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We analyze homogeneous anisotropic cosmology driven by the dilaton and the self-interacting
‘‘massive’’ antisymmetric tensor field which are indispensable bosonic degrees with the graviton in the
NS-NS sector of string theories with D-branes. We found the attractor solutions for this system, which
show the overall features of general solutions, and confirmed it through numerical analysis. The dilaton
possesses the potential due to the presence of the D-brane and the curvature of extra dimensions. In the
presence of the nonvanishing antisymmetric tensor field, the homogeneous universe expands anisotropi-
cally while the D-brane term dominates. The isotropy is recovered as the dilaton rolls down and the
curvature term dominates. With the stabilizing potential for the dilaton, the isotropy can also be recovered.
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I. INTRODUCTION

Low energy effective theories derived from the NS-NS
sector of string theories contain the gravity, g��, the dila-
tion, �, and the antisymmetric tensor field, B��. The
existence of the last degree of freedom leads to intriguing
implications in string cosmology [1]. In four spacetime
dimensions, the massless antisymmetric tensor field is dual
to the a pseudoscalar (axion) field [2], and the axion-
dilaton system is known to develop an unobserved anisot-
ropy in our Universe, which can be diluted away at late
times only in a contracting universe [3].

Such a disastrous cosmological situation can be resolved
also in string theory which contains another dynamical
object called D-brane [4]. The gauge invariance on the
D-brane is maintained through the coupling of the gauge
field strength to the antisymmetric tensor field [4–6].
Then, the effective action derived on theD-brane describes
the antisymmetric tensor field as a massive and self-
interacting 2-form field. Cosmological evolution of such
a tensor field has been investigated in Ref. [7] assuming
that the dilaton is fixed to a reasonable value. Although the
time-dependent magnetic B field existing in the early uni-
verse develops an anisotropy in the universe, it was real-
ized that the matterlike behavior of the B field (B-matter)
ensures a dilution of the anisotropy at late times and thus
the isotropy is recovered in reasonable cosmological sce-
narios [7]. In such sense the effect of antisymmetric tensor
field on the D-brane is distinguished from that of field
strength of the U(1) gauge field [8].

In this paper, we investigate the cosmological evolution
of the B-matter-dilaton system in our Universe which is
assumed to be imbedded in the D-brane. The usual string
cosmology with the dilaton suffers from the notorious
runaway problem, which is also troublesome in the
D-brane universe. In our study, the dilaton obtains two
exponential potential terms due to the curvature of extra
dimensions �, and the D-brane tension (the mass term of
the B-matter) mB. It is interesting to observe that the
dilaton can be stabilized for negative � [9] which, how-
ever, leads to a contracting universe due to the effective
negative cosmological constant in our Universe. When � is
positive, the B-matter dominance will be overturned by the
� dominance as the dilaton runs away to the negative
infinity. As a consequence of this, the initial anisotropy
driven by the B-matter can also be diluted away at late
times.

For a realistic low energy effective theory, string theory
must be endowed with a certain mechanism generating an
appropriate vacuum expectation value for the dilaton. In
such a situation, the dilaton is expected to be stabilized at
some stage of the cosmological evolution affecting the
dynamics of the antisymmetric tensor field. Taking an
example of the dilaton stabilization, we will also examine
the cosmological evolution of the B-matter and the dilaton
in which the essential features of Ref. [7] are reproduced.

This paper is organized as follows. In Sec. II, we de-
scribe the low energy effective action of the D-brane
universe and the corresponding field equations. Before
our main discussion, Sec. III is devoted to presenting
homogeneous solutions in flat spacetime illustrating
some interesting features of the B-matter-dilaton system
in a simple way. In Sec. IV, we find semianalytic and
numerical cosmological solutions to observe an intriguing
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interplay of the curvature � and theD-brane tensionmB. In
Sec. V, we consider the evolution of the anisotropic uni-
verse with the dilaton stabilization which leads to a sat-
isfactory cosmology of the D-brane universe. We conclude
in Sec. VI.

II. STRING EFFECTIVE THEORY ON THE
D-BRANE

The main idea of the D-brane world is that we reside on
a Dp-brane imbedded in 10 (or 11) dimensional spacetime
with extra-dimensions compactified. The bosonic NS-NS
sector of theD-brane world consists of the U(1) gauge field
A� living on the Dp-brane and the bulk degrees including
the graviton g��, the dilaton �, and the antisymmetric
tensor field of rank-two B��. In the presence of the brane,
the gauge invariance ofB�� is restored through its coupling
to a U(1) gauge field A� and the gauge invariant field
strength is [4]

 B �� � B�� � 2��0F��; (1)

where

 F�� � @�A� � @�A�:

Even though we are assumed to live on the D-brane, we
adopt the conventional compactification in the sense that
the extra dimensions are compact and stabilized, and thus
static. In the presence of theD-brane, this would in general
require an additional setup like additional branes and
fluxes along the extra dimensions [10], and the working
of nonperturbative effects [11]. The extra dimensions are
warped due to branes and fluxes. The warping of extra
dimensions gives a warp factor in the definition of the four-
dimensional Planck scale [12], and also induces the poten-
tial for the dilaton [10] as described below. If the fluxes in
the extra dimensions significantly affect the compactifica-
tion, the existence of the fluxes on the D-brane seems also
natural and it is intriguing to tackle their effect in the early
universe. However, simultaneous consideration of the
fluxes along both the extra dimensions and the D-brane
lets the computation almost intractable. Therefore, the
conventional compactification is an appropriate setup at
the present stage, and then we take the following four-
dimensional effective action of the bosonic sector in the
string frame [7]
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1

2�2
4

Z
d4~x

�������
�~g

p �
e�2�

�
~R� 2�� 4 ~r��~r��

�
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�������������������������������������������������������������������
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1

16
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s �
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where the tilde denotes the string-frame quantity, H��� �

@��B��	 and B��� �
1
2

�������
�g
p

�����B�� with �0123 � 1. The

parameter mB is defined by m2
B � 2�2

4T p where T p is the
effective brane tension. Note that we omitted the Chern-
Simons like term assuming the trivial R-R background. If
we assume that the six extra-dimensions are compactified
with a common radius Rc, one finds mB �

�1=4�g2
s=4���p�3�=16�RcMP�

�15�p�=8MP where gs � e�

and MP � 2:4
 1018 GeV is the four-dimensional
Planck mass. The qualitative features of our results do
not depend on specific values of p. Thus, we take p � 3
for simplicity. The � term comes from the scalar curvature
or the condensate hH2i of extra dimensions integrated over
the whole extra dimensions.

The action, and thus also field equations, can be written
in a more familiar form in the Einstein metric, which is
defined by

 g�� � e�2� ~g��: (3)

We will work in this metric from now on. In terms of
Einstein metric, the action becomes

 SE �
1
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4

Z
d4x
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�g
p
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The field equations derived from the action (4) are
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 �r2��
@V���
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� 0; (6)

 G�� � �2
4T��; (7)

where the dilaton potential is

 V��� �
1

4
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(8)

and the energy-momentum tensor is given by

 �2
4T����g���e2��2r��r���g���r��2
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(9)
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In the subsequent sections, we examine the equations of
motion (5)–(7) and find homogeneous solutions.
Cosmological implication of the D-brane universe is of
our main interest, including stabilization of the dilaton and
condensation of the antisymmetric tensor field.

III. HOMOGENEOUS SOLUTIONS IN FLAT
SPACETIME

For the sake of the simplicity, let us first look into the
dynamics of our system in flat spacetime. With g�� �

��, the Einstein Eqs. (7) become simple and gauge
invariance of the field variables Ei � Bi0 and Bi �

�0ijkBjk=2 which directly appear in the expression of
energy-momentum (9) allows a homogeneous configura-
tion

 � � ��t�; E � E�t�; B � B�t�: (10)

For homogeneous configuration (10), 0i-components
(electric components) of the equation of the antisymmetric

tensor field (5) reduce to an algebraic equation

 m2
Be

3� E� e�4�B�E �B����������������������������������������������������������������������������
1� e�4��E2 �B2� � e�8��E �B�2

p � 0: (11)

ij-components (magnetic components) give
 

�B� 4 _B _�

� �e3� B� e�4�E�E �B����������������������������������������������������������������������������
1� e�4��E2 � B2� � e�8��E � B�2

p ; (12)

where the overdot denotes differentiation with respect to
the rescaled dimensionless time

 

~t � mBt: (13)

These equations (11) and (12) tell us that the magnetic
components B are dynamical but the electric components
are determined by the constraint Eq. (11). Dynamics of the
dilaton is governed by (6) which becomes

 

���
1

4
e�4� _B2 � �	e2� �

1

4
e3� 3� e�4��E2 � B2� � e�8��E � B�2���������������������������������������������������������������������������

1� e�4��E2 � B2� � e�8��E �B�2
p ; (14)

where the dimensionless parameter 	 is defined by

 	 �
�

m2
B

: (15)

The constraint Eq. (11) forces its numerator to vanish
except a trivial solution � � �1, however vanishing
numerator allows only a vanishing electric field solution
E � 0. Then the equations for the magnetic components
(12) and the dilaton (14) reduce to

 

�B� 4 _B _� � �e3� B��������������������������
1� e�4�B2
p ; (16)

 

���
1

2
e�4� _B2 � �	e2� �

1

4
e3� 3� e�4�B2��������������������������

1� e�4�B2
p : (17)

In the following, we will find solutions of (16) and (17) to
see how the dilaton and the magnetic component behave.

A. Dilaton potential with B � 0

When the magnetic components of the antisymmetric
tensor field B vanish, we have only the dilaton equation
from (17)

 

�� � �
dU
d�

; (18)

where the dilaton potential U��� is given by the sum of the
curvature term and the brane tension term

 U��� �
	
2
e2� �

1

4
e3� (19)

as shown in Fig. 1.

For 	 � 0, the dilaton potential U��� monotonically
increases, so the dilaton finally rolls to the minimum
��t� ! �1 as t! 1. For 	 < 0, the dilaton potential
U��� has the minimum value Umin � 8	3=27 at �min �
ln��4	=3�. If E � Umin, the dilaton is stuck at � � �min.
When Umin <E< 0, the dilaton oscillates around the
minimum. Therefore, the dilaton is stabilized with mass
m� �

4
3	

3=2mB, and due to exponential potential terms, its
mass can be much different from the vacuum expectation
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FIG. 1. The graph of U���. For 	 � 0, U��� monotonically
increases (dashed line). For 	 < 0, U��� has a minimum at � �
ln��4	=3� (solid line).
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value of the dilaton mB�min. As 	 increases, the dilaton
mass rapidly grows. When E � 0, the dilaton again rolls to
negative infinity. It means that the dilaton is easily desta-
bilized by its fluctuations, if the dilaton mass becomes too
small. Though the negative vacuum energy Umin < 0 does
not affect the dynamics of the dilaton and the antisymmet-
ric tensor field in flat spacetime, its coupling to gravity
leads to singular cosmological evolution as we shall see in
Sec. IV. Therefore, for the proper description of cosmol-
ogy, some additional term is needed to adjust the value of
Umin to vanish as we shall discuss in Sec. V.

The runaway or stabilized behavior of the dilaton re-
mains essentially unchanged even with B � 0 although the
dependence on the initial conditions alters as we will see in
the next subsection.

B. Magnetic solution

Without loss of generality, let us assume that the direc-
tion of the magnetic component of antisymmetric tensor
field is fixed as B�t� � B�t�k. Although the equations of
motion (16) and (17) are still complicated even under this
assumption, the presence of the magnetic components do
not alter the story of the dilaton much.

First, let us consider a simple case of zero brane tension
(mB � 0), which is analytically tractable. Then in (16) and
(17), only the 	-dependent term survives on the right-hand
side. (For this case, we will use the original � and time t
since mB � 0.) The solutions to these equations are

 ��T� � T �
1

2
ln
��

1

4
e2T ��

�
2
� b2

1c
2
1

�
� lnc1; (20)

and

 
 B�T� � 16
c1

b1

�e2T � 4��2 � b2
1c

2
1�

e4T � 8�e2T � 16��2 � b2
1c

2
1�

� 4
�

b2
1

tan�1

�
e2T � 4�

4b1c1

�
� b2; (21)

where b1, b2, and c1 are integration constants, and the time

has been rescaled to T � c1�t� c2� by absorbing another
constant c2. The solutions are still remaining valid under
T ! �T, i.e., under the change of the sign of c1.
Therefore, we can fix the time T to flow to the positive
direction and c1 > 0. The solutions approach their asymp-
totic configurations at large T,

 ��T� � �T � ln�4c1�; (22)

 
 B�T� � sign�b1�
2��

b2
1

� b2 � Bst: (23)

We observe that the dilaton rolls linearly in time to nega-
tive infinity, and the antisymmetric tensor field condensates
to a constant 
Bst which depends on �. There are two
topologically distinct condensation processes depending
on the signature of b1 which is to be set by the initial
conditions; the change in � contributes to Bst oppositely.

With the brane tension term turned on, we numerically
study due to the complexity of field equations. The solu-
tions are classified into two classes as in the pure dilaton
case in Sec. III A, depending on the signature of 	.

For 	 � 0, the dilaton approaches negative infinity irre-
spective of initial conditions, �0 and B0. The condensed
value of the magnetic component deviates from the initial
value in the beginning, and then stabilizes to a constant as
shown in Fig. 2. We observed from the numerical results
that there exist two branches of the magnetic condensation
depending on the initial conditions as discussed above, but
we show only one branch in the figure. Like in the mB � 0
case, once the magnetic component is condensed, the con-
densation survives as a constant value. It is different from
the case without the dilaton, in which the magnetic com-
ponent permanently oscillates in flat spacetime [7].

When 	 is negative, there are two classes of solutions,
depending on the initial value of the dilaton �0 (or equiv-
alently the energy density) for a fixed initial magnetic
condensation B0. For large �0 or B0, the configurations
are almost the same as those for nonnegative 	 (see Fig. 2).
For small enough �0 and B0, the dilaton shows the oscil-
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FIG. 2. � and B in the Einstein frame for 	 � 0 (solid lines), 	 � 1=2 (dashed lines), and 	 � �1=2 (dotted lines). The initial
conditions are �0 � 1 and B0 � 0:1. The configurations are very similar regardless of 	.
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lating behavior as expected from the dilaton potential in
Fig. 1. According to the dilaton oscillation, the magnetic
component is also oscillating around a condensed value
(see Fig. 3). If we involve the radiation of perturbative
modes of the dilaton and the antisymmetric tensor field,
which is missing in this classical configuration, the classi-
cal solution will damp to a stabilized value of the dilaton
and the final condensed value of the magnetic component.

IV. COSMOLOGICAL HOMOGENEOUS
SOLUTIONS

In this section we study cosmological solutions of the
D-brane universe in the presence of both the dilaton and
the antisymmetric tensor field. As we have done in the
previous paper [7], we assume spatially homogeneous
configurations for the antisymmetric tensor field and the
dilaton, and look for the time evolution of these fields and
the expansion of the universe.

The nonvanishing homogeneous antisymmetric tensor
field, in general, implies the anisotropic universe. To con-
sider the simplest form of anisotropic cosmology, we take
only a single magnetic component of B�� to be nonzero,
namely B12�t� � B�t� and B0i�t� � B23�t� � B31�t� � 0.
Then the metric consistent with this choice of field con-
figuration is of Bianchi type-I
 

ds2 � �dt2 � a1�t�
2�dx1�2 � a2�t�

2�dx2�2

� a3�t�
2�dx3�2: (24)

Then, in the Einstein frame, the field equation for B (5)
reads
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1a
2
2
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the dilaton-field Eq. (6) is
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and Einstein Eqs. (7) are
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It is more convenient to employ the dimensionless time
variable ~t of (13) and to introduce the variables �i and b
defined by

 �i � lnai; b �
e�2�B
a1a2

: (33)

Then the above Eqs. (25)–(30) are rewritten as
 

�b�� _�1� _�2� _�3� _b�
�

2 ���2�� _�1� _�2� _�3�2 _�� _�

� ��1� ��2�� _�1� _�2� _�3�
e3��������������
1�b2
p

�
b�0; (34)

 

��� � _�1 � _�2 � _�3� _� � �2�B � �� �
1

2
�b � ~�b;

(35)

 _� 1 _�2 � _�2 _�3 � _�3 _�1 � �� � �B � �� � �b; (36)

 

FIG. 3. � and B in the Einstein frame for 	 � �1=2, B0 �
0:1, and �0 � �0:2: The dilaton stabilization is observed as
well as the periodically waving oscillation of B.
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 �� 1 � _�1� _�1 � _�2 � _�3� � �� � �b; (37)

 �� 2 � _�2� _�1 � _�2 � _�3� � �� � �b; (38)

 �� 3 � _�3� _�1 � _�2 � _�3� � 2�B � �� � ~�b; (39)

where, by dividing m2
B from each % in Eqs. (31) and (32),

we have

 �� � _�2; �B �
1

4
� _b� � _�1 � _�2 � 2 _��b	2;

�� � 	e2�; �b �
1

2
e3��1� b2�1=2;

~�b �
1

2
e3��1� b2��1=2;

(40)

where 	 is defined in (15). In the subsequent subsections,
we look for the solutions to the above field equations for
various cases beginning with some simple solutions.

A. Attractor solutions

The dilaton in the system of Eqs. (34)–(39) has the
exponential potential up to the correction due to the anti-
symmetric tensor field. It is well-known that the scalar field
with the exponential potential possesses the scaling solu-
tion in which the energy density of the scalar field mimics
the background fluid energy density [13,14]. This scaling
solution is also an attractor, so that the late time behavior of
the solutions are universal irrespective of initial conditions.
This is an attractive property of the exponential potential.
For the potential of the form V��� � V0e

��, there is an
attractor solution

 � � �
2

�
ln
�

�V1=2
0 t�����������������������

2�12� �2�
p �

; � �
�

2

�

�
2

lnt; (41)

for 0 � �<
������
12
p

. The scale factor obeys the power-law
time-dependence, implying that the rolling of � consti-
tutes the matter having an equation of state p � w� where
w � �2=6� 1 varies from �1 to �1 for the aforemen-
tioned range of �.

We found this type of particular solutions of the
Eqs. (34)–(39), which can be found when we have a single
exponential term in the potential, that is, for the case of
� � 0 and for the case of mB � 0. For both cases we start
from an ansatz of the form

 ��~t� � �� ln~t��0; �1 � �1 ln~t;

�3 � �3 ln~t; b � constant;
(42)

where we suppressed constant terms in �1 and �3 which
correspond to simple rescaling of coordinates. For the case
of � � 0, we obtain two distinguished solutions

 ��~t� ��
2

3
ln~t� ln

2

3
; �1�~t� ��3�~t� �

4

9
ln~t; b� 0;

(43)

and
 

��~t� � �
2

3
ln~t�

2

3
ln
�
8 � 51=4

21

�
; �1�~t� �

10

21
ln~t;

�3�~t� �
3

7
ln~t; b � 


1

2
: (44)

The first solution is nothing but the solution (41) with � �
3. The second solution has the nonvanishing antisymmetric
tensor field. For the case of mB � 0, we introduce a new
rescaled dimensionless time variable �t � �1=2t instead of ~t
of (13) and then get the continuous set of solutions from
Eqs. (25)–(30)

 ���t� � � ln�t�
1

2
ln2; �1��t� � �3��t� � ln�t;

b � arbitrary constant:
(45)

���t� and ���t� are same as those in Eq. (41) with � � 2,
while we have the nonvanishing B field condensate.

These solutions are the solutions to the Eqs. (34)–(39)
for the specific initial conditions. However, the importance
of these solutions, as noted in the first paragraph, arises
from the fact that they are attractors, which means that
after enough time the solutions with different initial con-
ditions approach these solutions. We will confirm this
through numerical analysis in the next subsection.

The solution (43) applies for the brane tension domi-
nated case where the dilaton potential is approximated by
m2
BU��� �

1
2m

2
Be

3� from Eq. (19). The evolution of the
dilaton under this potential produces matter with the equa-
tion of state p � 1

2�.
Once the antisymmetric tensor field is turned on, the

anisotropy appears as in the solution (44). The measure of
anisotropy is

 

_�3

_�1
�

9

10
: (46)

This result is contrasted with that in Ref. [7] where the
dilaton is assumed to be stabilized. The rolling of the
dilaton makes the difference. It affects the dynamics of B
field in such a way that b remains constant at b � 
1=2
instead of oscillating about the potential minimum b � 0
and the anisotropy is maintained.

Let us turn to the third solution (45). It is relevant when
the dilaton potential arising from the curvature of extra
dimensions, V��� � �e2�, dominates over other contri-
butions. In our scheme this happens as the dilaton rolls
down the potential. When b vanishes, the transition point at
which �e2� starts to dominate over 1

2m
2
Be

3� is at �t �

ln�2	�. Thus, this solution describes the late time behavior
of all the solutions with various initial conditions when �
is positive. It is very intriguing since we achieve the iso-
tropic universe in the end. The rolling of dilaton makes the
brane tension term which causes the anisotropy when we
have nonvanishing B field less important than the extra
dimension curvature term which recovers the isotropy. The
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rolling of the dilaton under the potential �e2� now forms
the matter having the equation of state p � � 1

3�, thus
giving marginal inflation.

B. Numerical analysis

1. Initial conditions

We have the second order differential equations for four
variables ��t�, B�t�, �1�t� � �2�t�, �3�t�. Thus we need
eight initial values �0, _�0, B0, _B0, �10, _�10, �30, _�30 to
specify the solution. Among these, �i0 can always be set to
zero by coordinate rescaling. _�i0 must obey the constraint
Eq. (36), but this does not fix the ratio _�10= _�30. We choose
the isotropic universe as a natural initial condition which
leads to _�10 � _�30.

Since the dilaton potential is composed of exponential
terms, the shift of the dilaton field by a constant can be
traded for the redefinition of mass scale. We use this
property to take the initial value of the dilaton to be zero
without loss of generality. In our numerical analysis, we
take the dimensionless time variable as ~t � ~mt where ~m �
mBe

3=2�0 and use the variable ~� � ���0 with its initial
value ~�0 � 0. This means that the proper time scale for the
cosmological evolution is not m�1

B , but ~m�1. For conven-
ience’s sake, we take the initial time as ~t0 � 1. The other
mass scale � is also affected by this shift and we can treat it
by replacing the parameter 	 with ~	 � 	e��0 .

Now we need three initial values _�0, B0, and _B0, to fix
the functional form of the solution. The initial values b0

and _b0 are related to B0 and _B0 by b0 � B0 and _b0 �
_B0 � 2� _�10 � _�0�B0.

2. Numerical solutions for B � 0

If we assume B�� � 0, we can study the role of the
dilaton interacting with gravity more clearly as was also
true in the subsection III A. We keep the brane term with
the tension mB. The spacetime is now isotropic. The pa-
rameter � in the string-frame action, which can be inter-

preted as the curvature of the compact internal manifold,
plays a very important role, and the solutions are topologi-
cally different depending on the signature of �.

When � � 0, we have an attractor solution (43). Since
we consider the dilaton only, the only relevant initial
condition is _�0. The initial condition for the attractor
solution is _�0 � �

��������
3=2

p
in the setup described in the

previous subsection. For a few other values of _�0, we
plot the numerical solutions in Fig. 4. Regardless of the
initial value _�0, all the solutions approach universally the
attractor solution (up to rescaling for the scale factor) after
some time.

When �> 0, the evolution is divided into two stages.
When � is large so that �b �

1
2 e

3� is much larger than
�� � 	e2�, the solution approaches the attractor (43). As
� rolls down to around �t � ln�2	�, �� becomes larger
than �b. After that point the solution approaches the
attractor (45) with b � 0. In Fig. 5, numerical solutions
show this two stage evolution explicitly.

Since � measures the curvature of the extra dimensions,
its value can be negative. When �< 0, the dilaton poten-
tial has the global minimum at �min � ln��4	=3� with
negative cosmological constant Umin as discussed in
Subsec. III A. The disastrous consequence of this negative
energy minimum is that the scale factor collapses in the
end. This cannot be avoided because the dilaton rolls down
toward the minimum and stays where the potential is
negative while the kinetic energy is diluted by the expan-
sion, thus the total energy becomes negative and it derives
the universe to collapse. It is different from the case of flat
spacetime in Subsec. III A, where the dilaton experiences
either the permanent oscillation around �min for negative
initial energy density or the attractor solution for nonneg-
ative initial energy density.

3. Numerical solutions for B � 0

Now, we turn on the antisymmetric tensor field along the
x3 direction, B12 � B � 0. The spacetime becomes aniso-
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FIG. 4. Numerical solutions for B � 0 and � � 0 with initial value _�0 � �
��������
3=2

p
(solid curve, the attractor), 0 (dotted curve), �3

(dashed curve) and 1 (dash-dotted curve), respectively. For the evolution of the scale factor, we plot ~t _��~t� for it becomes constant �
when the scale factor behaves as a / t�.
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tropic, a1�t� � a2�t� � a3�t�, in general. The solutions are
classified again by the signature of �.

For � � 0, we have an attractor (44) under the initial
conditions of _�0 � �7=4 � 51=4, b0 � 


1
2 , and _b0 � 0. In

Fig. 6, we plotted numerical solutions for a few different
initial conditions in addition to the attractor. It is confirmed
again that all the solutions approach the attractor as the
time goes on. The final value of b is either � 1

2 or � 1
2

depending on the initial conditions. In the lower-right
panel in Fig. 6 we provide the evolution of each component
of energy density. The kinetic energy of the dilaton ��

catches up the potential energy �b and the ratio of them
becomes constant. This is a characteristic feature of the
scaling solution [14]. The kinetic energy of B field is kept
much smaller than both of them, but the anisotropy is still
maintained due to the difference between �b and ~�b.

 

FIG. 6. Numerical solutions for B � 0 and � � 0. The initial conditions are as follow. Solid line: _�0 � �7=4 � 51=4, b0 � 1=2,
_B0 � 0; Dotted line: _�0 � 0, b0 � 1, _B0 � 0; Dashed line: _�0 � 0, b0 � 10, _B0 � 0; Dash-dotted line: _�0 � �

��������
3=2

p
, b0 � 1,

_B0 � 0. The lower-right panel shows the evolution of each component of energy density for initial conditions _�0 � �7=4 � 51=4,
b0 � 1=2, _B0 � 0.
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FIG. 5. Numerical solutions for B � 0 and �> 0. When we set the parameter 	 � 10�4, the curves stand for the solutions with the
initial value _�0 � �

��������
3=2

p
(solid curve) and 0 (dotted curve), �3 (dashed curve) and 1 (dash-dotted curve), respectively.
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For �> 0, the evolution is again divided into two stages
as in the B � 0 case. In the first stage where �b is domi-
nant, the solution approaches an attractor (44). In the
second stage where �� is dominant, it approaches another
attractor (45). Thus the universe recovers the isotropy. The
final value of b is a certain constant which is determined by
initial conditions and can differ from 
 1

2 . Numerical
solutions for a few initial conditions are shown in Fig. 7.
The kinetic energy of the dilaton �� now catches up the
potential energy �b in the first stage and �� in the second
stage. The ratios, ��=�b and ��=��, approach constants
in each stage. The kinetic energy of B field is kept much
smaller as in � � 0 case.

For �< 0, the solution becomes singular as in the B �
0 case. Here we skip the description of such singular
solutions which are not suitable for the evolution of our
Universe.

V. STABILIZED DILATON

The vacuum expectation value of the dilaton determines
both the gauge and gravitational coupling constants of the
low energy effective theory. Therefore, the dilaton must be
stabilized at some stage of the evolution for the action (4)
to have something to do with the reality. In this section, we

study the cosmological evolution when the dilaton is sta-
bilized. As for the correct mechanism of dilaton stabiliza-
tion, the consensus has not been made yet. Our goal here is
to illustrate an example of the dilaton stabilization and look
into the effect of it on the dynamics of B field and the
cosmological evolution, since the overall features of which
are insensitive to the detailed mechanism of stabilization.

Our starting point is the dilaton potential (8). This
potential possesses the minimum for �< 0, but the value
of the potential at the minimum is negative and need to be
set to zero by fine-tuning of the constant shift. However,
the constant shift of the potential has no motivation in the
context of string theory. Instead, we introduce a term
1
4m

2
Fe
�3� in the potential, which can arise from the effect

of various form field fluxes in extra dimensions [15]. Thus,
our potential for the dilaton for B � 0 looks like

 VF��� �
1

4
�m2

Be
3� � 2�e2� �m2

Fe
�3��: (47)

This potential has a global minimum for any value of �
and mF. To have sensible cosmology, the potential at the
minimum must be zero. For �< 0, this can be done
through a fine-tuning of the parameters in the potential

 

FIG. 7. Numerical solutions for B � 0 and �> 0. When 	 � 10�4, the solutions of four initial conditions are given: _�0 �
�7=4 � 51=4, b0 � 1=2, _B0 � 0 for the solid curves, _�0 � 0, b0 � 1, _B0 � 0 for the dotted curves, _�0 � 0, b0 � 10, _B0 � 0 for the
dashed curves, and _�0 � �

��������
3=2

p
, b0 � 1, _B0 � 0 for the dash-dotted curves. The lower-right panel shows the evolution of each

component of energy density for initial conditions _�0 � �
��������
3=2

p
, b0 � 1, _B0 � 0.
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 �2 �
1

5

�
�

5

3
	
�

6
; (48)

where �2 � m2
F=m

2
B. Then the minimum is located at

 �F � ln
�
�

5

3
	
�
: (49)

The shape of this fine-tuned potential for 	 � �0:1 is
shown in Fig. 8. Now the Eqs. (35)–(39) are modified
accordingly
 

��� � _�1 � _�2 � _�3� _� � �2�B � �� �
1

2
�b � ~�b

�
3

2
�F; (50)

 �� 1 � _�1� _�1 � _�2 � _�3� � �� � �b � �F; (51)

 �� 3 � _�3� _�1 � _�2 � _�3� � 2�B � �� � ~�b � �F; (52)

where �F �
1
2�

2e�3�, while the Eq. (34) for b is not
changed.

With the stabilizing potential for the dilaton, the cosmo-
logical evolution is completely changed. The dilaton and
the antisymmetric tensor field rapidly come to the oscil-
lation about the potential minimum � � �F and b � 0.
Oscillating � and B fields behave like ordinary matter

satisfying the equation of state p � 0 [7]. The universe
becomes isotropic and matter dominated. The numerical
solutions for the stabilizing dilaton potential (47) with 	 �
�0:1 are plotted in Fig. 8. One can see the oscillation of �
and b, and that both _�1 and _�3 approach to 2=3t, indicating
the matter domination. Damping of � and b oscillations is
due to the expansion of the universe.

VI. CONCLUSIONS

We investigated cosmology of a four-dimensional low
energy effective theory arising from the NS-NS sector of
string theory with a D-brane which contains the dynamical
degrees of freedom such as the gravity, the dilaton, and the
antisymmetric tensor field of second rank, coupling to the
gauge field strength living on the brane. The dynamics of
the system crucially depends on the curvature � and the
brane tension mB through which the dilaton obtains a
potential of the form; �e2� � 1

2m
2
Be

3�. Here, the latter
becomes the effective mass of the antisymmetric tensor
field (B-matter).

In terms of the homogeneous solution in flat spacetime,
we first showed how the dilaton ��t� and the nonvanishing
magnetic component of the tensor field B�t�, in one direc-
tion evolve in time. For positive �, one finds that the
dilaton runs away to negative infinity, and B�t� reaches a

 

FIG. 8. (a) The potential V��� for 	 � �0:1. The minimum of the potential is at �m � � ln6 with V��m� � 0. (b), (c) and (d) show
the numerical solutions of ��~t�, b�~t� and _�i�~t�, respectively, for 	 � �0:1 and initial conditions �0 � 0, _�0 � 0 and b0 � 1. ��~t�,
b�~t�, and ~t _�i�~t� approach �m, 0, and 2=3, respectively.
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constant value at late time. When � is negative, one can see
that the dilaton is stabilized at a finite value and then the
dilaton (and also B�t�) shows an oscillatory behavior
around that value, or runs away again depending on the
choice of the initial conditions. Such a dilaton stabilization,
however, produces a negative effective cosmological con-
stant, and thus leads to a collapsing universe in string
cosmology.

When B�t� is turned on, the universe undergoes an
anisotropic expansion described by the Bianchi type-I
cosmology. We found the attractor solutions showing the
overall features of general solutions and confirmed it
through numerical analysis. The dilaton ��t� decreases
and settles to a logarithmic decrease in time to negative
infinity. When the brane tension term dominates, the an-
isotropy is sustained. If there is a positive curvature term, it
dominates finally over the brane tension term as the dilaton
rolls down to negative infinity. Then the expansion of the
universe turns to be isotropic and linear in time.
Accordingly, B�t� decreases inversely proportional to time.

There have been various proposals to stabilize the dila-
ton. In order to study the dynamics of the B-matter and the

stabilized dilaton system, we adopted an option of gener-
ating a dilaton mass term of the form m2

Fe
�3�. Then the

potential for the dilaton has a global minimum and the
cosmological constant of our Universe can be fine-tuned to
a desired value with negative �. While the dilaton evolved
to a stabilized value, B shows an oscillatory matterlike
behavior, and the universe expands as in the usual
matter-dominated era recovering the isotropy. The ob-
tained result is consistent with that of Ref. [7].
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