Isomorphisms between C^{*}-ternary algebras

Cite as: J. Math. Phys. 47, 103512 (2006); https://doi.org/10.1063/1.2359576
Submitted: 09 March 2006 • Accepted: 12 September 2006 • Published Online: 31 October 2006

Choonkil Park

View Online

ARTICLES YOU MAY BE INTERESTED IN

Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer
Applied Physics Letters 89, 143517 (2006); https://doi.org/10.1063/1.2359579
Optical Society of America
Physics Today 14, 108 (1961); https://doi.org/10.1063/1.3057320
Temperature Measurement and Control
Physics Today 14, 108 (1961); https://doi.org/10.1063/1.3057322

Isomorphisms between C^{*}-ternary algebras

Choonkil Park ${ }^{\text {a }}$
Department of Mathematics, Hanyang University, Seoul, 133-791 Republic of Korea
(Received 9 March 2006; accepted 12 September 2006; published online 31 October 2006)

In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras and of derivations on C^{*}-ternary algebras for the following generalized Cauchy-Jensen additive mapping:

$$
2 f\left(\frac{\sum_{j=1}^{p} x_{j}}{2}+\sum_{j=1}^{d} y_{j}\right)=\sum_{j=1}^{p} f\left(x_{j}\right)+2 \sum_{j=1}^{d} f\left(y_{j}\right)
$$

This is applied to investigate isomorphisms between C^{*}-ternary algebras. The concept of Hyers-Ulam-Rassias stability originated from the Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, see Proc. Amr. Math. Soc. 72, 297-300 (1978). © 2006 American Institute of Physics. [DOI: 10.1063/1.2359576]

I. INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the 19th century by several mathematicians and physicists such as Cayley, ${ }^{5}$ who introduced the notion of a cubic matrix, which in turn was generalized by Kapranov et al. ${ }^{15}$ The simplest example of such nontrivial ternary operation is given by the following composition rule:

$$
\{a, b, c\}_{i j k}=\sum_{l, m, n} a_{n i l} b_{l j m} c_{m k n} \quad(i, j, k, \ldots=1,2, \ldots, N)
$$

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics. Some significant physical applications are as follows (see Refs. 16 and 17):
(1) The algebra of "nonions" generated by two matrices,

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & \omega \\
\omega^{2} & 0 & 0
\end{array}\right) \quad\left(\omega=e^{2 \pi i / 3}\right)
$$

was introduced by Sylvester as a ternary analog of Hamilton's quaternions (cf. Ref. 1).
(2) A natural ternary composition of four-vectors in the four-dimensional Minkowskian spacetime M_{4} can be defined as an example of a ternary operation:

$$
(X, Y, Z) \rightarrow U(X, Y, Z) \in M_{4}
$$

with the resulting four-vector U^{μ} defined via its components in a given coordinate system as follows:

[^0]$$
U^{\mu}(X, Y, Z)=g^{\mu \sigma} \eta_{\sigma \nu \lambda \rho} X^{\nu} Y^{\lambda} Z^{\rho}, \quad \mu, \nu, \ldots=0,1,2,3
$$
where $g^{\mu \sigma}$ is the metric tensor and $\eta_{\sigma \nu \lambda \rho}$ is the canonical volume element of M_{4} (see Ref. 17).
(3) The quark model inspired a particular brand of ternary algebraic systems. The so-called "Nambu mechnics" is based on such structures (see Ref. 7).

There are also some applications, although still hypothetical, in the fractional quantum Hall effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation (cf. Refs. 1, 17, and 35).

Following the terminology of Ref. 2 a non-empty set G with a ternary operation $[\cdot, \cdot, \cdot]: G$ $\times G \times G \rightarrow G$ is called a ternary groupoid and is denoted by $(G,[\cdot, \cdot, \cdot])$. The ternary groupoid $(G,[\cdot, \cdot, \cdot])$ is called commutative if $\left[x_{1}, x_{2}, x_{3}\right]=\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right]$ for all $x_{1}, x_{2}, x_{3} \in G$ and all permutations σ of $\{1,2,3\}$.

If a binary operation \circ is defined on G such that $[x, y, z]=(x \circ y) \circ z$ for all $x, y, z \in G$, then we say that $[\cdot, \cdot, \cdot]$ is derived from \circ. We say that $(G,[\cdot, \cdot, \cdot])$ is a ternary semigroup if the operation $[\cdot, \cdot, \cdot]$ is associative, i.e., if $[[x, y, z], u, v]=[x,[y, z, u], v]=[x, y,[z, u, v]]$ holds for all $x, y, z, u, v \in G$ (see Ref. 4).

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is C linear in the outer variables, conjugate C-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leq\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see Refs. 2 and 36). Every left Hilbert C^{*} module is a C^{*}-ternary algebra via the ternary product $[x, y, z]:=\langle x, y\rangle z$.

If a C^{*}-ternary algebra $(A,[\cdot, \cdot, \cdot])$ has an identity, i.e., an element $e \in A$ such that x $=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*} algebra. Conversely, if (A, \circ) is a unital C^{*} algebra, then $[x, y, z]:=x$ $\circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

A C-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)],
$$

for all $x, y, z \in A$. If, in addition, the mapping H is bijective, then the mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra isomorphism. A C-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see Refs. 2 and 18).
In 1940, Ulam ${ }^{34}$ gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$ exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

In 1941, Hyers ${ }^{10}$ considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality,

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

In 1978, Rassias ${ }^{26}$ provided a generalization of Hyers' Theorem that allows the Cauchy difference to be unbounded.

Theorem 1.1: $\left(\operatorname{Rassias}^{26}\right)$ Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime}, subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping that satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$, then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.
In 1990, Rassias, ${ }^{27}$ during the 27th International Symposium on Functional Equations, asked the question of whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda ${ }^{8}$ following the same approach as in Rassias, ${ }^{26}$ gave an affirmative solution to this question for $p>1$. It was shown by Gajda, ${ }^{8}$ as well as by Rassias and Šemrl ${ }^{32}$ that one cannot prove a Rassias' type theorem when $p=1$. The counterexamples of Gajda, ${ }^{8}$ as well as of Rassias and Šemrl, ${ }^{32}$ have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings; cf. Găvruta, ${ }^{9}$ Jung, ${ }^{14}$ who, among others, studied the Hyers-Ulam-Rassias stability of functional equations. The inequality (1.1) that was introduced for the first time by Rassias ${ }^{26}$ provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functional equations (cf. the books of Czerwik, ${ }^{6}$ Hyers, Isac, and Rassias. ${ }^{11}$)

Rassias, ${ }^{24}$ following the spirit of the innovative approach of Rassias ${ }^{26}$ for the unbounded Cauchy difference, proved a similar stability theorem in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p} \cdot\|y\|^{q}$ for $p, q \in \mathbb{R}$ with $p+q \neq 1$ (see also Ref. 25 for a number of other new results).

Găvruta ${ }^{9}$ provided a further generalization of Rassias' Theorem. In 1996, Isac and Rassias ${ }^{13}$ applied the Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study some new applications in Nonlinear Analysis. In Ref. 12, Hyers, Isac, and Rassias studied the asymptoticity aspect of Hyers-Ulam stability of mappings. During the past few years several mathematicians have published on various generalizations and applications of Hyers-Ulam stability and Hyers-Ulam-Rassias stability to a number of functional equations and mappings, for example, quadratic functional equation, invariant means, multiplicative mappings-superstability, bounded nth differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange functional equation, and Navier-Stokes equations. Several mathematicians have contributed works on these subjects; we mention a few: Baak and Moslehian, ${ }^{3}$ Park, ${ }^{19-23}$ Rassias, ${ }^{28-31}$ and Skof. ${ }^{33}$

Throughout this paper, assume that p, d are non-negative integers with $p+d \geq 3$.
In Sec. II, we prove the Hyers-Ulam-Rassias stability of homomorphisms in $C^{* *}$-ternary algebras for the generalized Cauchy-Jensen additive mapping.

In Sec. III, we investigate isomorphisms between unital C^{*}-ternary algebras associated with the generalized Cauchy-Jensen additive mapping.

In Sec. IV, we prove the Hyers-Ulam-Rassias stability of derivations on C^{*}-ternary algebras for the generalized Cauchy-Jensen additive mapping.

II. STABILITY OF HOMOMORPHISMS IN C^{*}-TERNARY ALGEBRAS

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and that B is a C^{*}-ternary algebra with norm $\|\cdot\|_{B}$.

For a given mapping $f: A \rightarrow B$, we define

$$
C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right):=2 f\left(\frac{\sum_{j=1}^{p} \mu x_{j}}{2}+\sum_{j=1}^{d} \mu y_{j}\right)-\sum_{j=1}^{p} \mu f\left(x_{j}\right)-2 \sum_{j=1}^{d} \mu f\left(y_{j}\right),
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$.
One can easily show that a mapping $f: A \rightarrow B$ satisfies $C_{1} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$ if and only if f is Cauchy additive, and that if a mapping $f: A \rightarrow B$ satisfies $C_{1} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$ then $f(0)=0$.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in C^{*}-ternary algebras for the functional equation $C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$.

Theorem 2.1: Let $r>3$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y y_{j}\right\|_{A}^{r}\right), \tag{2.1}\\
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right), \tag{2.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$, such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{p+d}{2(p+2 d)^{r}-(p+2 d) 2^{r}} \theta\|x\|_{A}^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in A$.
Proof: Let us assume $\mu=1$ and $x_{1}=\cdots=x_{p}=y_{1}=\cdots=y_{d}=x$ in (2.1). Then we get

$$
\begin{equation*}
\left\|2 f\left(\frac{p+2 d}{2} x\right)-(p+2 d) f(x)\right\|_{B} \leq(p+d) \theta\|x\|_{A}^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-\frac{p+2 d}{2} f\left(\frac{2}{p+2 d} x\right)\right\|_{B} \leq \frac{p+d}{2(p+2 d)^{r}} \theta\|x\|_{A}^{r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
& \left\|\frac{(p+2 d)^{l}}{2^{l}} f\left(\frac{2^{l}}{(p+2 d)^{l}} x\right)-\frac{(p+2 d)^{m}}{2^{m}} f\left(\frac{2^{m}}{(p+2 d)^{m}} x\right)\right\|_{B} \\
& \quad \leq \sum_{j=l}^{m-1}\left\|\frac{(p+2 d)^{j}}{2^{j}} f\left(\frac{2^{j}}{(p+2 d)^{j}} x\right)-\frac{(p+2 d)^{j+1}}{2^{j+1}} f\left(\frac{2^{j+1}}{(p+2 d)^{j+1}} x\right)\right\|_{B} \\
& \quad \leq \frac{(p+d)}{2(p+2 d)^{r}} \sum_{j=l}^{m-1} \frac{2^{r j}(p+2 d)^{j}}{2^{j}(p+2 d)^{r j}} \theta\|x\|_{A}^{r}, \tag{2.5}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. From this it follows that the sequence $\left\{\left[(p+2 d)^{n} / 2^{n}\right] f\left(\left[2^{n} /(p+2 d)^{n}\right] x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\left[(p+2 d)^{n} / 2^{n}\right] f\left(\left[2^{n} /(p+2 d)^{n}\right] x\right)\right\}$ converges. Thus one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right),
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.5), we get (2.3).
It follows from (2.1) that

$$
\begin{aligned}
& \left\|2 H\left(\frac{\sum_{j=1}^{p} x_{j}}{2}+\sum_{j=1}^{d} y_{j}\right)-\sum_{j=1}^{p} H\left(x_{j}\right)-2 \sum_{j=1}^{d} H\left(y_{j}\right)\right\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} \| 2 f\left(\frac{2^{n}}{(p+2 d)^{n}} \frac{\sum_{j=1}^{p} x_{j}}{2}+\frac{2^{n}}{(p+2 d)^{n}} \sum_{j=1}^{d} y_{j}\right) \\
& \quad-\sum_{j=1}^{p} f\left(\frac{2^{n}}{(p+2 d)^{n}} x_{j}\right)-2 \sum_{j=1}^{d} f\left(\frac{2^{n}}{(p+2 d)^{n}} y_{j}\right) \|_{B} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{2^{n r}(p+2 d)^{n}}{2^{n}(p+2 d)^{n r}} \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}\right)=0,
\end{aligned}
$$

for all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Hence

$$
2 H\left(\frac{\sum_{j=1}^{p} x_{j}}{2}+\sum_{j=1}^{d} y_{j}\right)=\sum_{j=1}^{p} H\left(x_{j}\right)+2 \sum_{j=1}^{d} H\left(y_{j}\right)
$$

for all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. So the mapping $H: A \rightarrow B$ is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of Ref. 21, the mapping $H: A \rightarrow B$ is C-linear.

It follows from (2.2) that

$$
\begin{aligned}
\|H([x, y, z])-[H(x), H(y), H(z)]\|_{B}= & \lim _{n \rightarrow \infty} \frac{(p+2 d)^{3 n}}{8^{n}} \| f\left(\frac{8^{n}[x, y, z]}{(p+2 d)^{3 n}}\right) \\
& -\left[f\left(\frac{2^{n} x}{(p+2 d)^{n}}\right), f\left(\frac{2^{n} y}{(p+2 d)^{n}}\right), f\left(\frac{2^{n} z}{(p+2 d)^{n}}\right)\right] \|_{B} \\
\leq & \lim _{n \rightarrow \infty} \frac{2^{n r}(p+2 d)^{3 n}}{8^{n}(p+2 d)^{n r}} \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0,
\end{aligned}
$$

for all $x, y, z \in A$. Thus

$$
H([x, y, z])=[H(x), H(y), H(z)],
$$

for all $x, y, z \in A$.
Now, let $T: A \rightarrow B$ be another generalized Cauchy-Jensen additive mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\|H(x)-T(x)\|_{B}= & \frac{(p+2 d)^{n}}{2^{n}}\left\|H\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)-T\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)\right\|_{B} \\
\leq & \frac{(p+2 d)^{n}}{2^{n}}\left(\left\|H\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)-f\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)\right\|_{B}\right. \\
& \left.+\left\|T\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)-f\left(\frac{2^{n} x}{(p+2 d)^{n}}\right)\right\|_{B}\right) \\
\leq & \frac{p+d}{2(p+2 d)^{r}-(p+2 d) 2^{r}} \cdot \frac{2^{n+1}(p+2 d)^{n}}{2^{n}(p+2 d)^{n r}} \theta\|x\|_{A}^{r},
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $H(x)=T(x)$ for all $x \in A$. This proves the uniqueness of H. Thus, the mapping $H: A \rightarrow B$ is a unique C^{*}-ternary algebra homomorphism satisfying (2.3).

Theorem 2.2: Let $r<1$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (2.1) and (2.2). Then there exists a unique C^{*}-ternary algebra homomorphism $H: A$ $\rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{2^{r}(p+d)}{2^{r}(p+2 d)-2(p+2 d)^{r}} \theta\|x\|_{A}^{r}, \tag{2.6}
\end{equation*}
$$

for all $x \in A$.
Proof: It follows from (2.4) that

$$
\left\|f(x)-\frac{2}{p+2 d} f\left(\frac{p+2 d}{2} x\right)\right\|_{B} \leq \frac{p+d}{p+2 d} \theta\|x\|_{A}^{r},
$$

for all $x \in A$. So

$$
\begin{align*}
& \left\|\frac{2^{l}}{(p+2 d)^{l}} f\left(\frac{(p+2 d)^{l}}{2^{l}} x\right)-\frac{2^{m}}{(p+2 d)^{m}} f\left(\frac{(p+2 d)^{m}}{2^{m}} x\right)\right\|_{B} \\
& \quad \leq \sum_{j=l}^{m-1}\left\|\frac{2^{j}}{(p+2 d)^{j}} f\left(\frac{(p+2 d)^{j}}{2^{j}} x\right)-\frac{2^{j+1}}{(p+2 d)^{j+1}} f\left(\frac{(p+2 d)^{j+1}}{2^{j+1}} x\right)\right\|_{B} \\
& \quad \leq \frac{p+d}{p+2 d} \sum_{j=l}^{m-1} \frac{2^{j}(p+2 d)^{j r}}{2^{j r}(p+2 d)^{j}} \theta\|x\|_{A}^{r}, \tag{2.7}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. From this it follows that the sequence $\left\{\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.7), we get (2.6).
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3: Let $r>1$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{B} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r}, \tag{2.9}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{2^{(p+d) r}}{2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)} \theta\|x\|_{A}^{(p+d) r}, \tag{2.10}
\end{equation*}
$$

for all $x \in A$.
Proof: Let us assume $\mu=1$ and $x_{1}=\cdots=x_{p}=y_{1}=\cdots=y_{d}=x$ in (2.8). Then we get

$$
\begin{equation*}
\left\|2 f\left(\frac{p+2 d}{2} x\right)-(p+2 d) f(x)\right\|_{B} \leq \theta\|x\|_{A}^{(p+d) r}, \tag{2.11}
\end{equation*}
$$

for all $x \in A$.So

$$
\left\|f(x)-\frac{p+2 d}{2} f\left(\frac{2}{p+2 d} x\right)\right\|_{B} \leq \frac{2^{(p+d) r}}{2(p+2 d)^{(p+d) r}} \theta\|x\|_{A}^{(p+d) r},
$$

for all $x \in A$. Hence

$$
\begin{align*}
& \left\|\frac{(p+2 d)^{l}}{2^{l}} f\left(\frac{2^{l}}{(p+2 d)^{l}} x\right)-\frac{(p+2 d)^{m}}{2^{m}} f\left(\frac{2^{m}}{(p+2 d)^{m}} x\right)\right\|_{B} \\
& \quad \leq \sum_{j=l}^{m-1}\left\|\frac{(p+2 d)^{j}}{2^{j}} f\left(\frac{2^{j}}{(p+2 d)^{j}} x\right)-\frac{(p+2 d)^{j+1}}{2^{j+1}} f\left(\frac{2^{j+1}}{(p+2 d)^{j+1}} x\right)\right\|_{B} \\
& \quad \leq \frac{2^{(p+d) r}}{2(p+2 d)^{(p+d) r}} \sum_{j=l}^{m-1} \frac{2^{(p+d) r j}(p+2 d)^{j}}{2^{j}(p+2 d)^{(p+d) r j}} \theta\|x\|_{A}^{(p+d) r}, \tag{2.12}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. From this it follows that the sequence $\left\{\left[(p+2 d)^{n} / 2^{n}\right] f\left(\left[2^{n} /(p+2 d)^{n}\right] x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\left[(p+2 d)^{n} / 2^{n}\right] f\left(\left[2^{n} /(p+2 d)^{n}\right] x\right)\right\}$ converges. Thus one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.12), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.4: Let $r<1 /(p+d)$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (2.8) and (2.9). Then there exists a unique C^{*}-ternary algebra homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{2^{(p+d) r}}{2^{(p+d) r}(p+2 d)-2(p+2 d)^{(p+d) r}} \theta\|x\|_{A}^{(p+d) r} \tag{2.13}
\end{equation*}
$$

for all $x \in A$.
Proof: It follows from (2.11) that

$$
\left\|f(x)-\frac{2}{p+2 d} f\left(\frac{p+2 d}{2} x\right)\right\|_{B} \leq \frac{\theta}{p+2 d}\|x\|_{A}^{(p+d) r},
$$

for all $x \in A$. So

$$
\begin{align*}
& \left\|\frac{2^{l}}{(p+2 d)^{l}} f\left(\frac{(p+2 d)^{l}}{2^{l}} x\right)-\frac{2^{m}}{(p+2 d)^{m}} f\left(\frac{(p+2 d)^{m}}{2^{m}} x\right)\right\|_{B} \\
& \quad \leq \sum_{j=l}^{m-1}\left\|\frac{2^{j}}{(p+2 d)^{j}} f\left(\frac{(p+2 d)^{j}}{2^{j}} x\right)-\frac{2^{j+1}}{(p+2 d)^{j+1}} f\left(\frac{(p+2 d)^{j+1}}{2^{j+1}} x\right)\right\|_{B} \\
& \quad \leq \frac{\theta}{p+2 d} \sum_{j=l}^{m-1} \frac{2^{j}(p+2 d)^{j(p+d) r}}{2^{j(p+d) r}(p+2 d)^{j}}\|x\|_{A}^{(p+d) r}, \tag{2.14}
\end{align*}
$$

for all non-negative integers m and l with $m>l$ and all $x \in A$. From this it follows that the sequence $\left\{\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] x\right)\right\}$ converges. So one can define the mapping $H: A \rightarrow B$ by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right)
$$

for all $x \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.14), we get (2.13).
The rest of the proof is similar to the proof of Theorem 2.1.

III. ISOMORPHISMS BETWEEN C^{*}-TERNARY ALGEBRAS

Throughout this section, assume that A is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and unit e, and that B is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{B}$ and unit e^{\prime}.

We investigate isomorphisms between C^{*}-ternary algebras associated with the functional equation $C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$.

Theorem 3.1: Let $r>1$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (2.1), such that

$$
\begin{equation*}
f([x, y, z])=[f(x), f(y), f(z)] \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in A$. If $\lim _{n \rightarrow \infty}\left[(p+2 d)^{n} / 2^{n}\right] f\left(2^{n} e /(p+2 d)^{n}\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear mapping $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{p+d}{2(p+2 d)^{r}-(p+2 d) 2^{r}} \theta\|x\|_{A}^{r}
$$

for all $x \in A$. The mapping $H: A \rightarrow B$ is defined by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right)
$$

for all $x \in A$.
Since $f([x, y, z])=[f(x), f(y), f(z)]$ for all $x, y, z \in A$,

$$
\begin{aligned}
H([x, y, z]) & =\lim _{n \rightarrow \infty} \frac{(p+2 d)^{3 n}}{8^{n}} f\left(\left[\frac{2^{n} x}{(p+2 d)^{n}}, \frac{2^{n} y}{(p+2 d)^{n}}, \frac{2^{n} z}{(p+2 d)^{n}}\right]\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n} x}{(p+2 d)^{n}}\right), \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n} y}{(p+2 d)^{n}}\right), \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n} z}{(p+2 d)^{n}}\right)\right] \\
& =[H(x), H(y), H(z)]
\end{aligned}
$$

for all $x, y, z \in A$. So the mapping $H: A \rightarrow B$ is a C^{*}-ternary algebra homomorphism.
It follows from (3.1) that

$$
\begin{aligned}
H(x) & =H([e, e, x])=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{2 n}}{4^{n}} f\left(\frac{4^{n}}{(p+2 d)^{2 n}}[e, e, x]\right) \\
& =\lim _{n \rightarrow \infty} \frac{(p+2 d)^{2 n}}{4^{n}} f\left(\left[\frac{2^{n} e}{(p+2 d)^{n}}, \frac{2^{n} e}{(p+2 d)^{n}}, x\right]\right) \\
& =\lim _{n \rightarrow \infty}\left[\frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n} e}{(p+2 d)^{n}}\right), \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n} e}{(p+2 d)^{n}}\right), f(x)\right]=\left[e^{\prime}, e^{\prime}, f(x)\right]=f(x),
\end{aligned}
$$

for all $x \in A$. Hence the bijective mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.
Theorem 3.2: Let $r<1$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (2.1) and (3.1). If $\lim _{n \rightarrow \infty}\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] e\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique C-linear mapping $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{2^{r}(p+d)}{2^{r}(p+2 d)-2(p+2 d)^{r}} \theta\|x\|_{A}^{r}
$$

for all $x \in A$. The mapping $H: A \rightarrow B$ is defined by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 3.1.
Theorem 3.3: Let $r>1 /(p+d)$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (2.8) and (3.1). If $\lim _{n \rightarrow \infty}\left[(p+2 d)^{n} / 2^{n}\right] f\left(2^{n} e /(p+2 d)^{n}\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique C-linear mapping $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{2^{(p+d) r}}{2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)} \theta\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$. The mapping $H: A \rightarrow B$ is defined by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1.
Theorem 3.4: Let $r<1 /(p+d)$ and θ be non-negative real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (2.8) and (3.1). If $\lim _{n \rightarrow \infty}\left[2^{n} /(p+2 d)^{n}\right] f\left(\left[(p+2 d)^{n} / 2^{n}\right] e\right)=e^{\prime}$, then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique C-linear mapping $H: A \rightarrow B$ such that

$$
\|f(x)-H(x)\|_{B} \leq \frac{2^{(p+d) r}}{2^{(p+d) r}(p+2 d)-2(p+2 d)^{(p+d) r}} \theta\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$. The mapping $H: A \rightarrow B$ is defined by

$$
H(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right),
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1.

IV. STABILITY OF DERIVATIONS ON C^{*}-TERNARY ALGEBRAS

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$.
We prove the Hyers-Ulam-Rassias stability of derivations on C^{*}-ternary algebras for the functional equation $C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$.

Theorem 4.1: Let $r>3$ and θ be non-negative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.1) such that

$$
\begin{equation*}
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{4.1}
\end{equation*}
$$

for all $x, y, z \in A$. Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{p+d}{2(p+2 d)^{r}-(p+2 d) 2^{r}} \theta\|x\|_{A}^{r} \tag{4.2}
\end{equation*}
$$

for all $x \in A$.
Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C -linear mapping $\delta: A \rightarrow A$ satisfying (4.2). The mapping $\delta: A \rightarrow A$ is defined by

$$
\delta(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right),
$$

for all $x \in A$.
It follows from (4.1) that

$$
\begin{aligned}
&\|\delta([x, y, z])-[\delta(x), y, z]-[x, \delta(y), z]-[x, y, \delta(z)]\|_{A} \\
&=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{3 n}}{8^{n}} \| f\left(\frac{8^{n}}{(p+2 d)^{3 n}}[x, y, z]\right)-\left[f\left(\frac{2^{n} x}{(p+2 d)^{n}}\right), \frac{2^{n} y}{(p+2 d)^{n}}, \frac{2^{n} z}{(p+2 d)^{n}}\right] \\
&-\left[\frac{2^{n} x}{(p+2 d)^{n}}, f\left(\frac{2^{n} y}{(p+2 d)^{n}}\right), \frac{2^{n} z}{(p+2 d)^{n}}\right]-\left[\frac{2^{n} x}{(p+2 d)^{n}}, \frac{2^{n} y}{(p+2 d)^{n}}, f\left(\frac{2^{n} z}{(p+2 d)^{n}}\right)\right] \|_{A} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{2^{n r}(p+2 d)^{3 n}}{8^{n}(p+2 d)^{n r}} \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0,
\end{aligned}
$$

for all $x, y, z \in A$. Hence

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$. Thus the mapping $\delta: A \rightarrow A$ is a unique C^{*}-ternary derivation satisfying (4.2)
Theorem 4.2: Let $r<1$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.1) and (4.1). Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{2^{r}(p+d)}{2^{r}(p+2 d)-2(p+2 d)^{r}} \theta\|x\|_{A}^{r}, \tag{4.3}
\end{equation*}
$$

for all $x \in A$.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique C-linear mapping $\delta: A \rightarrow A$ satisfying (4.3). The mapping $\delta: A \rightarrow A$ is defined by

$$
\delta(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right),
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 4.1.
Theorem 4.3: Let $r>1$ and θ be non-negative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.8) such that

$$
\begin{equation*}
\|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \leq \theta \cdot\|x\|_{A}^{r} \cdot\|y\|_{A}^{r} \cdot\|z\|_{A}^{r}, \tag{4.4}
\end{equation*}
$$

for all $x, y, z \in A$. Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{2^{(p+d) r}}{2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)} \theta\|x\|_{A}^{(p+d) r} \tag{4.5}
\end{equation*}
$$

for all $x \in A$.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique C -linear mapping $\delta: A \rightarrow A$ satisfying (4.5). The mapping $\delta: A \rightarrow A$ is defined by

$$
\delta(x):=\lim _{n \rightarrow \infty} \frac{(p+2 d)^{n}}{2^{n}} f\left(\frac{2^{n}}{(p+2 d)^{n}} x\right),
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 4.1.
Theorem 4.4: Let $r<1 /(p+d)$ and θ be non-negative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.8) and (4.4). Then there exists a unique C^{*}-ternary derivation $\delta: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x)-\delta(x)\|_{A} \leq \frac{2^{(p+d) r}}{2^{(p+d) r}(p+2 d)-2(p+2 d)^{(p+d) r}} \theta\|x\|_{A}^{(p+d) r} \tag{4.6}
\end{equation*}
$$

for all $x \in A$.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique C-linear mapping $\delta: A \rightarrow A$ satisfying (4.6). The mapping $\delta: A \rightarrow A$ is defined by

$$
\delta(x):=\lim _{n \rightarrow \infty} \frac{2^{n}}{(p+2 d)^{n}} f\left(\frac{(p+2 d)^{n}}{2^{n}} x\right),
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 4.1.
${ }^{1}$ Abramov, V., Kerner, R., and Le Roy, B., "Hypersymmetry: a Z_{3}-graded generalization of supersymmetry," J. Math. Phys. 38, 1650-1669 (1997).
${ }^{2}$ Amyari, M., and Moslehian, M. S., "Approximately ternary semigroup homomorphisms," Lett. Math. Phys. 77, 1-9 (2006).
${ }^{3}$ Baak, C., and Moslehian, M. S., "On the stability of J^{*}-homomorphisms," Nonlinear Anal. Theory, Methods Appl. 63, 42-48 (2005).
${ }^{4}$ Bazunova, N., Borowiec, A., and Kerner, R., "Universal differential calculus on ternary algebras," Lett. Math. Phys. 67, 195-206 (2004).
${ }^{5}$ Cayley, A., "On the 34 concomitants of the ternary cubic," Am. J. Math. 4, 1-15 (1881).
${ }^{6}$ Czerwik, P., Functional Equations and Inequalities in Several Variables (World Scientific, Singapore, 2002).
${ }^{7}$ Daletskii, Y. L., and Takhtajan, L., "Leibniz and Lie algebra structures for Nambu algebras," Lett. Math. Phys. 39, 127-141 (1997).
${ }^{8}$ Gajda, Z., "On stability of additive mappings," Int. J. Math. Math. Sci. 14, 431-434 (1991).
${ }^{9}$ Gǎvruta, P., "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings," J. Math. Anal. Appl. 184, 431-436 (1994).
${ }^{10}$ Hyers, D. H., "On the stability of the linear functional equation," Proc. Natl. Acad. Sci. U.S.A. 27, 222-224 (1941).
${ }^{11}$ Hyers, D. H., Isac, G., and Rassias, Th. M., Stability of Functional Equations in Several Variables (Birkhäuser, Basel, 1998).
${ }^{12}$ Hyers, D. H., Isac, G., and Rassias, Th. M., "On the asymptoticity aspect of Hyers-Ulam stability of mappings," Proc. Am. Math. Soc. 126, 425-430 (1998).
${ }^{13}$ Isac, G., and Rassias, Th. M., "Stability of ψ-additive mappings: Applications to nonlinear analysis," Int. J. Math. Math. Sci. 19, 219-228 (1996).
${ }^{14}$ Jung, S., "On the Hyers-Ulam-Rassias stability of approximately additive mappings," J. Math. Anal. Appl. 204, 221226 (1996).
${ }^{15}$ Kapranov, M., Gelfand, I. M., and Zelevinskii, A., Discriminants, Resultants and Multidimensional Determinants (Birkhäuser, Berlin, 1994).
${ }^{16}$ Kerner, R., "The cubic chessboard: Geometry and physics," Class. Quantum Grav. 14, A203-A225 (1997).
${ }^{17}$ Kerner, R., "Ternary algebraic structures and their applications in physics" (preprint).
${ }^{18}$ Moslehian, M. S., "Almost derivations on C^{*}-ternary rings" (preprint).
${ }^{19}$ Park, C., "Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras," J. Math. Anal. Appl. 293, 419-434 (2004).
${ }^{20}$ Park, C., "Homomorphisms between Lie $J C^{*}$-algebras and Cauchy-Rassias stability of Lie $J C^{*}$-algebra derivations," J. Lie Theory 15, 393-414 (2005).
${ }^{21}$ Park, C., "Homomorphisms between Poisson $J C^{*}$-algebras," Bull. Braz. Math. Soc. N. S. 36, 79-97 (2005).
${ }^{22}$ Park, C., "Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras," Bull. Belgian Math. Soc.-Simon Stevin (to appear).
${ }^{23}$ Park, C., "Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras," Math. Nachr. (to appear).
${ }^{24}$ Rassias, J. M., "On approximation of approximately linear mappings by linear mappings," Bull. Sci. Math. 108, 445-446 (1984).
${ }^{25}$ Rassias, J. M., "Solution of a problem of Ulam," J. Approx. Theory 57, 268-273 (1989).
${ }^{26}$ Rassias, Th. M., "On the stability of the linear mapping in Banach spaces," Proc. Am. Math. Soc. 72, 297-300 (1978).
${ }^{27}$ Rassias, Th. M., "Problem 16; 2, Report of the 27th International Symposium on Functional Equations," Aequ. Math. 39, 292-293; 309 (1990).
${ }^{28}$ Rassias, Th. M., "The problem of S.M. Ulam for approximately multiplicative mappings," J. Math. Anal. Appl. 246, 352-378 (2000).
${ }^{29}$ Rassias, Th. M., "On the stability of functional equations in Banach spaces," J. Math. Anal. Appl. 251, 264-284 (2000).
${ }^{30}$ Rassias, Th. M., "On the stability of functional equations and a problem of Ulam," Acta Appl. Math. 62, 23-130 (2000).
${ }^{31}$ Rassias, Th. M., Functional Equations, Inequalities and Applications (Kluwer Academic, Dordrecht, 2003).
${ }^{32}$ Rassias, Th. M., and Šemrl, P., "On the behaviour of mappings which do not satisfy Hyers-Ulam stability," Proc. Am. Math. Soc. 114, 989-993 (1992).
${ }^{33}$ Skof, F., "Proprietà locali e approssimazione di operatori," Rend. Semin. Mat. Fis. Milano 53, 113-129 (1983).
${ }^{34}$ Ulam, S. M., A Collection of the Mathematical Problems (Interscience Publ. New York, 1960).
${ }^{35}$ Vainerman, L., and Kerner, R., "On special classes of n-algebras," J. Math. Phys. 37, 2553-2565 (1996).
${ }^{36}$ Zettl, H., "A characterization of ternary rings of operators," Adv. Math. 48, 117-143 (1983).

[^0]: ${ }^{\text {a) }}$ Electronic address: baak@hanyang.ac.kr

