
J. Math. Phys. 47, 103512 (2006); https://doi.org/10.1063/1.2359576 47, 103512

© 2006 American Institute of Physics.

Isomorphisms between -ternary algebras
Cite as: J. Math. Phys. 47, 103512 (2006); https://doi.org/10.1063/1.2359576
Submitted: 09 March 2006 • Accepted: 12 September 2006 • Published Online: 31 October 2006

Choonkil Park

ARTICLES YOU MAY BE INTERESTED IN

Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO
underlayer
Applied Physics Letters 89, 143517 (2006); https://doi.org/10.1063/1.2359579

Optical Society of America
Physics Today 14, 108 (1961); https://doi.org/10.1063/1.3057320

Temperature Measurement and Control
Physics Today 14, 108 (1961); https://doi.org/10.1063/1.3057322

https://images.scitation.org/redirect.spark?MID=176720&plid=1779088&setID=406887&channelID=0&CID=653488&banID=520661581&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1ed07a4d501c7ae4ca2baa8a1a3ca3ee9a21824f&location=
https://doi.org/10.1063/1.2359576
https://doi.org/10.1063/1.2359576
https://aip.scitation.org/author/Park%2C+Choonkil
https://doi.org/10.1063/1.2359576
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.2359576
https://aip.scitation.org/doi/10.1063/1.2359579
https://aip.scitation.org/doi/10.1063/1.2359579
https://doi.org/10.1063/1.2359579
https://aip.scitation.org/doi/10.1063/1.3057320
https://doi.org/10.1063/1.3057320
https://aip.scitation.org/doi/10.1063/1.3057322
https://doi.org/10.1063/1.3057322


Isomorphisms between C*-ternary algebras
Choonkil Parka�

Department of Mathematics, Hanyang University, Seoul, 133-791 Republic of Korea

�Received 9 March 2006; accepted 12 September 2006; published online 31 October 2006�

In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in
C*-ternary algebras and of derivations on C*-ternary algebras for the following
generalized Cauchy–Jensen additive mapping:

2f�� j=1

p
xj

2
+ �

j=1

d

yj� = �
j=1

p

f�xj� + 2�
j=1

d

f�yj� .

This is applied to investigate isomorphisms between C*-ternary algebras. The con-
cept of Hyers-Ulam-Rassias stability originated from the Rassias stability theorem
that appeared in his paper: On the stability of the linear mapping in Banach spaces,
see Proc. Amr. Math. Soc. 72, 297–300 �1978�. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2359576�

I. INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the 19th century by several mathematicians
and physicists such as Cayley,5 who introduced the notion of a cubic matrix, which in turn was
generalized by Kapranov et al.15 The simplest example of such nontrivial ternary operation is
given by the following composition rule:

�a,b,c	ijk = �
l,m,n

anilbljmcmkn �i, j,k, . . . = 1,2, . . . ,N� .

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes
in view of their applications in physics. Some significant physical applications are as follows �see
Refs. 16 and 17�:

�1� The algebra of “nonions” generated by two matrices,


0 1 0

0 0 1

1 0 0
� and 
 0 1 0

0 0 �

�2 0 0
� �� = e2�i/3� ,

was introduced by Sylvester as a ternary analog of Hamilton’s quaternions �cf. Ref. 1�.
�2� A natural ternary composition of four-vectors in the four-dimensional Minkowskian space-

time M4 can be defined as an example of a ternary operation:

�X,Y,Z� → U�X,Y,Z� � M4,

with the resulting four-vector U� defined via its components in a given coordinate system as
follows:
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U��X,Y,Z� = g�������X�Y�Z�, �,�, . . . = 0,1,2,3,

where g�� is the metric tensor and ����� is the canonical volume element of M4 �see Ref. 17�.
�3� The quark model inspired a particular brand of ternary algebraic systems. The so-called

“Nambu mechnics” is based on such structures �see Ref. 7�.
There are also some applications, although still hypothetical, in the fractional quantum Hall

effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation �cf. Refs. 1,
17, and 35�.

Following the terminology of Ref. 2 a non-empty set G with a ternary operation �· , · , · � :G
	G	G→G is called a ternary groupoid and is denoted by �G , �· , · , · ��. The ternary groupoid
�G , �· , · , · �� is called commutative if �x1 ,x2 ,x3�= �x��1� ,x��2� ,x��3�� for all x1 ,x2 ,x3�G and all
permutations � of �1,2 ,3	.

If a binary operation � is defined on G such that �x ,y ,z�= �x �y� �z for all x ,y ,z�G, then we
say that �· , · , · � is derived from �. We say that �G , �· , · , · �� is a ternary semigroup if the operation
�· , · , · � is associative, i.e., if [�x ,y ,z� ,u ,v]= [x , �y ,z ,u� ,v]= [x ,y , �z ,u ,v�] holds for all
x ,y ,z ,u ,v�G �see Ref. 4�.

A C*-ternary algebra is a complex Banach space A, equipped with a ternary product
�x ,y ,z�� �x ,y ,z� of A3 into A, which is C linear in the outer variables, conjugate C-linear in the
middle variable, and associative in the sense that [x ,y , �z ,w ,v�]= �x , �w ,z ,y� ,v�= [�x ,y ,z� ,w ,v],
and satisfies ��x ,y ,z� � 
 �x � · �y � · �z� and ��x ,x ,x� � = �x�3 �see Refs. 2 and 36�. Every left Hilbert
C* module is a C*-ternary algebra via the ternary product �x ,y ,z�ª 
x ,y�z.

If a C*-ternary algebra �A , �· , · , · �� has an identity, i.e., an element e�A such that x
= �x ,e ,e�= �e ,e ,x� for all x�A, then it is routine to verify that A, endowed with x �yª �x ,e ,y� and
x*
ª �e ,x ,e�, is a unital C* algebra. Conversely, if �A , � � is a unital C* algebra, then �x ,y ,z�ªx

�y* �z makes A into a C*-ternary algebra.
A C-linear mapping H :A→B is called a C*-ternary algebra homomorphism if

H��x,y,z�� = �H�x�,H�y�,H�z�� ,

for all x ,y ,z�A. If, in addition, the mapping H is bijective, then the mapping H :A→B is called
a C*-ternary algebra isomorphism. A C-linear mapping � :A→A is called a C*-ternary derivation
if

���x,y,z�� = ���x�,y,z� + �x,��y�,z� + �x,y,��z�� ,

for all x ,y ,z�A �see Refs. 2 and 18�.
In 1940, Ulam34 gave a talk before the Mathematics Club of the University of Wisconsin in

which he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

We are given a group G and a metric group G� with metric ��· , · �. Given �
0, does there
exist a �
0 such that if f :G→G� satisfies �(f�xy� , f�x�f�y�)�� for all x ,y�G, then a homo-
morphism h :G→G� exists with �(f�x� ,h�x�)�� for all x�G?

In 1941, Hyers10 considered the case of approximately additive mappings f :E→E�, where E
and E� are Banach spaces and f satisfies Hyers inequality,

�f�x + y� − f�x� − f�y�� 
 � ,

for all x ,y�E. It was shown that the limit

L�x� = lim
n→�

f�2nx�
2n

exists for all x�E and that L :E→E� is the unique additive mapping satisfying

�f�x� − L�x�� 
 � .
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In 1978, Rassias26 provided a generalization of Hyers’ Theorem that allows the Cauchy dif-
ference to be unbounded.

Theorem 1.1: �Rassias26� Let f :E→E� be a mapping from a normed vector space E into a
Banach space E�, subject to the inequality

�f�x + y� − f�x� − f�y�� 
 ���x�p + �y�p� , �1.1�

for all x ,y�E, where � and p are constants with �
0 and p�1. Then the limit

L�x� = lim
n→�

f�2nx�
2n ,

exists for all x�E and L :E→E� is the unique additive mapping that satisfies

�f�x� − L�x�� 

2�

2 − 2p �x�p, �1.2�

for all x�E. If p�0, then inequality �1.1� holds for x ,y�0 and �1.2� for x�0.
In 1990, Rassias,27 during the 27th International Symposium on Functional Equations, asked

the question of whether such a theorem can also be proved for p�1. In 1991, Gajda8 following
the same approach as in Rassias,26 gave an affirmative solution to this question for p
1. It was
shown by Gajda,8 as well as by Rassias and Šemrl32 that one cannot prove a Rassias’ type theorem
when p=1. The counterexamples of Gajda,8 as well as of Rassias and Šemrl,32 have stimulated
several mathematicians to invent new definitions of approximately additive or approximately
linear mappings; cf. Găvruta,9 Jung,14 who, among others, studied the Hyers-Ulam-Rassias sta-
bility of functional equations. The inequality �1.1� that was introduced for the first time by
Rassias26 provided a lot of influence in the development of a generalization of the Hyers-Ulam
stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functional
equations �cf. the books of Czerwik,6 Hyers, Isac, and Rassias.11�

Rassias,24 following the spirit of the innovative approach of Rassias26 for the unbounded
Cauchy difference, proved a similar stability theorem in which he replaced the factor �x�p+ �y�p by
�x�p · �y�q for p ,q�R with p+q�1 �see also Ref. 25 for a number of other new results�.

Găvruta9 provided a further generalization of Rassias’ Theorem. In 1996, Isac and Rassias13

applied the Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study some
new applications in Nonlinear Analysis. In Ref. 12, Hyers, Isac, and Rassias studied the asymp-
toticity aspect of Hyers-Ulam stability of mappings. During the past few years several mathema-
ticians have published on various generalizations and applications of Hyers-Ulam stability and
Hyers-Ulam-Rassias stability to a number of functional equations and mappings, for example,
quadratic functional equation, invariant means, multiplicative mappings—superstability, bounded
nth differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange
functional equation, and Navier-Stokes equations. Several mathematicians have contributed works
on these subjects; we mention a few: Baak and Moslehian,3 Park,19–23 Rassias,28–31 and Skof.33

Throughout this paper, assume that p, d are non-negative integers with p+d�3.
In Sec. II, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary alge-

bras for the generalized Cauchy-Jensen additive mapping.
In Sec. III, we investigate isomorphisms between unital C*-ternary algebras associated with

the generalized Cauchy-Jensen additive mapping.
In Sec. IV, we prove the Hyers-Ulam-Rassias stability of derivations on C*-ternary algebras

for the generalized Cauchy-Jensen additive mapping.

II. STABILITY OF HOMOMORPHISMS IN C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a C*-ternary algebra with norm � · �A and that B is a
C*-ternary algebra with norm � · �B.

For a given mapping f :A→B, we define
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C�f�x1, . . . ,xp,y1, . . . ,yd� ª 2f
�
j=1

p

�xj

2
+ �

j=1

d

�yj� − �
j=1

p

�f�xj� − 2�
j=1

d

�f�yj� ,

for all ��T1
ª ���C� �� � =1	 and all x1 , . . . ,xp ,y1 , . . . ,yd�A.

One can easily show that a mapping f :A→B satisfies C1f�x1 , . . . ,xp ,y1 , . . . ,yd�=0 if and only
if f is Cauchy additive, and that if a mapping f :A→B satisfies C1f�x1 , . . . ,xp ,y1 , . . . ,yd�=0 then
f�0�=0.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary algebras for the
functional equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.

Theorem 2.1: Let r
3 and � be non-negative real numbers, and let f :A→B be a mapping
such that

�C�f�x1, . . . ,xp,y1, . . . ,yd��B 
 ���
j=1

p

�xj�A
r + �

j=1

d

�yj�A
r� , �2.1�

�f��x,y,z�� − �f�x�, f�y�, f�z���B 
 ���x�A
r + �y�A

r + �z�A
r � , �2.2�

for all ��T1 and all x ,y ,z ,x1 , . . . ,xp ,y1 , . . . ,yd�A. Then there exists a unique C*-ternary alge-
bra homomorphism H :A→B, such that

�f�x� − H�x��B 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r , �2.3�

for all x�A.
Proof: Let us assume �=1 and x1= ¯ =xp=y1= ¯ =yd=x in �2.1�. Then we get

�2f� p + 2d

2
x� − �p + 2d�f�x��

B


 �p + d���x�A
r , �2.4�

for all x�A. So

� f�x� −
p + 2d

2
f� 2

p + 2d
x��

B



p + d

2�p + 2d�r��x�A
r ,

for all x�A. Hence

� �p + 2d�l

2l f� 2l

�p + 2d�l x� −
�p + 2d�m

2m f� 2m

�p + 2d�mx��
B


 �
j=l

m−1 � �p + 2d� j

2 j f� 2 j

�p + 2d� j x� −
�p + 2d� j+1

2 j+1 f� 2 j+1

�p + 2d� j+1x��
B



�p + d�

2�p + 2d�r �
j=l

m−1
2rj�p + 2d� j

2 j�p + 2d�rj ��x�A
r , �2.5�

for all non-negative integers m and l with m
 l and all x�A. From this it follows that the
sequence ���p+2d�n /2n�f��2n / �p+2d�n�x�	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 converges. Thus one can define the mapping
H :A→B by
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H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.5�, we get �2.3�.
It follows from �2.1� that

�2H�� j=1

p
xj

2
+ �

j=1

d

yj� − �
j=1

p

H�xj� − 2�
j=1

d

H�yj��
B

= lim
n→�

�p + 2d�n

2n �2f� 2n

�p + 2d�n

� j=1

p
xj

2
+

2n

�p + 2d�n�
j=1

d

yj�
− �

j=1

p

f� 2n

�p + 2d�nxj� − 2�
j=1

d

f� 2n

�p + 2d�n yj��
B


 lim
n→�

2nr�p + 2d�n

2n�p + 2d�nr���
j=1

p

�xj�A
r + �

j=1

d

�yj�A
r� = 0,

for all x1 , . . . ,xp ,y1 , . . . ,yd�A. Hence

2H�� j=1

p
xj

2
+ �

j=1

d

yj� = �
j=1

p

H�xj� + 2�
j=1

d

H�yj� ,

for all x1 , . . . ,xp ,y1 , . . . ,yd�A. So the mapping H :A→B is Cauchy additive.
By the same reasoning as in the proof of Theorem 2.1 of Ref. 21, the mapping H :A→B is

C-linear.
It follows from �2.2� that

�H��x,y,z�� − �H�x�,H�y�,H�z���B = lim
n→�

�p + 2d�3n

8n � f� 8n�x,y,z�
�p + 2d�3n�

− � f� 2nx

�p + 2d�n�, f� 2ny

�p + 2d�n�, f� 2nz

�p + 2d�n���
B


 lim
n→�

2nr�p + 2d�3n

8n�p + 2d�nr ���x�A
r + �y�A

r + �z�A
r � = 0,

for all x ,y ,z�A. Thus

H��x,y,z�� = �H�x�,H�y�,H�z�� ,

for all x ,y ,z�A.
Now, let T :A→B be another generalized Cauchy-Jensen additive mapping satisfying �2.3�.

Then we have
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�H�x� − T�x��B =
�p + 2d�n

2n �H� 2nx

�p + 2d�n� − T� 2nx

�p + 2d�n��
B



�p + 2d�n

2n ��H� 2nx

�p + 2d�n� − f� 2nx

�p + 2d�n��
B

+ �T� 2nx

�p + 2d�n� − f� 2nx

�p + 2d�n��
B
�



p + d

2�p + 2d�r − �p + 2d�2r ·
2nr+1�p + 2d�n

2n�p + 2d�nr ��x�A
r ,

which tends to zero as n→� for all x�A. So we can conclude that H�x�=T�x� for all x�A. This
proves the uniqueness of H. Thus, the mapping H :A→B is a unique C*-ternary algebra homo-
morphism satisfying �2.3�.

Theorem 2.2: Let r�1 and � be non-negative real numbers, and let f :A→B be a mapping
satisfying �2.1� and �2.2�. Then there exists a unique C*-ternary algebra homomorphism H :A
→B such that

�f�x� − H�x��B 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r , �2.6�

for all x�A.
Proof: It follows from �2.4� that

� f�x� −
2

p + 2d
f� p + 2d

2
x��

B



p + d

p + 2d
��x�A

r ,

for all x�A. So

� 2l

�p + 2d�l f� �p + 2d�l

2l x� −
2m

�p + 2d�m f� �p + 2d�m

2m x��
B


 �
j=l

m−1 � 2 j

�p + 2d� j f� �p + 2d� j

2 j x� −
2 j+1

�p + 2d� j+1 f� �p + 2d� j+1

2 j+1 x��
B



p + d

p + 2d
�
j=l

m−1
2 j�p + 2d� jr

2 jr�p + 2d� j ��x�A
r , �2.7�

for all non-negative integers m and l with m
 l and all x�A. From this it follows that the
sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 converges. So one can define the mapping
H :A→B by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.7�, we get �2.6�.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.3: Let r
1 and � be non-negative real numbers, and let f :A→B be a mapping
such that

�C�f�x1, . . . ,xp,y1, . . . ,yd��B 
 ��
j=1

p

�xj�A
r · �

j=1

d

�yj�A
r , �2.8�
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�f��x,y,z�� − �f�x�, f�y�, f�z���B 
 � · �x�A
r · �y�A

r · �z�A
r , �2.9�

for all ��T1 and all x ,y ,z ,x1 , . . . ,xp ,y1 , . . . ,yd�A. Then there exists a unique C*-ternary alge-
bra homomorphism H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r, �2.10�

for all x�A.
Proof: Let us assume �=1 and x1= ¯ =xp=y1= ¯ =yd=x in �2.8�. Then we get

�2f� p + 2d

2
x� − �p + 2d�f�x��

B


 ��x�A
�p+d�r, �2.11�

for all x�A.So

� f�x� −
p + 2d

2
f� 2

p + 2d
x��

B



2�p+d�r

2�p + 2d��p+d�r��x�A
�p+d�r,

for all x�A. Hence

� �p + 2d�l

2l f� 2l

�p + 2d�l x� −
�p + 2d�m

2m f� 2m

�p + 2d�mx��
B


 �
j=l

m−1 � �p + 2d� j

2 j f� 2 j

�p + 2d� j x� −
�p + 2d� j+1

2 j+1 f� 2 j+1

�p + 2d� j+1x��
B



2�p+d�r

2�p + 2d��p+d�r �
j=l

m−1
2�p+d�rj�p + 2d� j

2 j�p + 2d��p+d�rj ��x�A
�p+d�r, �2.12�

for all non-negative integers m and l with m
 l and all x�A. From this it follows that the
sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ���p+2d�n /2n�f(�2n / �p+2d�n�x)	 converges. Thus one can define the mapping
H :A→B by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.12�, we get �2.10�.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
mapping satisfying �2.8� and �2.9�. Then there exists a unique C*-ternary algebra homomorphism
H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r, �2.13�

for all x�A.
Proof: It follows from �2.11� that

� f�x� −
2

p + 2d
f� p + 2d

2
x��

B



�

p + 2d
�x�A

�p+d�r,

for all x�A. So
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� 2l

�p + 2d�l f� �p + 2d�l

2l x� −
2m

�p + 2d�m f� �p + 2d�m

2m x��
B


 �
j=l

m−1 � 2 j

�p + 2d� j f� �p + 2d� j

2 j x� −
2 j+1

�p + 2d� j+1 f� �p + 2d� j+1

2 j+1 x��
B



�

p + 2d
�
j=l

m−1
2 j�p + 2d� j�p+d�r

2 j�p+d�r�p + 2d� j �x�A
�p+d�r, �2.14�

for all non-negative integers m and l with m
 l and all x�A. From this it follows that the
sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 is a Cauchy sequence for all x�A. Since B is com-
plete, the sequence ��2n / �p+2d�n�f(��p+2d�n /2n�x)	 converges. So one can define the mapping
H :A→B by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A. Moreover, letting l=0 and passing the limit m→� in �2.14�, we get �2.13�.
The rest of the proof is similar to the proof of Theorem 2.1. �

III. ISOMORPHISMS BETWEEN C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a unital C*-ternary algebra with norm � · �A and unit
e, and that B is a unital C*-ternary algebra with norm � · �B and unit e�.

We investigate isomorphisms between C*-ternary algebras associated with the functional
equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.

Theorem 3.1: Let r
1 and � be non-negative real numbers, and let f :A→B be a bijective
mapping satisfying �2.1�, such that

f��x,y,z�� = �f�x�, f�y�, f�z�� , �3.1�

for all x ,y ,z�A. If limn→���p+2d�n /2n�f(2ne / �p+2d�n)=e�, then the mapping f :A→B is a
C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear
mapping H :A→B such that

�f�x� − H�x��B 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r ,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
Since f��x ,y ,z��= �f�x� , f�y� , f�z�� for all x ,y ,z�A,

H��x,y,z�� = lim
n→�

�p + 2d�3n

8n f�� 2nx

�p + 2d�n ,
2ny

�p + 2d�n ,
2nz

�p + 2d�n��
= lim

n→�
� �p + 2d�n

2n f� 2nx

�p + 2d�n�,
�p + 2d�n

2n f� 2ny

�p + 2d�n�,
�p + 2d�n

2n f� 2nz

�p + 2d�n��
=�H�x�,H�y�,H�z�� ,

for all x ,y ,z�A. So the mapping H :A→B is a C*-ternary algebra homomorphism.
It follows from �3.1� that
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H�x� = H��e,e,x�� = lim
n→�

�p + 2d�2n

4n f� 4n

�p + 2d�2n �e,e,x��
= lim

n→�

�p + 2d�2n

4n f�� 2ne

�p + 2d�n ,
2ne

�p + 2d�n ,x��
= lim

n→�
� �p + 2d�n

2n f� 2ne

�p + 2d�n�,
�p + 2d�n

2n f� 2ne

�p + 2d�n�, f�x�� = �e�,e�, f�x�� = f�x�,

for all x�A. Hence the bijective mapping f :A→B is a C*-ternary algebra isomorphism. �

Theorem 3.2: Let r�1 and � be non-negative real numbers, and let f :A→B be a bijective
mapping satisfying �2.1� and �3.1�. If limn→��2n / �p+2d�n�f(��p+2d�n /2n�e)=e�, then the mapping
f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r ,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 3.3: Let r
1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
bijective mapping satisfying �2.8� and �3.1�. If limn→���p+2d�n /2n�f(2ne / �p+2d�n)=e�, then the
mapping f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r,

for all x�A. The mapping H :A→B is defined by

H�x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1. �

Theorem 3.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→B be a
bijective mapping satisfying �2.8� and �3.1�. If limn→��2n / �p+2d�n�f(��p+2d�n /2n�e)=e�, then the
mapping f :A→B is a C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique
C-linear mapping H :A→B such that

�f�x� − H�x��B 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r,

for all x�A. The mapping H :A→B is defined by
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H�x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1. �

IV. STABILITY OF DERIVATIONS ON C*-TERNARY ALGEBRAS

Throughout this section, assume that A is a C*-ternary algebra with norm � · �A.
We prove the Hyers-Ulam-Rassias stability of derivations on C*-ternary algebras for the

functional equation C�f�x1 , . . . ,xp ,y1 , . . . ,yd�=0.
Theorem 4.1: Let r
3 and � be non-negative real numbers, and let f :A→A be a mapping

satisfying �2.1� such that

�f��x,y,z�� − �f�x�,y,z� − �x, f�y�,z� − �x,y, f�z���A 
 ���x�A
r + �y�A

r + �z�A
r � , �4.1�

for all x ,y ,z�A. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

p + d

2�p + 2d�r − �p + 2d�2r��x�A
r , �4.2�

for all x�A.
Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear

mapping � :A→A satisfying �4.2�. The mapping � :A→A is defined by

��x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
It follows from �4.1� that

����x,y,z�� − ���x�,y,z� − �x,��y�,z� − �x,y,��z���A

= � lim
n→�

�p + 2d�3n

8n � f� 8n

�p + 2d�3n �x,y,z�� − � f� 2nx

�p + 2d�n�,
2ny

�p + 2d�n ,
2nz

�p + 2d�n�
− �� 2nx

�p + 2d�n , f� 2ny

�p + 2d�n�,
2nz

�p + 2d�n� − � 2nx

�p + 2d�n ,
2ny

�p + 2d�n , f� 2nz

�p + 2d�n���
A


 lim
n→�

2nr�p + 2d�3n

8n�p + 2d�nr ���x�A
r + �y�A

r + �z�A
r � = 0,

for all x ,y ,z�A. Hence

���x,y,z�� = ���x�,y,z� + �x,��y�,z� + �x,y,��z�� ,

for all x ,y ,z�A. Thus the mapping � :A→A is a unique C*-ternary derivation satisfying �4.2�.�
Theorem 4.2: Let r�1 and � be nonnegative real numbers, and let f :A→A be a mapping

satisfying �2.1� and �4.1�. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

2r�p + d�

2r�p + 2d� − 2�p + 2d�r��x�A
r , �4.3�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique

C-linear mapping � :A→A satisfying �4.3�. The mapping � :A→A is defined by
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��x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �

Theorem 4.3: Let r
1 and � be non-negative real numbers, and let f :A→A be a mapping
satisfying �2.8� such that

�f��x,y,z�� − �f�x�,y,z� − �x, f�y�,z� − �x,y, f�z���A 
 � · �x�A
r · �y�A

r · �z�A
r , �4.4�

for all x ,y ,z�A. Then there exists a unique C*-ternary derivation � :A→A such that

�f�x� − ��x��A 

2�p+d�r

2�p + 2d��p+d�r − 2�p+d�r�p + 2d�
��x�A

�p+d�r, �4.5�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique

C-linear mapping � :A→A satisfying �4.5�. The mapping � :A→A is defined by

��x� ª lim
n→�

�p + 2d�n

2n f� 2n

�p + 2d�nx� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �

Theorem 4.4: Let r�1/ �p+d� and � be non-negative real numbers, and let f :A→A be a
mapping satisfying �2.8� and �4.4�. Then there exists a unique C*-ternary derivation � :A→A such
that

�f�x� − ��x��A 

2�p+d�r

2�p+d�r�p + 2d� − 2�p + 2d��p+d�r��x�A
�p+d�r, �4.6�

for all x�A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique

C-linear mapping � :A→A satisfying �4.6�. The mapping � :A→A is defined by

��x� ª lim
n→�

2n

�p + 2d�n f� �p + 2d�n

2n x� ,

for all x�A.
The rest of the proof is similar to the proof of Theorem 4.1. �
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