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In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in
C"-ternary algebras and of derivations on C"-ternary algebras for the following
generalized Cauchy—Jensen additive mapping:

El’ 1 X j d P d
]:
2f + 2] = 2 05) + 22 f(y)).

2 j=1 j=1 j=1
This is applied to investigate isomorphisms between C"-ternary algebras. The con-
cept of Hyers-Ulam-Rassias stability originated from the Rassias stability theorem
that appeared in his paper: On the stability of the linear mapping in Banach spaces,
see Proc. Amr. Math. Soc. 72, 297-300 (1978). © 2006 American Institute of
Physics. [DOL: 10.1063/1.2359576]

I. INTRODUCTION AND PRELIMINARIES

Ternary algebraic operations were considered in the 19th century by several mathematicians
and physicists such as Cayley,5 who introduced the notion of a cubic matrix, which in turn was
generalized by Kapranov et al.” The simplest example of such nontrivial ternary operation is
given by the following composition rule:

{a.b,clije= 2 auibijmCin (ks ... = 1,2, ... ,N).
Lm,n
Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes
in view of their applications in physics. Some significant physical applications are as follows (see
Refs. 16 and 17):
(1) The algebra of “nonions” generated by two matrices,

010 010
001 and 0 0 o] (w=e™3),
100 0 0 0

was introduced by Sylvester as a ternary analog of Hamilton’s quaternions (cf. Ref. 1).
(2) A natural ternary composition of four-vectors in the four-dimensional Minkowskian space-
time M, can be defined as an example of a ternary operation:

(X,Y,Z2) - UX,Y,Z) € My,

with the resulting four-vector U* defined via its components in a given coordinate system as
follows:

“Electronic address: baak @hanyang.ac.kr
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UHX,Y,Z) = 8" o, X"Y 2P, v, ... =0,1,2,3,

where g#” is the metric tensor and 7,,,, is the canonical volume element of M, (see Ref. 17).

(3) The quark model inspired a particular brand of ternary algebraic systems. The so-called
“Nambu mechnics” is based on such structures (see Ref. 7).

There are also some applications, although still hypothetical, in the fractional quantum Hall
effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation (cf. Refs. 1,
17, and 35).

Following the terminology of Ref. 2 a non-empty set G with a ternary operation [-,-,-]:G
XGXG—G is called a ternary groupoid and is denoted by (G,[-,-,-]). The ternary groupoid
(G,[-,-,-] is called commutative if [x;,x5,%3]1=[X(1),X0(2),X0(3)] for all x;,x;,x3€ G and all
permutations o of {1,2,3}.

If a binary operation © is defined on G such that [x,y,z]=(x°y)ez for all x,y,z € G, then we
say that [-, -, -] is derived from o. We say that (G,[-,-,]) is a ternary semigroup if the operation
[-,-,-] is associative, ie., if [[x,y,z],u,v]=[x,[y,z,u],v]=[x,y,[z,u,v]] holds for all
x,y,z,u,v € G (see Ref. 4).

A C’-ternary algebra is a complex Banach space A, equipped with a ternary product
(x,y,2)—~[x,y,z] of A3 into A, which is C linear in the outer variables, conjugate C-linear in the
middle variable, and associative in the sense that [x,y,[z,w,v]]=[x,[w,z,y],v]=[[x,y,z],w,v],
and satisfies ||[x,y,z]|| <|lx||-|[y||-lz]| and ||[x,x,x]|| =[x (see Refs. 2 and 36). Every left Hilbert
C" module is a C*-ternary algebra via the ternary product [x,y,z]:=(x,y)z.

If a C'-ternary algebra (A,[-,-,-]) has an identity, i.e., an element e A such that x
=[x,e,e]=[e,e,x] for all x € A, then it is routine to verify that A, endowed with xoy:=[x,e,y] and
x":=[e,x,e], is a unital C* algebra. Conversely, if (A,°) is a unital C" algebra, then [x,y,z]:=x
oy“oz makes A into a C-ternary algebra.

A C-linear mapping H:A — B is called a C"-ternary algebra homomorphism if

H([x,y,z]) =[H(x),H(y),H(z)],

for all x,y,z € A. If, in addition, the mapping H is bijective, then the mapping H:A — B is called
a C'-ternary algebra isomorphism. A C-linear mapping 8:A — A is called a C*-ternary derivation
if

a[x,y.2]) =[8(x),y. 2]+ [x,8y). 2] + [x.y, 8(2)],

for all x,y,ze A (see Refs. 2 and 18).

In 1940, Ulam™ gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric p(-,-). Given €>0, does there
exist a >0 such that if f:G— G’ satisfies p(f(xy),f(x)f(y)) <8 for all x,y € G, then a homo-
morphism h:G— G’ exists with p(f(x),h(x))<e for all x e G?

In 1941, Hyers10 considered the case of approximately additive mappings f: E—E’, where E
and E' are Banach spaces and f satisfies Hyers inequality,

[fx+y) = fx) = f)| = e,

for all x,y € E. It was shown that the limit

f(2"x)

2)‘1

L(x) = lim

n—o0

exists for all x € E and that L: E— E' is the unique additive mapping satisfying

[f(x) - Lix)|| < e.
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In 1978, Rassias™ provided a generalization of Hyers’ Theorem that allows the Cauchy dif-
ference to be unbounded.

Theorem 1.1: (Rassias%) Let f:E—E' be a mapping from a normed vector space E into a
Banach space E', subject to the inequality

G+ y) = fx) = Il = eIl + [I¥1P). (1.1)

for all x,y € E, where € and p are constants with €>0 and p<<1. Then the limit

L(x) = limw

9
n—oo 2"

exists for all x e E and L:E—E' is the unique additive mapping that satisfies

2€
2-2P

for all x e E. If p<0, then inequality (1.1) holds for x,y # 0 and (1.2) for x #0.

In 1990, Rassias,”’ during the 27th International Symposium on Functional Equations, asked
the question of whether such a theorem can also be proved for p=1. In 1991, Gajda8 following
the same approach as in Rassias,” gave an affirmative solution to this question for p>1. It was
shown by Gajda,8 as well as by Rassias and Semrl* that one cannot prove a Rassias’ type theorem
when p=1. The counterexamples of Gajda,8 as well as of Rassias and Semrl,32 have stimulated
several mathematicians to invent new definitions of approximately additive or approximately
linear mappings; cf. Gavruta,’ Jung,14 who, among others, studied the Hyers-Ulam-Rassias sta-
bility of functional equations. The inequality (1.1) that was introduced for the first time by
Rassias™ provided a lot of influence in the development of a generalization of the Hyers-Ulam
stability concept. This new concept is known as the Hyers-Ulam-Rassias stability of functional
equations (cf. the books of Czerwik,6 Hyers, Isac, and Rassias.”)

Rassias,” following the spirit of the innovative approach of Rassias®® for the unbounded
Cauchy difference, proved a similar stability theorem in which he replaced the factor |[x|[?+|y|” by
I[P |ly||¥ for p,q € R with p+q+# 1 (see also Ref. 25 for a number of other new results).

Givruta’ provided a further generalization of Rassias’ Theorem. In 1996, Isac and Rassias
applied the Hyers-Ulam-Rassias stability theory to prove fixed point theorems and study some
new applications in Nonlinear Analysis. In Ref. 12, Hyers, Isac, and Rassias studied the asymp-
toticity aspect of Hyers-Ulam stability of mappings. During the past few years several mathema-
ticians have published on various generalizations and applications of Hyers-Ulam stability and
Hyers-Ulam-Rassias stability to a number of functional equations and mappings, for example,
quadratic functional equation, invariant means, multiplicative mappings—superstability, bounded
nth differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange
functional equation, and Navier-Stokes equations. Several mathematicians have contributed works
on these subjects; we mention a few: Baak and Moslehian,3 Park,lg_23 RaSSiaS,28_3 ! and Skof.*

Throughout this paper, assume that p, d are non-negative integers with p+d=3.

In Sec. II, we prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary alge-
bras for the generalized Cauchy-Jensen additive mapping.

In Sec. III, we investigate isomorphisms between unital C"-ternary algebras associated with
the generalized Cauchy-Jensen additive mapping.

In Sec. IV, we prove the Hyers-Ulam-Rassias stability of derivations on C"-ternary algebras
for the generalized Cauchy-Jensen additive mapping.

I£Ce) = L)l =

[24]8 (1.2)

13

Il. STABILITY OF HOMOMORPHISMS IN C-TERNARY ALGEBRAS

Throughout this section, assume that A is a C"-ternary algebra with norm ||-||, and that B is a
C"-ternary algebra with norm ||-|5.
For a given mapping f:A— B, we define
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P
;1 X d )4 d
Cof (X1, e Xy d1s v = 2 & + 2y | = 2 ) =22 uf(y),
j=1 j=1 j=1

2

for all weT':=={\eC[|\N|=1} and all x,,...,x,,y|,...,y €A.

One can easily show that a mapping f:A — B satisfies C,f(x;,...,x,.y;,...,y,) =0 if and only
if fis Cauchy additive, and that if a mapping f:A — B satisfies C,f(x,,...,x,,y;,...,y,)=0 then
f(0)=0.

We prove the Hyers-Ulam-Rassias stability of homomorphisms in C*-ternary algebras for the
functional equation C,f(x,...,X,,y1,...,y4)=0.

Theorem 2.1: Let r>3 and 6 be non-negative real numbers, and let f:A— B be a mapping
such that

P d
||Cyf(xl’ s ’xp9y1’ cee ’yd)”B = 0(2 ||x/||:\ + E ||y]||2> ° (21)
j=1 j=1
A Cx,y,2D) = L) f ). @) s = Oy + Iy ll3 + Izl (2.2)
forall weT" and all x,y,z,x,, ... s Xps V1, -+ »Ya € A. Then there exists a unique C*-ternary alge-

bra homomorphism H:A— B, such that

p+d
p+2d) —(p+2d)2"

Olx

[f(x) = Hx)|[p = 2 I}, (2.3)

forall x e A.
Proof: Let us assume u=1 and x;=---=x,=y;="--=y,=x in (2.1). Then we get

2d
2f<” +2 x) ~ (p+2d)f(x)

= (p+d)blx
B

s (2.4)
for all x e A. So

p+d
=
s 2(p+2d)

0| |x

p+2d 2 .
f(x)_ 2 f<p+2dx) A

fOI‘ all X e A Hence
2l ( 2 !)l 2]71 bt ( 2 /y)m

(p+2d)f( 2/ ) (p+2d)j+1( 27+ )H
9 f (p+2d)jx - 9+l (p+2d)j+1x 5

B

m—1

=2
j=l

m

2‘1 29(p + 2dY
o 2(p+2d)7

(p+d)
C2(p+24d)

Olx

s (2.5)

for all non-negative integers m and / with m>[ and all x € A. From this it follows that the
sequence {[(p+2d)"/2"]f([2"/(p+2d)"]x)} is a Cauchy sequence for all x € A. Since B is com-
plete, the sequence {[(p+2d)"/2"]f([2"/(p+2d)"]x)} converges. Thus one can define the mapping
H:A—B by
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H(x) := lim

n—ow 2”

(p+2d)”< 2" )
No+2a™)

for all x € A. Moreover, letting /=0 and passing the limit m — o in (2.5), we get (2.3).
It follows from (2.1) that

205 ’ !
2H| —S—+ 2y | - 2 Hx) - 22 H(y)
j=1 j=1 j=1

B

2" 2j:l Xj

P
2f((p+2d)" 2 (p+2d)”2yj)

2"
2f((p 2d)" f) 2Ef<(p 2dy" )
= fim 2+ 24" (EII ||A+2||y,||A>

e 2(p + 2d)"

. (p+2a)
= lim

n—w 2"

for all xl,...,xp,yl,...,ydeA. Hence

p. lxj d P d
2H g + 2y | = 2 Hx) + 22 H(y)),
j=1 Jj=1 Jj=1

for all x, ... Xy Vs e Ya €A So the mapping H:A— B is Cauchy additive.

By the same reasoning as in the proof of Theorem 2.1 of Ref. 21, the mapping H:A— B is
C-linear.

It follows from (2.2) that

2d 3n Sn ,Y,
(5.2 = 1.1, = tim P22 T Ezyd;])

Mesm e M)
/ (p+2d)" J (p+2d)" d (p+2d)"/ ]lg

2" (p +2d)>"
=< lim———— (|||, ! 1) =0,
i sy A+ D+ 1)

for all x,y,z € A. Thus

H([x,y,z]) =[H(x),H(y),H(z)],

for all x,y,z € A.
Now, let T:A— B be another generalized Cauchy-Jensen additive mapping satisfying (2.3).
Then we have
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C(pr2dy| [ 2 2

|H(x) = T(x)| 5 = o H((p+2d)") B T((p+2d)") B
_(p+2a) 2'x )_ ( 2"x )
= (‘H((p+2d)" Nor2ar)l,

omss) Aoz
M\ or20r) N\ pr2ar ),

_ p+d 2"+ (p +2d)"
C2(p+2d) - (p+2d)2" 2'(p+2d)"

r
A°

Olx

which tends to zero as n— o for all x € A. So we can conclude that H(x)=T(x) for all x € A. This
proves the uniqueness of H. Thus, the mapping H:A— B is a unique C"-ternary algebra homo-
morphism satisfying (2.3).

Theorem 2.2: Let r<<1 and 6 be non-negative real numbers, and let f:A— B be a mapping
satisfying (2.1) and (2.2). Then there exists a unique C'-ternary algebra homomorphism H:A
— B such that

2"(p+d)
2(p+2d)—2(p +2d)"

[lFx) = H)llp = Of}x

[4s (2.6)

for all x e A.
Proof: It follows from (2.4) that

2 (p+2d
Hﬂx) - p+ 2df< 2 x)

_ p+d
g pP+2d

0| |x

r
A

for all x e A. So

2! ((p+2d)l) om ((p+2d)m>
p+20”"\ " 20 )T ey’ 2

B

m—1 2i ((p+2d)j ) 9+l ((p+2d)j+1 )
“Elpr2a’\ 2 )T pr2ayt 2,
m—1 _. .
p+d V(p+2ay" .
= > e (2.7)

T p+2d°T 2Y(p+2d)

=l
for all non-negative integers m and / with m>[ and all x € A. From this it follows that the
sequence {[2"/(p+2d)"1f([(p+2d)"/2™]x)} is a Cauchy sequence for all x € A. Since B is com-
plete, the sequence {[2"/(p+2d)"]f([(p+2d)"/2"]x)} converges. So one can define the mapping
H:A—B by

. 2" (p+2d)"
HO)w= lim e = oaf ( " x)’

for all x € A. Moreover, letting /=0 and passing the limit m— o in (2.7), we get (2.6).
The rest of the proof is similar to the proof of Theorem 2.1. U
Theorem 2.3: Let r>1 and 6 be non-negative real numbers, and let f:A— B be a mapping
such that

P d
”Cuf(xl’ s ’xp’yl’ ’yd)”B = 01_[ ”xjH:l : H ||y] :\’ (28)
Jj=1 Jj=1
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[EST)EVICNICONICON PESA o1// N/

forall weT" and all x,y,z,xy, ... 2 Xps V15 - Ya €A. Then there exists a unique C*-ternary alge-
bra homomorphism H:A— B such that

4o (2.9)

2(1}+d)r
2(p +2d) P — 20+ 4 24)

() = H)||s = Ol P+, (2.10)

forall x e A.
Proof: Let us assume u=1 and x;=---=x,=y;=""-=y,=x in (2.8). Then we get
p+2d .
”21”( 5 x) —(p+2d)f@)| = dkyr, (2.11)
B
for all x € A.So
2(p+d)r

R — (p+d)r
2(p +2d) 7" IR

(p+2d)’( 2! ) (p+2d)" ( om >
2l (p+2d)0) " 2m (p+2d)""

p+2d [ 2
fo -, f<p+2dx)

B

for all x € A. Hence

B

Np+2ay [ 2 (p+2d)* [ 2%
=2 i X i+ 1
j=l 2 (p +2d) 2 (p +2d) B
2+ Lo prdri(y 4 o)
Al (2.12)

= - -
2p +2d) P2 21(p +2d) P

for all non-negative integers m and / with m>[ and all x e A. From this it follows that the
sequence {[(p+2d)"/2"]f([2"/(p+2d)"]x)} is a Cauchy sequence for all x € A. Since B is com-
plete, the sequence {[(p+2d)"/2"]f([2"/(p+2d)"]x)} converges. Thus one can define the mapping
H:A—B by

21y (2
(p+ )f( )

H(x) := lim o+ 2d)”x

noo 2"
for all x € A. Moreover, letting /=0 and passing the limit m— o in (2.12), we get (2.10).
The rest of the proof is similar to the proof of Theorem 2.1. O
Theorem 2.4: Let r<1/(p+d) and 6 be non-negative real numbers, and let f:A— B be a
mapping satisfying (2.8) and (2.9). Then there exists a unique C"-ternary algebra homomorphism
H:A— B such that

2(p+d)r
2P+ 4 2d) — 2(p + 2d) P+O”

o) = H)lp = B (2.13)

forall x e A.
Proof: Tt follows from (2.11) that

0
=
g p+2d

Il

2 p+2d
Hf(x)_p+2df< 2 x)

for all x e A. So
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2! (p+2d) om (p+2d)"
o2\ 2 *

T2\ 2 A
_ ”’E“ 2 ( (p+ 2d)fx) o ( (p+ 2d)/+1x)
- D l(p+2ay 2/ (p + 2d)™*! 2/ 5
m—-1 _ .
0 2(p+ 2d).l(P+d)V e
= 2 o x| P, (2.14)
p+2d°5 27 (p +2dY

for all non-negative integers m and [ with m>[ and all x e A. From this it follows that the
sequence {[2"/(p+2d)"1f([(p+2d)"/2"]x)} is a Cauchy sequence for all x € A. Since B is com-
plete, the sequence {[2"/(p+2d)"1f([(p+2d)"/2"]x)} converges. So one can define the mapping
H:A—B by

o ((p2d”
H) = lime o o ( 2" x)’

for all x € A. Moreover, letting /=0 and passing the limit m— o in (2.14), we get (2.13).
The rest of the proof is similar to the proof of Theorem 2.1. O

ll. ISOMORPHISMS BETWEEN C-TERNARY ALGEBRAS

Throughout this section, assume that A is a unital C*-ternary algebra with norm |||, and unit
e, and that B is a unital C"-ternary algebra with norm |-||; and unit e’.

We investigate isomorphisms between C*-ternary algebras associated with the functional
equation C,f(x,....,x,,y;,...,y,)=0.

Theorem 3.1: Let r>1 and 0 be non-negative real numbers, and let f:A— B be a bijective
mapping satisfying (2.1), such that

S, y.2]) = [f(x).f().f(2)], (3.1

Sor all x,y,zeA. If lim,_.[(p+2d)"12"]f(2"e/(p+2d)")=¢’, then the mapping f:A—B is a
C*-ternary algebra isomorphism.

Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear
mapping H:A — B such that

p+d
2(p+2d) - (p+2d)2"

) = H)llp = Olx

4
for all x € A. The mapping H:A — B is defined by

L (p+2d)"< 2" )
)= lim == =N 20

for all x € A.
Since f([x,y,z])=[f(x).f(y).f(z)] for all x,y,z €A,

. (pr2a) ([ 2y 2y 2y D
H(lxy.z) = lim === A\ | a2 (p 2 24)"
{(p+2d)"( 2y )(p+2d)"( 2y )(p+2d)"( 2z )}
% (p+2d)") 2" f(p+2d)"’ % f(p+2d)"
=[H(x),H(y),H(z)],

for all x,y,z € A. So the mapping H:A — B is a C -ternary algebra homomorphism.
It follows from (3.1) that

=lim

n—o9
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2n n

i (p+2d4)" f( [ 2"e 2'e ] )
= l1m s ]
T (p+2d)" (p+2d)""

[(p+2d)” ( 2" ) (p +2d)" ( 2"
o (p+2d)") 2" f (p +2d)"

= lim

n—o

)J()O} =[e’,e’.f(x)]=flx),

for all x € A. Hence the bijective mapping f:A — B is a C-ternary algebra isomorphism. O
Theorem 3.2: Let r<1 and 0 be non-negative real numbers, and let f:A— B be a bijective
mapping satisfying (2.1) and (3.1). If lim,,_.[2"/ (p+2d)"]f([(p+2d)"/2"]e)=e’, then the mapping
f:A—B is a C'-ternary algebra isomorphism.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique
C-linear mapping H:A — B such that

2"(p+d)
2(p+2d) - 2(p +2d)"

[lC) = H)llp = Ollx

4

for all x € A. The mapping H:A — B is defined by

L 2" (p+2d)"
HOx) w= lim e = oaf ( o x)’

for all x e A.

The rest of the proof is similar to the proof of Theorem 3.1. U

Theorem 3.3: Let r>1/(p+d) and 6 be non-negative real numbers, and let f:A— B be a
bijective mapping satisfying (2.8) and (3.1). If lim,_..[(p+2d)"/12"]f(2"e! (p+2d)")=e', then the
mapping f:A— B is a C'-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique
C-linear mapping H:A — B such that

2(p+d)r
2(p +2d) P — 20+ 4 24)

) = Hx)[ = il

for all x € A. The mapping H:A — B is defined by

L (p+2d)"< 2" )
HE) = lim === N 2™

for all x € A.

The rest of the proof is similar to the proofs of Theorems 2.3 and 3.1. O

Theorem 3.4: Let r<1/(p+d) and 6 be non-negative real numbers, and let f:A— B be a
bijective mapping satisfying (2.8) and (3.1). If lim,,_..[2"/(p+2d)"]f([(p+2d)"/2"]|e)=¢’, then the
mapping f:A— B is a C'-ternary algebra isomorphism.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique
C-linear mapping H:A — B such that

2(p+d)r
2P+ (p 4 2d) = 2(p + 2d) P"

el

) = HOOllp =

for all x € A. The mapping H:A — B is defined by
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2" +2d)"
H(x) := lim f<(p ) x),
n—oe (p + 2d)n 2"
for all x € A.
The rest of the proof is similar to the proofs of Theorems 2.4 and 3.1. O

IV. STABILITY OF DERIVATIONS ON C-TERNARY ALGEBRAS

Throughout this section, assume that A is a C"-ternary algebra with norm ||-|,.

We prove the Hyers-Ulam-Rassias stability of derivations on C-ternary algebras for the
functional equation C,f(x,...,X,,¥1,...,¥4)=0.

Theorem 4.1: Let r>3 and 6 be non-negative real numbers, and let f:A— A be a mapping
satisfying (2.1) such that

”f([x,y,Z]) - [f(x),y,Z] - [X,f()’),Z] - [X,y,f(Z)]”A = 6(”)(”2 + ||y||2 + ||Z||2)’ (41)

for all x,y,z € A. Then there exists a unique C"-ternary derivation 8:A— A such that

p+d
(p+2d) - (p+2d)2"

¢9| |x

If(x) = )|, = 5 e (4.2)
for all x e A.

Proof: By the same reasoning as in the proof of Theorem 2.1, there exists a unique C-linear
mapping 5:A— A satisfying (4.2). The mapping 6:A —A is defined by

8(x) := lim

n—oo 2”

(p+2d)”( 2" )
Nov2™)

for all x e A.
It follows from (4.1) that

||5([x’y,1]) - [5()5),)7’1] - [)C, 5()’),1] - [x’y’ 5(2)]||A

0 (p +2d)*" ( 8" ) [( 2y ) 2"y 2"z ]
= lim Nor 207 4) |\ G2ar ) Ge2ar G20y

n—o 8”

[ 2"x ( 2" ) 2"z ] { 2"x 2"y ( 2"z )}
e+ 2d)”’f (p+2d)") (p+2d)"| | (p+2d)" (p+ 2d)”’f (p+2d)"
2nr(p + 2d)3n

= ,}T}om O xl[; + [yl +[I=[l) = 0.

A

for all x,y,z e A. Hence

8[x,y,z]) =[8(x),y,z] + [x,8(y),z] + [x,y,8(2) ],

for all x,y,z € A. Thus the mapping 6:A — A is a unique C"-ternary derivation satisfying (4.2).[]
Theorem 4.2: Let r<<1 and 0 be nonnegative real numbers, and let f:A— A be a mapping
satisfying (2.1) and (4.1). Then there exists a unique C -ternary derivation 8:A— A such that

2'(p+d)
p+2d)-2(p+2d)

0= &l = 57 Al +3)
forall x e A.

Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.2, there exists a unique
C-linear mapping &:A — A satisfying (4.3). The mapping 6:A— A is defined by
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2" +2d)"
S(x) := lim f((p ) x),
n—e(p +2d)" 2"
for all x € A.
The rest of the proof is similar to the proof of Theorem 4.1. O

Theorem 4.3: Let r>1 and 6 be non-negative real numbers, and let f:A— A be a mapping
satisfying (2.8) such that

Ay 2D) = [0, y.2] = L f3),2] = Ly f@)lla = 0 [l - [yl - el

for all x,y,z € A. Then there exists a unique C-ternary derivation 8:A— A such that

ys (4.4)

2(p+d)r
- ol = 5,

][+ 4.5
P+ Zd)(p+d)r_ 2(p+d)r(p+ 2d) ||x||A ( )

for all x e A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.3, there exists a unique
C-linear mapping 8:A — A satisfying (4.5). The mapping 8:A— A is defined by

+2d)" 2"
S(x) := lim » ) f( x),
nooo 2" (p+2d)"
for all x € A.
The rest of the proof is similar to the proof of Theorem 4.1. O

Theorem 4.4: Let r<1/(p+d) and 6 be non-negative real numbers, and let f:A—A be a
mapping satisfying (2.8) and (4.4). Then there exists a unique C"-ternary derivation 8:A— A such
that

2(p+d)r
2P+ (4 2d) = 2(p + 2d) "

() = 8][4 = o[, (4.6)

for all x e A.
Proof: By the same reasoning as in the proofs of Theorems 2.1 and 2.4, there exists a unique
C-linear mapping 8:A — A satisfying (4.6). The mapping 8:A—A is defined by

o 2" (p+2a)
8x) s= lim = el ( 2 x) ’

for all x e A.
The rest of the proof is similar to the proof of Theorem 4.1. O
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