRI analyses using cortical surface mapping.
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anatomical configuration of the brain. For instance, Kiebel et al.
(2000) proposed the anatomically informed basis functions that
apply 3-dimensional Gaussian kernels with different kernel sizes to
the different loci in gray matter (GM). However, for the surface-
based method, Chung et al. (2005) proposed more stringent 2-
dimensional formed smoothing techniques, such as diffusion
smoothing and heat kernel smoothing, that aim to obtain a spatial
correlation structure that depends on geodesic rather than
Euclidean distances. In this way, the introduction of an artificial
correlation between areas that are close together in Euclidean
terms but geodetically far apart can be avoided (Chung et al.,
2005).

For the precise localization of activation sources using fMRI
data, the accurate cortical topology is important prior knowledge
and a surface-based method might also be able to provide the
topological information through its entire procedure. Currently,
the surface-based method for practical applications needs more
evaluation, and the accuracy of detecting activation might be
fundamentally evaluated in the specialized purpose of fMRI
analyses, which is the localization of activation sources. As far
as we know, however, there is only one quantitative evaluation
that compares the activation detected by each method (Andrade
et al., 2001). Andrade et al. (2001) validated volume- and
surface-based methods using random noise scans for observing
type I errors and real MRI data for demonstrating the local
sensitivity of the two methods. Because the main purpose of
their evaluation was the validation of the statistical equivalency
between the volume- and surface-based methods, the results were
insufficient to explain the performance of the two methods in
detecting activation in terms of their localization accuracy.
Furthermore, it was not clear which of the two results was more
similar to the actual loci and extent of activation in the existing
evaluation because (i) it was difficult to discover the true neural
activation that occurred through their experimental stimuli using
MR imaging alone, and (ii) physiological, physical, and
procedural confounds may have played a role in real MRI
experiments. The limitations of real MRI data have been partially
solved by the use of MRI phantoms and simulated BOLD
signals in existing studies that focus on validation of several
methods for neuroimage analyses and hemodynamic modeling
(Collins et al., 1998; Purdon et al., 2001). For instance, Purdon
et al. (2001) generated a locally regularized spatiotemporal
(LRST) model using a simulated BOLD formulation and
compared the fitting performance of statistical models in fMRI
analysis. Gautama and Van Hulle (2004) evaluated the optimal
degree of spatial smoothing using synthetic fMRI data. Holden et
al. (2002) quantified small cerebral ventricular volume changes
in growth hormone-treated patients using nonrigid registration
with BrainWeb (http://www.bic.mni.mcgill.ca/brainweb/) phan-
toms. Many more simulation and phantom studies have been
conducted, each appropriate for its own goal, and there is a
general agreement that simulated BOLD signals and phantoms
need to be used for quantitative evaluation to overcome the
limitations of real MRI data.

The purpose of this study was to perform a direct quantitative
evaluation of the spatial accuracies of fMRI activation detected by
the volume- and surface-based methods using MRI phantoms and
simulated BOLD signals. In particular, we focus on the effect of the
smoothing techniques that were considered as the main difference
between the two methods.

http://www.bic.mni.mcgill.ca/brainweb/
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Materials and methods

Phantoms and the gold standard of activation

We used BrainWeb to acquire a T1-weighted phantom as the
source of cortical surfaces and a T2-weighted phantom as the
source of simulated EPI images (Collins et al., 1998; Aubert-
Broche et al., 2006). The T1-weighted phantom was acquired
from the simulated MRI volumes for the normal brain
(1 mm×1 mm planar pixel size, 1 mm slice thickness, 0%
nonuniformity and noise). As it was difficult to directly represent
BOLD contrast EPI sequences using BrainWeb, the T2-weighted



Fig. 3. Activation and its probability distribution detected by volume- and surface-based methods (P<0.05, corrected) are visualized on the inflated WM surface.
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phantom was acquired from custom MRI simulation (1 mm×1 mm
planar pixel size, 2 mm slice thickness, 0% nonuniformity and
noise) with a T2-weighted spin-echo sequence (TR=2000 ms,
TE=40 ms). As the difference between EPI data acquired from T2-
weighted spin-echo, gradient-echo, and T2*-weighted EPI se-
quences influences only their SNR and contrast-to-noise ratio
(Giovagnoni et al., 1995), the difference between the simulated EPI
sequences without any artifact seldom affects the topology of
imaged brain tissues. The T2-weighted phantoms acquired from
the BrainWeb were linearly resampled in a 2 mm isocubic lattice
considering the resolution of commonly used real fMRI data (about
1–3 mm).

Two cortical surface models, the WM surface and GM/CSF
surface, were extracted from the T1-weighted phantom using the
constrained Laplacian-based automated segmentation with proxi-
mities algorithm (MacDonald et al., 2000; Kim et al., 2005a). We
divided the cortex into six laminae with equidistance between
linked nodes on the WM and GM/CSF surfaces and generated six
Fig. 2. Generating EPI data sets. (a) Division of the cortex into six laminae with equ
of the depth of the activation source (the center of the fifth lamina) and defining a 2
signal in the primary motor cortex. (c) Regularization of the weighted values o
activation. The two thick lines indicate the GM/CSF and WM surfaces. The two bl
centers of the laminae divided in panel a. Two thick curves indicate the error funct
example, the integral weights of the loci 1–5 are estimated by setting the minimum v
toward the top of the graph. (e) Reconstruction of the six 2-dimensional weighte
trilinearly resampled weighted values, and the thick lines are the cortical surfaces s
panel e and the T2-weighted phantom. (g) Generation of noisy EPI data sets. (h) Th
changes in the same location and scan number at each noise level. All data sets are
BrainWeb), the reconstructed spatiotemporal weighted voxels, and zero-mean Gaus
level’ denotes the maximum magnitude ratio of zero-mean Gaussian random noises
magnitude range of noise is about 0–1 at the 5% noise level and about 0–5 at the 25
of the references to colour in this figure legend, the reader is referred to the web v
surfaces at the centers of each lamina in order to present
parameterized columnar activation in the following procedures
(see Fig. 2a).

We manually defined a 2-dimensional region of interest (ROI)
in the primary motor area on the medial surface of the fifth
lamina from the GM/CSF surface using SUMA software (http://
afni.nimh.nih.gov/afni/suma/). We located the BOLD signals on
the ROI in the following reconstruction procedure. This ROI was
used as the gold standard for true activation in this study (see
Fig. 2b).

BOLD simulation and EPI data reconstruction

To simulate a BOLD signal, a simple experimental design with
iterative on-and-off stimuli was applied to the BOLD formulation
of the LRST model without drift and noise terms (Purdon et al.,
2001) (see Fig. 2c). Purdon et al. assumed that the changes in the
T2*-based fMRI signal are primarily due to the net average
idistance between linked nodes on WM and GM/CSF surfaces. (b) Selection
-dimensional ROI to be used as the weighted values of the simulated BOLD
f laminar activation. (d) Presentation of the weighted values of columnar
ack dots are the correlated nodes on each surface, and numbers (1–6) are the
ions of the Gaussian distribution, and we used half of each (solid lines). For
alue to zero and the maximum value as the weighted value of the fifth lamina
d values to the 3-dimensional weighted voxels. The colored voxels are the
canned to this axial intersection. (f) EPI data generated from convolution of
e axial intersections of the EPI data sets (in the upper row) and the intensity
made by convolution of the base image (the T2-weighted phantom of MNI
sian random noises. Red dots of lower graphs mean scan numbers. The ‘noise
for the maximum intensity change of voxels (see Eq. (1)). For instance, the
% noise level where the maximum intensity change is 20. (For interpretation
ersion of this article.)

http://afni.nimh.nih.gov/afni/suma/
http://afni.nimh.nih.gov/afni/suma/


Table 1
The sensitivity (TPF), one minus specificity (FPF), and probabilistic
similarity measures of activations detected by the volume- and surface-based
methods at the 0% noise level

Measure Volume-based method Surface-based method

TPF 1 1
FPF 0.0104 0.0158
PSI 0.2908 0.2129
POF 1 1
PEF 4.8761 7.3903

Fig. 4. The spatial influence of smoothing kernels. The gold standard provides 87 nodes (151 voxels), the area blurred by the heat kernel smoothing has 184
nodes (770 voxels), and the area blurred by the 3-dimensional Gaussian kernel smoothing has 124 nodes (2427 voxels). The 2-dimensional heat kernel blurred
more nodes on the surface space, and the 3-dimensional Gaussian kernel blurred more voxels in the volume space. Therefore, the equivalent 3-dimensional
Gaussian kernel and 2-dimensional heat kernel have different topologies to each other in each space. Panel a shows the nodes blurred by the 3-dimensional
Gaussian kernel and mapped from the volume space. Panel b shows the nodes mapped from the volume space and blurred by the 2-dimensional heat kernel.
The green and blue areas are blurred nodes from the gold standard (the red area and voxels) by each smoothing technique. The blue and green areas of panel c
denote the extra area of the intersection of panels a and b (c=a−b). Furthermore, panel d shows the voxels blurred by the 3-dimensional Gaussian kernel, and
panel e shows that the voxels in the gold standard are the sum of all voxels blurred and projected from the six medial surfaces in Fig. 2. Panel f denotes the extra
voxels of the intersection of panels d and e. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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deoxyhemoglobin in the voxel, which is the product of the blood
volume and the blood oxygenation. The authors also assumed that
local blood flow changes and local tissue oxygen consumption
changes are tightly coupled in time, though not necessarily
proportionally coupled. The deoxygenation term was dictated in
terms of oxygen consumption and blood flow by Fick's principle
(conservation of oxygen). The BOLD model form was also
guided by the empirical observation that the hemodynamic
component of the fMRI response for block stimuli has four
characteristics: delay, peak response, droop, and poststimulus
undershoot. By combining the basic properties of the BOLD
signal change with these empirical observations, the authors could
create a model of fMRI signal change in response to a stimulus
input. In a given pixel, they made the assumption that the blood
hemoglobin changes are driven by the stimulus through a linear
coupling (2001).

We used the amplitudes of the activation (fa=1, fb=−0.5, and
fc=0.2 for flow, volume, and interaction term) and time constants
(da=1.5 s and db=12 s for hemodynamic impulse response and
blood volume response). This simulated BOLD signal was
spatially regularized by applying a finite impulse-response
Epanechnikov weighting kernel to the gold standard to present
parameterized laminar activation (Purdon et al., 2001). As all
nodes on the WM surface have corresponding nodes on the GM/
CSF surface (Kabani et al., 2001), we could present columnar
activations distributed from the fifth lamina to the first and sixth
laminae using the near-minimax rational approximations for the
error function, which were twice the integral of the zero-mean
Gaussian distribution (Cody, 1969). All values mapped to the
nodes of the laminar surfaces were the weighted values given by
the simulated BOLD signal (see Fig. 2d).
We projected the weighted values in the surface space to the
trilinearly resampled weighted voxels in the space of the T2-
weighted phantom (see Fig. 2e). Three methods were consider-
able as the projection method mapping surface data to the voxel
space. They were nearest neighborhood (NN), trilinear (TL) and
tricubic (TC) interpolations. In our preliminary experiment for
this projection procedure, NN, TL, and TC showed the different
maximum intensity values (4251, 4357, and 4353 each) for
maximum BOLD signal power in our ROI each, but those did
not show significant difference. We selected the TL interpola-
tion because it showed larger BOLD signal changes than the
others.

Then, we generated EPI data convoluting the T2-weighted
phantom and the reconstructed weighted voxels (see Fig. 2f). As
the BOLD signal change associated with functional activation is 1–
4% for voxel intensity change (Jezzard and Clare, 1999), the
maximum intensity change occurring from the weighted voxels
was limited to 4% for the intensity of each voxel in the T2-
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weighted phantom. One hundred time-series EPI data were
generated and defined as the data set at 0% noise level.

Noise in the fMRI data was assumed to be zero-mean
Gaussian random (ΔIN(0,σn)) and uncorrelated temporally and
spatially in this study. We generated noisy EPI data sets by adding
noise to the data set at 0% noise level. The noise level is defined
as:

g %ð Þ ¼ maxfDINð0;rnÞg
maxfDIBOLDg � 100 ð1Þ

where ΔIN(0,σn) and ΔIBOLD denote intensity changes by the noise,
N, and by the simulated BOLD signal in each EPI data set. The
noise was applied from a 5% to 95% level (19 levels, increasing
5% per level). Ten sets of the random noise were added to one
Fig. 5. The true BOLD signals and noise near the gold standard. (a) A coronal inte
the simulated BOLD signals. The gray, green, red, and white thick lines, scanned
the GM/CSF and WM surfaces, the medial surface of the fifth lamina, and each
center of the figure are voxel boundaries. Each grid is located at the same positio
the true BOLD signals at each voxel, and they indicate intensity changes in th
changes of the EPI data at the 5% noise level. (For interpretation of the references
this article.)
data set at each noise level. Ultimately, 180 EPI data sets were
generated (see Figs. 2g and h).

Data processing

The entire procedure of the volume- and surface-based methods
followed the study of Andrade et al. (2001). However, we skipped
alignment procedures between the T1-weighted phantom and EPI
data sets for motion and time correction of EPI data because
BrainWeb phantoms were already spatially matched. Statistical
flattening was also skipped because the second analysis (e.g.,
multiple comparisons and group statistics) was not included in this
study. The orders of spatial smoothing procedures and cortical
surface mapping procedures in the volume- and surface-based
methods are different because the spaces of each are completely
rsection of the activated region in EPI data. The blue area was activated by
to the voxel space, denote the GM/CSF surface, the medial surface between
WM surface. (b) The SNR of the EPI data. (c) The black thin grids in the
n shown in the center of panel a. The blue lines denote the time course of
e EPI data at the 0% noise level. (d) The blue lines denote the intensity
to colour in this figure legend, the reader is referred to the web version of
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different, and the details are mentioned in the following
explanation of two methods.

For the volume-based analysis, all EPI data were blurred using a 3-
dimensional isotropic Gaussian kernel with 4 mm full-width at half-
maximum (FWHM). Then, the intracranial areas of all blurred EPI
data were automatically masked and analyzed using the AFNI package
(http://afni.nimh.nih.gov/afni). Activation was detected voxelwise by
measuring cross-correlation coefficients (Saad et al., 2001) between
each data set and a gamma variate function (Cohen, 1997) as the ideal
reference of hemodynamic response function. Detected activation was
corrected by a false discovery rate controlling procedure (Genovese et
al., 2002), and the same threshold (P<0.05) was applied to all
activation maps. These voxelwise statistical results were assigned to
the cortical surface using a center-of-normal (CN) approach. We
applied nearest neighborhood sampling to each mapping approach to
remove the effects of assigning kernel size and interpolation type
(Desai et al., 2005).

For the surface-based method, it is necessary first to assign EPI
data to the nodes of the cortical surface before the smoothing
procedure, and we evenly applied the CN approach used in the
volume-based method. After the cortical surface mapping proce-
dure, we applied heat kernel smoothing with an equivalent
bandwidth to the 3-dimensional Gaussian kernel (σ=1.6986, 11
iterations) that was derived from the relationship between FWHM
and the bandwidth (FWHM¼ ffiffiffiffiffiffiffiffiffi

8ln2
p

r) (Chung et al., 2005).
Detection and correction of activation were made nodewise,
implemented by the same procedures used in the volume-based
method.

Similarity measures

We compared the activation detected by volume- and surface-
based methods with the gold standard for calculating sensitivity
and specificity (Anbeek et al., 2005). True positives (TP) and true
negatives (TN) are the numbers of correctly detected and
undetected nodes, and the false positives (FP) and the false
negatives (FN) are the numbers of falsely detected and undetected
nodes. The true positive fraction (TPF), that is, the sensitivity, and
Fig. 6. The means and standard deviations of the TPF scores, which are the sensitiv
specificities over 5% noise levels. The practical noise range is indicated by the tw
the false positive fraction (FPF), that is, one minus specificity, were
calculated for the different noise levels from 0 to 95%.

TPF¼ TP
TPþFN

ð2Þ

FPF¼ FP
FPþTN

ð3Þ

We also calculated the probabilistic similarity index (PSI),
probabilistic overlap fraction (POF), and probabilistic extra
fraction (PEF) to observe the spatial and statistical influences of
the smoothing techniques in both methods (Anbeek et al.,
2005):

PSI¼ RPx;gs¼1

R1x;gs¼1 þ RPx
ð4Þ

POF¼ RPx;gs¼1

R1x;gs¼1
ð5Þ

PEF¼ RPx;gs¼0

R1x;gs¼1
ð6Þ

where ΣPx, gs=1 of Eqs (4) and (5) is sum over the probability
scores of all detected activation nodes for the gold standard,
ΣPx, gs=0 of Eq. (6) is sum over the probability scores of all
detected activation nodes outside of the gold standard, ΣPx, gs=1

is the number of all nodes for the gold standard, and ΣPx of
Eq. (4) is sum over the probabilities of all detected activation
nodes. The PSI and POF have values from 0 to 1, and higher
PSI values indicate that the loci and extent of activation are
closer to those of the gold standard with stronger probabilities.

We performed a Wilcoxon test for the PSI scores of the volume-
based method with the surface-based method.
ities at overall noise levels (left graph), and the FPF scores, which are the 1-
o dotted lines.

http://afni.nimh.nih.gov/afni
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Kernel size effect

To compare the effect of smoothing kernel size, we repeated
data processing with different smoothing kernel sizes (6 mm,
Fig. 7. The means and standard deviations of the probabilistic similarity measures. T
lower left graph shows the POF scores, and the remainder shows the PEF scores ove
8 mm, and 10 mm FWHM). We performed Wilcoxon tests for the
PSI scores of the volume- with the surface-based method for each
smoothing kernel size, and Kruskal-Wallis tests for the PSI scores
between the different kernel sizes at each nose level.
he large upper graph shows the mean PSI scores and standard deviations. The
r 5% noise levels. The practical noise range is marked by the two dotted lines.



Table 2
Mann–Whitney–Wilcoxon U test results (p-value, double sided
significance) testing for PSI differences between volume- and surface-
based methods

Noise level
(%)

Smoothing kernel size (FWHM, mm)

4 6 8 10

5 0.0002 0.0002 0.0002 0.0002
10 0.0002 0.0004 0.0004 0.0002
15 0.0002 0.0004 0.0017 0.0006
20 0.0002 0.0002 0.0002 0.0003
25 0.0002 0.0002 0.0002 0.0002
30 0.0002 0.0002 0.0002 0.0003
35 0.0002 0.0002 0.0002 0.0002
40 0.0002 0.0002 0.0003 0.0004
45 0.0001 0.0002 0.0002 0.0017
50 0.0002 0.0002 0.0002 0.0008
55 0.0001 0.0001 0.0002 0.0002
60 0.0001 0.0002 0.0002 0.0004
65 0.0001 0.0001 0.0003 0.0069
70 0.0001 0.0001 0.0002 0.0005
75 0.0001 0.0001 0.0001 0.0001
80 0.0001 0.0001 0.0001 0.0001
85 0.0001 0.0001 0.0001 0.0001
90 0.0001 0.0001 0.0001 0.0002
95 0.0001 0.0001 0.0002 0.0002
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Results

Activation maps

The probability of activation detected by the surface-based
method was higher than that of the volume-based method at
every noise level. Furthermore, the peaks of activation detected
by the surface-based method were distributed more regularly in
the region of the gold standard (see Fig. 3). Little significant
activation was detected in the results of the volume-based
method at over 50% noise levels (P<0.05, corrected).

Effect of the smoothing kernels

The resultant activation maps at the 0% noise level showed the
spatial range of the gold standard alone blurred and expanded by
each smoothing kernel in the surface space. The 2-dimensional heat
kernel and 3-dimensional Gaussian kernel, which had equivalent
bandwidths in each native space, did not have equivalent topology as
Fig. 4 shows. The 2-dimensional heat kernel blurred more nodes
(about 68%) in the surface space. At the 0% noise level, extra nodes
blurred by the smoothing kernels were partially synchronized to the
BOLD signals for the gold standard, and this effect influenced the
FPF and PEF involving the FP error. Table 1 shows the similarity
measures at 0% noise levels. The surface-based method covered
more extra nodes than the volume-based method (about 50% greater
FPF and PEF). Where the TPF and POF of both had the same value
(=1), the PSI of the volume-based method seemed to produce better
scores than that of the surface-based method because there are
relatively fewer FP errors in the volume-based method.

Similarity measures of the noisy data sets

The results at the 0% noise level were a reversal over 5% noise
levels because the 3-dimensional kernel included more noisy
signals on the outside of the cortex than the 2-dimensional kernel
(see Figs. 4 and 5). This effect was presented in the trend of the
similarity measures. As stronger noise was added to the EPI data,
all measures of the volume-based method tend toward low scores
more rapidly than those of the surface-based method. Fig. 6 shows
the mean TPF and FPF with their standard deviations at noise
levels ranging from 5% to 95%. The surface-based method was
more sensitive because the mean TPF of the surface-based method
shows higher values of 12.45% more than the volume-based
method at all noise levels. Both methods showed similar FPF
scores of less than 0.35% (0–142 nodes) for the whole TN area
(40,875 nodes) at all noise levels. The specificities of both methods
are guaranteed by their much lower FPF scores. Fig. 7 shows the
similarity measures for each method over 5% noise levels. The
mean PSI scores and the mean POF scores of the surface-based
method were 12.74% and 43.37% higher than those of the volume-
based method. The mean PEF scores of the surface-based method
were higher under 250.01% than those of the volume-based
method, but the PEF scores of both methods approached zero. The
differences of the PSI scores were statistically significant through
the range of noise levels (see Table 2).

Kernel size effect

The probabilities of activations detected by the surface-based
method were higher than those of the volume-based method at
every smoothing kernel size (see Figs. 8 and 9). Due to the increase
of smoothing kernel size, the means and standard deviations of the
similarity measures were increased (see Figs. 10 and 11). The
differences of the PSI scores were statistically significant through
the range of noise levels for all smoothing kernel sizes (see Table
2). The differences of the smoothing kernel sizes of volume-based
method were more significant than those of surface-based method
through the range of practical noise levels (see Table 3).
Discussion

Topological and statistical influences of the smoothing kernels

The statistical inferences of the surface-based method are
conceptually similar to those of the volume-based method
(Andrade et al., 2001). Therefore, the difference between the two
methods is mainly due to the smoothing techniques resulting from
differences in their geometry. As the volume-based method showed
lower similarity scores under noisy conditions, we could therefore
conclude that the 3-dimensional Gaussian kernel more profoundly
decreased the magnitudes of true BOLD signals by including noise
outside of the GM bands than the 2-dimensional heat kernel. This
conclusion partially corresponds with existing studies that attempt
to apply cortical topology to fMRI analyses (Kiebel et al., 2000;
Andrade et al., 2001). Combined with this effect of smoothing
kernels, this difference would influence the probability of detected
activation as a statistical result of fMRI analysis. As PSI is a
measure that shows the probabilistic trend of detected activation,
the surface-based method assigned higher probability to the same
activation than the volume-based method. As Fig. 3 shows, more
activated nodes with higher probabilities were detected in the
surface-based method than in the volume-based method at the same
threshold (P<0.05). Therefore, we could conclude that the surface-
based method is able to detect a probability closer to the gold



Fig. 8. Activations and their probability distributions detected by volume-based methods with 4, 6, 8, and 10 mm FWHM smoothing kernels (P<0.05, corrected)
are visualized on the inflated WM surface.
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standard (=1) and avoid the effect of strong noise better than the
volume-based method.

The effect of different smoothing kernel sizes

An increase in the FWHM of smoothing kernel increased the
means and standard deviations of the similarity measures in both
volume- and surface-based methods (see Figs. 10 and 11). However,
the reproducibility of the surface-based method might be better than
the volume-based method since the surface-based method showed
less increment in the standard deviations of the measures due to the
increase of smoothing kernel size than the volume-basedmethod. As
Table 3 shows, smoothing kernel sizes more significantly influenced
the statistical results in the volume-based method than the surface-
basedmethod through the practical noise levels. Therefore, we could
conclude that the activation detected by the surface-based method is
less influenced by the FWHM of smoothing kernel than those of the
volume-based method.

Several practical issues

According to the existing studies that focus on the SNR difference
between practical EPI sequences, the intensities of EPI data mainly
affected by the nongeometric artifacts (e.g., local field homogeneity
and noise) show large variations in the range of 6% to 23%
(Hillenbrand et al., 1999). Although the PSI differences over 30%
noise levels are considered to be practically extreme cases, in our
study, the surface-based method showed even higher PSI scores under



Fig. 9. Activations and their probability distributions detected by surface-based methods with 4, 6, 8, and 10 mm FWHM smoothing kernels (P<0.05, corrected)
are visualized on the inflated WM surface.
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25% noise levels than did the volume-based method. The differences
in brain tissue intensity (GM versus CSF or WM) could also decrease
the magnitude of the true BOLD signal in 3-dimensional Gaussian
kernel smoothing. This partially corresponds to the existing report that
volume-based smoothing increases the partial volume effect near a
narrow GM band, and it consequently decreases the probability of
detected activation in PET analysis (Frouin et al., 2002). This may be
evidence that the difference between imaged tissue contrasts led by
different EPI sequences is one of the main factors influencing the
degree of BOLD signal reduction in volume-based smoothing
procedures. In the case that cortical surfaces and EPI data are spatially
matched, surface-based smoothing, in contrast, could not increase the
partial volume effect because it is implemented in GM bands.
Therefore, the surface-based method could be seldom influenced by
the variation of imaged tissue contrasts. The PSI difference between
the volume- and surface-based methods might consequently exist in
almost all cases although the EPI sequence is changed.

Another substantial issue leading to the different results from the
two methods is the cortical surface mapping used to convert data
from the volume space to the surface space. There are two
frequently used cortical surface mapping methods. The first is the
CNmethod used in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).
The medial surface is produced from the GM/CSF and WM
surfaces, and the volumetric data crossing to this medial surface are
assigned. The second is the two-surface method used in SUMA
(http://afni.nimh.nih.gov/afni/suma). It uses the GM/CSF and WM
surfaces together and assigns values as the greater absolute value
between the values assigned to the two surfaces. The common issue
of these methods is that the original signals can potentially be lost or
smoothed in a variety of ways during the transfer, directly affecting

http://surfer.nmr.mgh.harvard.edu/
http://afni.nimh.nih.gov/afni/suma


Fig. 10. The means and standard deviations of the TPF and FPF scores of volume- and surface-based methods with 4, 6, 8, and 10 mm FWHM smoothing
kernels.

561H.J. Jo et al. / NeuroImage 34 (2007) 550–564
the accuracy of the results as functional activation along the entire
thickness of GM is mapped to a single node on the surface (Desai
et al., 2005). However, Saad et al. (2005) mentioned that this might
not influence the resultant activation map because fMRI data are
currently acquired with low resolution by commonly used 1.5 or 3 T
MRI devices.

Existing limitations

Currently, the advantages of cortical surface models and 2-
dimensional smoothing techniques seldom influence the accuracy
of detected activation in practical applications because the voxel
intensity of EPI data is an averaged value of signals generated in an
arbitrary cubical area, and the clinically useful EPI data for whole
brain imaging have low spatial resolution (Liang et al., 2000). With
the improvement of high-field MRI devices, however, these
problems could be solved by ultrahigh resolution MRI data (Harel
et al., 2006; Zhao et al., 2006). Furthermore, both the volume- and
the surface-based methods are not applicable for detecting the
activation of cerebellar and subcortical structures at this time. This
issue might be addressed by modeling techniques for small and
complex brain structures (Kim et al., 2005b).

Because we used a simplified model focusing on only the
spatial extent of the activation influenced by the topological effects
of the smoothing techniques, there are some limitations of this
study in explaining other effects of the smoothing. For instance, we
neglected the temporal terms (e.g., hemodynamic delays and
temporal autocorrelations) and generated the simple columnar
activations without considering the physiological properties of
different neuron types at every cortical depth. However, we expect
that more realistic evaluation of the volume- and the surface-based
methods could be performed by modeling the previous findings via
cytoarchitectural studies showing relatively accurate properties
corresponding to the nature of columnar and laminar activation



Fig. 11. The means and standard deviations of the probabilistic similarity measures of volume- and surface-based methods with 4, 6, 8, and 10 mm FWHM
smoothing kernels.
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Table 3
Kruskal–Wallis test results (p-value) testing for PSI differences between
smoothing kernel sizes

Noise level (%) Volume-based method Surface-based method

5 0.0001 0.2339
10 0.0001 0.1626
15 0.0001 0.4442
20 0.0001 0.4505
25 0.0022 0.0820
30 0.0001 0.2092
35 0.0007 0.0457
40 0.2130 0.1092
45 0.0038 0.1726
50 0.0312 0.5309
55 0.0443 0.0070
60 0.2454 0.2695
65 0.1551 0.1783
70 0.4026 0.1529
75 0.8991 0.0534
80 0.7589 0.2621
85 0.5504 0.1817
90 0.1070 0.5223
95 0.0309 0.1288
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(Koenderink and Uylings, 1996; Lubke et al., 2003; Chance et al.,
2004).

Conclusion

In this work, we have used spatially matched phantoms,
simulated BOLD signals, and controlled random noise to
quantitatively evaluate the performance of volume- and surface-
based methods for fMRI analysis. Measuring the probabilistic
similarity indices, we have shown that the topological difference
between the 3- and 2-dimensional smoothing kernels of each
method leads to a statistical difference in resultant activation. More
generally, the surface-based method for fMRI analysis guarantees
better sensitivity and spatial accuracy for the localization of BOLD
signal sources within the cortex than the volume-based method.
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