JENSEN TYPE QUADRATIC-QUADRATIC MAPPING IN BANACH SPACES

CHOONKIL PARK, SEONG-KI HONG, AND MYOUNG-JUNG KIM

ABSTRACT. Let X, Y be vector spaces. It is shown that if an even mapping $f: X \to Y$ satisfies f(0) = 0 and

$$(0.1) f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)+f\left(\frac{x-y}{2}+z\right) \\ +f\left(\frac{x-y}{2}-z\right)=f(x)+f(y)+4f(z)$$

for all $x, y, z \in X$, then the mapping $f: X \to Y$ is quadratic. Furthermore, we prove the Cauchy–Rassias stability of the functional equation (0.1) in Banach spaces.

1. Introduction

In 1940, S. M. Ulam [19] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

Let X and Y be Banach spaces with norms $||\cdot||$ and $||\cdot||$, respectively. Hyers [5] showed that if $\epsilon > 0$ and $f: X \to Y$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x,y\in X,$ then there exists a unique additive mapping $T:X\to Y$ such that

$$||f(x) - T(x)|| \le \epsilon$$

for all $x \in X$.

Received March 14, 2005.

 $^{2000\ \}mathrm{Mathematics}$ Subject Classification: $39\mathrm{B}52.$

Key words and phrases: Cauchy–Rassias stability, quadratic mapping, functional equation.

Consider $f: X \to Y$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in X$. Th. M. Rassias [10] showed that there exists a unique \mathbb{R} -linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in X$. Găvruta [4] generalized the Rassias' result.

A square norm on an inner product space satisfies the important parallelogram equality

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [17] for mappings $f: X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [3], Czerwik proved the Cauchy-Rassias stability of the quadratic functional equation. Several functional equations have been investigated in [1] and [6]-[18].

In this paper, we solve the functional equation (0.1), and prove the Cauchy–Rassias stability of the functional equation (0.1) in Banach spaces.

2. Jensen type quadratic-quadratic mapping in Banach spaces

LEMMA 2.1. Let X and Y be vector spaces. If an even mapping $f: X \to Y$ satisfies f(0) = 0 and (2.1)

$$f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)+f\left(\frac{x-y}{2}+z\right)+f\left(\frac{x-y}{2}-z\right)$$

$$=f(x)+f(y)+4f(z)$$

for all $x, y, z \in X$, then the mapping $f: X \to Y$ is quadratic.

Proof. Letting x = y in (2.1), we get

$$f(x+z) + f(x-z) + f(z) + f(-z) = 2f(x) + 4f(z)$$

for all $x, z \in X$. Since f(-z) = f(z),

$$f(x+z) + f(x-z) = 2f(x) + 2f(z)$$

for all $x, z \in X$. So the even mapping $f: X \to Y$ is quadratic. \square

The mapping $f: X \to Y$ given in the statement of Lemma 2.1 is called a *Jensen type quadratic-quadratic mapping*. Putting z=0 in (2.1), we get the Jensen type quadratic mapping $2f(\frac{x+y}{2}) + 2f(\frac{x-y}{2}) = f(x) + f(y)$, and putting x=y in (2.1), we get the quadratic mapping f(x+z) + f(x-z) = 2f(x) + 2f(z).

From now on, assume that X is a normed vector space with norm $\|\cdot\|$ and that Y is a Banach space with norm $\|\cdot\|$.

For a given mapping $f: X \to Y$, we define

$$egin{split} Df(x,y,z) &:= f\left(rac{x+y}{2}+z
ight) + f\left(rac{x+y}{2}-z
ight) + f\left(rac{x-y}{2}+z
ight) \ &+ f\left(rac{x-y}{2}-z
ight) - f(x) - f(y) - 4f(z) \end{split}$$

for all $x, y, z \in X$.

THEOREM 2.2. Let $f: X \to Y$ be an even mapping satisfying f(0) = 0 for which there exists a function $\varphi: X^3 \to [0, \infty)$ such that

(2.2)
$$\widetilde{\varphi}(x,y,z) := \sum_{j=1}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right) < \infty,$$

$$\|Df(x,y,z)\| \leq \varphi(x,y,z)$$

for all $x,y,z\in X$. Then there exists a unique Jensen type quadratic-quadratic mapping $Q:X\to Y$ such that

$$||f(x) - Q(x)|| \le \frac{1}{4}\widetilde{\varphi}(x, x, x)$$

for all $x \in X$.

Proof. Letting x = y = z in (2.3), we get

$$(2.5) ||f(2x) - 4f(x)|| \le \varphi(x, x, x)$$

for all $x \in X$. So

$$||f(x) - 4f(\frac{x}{2})|| \le \varphi\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)$$

for all $x \in X$. Hence

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.2) and (2.6) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$$

for all $x \in X$.

By (2.3) and (2.2),

$$\begin{aligned} \|DQ(x,y,z)\| &= \lim_{n \to \infty} 4^n \left\| Df(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n}) \right\| \\ &\leq \lim_{n \to \infty} 4^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n}\right) = 0 \end{aligned}$$

for all $x, y, z \in X$. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping $Q: X \to Y$ is a Jensen type quadratic-quadratic mapping. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.6), we get the inequality (2.4).

Now, let $Q': X \to Y$ be another Jensen type quadratic-quadratic mapping satisfying (2.4). Then we have

$$\begin{aligned} \|Q(x) - Q'(x)\| &= 4^n \left\| Q(\frac{x}{2^n}) - Q'(\frac{x}{2^n}) \right\| \\ &\leq 4^n \left(\left\| Q(\frac{x}{2^n}) - f(\frac{x}{2^n}) \right\| + \left\| Q'(\frac{x}{2^n}) - f(\frac{x}{2^n}) \right\| \right) \\ &\leq \frac{2 \cdot 4^n}{4} \widetilde{\varphi} \left(\frac{x}{2^n}, \frac{x}{2^n}, \frac{x}{2^n} \right), \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that Q(x) = Q'(x) for all $x \in X$. This proves the uniqueness of Q.

COROLLARY 2.3. Let p and θ be positive real numbers with p > 2, and let $f: X \to Y$ be an even mapping satisfying f(0) = 0 and

$$||Df(x, y, z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$. Then there exists a unique Jensen type quadratic-quadratic mapping $Q: X \to Y$ such that

$$||f(x) - Q(x)|| \le \frac{3\theta}{2^p - 4} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x,y,z) = \theta(||x||^p + ||y||^p + ||z||^p)$, and apply Theorem 2.2.

THEOREM 2.4. Let $f: X \to Y$ be an even mapping satisfying f(0) = 0 for which there exists a function $\varphi: X^3 \to [0, \infty)$ satisfying (2.3) such that

(2.7)
$$\widetilde{\varphi}(x,y,z) := \sum_{j=0}^{\infty} \frac{1}{4^j} \varphi(2^j x, 2^j y, 2^j z) < \infty$$

for all $x, y, z \in X$. Then there exists a unique Jensen type quadratic-quadratic mapping $Q: X \to Y$ such that

$$||f(x) - Q(x)|| \le \frac{1}{4}\widetilde{\varphi}(x, x, x)$$

for all $x \in X$.

Proof. It follows from (2.5) that

$$||f(x) - \frac{1}{4}f(2x)|| \le \frac{1}{4}\varphi(x, x, x)$$

for all $x \in X$. Hence

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.7) and (2.9) that the sequence $\{\frac{1}{4^n}f(2^nx)\}$ is a Cauchy sequence

for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^n}f(2^nx)\}$ converges. So one can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$.

By (2.7) and (2.3),

$$||DQ(x, y, z)|| = \lim_{n \to \infty} \frac{1}{4^n} ||Df(2^n x, 2^n y, 2^n z)||$$

$$\leq \lim_{n \to \infty} \frac{1}{4^n} \varphi(2^n x, 2^n y, 2^n z) = 0$$

for all $x, y, z \in X$. So DQ(x, y, z) = 0. By Lemma 2.1, the mapping $Q: X \to Y$ is a Jensen type quadratic-quadratic mapping. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.9), we get the inequality (2.8).

The rest of the proof is similar to the proof of Theorem 2.2.

COROLLARY 2.5. Let p and θ be positive real numbers with p < 2, and let $f: X \to Y$ be an even mapping satisfying f(0) = 0 and

$$||Df(x, y, z)|| \le \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X$. Then there exists a unique Jensen type quadratic-quadratic mapping $Q: X \to Y$ such that

$$||f(x) - Q(x)|| \le \frac{3\theta}{4 - 2p} ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x,y,z)=\theta(||x||^p+||y||^p+||z||^p),$ and apply Theorem 2.4.

References

- [1] C. Baak, S. Hong, and M. Kim, Generalized quadratic mappings of r-type in several variables, J. Math. Anal. Appl. 310 (2005), 116-127.
- [2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.

- [3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
- [4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [6] J. Kang, C. Lee and Y. Lee, A note on the Hyers-Ulam-Rassias stability of a quadratic equation, Bull. Korean Math. Soc. 41 (2004), 541-557.
- [7] C. Park, On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules, J. Math. Anal. Appl. 291 (2004), 214–223.
- [8] _____, Generalized quadratic mappings in several variables, Nonlinear Analysis-TMA 57 (2004), 713-722.
- [9] C. Park, J. Park and J. Shin, Hyers-Ulam-Rassias stability of quadratic functional equations in Banach modules over a C*-algebra, Chinese Ann. Math. Series B 24 (2003), 261-266.
- [10] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [11] _____, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), no. 3, 89–124.
- [12] _____, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
- [13] _____, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. **251** (2000), 264–284.
- [14] _____, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. **62** (2000), 23-130.
- [15] Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
- [16] Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253.
- [17] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- [18] T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267.
- [19] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

CHOONKIL PARK, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail: baak@hanyang.ac.kr

SEONG-KI HONG AND MYOUNG-JUNG KIM, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJEON 305-764, KOREA

E-mail: mrhongsk@hanmail.net mjkim@math.cnu.ac.kr