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AN EQUALITY CONSTRAINED LEAST SQUARES
APPROACH TO THE STRUCTURAL REANALYSIS

Ho-Jong JaNG

ABSTRACT. An efficient method for reanalysis of a damaged struc-
tures is presented. Perturbation analysis for the equality constra-
ined least squares problem is adapted to handle structural reanaly-
sis, and related theoretical and numerical results are presented.

1. Introduction

In structural analysis, an important problem is the computation of
the vector f of internal forces, given a finite element model of the struc-
ture and a set of applied loads. For notational purposes, let E denote
the p x n equilibrium matriz, let d denote the p-vector of nodal(applied)
loads, and let F' denote the n x n element-level block diagonal element
flexibility matriz. Here F represents the material properties of the struc-
ture and is generally symmetric, positive definite, and block diagonal,
where the diagonal blocks correspond to the elements in the finite ele-
ment model.

The internal forces vector f solves the quadratic programming prob-
lem (7]

1) min % fTFf subject to Ef=4d.

It is assumed the flexbility matrix F' is given in the decomposed form
F = GTG [9], by the Cholesky algorithm, it follows that (1) is equivalent
to the linear least squares problem subject to equality constraints (LSE
problem)

(2) min |Gf|| subject to Ef =d.
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We will assume that
(3) rank(F) =p and null(G) Nnull(E) = {0}.

The assumption that E is of full rank ensures that d is in the range of
E and the LSE problem has at least one solution. The second condition
in (3) (equivalently, rank(g) = n) guarantees that there is a unique
solution. These assumptions are realistic for a wide range of important
applications, including the structural analysis.

A standard method for solving the LSE problem is the nullspace
method, so-called because it employs an orthogonal basis for the null-
space of the constraint matrix E. In this paper we apply the nullspace
method and the perturbatioin analysis of LSE problem to the reanalysis
of a structure. Reanalysis refers to the analysis of a structure which
has been slightly modified [4, 9]. Assume that the perturbed Cholesky
factor G and the perturbed load vetor d are given by

(4) G=G+6G and d=d+dd,

where 0G and éd are the changes in the Cholesky factor of flexibility
matrix and in the load vector, respectively, due to the small scale mod-
ification in structure. Since the geometric layout of the element, for the
static case, is assumed not to change in small scale modification case,
the values of F remains the same.

The purpose of a reanalysis procedure is to consider the problem of
finding the perturbed internal force vector f such that

(5) min ||G f|] subject to Ef =d,

using, as much as possible, quantities calculated in the original LSE
problem (2).

Various means to accomplish reanalysis of modified structures have
been investigated in [2, 4, 9, 13]. In [12], Plemmons and White proposed
reanalysis scheme by the force method work based on QR factorization
for the case that only one element (that is, one small block of the matrix
G) has been modified. In [8], Jang applied the perturbation analysis
of LSE problem based on the Paige’s formulation (in [10]) to handle
reanalysis for the small scale damaged structure. However, the bounds in
[12, 8] are rather complicated and it is more satisfactory to work directly
form the easily derived argumented system, Kuhn -Tucker condition for
the problem (2).
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In this paper, the method that we devise will be based upon the
Kuhn-Tucker conditions which are stated in the system of linear equa-
tions

0 0 E A d
(6) 0 I G ri=10],
ET GT o f 0

where A is a vector of Lagrange multipliers and the residual vector r
represents the nodal displacements.

2. The nullspace method

We describe the nullspace method for solving the LSE problem with
a version based on the generalized QR factorization [11].
First compute an orthogonal matrix Q € R™*™ such that

r_[ ST

where S € R”*P is lower triangular and nonsingular. The constraint
Ef = d may be written

Sy1=[50][‘£}=d,

and
y=Q"f.

Hence the constraint determines 7 € RP as the solution of the tri-
angular systemn Sy; = d and leaves yo € R™P arbitrary. Partition
Q = |@1 Q2] conformably with [S 0]. Then, clearly, null(E)=range(Q2).
Now form G@ and then construct orthogonal U € R™ ™ to essentially
produces

(7) UTGQ = UTGIQ1 Q5] = { ILJ; L(;? } ,

where Li; € RPXP and Loy € R("P)*("=P) is lower triangular. We also
can write

G[@Q1 Q2] = [U1 U] [ Ei L022 ] ;

so that GQy = UsLgs. It follows that the second condition of (3) is
equivalent to Lo being nonsingular. Since |G f|l2 = ||[UTGQy||2, we see
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that we have to find
= miny,

[Ln 0 Y1 Ly ]
Lot Lo | | w2 ]| Loiyr — Lagya |||,

Therefore yo is the solution to Logys = Lojy:. Finally, f is recovered
from f = Qy.

The computation in (7) does not take advantage of any special struc-
ture the matrix G have (G will be triangular if it is computed by the
Cholesky factorization, and in our case GG has block diagonal structures
as well). We mdy use a Paige’s formulation [10] in which the two or-
thogonal transformations U and @ simultaneously in a manner which
retains the triangular structure of G throughout the computations. For
implementation details, see [10].

Il’lll’ly2

3. Reanalysis with nullspace method

_ We here assume that the condition (3) holds for the perturbed data
G = G + §G, which will certainly be true if 6G is sufficiently small [4],
and will measure the perturbations by the smallest e for which

(8) 0G| < ellGl| and ||od|| < eljd],
where || - | will always denote the 2-norm.
For the perturbed problem, the system (6) can be rewritten as
0 0 E A d+dd
(9) 0 I G+ 906G F | = 0
ET GT +6GT 0 ¥ 0

Perturbed data result in (4) lead to A\ = A+6\, F=7+6r, f=f+6f
of the perturbed problem (9). Subtracting (6) from (9) we obtain

0 0 ET[ax 5d
(10) 0 I G||é&|=| -(60)F |.
ET GT o || &f —(6GQ)TF

Then the inverse of the matrix on the left-hand side of (10) is (see, e.g.,

[6])

(GEL)TGEF  —(GEX)T ES
(11) -GE} I - (GP)(GP)* (P(GP)NT ,
E} , (GP)* —-P((GP)YTGP)*PT

S—l
E+=Q[ . J
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P=1,-E"E,
0 0

+_ T

El = (I, - (GP)TG)E™.
Perturbation theory for the LSE problem is given in several earlier
references [1, 3, 6]. In [5], Cox and Higham give a full analysis in order
to investigate the sharpness of the bounds. Applying the perturbation

analysis discussed in [5] to our case, we get the following results which
could be viewed as an important special case of Cox and Higham’s work.

_ THEOREM 1. Consider the LSE problem (2). Let G = G + §G and
d = d+dd. Suppose that the conditions in (3) for G and (8) hold. Then
the LSE solution f of (5) is given by f = f + 6f, where

(12) &f = E£(d) - [(GP)*(6G) + (GP)'GP)* (6G)"Glf

+ O(€%)

and

13)  [l6f < e[IEENNA + (1 + re(G)re(@)f]I] + O(e?)
= ﬂf.

Here

ke(G) = IG[I(GP)T|
and P, (GP)*, and E/, are as in (11).

Proof. Using the factorization (7) and (11) it is straightforward to
show that

(P(GPY")T = (GP)*,
P(GP)YTaP)*PT = ((GP)TGP)*,

which yields the following expression for the inverse

(GESTGES  —(GEQ)T B
(14) ~-GEL  I-(GP)(GP)* (GP)+"
Ef (GP)* ~-((GP)TGP)*

Using (14) and from (10) we obtain
8f = EL(6d) — (GPYT(6G)f + ((GPYT'GP)* (6G)TF.
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Since 6f and 6r are all of order ¢, we can replace f and 7 by their
unperturbed counterparts to obtain first order expressions. And since
r = —Gf, we have
§f = E§(6d) — [((GP)*(6G) + ((GP)TGP)*(3G)T Gl f
+ O(€?).

Taking 2-norms we obtain

18 £1l < [IEIlIdd]
+[IGPY* I+ [(GPYTGPY*IIIGI] ISGHIf Il + Oe?).

Using (8), and the fact that ||((GP)'GP)T|| = [(GP)T||?, we have

61 < e [IIEE NN + (1 + IGPYTIGH) IGPYTIIGINA]
+ O(€?).

Define kg(G) = ||G||||(GP)*||, the bound can be rewritten as
16£1 < e [IEZINIA] + (1 + £e(G)kr(G)| fII] + O(€?).
O

We see that the sensitivity is governed by ||E/| and £g(G), and a
sufficient condition for the LSE problem to be well conditioned is that
FE and GP are both well conditioned. To obtain a sharp bound we must
combine the two §G terms before taking norms. However, the bound
obtained such a way (see [5]) is much more difficult to interpret than
(13).

The bound (13) requires computation of the quantities ||[EZ| and
[[(GP)*||. Using (7) and (11) these quantities can be expressed as

I = L3 Lar S~

and
I(GP)Y*| = (L2 ]I

The computational saving to estimate the norms of these matrices is
discussed in [5].
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FIGURE 1. Two-dimensional frame with element and
node numbering

TABLE 1. 1 element(G;, for i=12) has been modified

diz 1099999  0.99 0.9 0.09 0.0009  0.000009
k2(G) | 2.95e+04 9.32e+02 2.95e+02 9.77e+01 9.33e+01 9.32e4-01
672 | 489e+01 4.81e+01 4.11e+01 2.69e+00 2.59e—02 2.58¢—04
B |216e+05 6.17e+03 1.49e+03 3.31e+01 3.08e—01 3.09e—03

TABLE 2. 5 elements(G;, for i=1,2,3,13,14) have been modified

d® | 0.99999  0.99 0.9 0.09 0.0009  0.000009
4™ | 0.000009 0.0009  0.09 0.9 0.99 0.99999

k2(G) | 5.17e+03 1.64e+02 9.32e+01 1.11e402 3.51e102 1.11e+04
16f]2 | 6.866-+02 6.57e+02 4.726+02 2.31e+02 3.306+02 3.49e+02
Bs | 1.36e+05 3.87e+03 9.20e+02 1.86e+03 7.76e+03 2.72e+05

4. Numerical experiments

To illustrate numerical results for reanalysis of a small scale damaged
structure, consider the two dimensional frame with 15 elements and 9
nodes shown in Figure 1. In this case the equilibrium matrix F is 27 x 45
and the element flexibility matrix F is 45 x 45 matrix. For the element
and node numbering of this structure example, we used the method in
[12], which we call the substructuring method with proper partitions.
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Damage will be measured on an element-by-element basis, and the
effect upon the ith block (corresponds to the ith element) of element
flexibility is

[Filar = [F]/(1 - dx),

where dF refers to values in the damaged state and di is ‘stiffness dam-
age’ to the ith element. The number df,( lies between 0 and 1 inclusive,
and represent a fractional decrease in load capacity. Small scale damage
is defined as less-than-total stiffness damage, i.e., when diK < 1.

Some numerical results obtained by using MATLAB(for various dﬁ{

and corresponding condition number x2(G)) are listed in Table 1 and 2.
We see from the tables that our bound for §f is suitable for practical
computation.
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