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Abstract

We consider two equations for the filling factor estimation of infiltrated zinc oxide (ZnO) in silica (SiO2) opal and gallium nitride
(GaN) in ZnO opal. The first equation is based on the effective medium approximation, while the second one—on Maxwell–Garnett
approximation. The comparison between two filling factors shows that both equations can be equally used for the estimation of the
quantity of infiltrated nanoparticles inside opal photonic crystal.

PACS: 42.70.Qs; 78.67.Pt

Keywords: Filling factor; Photonic band-gap; Bragg reflection; Effective refractive index
1. Introduction

Photonic crystals (PhCs) with forbidden band-gaps,
proposed by Eli Yablonovitch [1] and Sajeev John [2], open
new opportunities for their applications in modern optics.
PhCs are one-, two-, and three-dimensional dielectric lat-
tices with periodicity on the order of the optical wave-
lengths. The implementations of PhCs are mostly aimed
to improve the useful properties of various materials as
well as opto-electronic devises such as light emitting diodes
[3], laser diodes [4], optical fibers [5]. Nowadays research on
PhCs becomes an increasingly important in the fundamen-
tal and applied sciences.

One of the kinds of PhCs is an opal matrix consisting of
spherical sub-micron balls packed into face centered cubic
(FCC) structure by means of self-sedimentation in a fluid
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suspension [6,7]. Silicon dioxide (SiO2) or silica is frequently
used as a host material in artificial opals. Silica balls are syn-
thesized by Stöber–Fink–Bohn process through the hydroly-
sis of tetraethylorthosilicate in the ethanol solution mixed
with ammonium hydroxide and water [8].

The applications of opal PhCs have number of signifi-
cant advantages over others. For instance, the opal matrix
can be grown over a large practically unlimited plane area.
Their fabrication is very technological without requirement
for expensive equipment. It has been recently shown that
by means of electro-deposition the high quality two- and
three-dimensional porous films, patterned in inverted opal,
can be successfully realized [9]. Thus, the nanocrystals
grown in artificial opal can be regarded as inexpensive
and efficient alternative for electro- and photolithography.

The fabrication of the high quality artificial opal by nat-
ural self-sedimentation in monodispersed fluid suspension
may continue for a long period, up to 10 months [6]. How-
ever this drawback is resolved in electrophoretically
assisted sedimentation involving an external electric filed.
Such an original technology enables one to accelerate a
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Fig. 1. Experimental set for observation of Bragg reflection in opal matrix
with perfect FCC structure.
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sedimentation velocity up to 0.2–0.7 mm per hour for the
balls ranging in diameter between 300 and 550 nm [10].

By means of the various chemical depositions, the voids
of the opal matrix can be filled with semiconductors
(GaAs, CdS, HgSe, Si, InN/GaN, CdTe, InP, ZnO, ZnS),
superconductors (In, Pb) ferromagnetic materials (Fe and
alloys) [11]. Different infiltration methods including chem-
ical vapor deposition [12,13] chemical bath deposition [12],
hydrolysis [13], salt-precipitation [13], sol–gel [13,14], elec-
tro-deposition [9,13], spray pyrolysis [13,15,16], etc. can be
applied for the formation of nanoparticles in interglobular
spaces of opal matrix.

Fig. 1 shows an experimental set for observation of
Bragg reflection from the surface of opal matrix with per-
fectly assembled FCC structure. The reflection peak is
detected according to Bragg’s law

k ¼ 2dh;k;lðn2
eff � sin2 hÞ1=2

; ð1Þ
where k is the wavelength,

dh;k;l ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p ;

a is the distance between planes, h, k, l are Miller indices,
and neff is the effective refractive index. For opal with per-
fectly ordered balls, the experimental data excellently fit
Bragg’s law. Peak in reflectance (or dip in transmittance)
shifts to the blue spectrum with increasing angle according
to (1). However, an opal with imperfectly ordered silica
balls behaves differently.

Consider Fig. 2 showing the SEM image of the opal,
which FCC structure has dislocations, formed during the
self-sedimentation process in a fluid suspension. The sam-
ple contains micro-size domains with facing up (111) and
(100) planes. These domains are chaotically distributed
within the sample and differently tilted with respect to its
Fig. 2. SEM image of the opal comprising silica balls. The
surface. As a result, the blue-shift in reflectance (or in
transmittance) becomes insignificant and irregular with
increasing angle [17,18]. It signifies that in highly imperfect
or in amorphous opal the color remains practically stable
at any h (Fig. 1). Despite of the fact that such sample does
not exhibit the blue-shift with increasing angle, the influ-
ence of photonic band-gap (PBG) in opal with disordered
FCC structure is possible to observe conclusively either
in the evolution of photoluminescence arising due to the
gradual increase of the filling factor or in temperature-
dependent photoluminescence [16].

It is worth remarking that imperfect opal structures
exhibit spectrum with greater FWHM in reflection (or in
average diameter of spheres is 265 nm (orange opal).



242 S.M. Abrarov et al. / Optics Communications 264 (2006) 240–246
transmission) [19]. While perfectly ordered opal matrix
may find its applications in various light emitting devices
[3,4], imperfectly assembled and/or amorphous opal with
embedded luminescent nanoparticles might be useful for
applications in full-color displays [16].

Nanoparticles infiltrated in interglobular spaces can
considerably alter the optical properties of opal matrix.
Therefore the estimation of the quantity of infiltrated
nanocrystals plays a significant role in practice. Particu-
larly, the amount of infiltrated material has to be properly
controlled during its deposition in the voids.

This paper reports two filling factor equations based on
effective medium and Maxwell–Garnett approximations.
The comparison between them shows that both equations
can be equally used for quantity estimation of infiltrated
nanoparticles in interglobular spaces between FCC packed
spheres.

2. Filling factor estimation

2.1. Refractive index based on effective medium

approximation

The quantitative analysis of the optical characteristics of
opal matrix can be significantly simplified introducing the
effective refractive index according to effective medium
approximation [20]. Effective refractive index can be
defined as a weighted sum of indices of refraction n1, n2,
n3, for spherical balls, infiltrated nanoparticles and air,
respectively. For the bare and infiltrated opals, the effective
refractive indices accordingly are

neff1
¼ n10:74þ n30:26 ð2aÞ

and

neff2
¼ n10:74þ n2f þ n3ð0:26� f Þ; ð2bÞ

where f is the filling factor for infiltrated nanocrystals. The
values 0.74 and 0.26 are the filling factors for the host
material (spherical balls) and air, respectively.

It is convenient to assume a low angle of incidence
(Fig. 1). Substitution of definitions (2a) and (2b) into (1)
yields wavelengths k1, k2 for the bare and infiltrated opals.
The refractive indices for the spherical balls and infiltrated
nanoparticles are both, in general, wavelength dependent.

The red-shift in reflectance or transmittance spectra aris-
ing due to infiltrated nanocrystals inside opal matrix can be
found as

Dk ¼ k2 � k1 ¼ 2dh;k;lðneff2
� neff1

Þ: ð3Þ
Substituting definitions (2a) and (2b) into (3) yields the
relation for the filling factor

f ¼

Dk
2dh;k;l

� ðn1ðk2Þ � n1ðk1ÞÞ0:74

n2ðk2Þ � n3

: ð4Þ

Alternatively, the filling factor can be derived through
ratio between wavelengths k1, k2 for the bare and infiltrated
opals
k2

k1

¼ 2dh;k;lneff2

2dh;k;lneff1

: ð5Þ

Substitution of effective refractive indices (2a) and (2b) into
(5) results to

f ¼

k2

k1

ðn1ðk1Þ0:74þ n30:26Þ � ðn1ðk2Þ0:74þ n30:26Þ

n2ðk2Þ � n3

: ð6Þ

Clearly that (4) and (6) are equivalent. Substitution of
expression k1 ¼ 2dh;k;lneff1

into (6) leads to (4).

2.2. Effective refractive index based on Maxwell–Garnett

approximation

Another definition for effective refractive indices, also
widely used in practice, is based on Maxwell–Garnett
approximation [21]. Effective refractive indices for the bare
and infiltrated opals can be expressed as a weighted sum of
the squared refractive indices

n2
eff1
¼ n2

10:74þ n2
30:26; ð7aÞ

n2
eff2
¼ n2

10:74þ n2
2f þ n2

3ð0:26� f Þ: ð7bÞ

Assume again a low angle of incidence. Substitution of
definitions (7a) and (7b) into (1) provides two squared
wavelengths k2

1 and k2
2 corresponding to the bare and infil-

trated opals, respectively. The difference between them is

k2
2 � k2

1 ¼ ð2dh;k;lÞ2ðn2
eff2
� n2

eff1
Þ: ð8Þ

From (7a), (7b) and (8) the filling factor can be found as

f ¼

k2
2 � k2

1

ð2dh;k;lÞ2
� ðn1ðk2Þ2 � n1ðk1Þ2Þ0:74

n2ðk2Þ2 � n2
3

: ð9Þ

Alternatively, the filling factor can be derived through fol-
lowing fraction:

k2
2

k2
1

¼
4d2

h;k;ln
2
eff2

4d2
h;k;ln

2
eff1

: ð10Þ

Substituting (7a) and (7b) into (10) leads to the relation for
the filling factor

f ¼

k2
2

k2
1

ðn1ðk1Þ20:74þ n2
30:26Þ � ðn1ðk2Þ20:74þ n2

30:26Þ

n2ðk2Þ2 � n2
3

:

ð11Þ
Obviously (9) and (11) are equivalent. Substitution of

expression k2
1 ¼ 4d2

h;k;ln
2
eff1

into (11) leads to (9).
Eqs (4), (6), (9) and (11) contain wavelength dependent

terms n1(k) and n2(k). In order to represent them in analytic
form, it is convenient to use Sellmeier dispersion formula
providing excellent match for ZnO and SiO2 [22–24]

nðkÞ2 ¼ Aþ Bk2

k2 � C2
þ Dk2

k2 � E2
; ð12Þ

where A, B, C, D and E are adjustable characteristics
parameters.
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3. Filling factors for opal matrix comprising silica balls

3.1. Refractive indices of silicon dioxide and zinc oxide

Fig. 3 shows the refractive indices for silicon dioxide and
zinc oxide vs. wavelength. Analytical form of n1(k) and
n2(k), obtained via Sellmeier dispersion approximation
(12), quite accurately fit data available in literature
[25,26]. The refractive index of ZnO may be considered a
flat only at the wavelengths above 450 nm where in the
most of the visible range it is around 2. Below this point,
the refractive index of ZnO has strong wavelength depen-
dence and its curve rapidly rises due to resonance occurring
between valence and conduction bands.

Contrarily, the curve for the silicon dioxide is nearly flat.
Therefore its refractive index can be considered a constant
over the wide optical range covering near infrared (IR) to
near ultraviolet (UV) spectra. Taking this into account and
considering the fact that refractive index of air is very close
to unity, (4) and (6) can be simplified and approximated as

f �

Dk
2dh;k;lðn2ðk2Þ � 1Þ ;

Dk
k1

n10:74þ 0:26

n2ðk2Þ � 1
:

8>><
>>:

ð13Þ

Similarly (9) and (11) can also be simplified and repre-
sented in form

f �

k2
2 � k2

1

4d2
h;k;lðn2ðk2Þ2 � 1Þ

;

k2
2 � k2

1

k2
1

n2
10:74þ 0:26

n2ðk2Þ2 � 1
:

8>>>><
>>>>:

ð14Þ

Suppose that the sample shown in Fig. 1 has the (111)
plane facing up [27]. In this case

d1;1;1 ¼
ffiffiffi
2
p

Dffiffiffi
3
p � 0:816D;

where D is the average spherical diameter. Substitution of
the value d1,1,1 into upper form of (13) results to
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Fig. 3. Refractive indices for silicon dioxide and zinc oxide.
f � Dk
2D� 0:816ðn2ðk2Þ � 1Þ : ð15Þ

Eq. (15) has been used for ZnO filling factor estimation in
our previous work [28].

3.2. Discrepancies between filling factors

The relative error defined as

err ¼ jf1 � f2j
f1

� 100% ð16Þ

is used in the present work to evaluate discrepancies be-
tween filling factors. Fig. 4 shows the filling factors and
their relative errors (16) vs. red-shift. The filling factors f1

and f2, calculated according to (13) and (14), are shown
by solid and dashed curves, respectively.

Consider silica opals, which PBGs include near UV, vis-
ible (purple-blue, bluish-green, green, yellow, orange-red,
crimson) and near IR spectra. Near origin the variations
of the filling factors f1, f2 are comparatively high and their
relative error strongly depends on diameter of silica balls.
For UV opal with D = 170 nm the relative error is almost
10%, while for IR opal with D = 310 nm it is less than 4%.
For all other opals with small infiltrations the relative
errors are less than 8%.

Using the following relation k2
2 � k2

1 ¼ 2Dk� k1 þ Dk2

and (1), the Eq. (14) can be rearranged as

k2
2 � k2

1

4d2
h;k;lðn2ðk2Þ2 � 1Þ

¼ Dk

dh;k;lðn2ðk2Þ2 � 1Þ
neff1

þ Dk2

4d2
h;k;lðn2ðk2Þ2 � 1Þ

: ð17Þ
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Fig. 4. Filling factors and relative error vs. red-shift for silica opals: 1—
170 nm (near UV), 2—190 nm (purple-blue), 3—210 nm (bluish-green),
4—230 nm (green), 5—250 nm (yellow), 6—270 nm (orange-red), 7—
290 nm (crimson), 8—310 nm (near IR). (For interpretation of the
references in colour in this figure legend, the reader is referred to the
web version of this article.)
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At small infiltrations f1 is greater than f2 since the contribu-
tions from the second term on the right side of (17) is neg-
ligible due to the squared value Dk2 of the numerator.
However, the second term gradually increases with increas-
ing infiltration. The filling factors f1, f2 intercept each other
in the red-shift range 55–65 nm indicating that the least dis-
crepancies between them occur when 0.1 < f < 0.2. At high
infiltrations the contribution from the second term of (17)
becomes significant leading to f1 < f2.

Fig. 5 shows relative error vs. red-shift dependencies for
UV opals with average ball diameters: (a) 162, (b) 163, (c)
164, and (d) 165 nm. The dashed curve corresponding to
D = 170 nm is also shown for comparison. From Fig. 5
one can see that the relative error does not further increase
with decreasing average diameter of balls.

At the high infiltrations the relative errors are negligible
for UV and purple-blue opals. For all other opals they do
not exceed 5%. Discrepancies between filling factors show
that each of two simplified Eqs. (13) and (14) can be used
for the quantity estimation of infiltrated material inside sil-
ica opal. However, it should be taken into account that for
the small amount of infiltration in UV opal the discrepancy
may be relatively high, nearly 10%.

Even though the effective medium and Maxwell–Garnett
approximations are successful to a certain extent to
describe the optical properties of PhCs, both of them have
the drawbacks, which may restrict the application range of
(4) and (9). Presumably, the comparison between filling
factors found via (4) and (9) and that of determined gravi-
metrically, i.e. by precise weighing of the samples before
and after deposition [16,29], might be a helpful approach
to demonstrate the practical limitations of the considered
equations.

4. Filling factors for opal matrix comprising ZnO balls

In fact, both Eqs. (2a) and (7a) contain the term n1,
which is itself, generally, may depend on value k1. There-
fore when the refractive index of balls is a function of the
wavelength, either of two Eqs. (2a) and (7a) contains two
unknowns, namely k1 and n1(k1). This problem cannot be
resolved analytically due to complicated form of Sellmeier
dispersion formula (12). Iterating loop [30] is a useful and
efficient programming method to solve numerically such
a task. The basic objective in computation is to determine
k1 and n1(k1), given by (2a) and (7a) via (12). Having
known the exact values k1 and n1(k1), the filling factors
f1(Dk), f2(Dk) can be readily found through corresponding
Eqs. (4) and (9), respectively.

The novel approach in fabrication of artificial opal com-
prising ZnO balls has been reported recently [19]. Refrac-
tive index of ZnO in the near UV spectrum is very high,
exceeding 9 at the band edge [25,26]. Therefore, having
such a high value of the refractive index, ZnO might be
regarded a possible candidate in fabrication of opal matrix
with complete PBG.

Gallium nitrate (GaN) can be synthesized inside the
voids of opal matrix by means of chemical deposition,
which details described elsewhere [31]. Suppose that GaN
is infiltrated in ZnO opal. In such a combination n1 and
n2 are refractive indices for ZnO balls and GaN, respec-
tively. Unlike silica, ZnO is strongly wavelength dependent
in the near UV region. Due to this reason, simplified Eqs.
(13) and (14) cannot be applied for opal comprising ZnO
balls when k1 < 450 nm.

The algorithm for computation of k1 and n1(k1) is
straightforward. Consider k1 and n1(k1), related to effective
medium approximation. Choose an arbitrary trial value of
k1, say 500 nm, and include it into Sellmeier dispersion for-
mula (12). Find the corresponding refractive index of balls
n1(k1) and substitute it into (2a). Calculate k1 by using (1)
and compare it with previous value. If the difference
between them is large, include the recent value k1 into Sell-
meier dispersion formula and repeat all calculations again.
Continue the same procedures if the difference between the
recent and previous values of k1 is not greater than some
small epsilon, say 10�3 nm.

The computation of k1 and n1(k1), related to Maxwell–
Garnett approximation, is absolutely similar with the only
difference that it employs (7a) instead of (2a). Typically the
iteration consisting of just 20–40 calculation cycles (steps)
is sufficient to get a required precision.

Table 1 shows the intermediate results for the opal with
zinc oxide balls, which average diameter is supposed to be
equal to 130 nm. The last row shows the exact values of k1

and n1(k1). The right part of Table 1 converges faster to the
desired values due to squared form of (7a).

Fig. 6 shows filling factors and their relative error for
ZnO opal infiltrated with GaN. The filling factors do not
intercept. The curve for f2 grows faster than that for f1,
consequently the relative error monotonically increase.
At the origin the relative error is small, less than 6%.
However, at complete infiltration the discrepancy
between filling factors becomes relatively high, reaching
almost 16%.



Table 1
Intermediate results in iterative computation of k1 and n1(k1)

Effective medium approximation Maxwell-Garnett approximation 
Step Trial λ1, nm Calculated λ1, nm n1(λ1) Step Trial λ1, nm Calculated λ1, nm n1(λ1)

1 500.000 377.395 2.051 1 500.000 389.878 2.051 

2 377.395 442.312 2.464 2 389.878 432.723 2.294 

3 442.312 387.449 2.115 3 432.723 403.710 2.130 

4 387.449 418.996 2.316 4 403.710 418.198 2.212 

5 418.996 394.435 2.159 5 418.198 409.326 2.162 

… … … … … … … …

28 403.101 403.097 2.215 18 412.399 412.406 2.179 

29 403.097 403.100 2.215 19 412.406 412.402 2.179 

30 403.100 403.098 2.215 20 412.402 412.404 2.179 

31 403.098 403.099 2.215 21 412.404 412.403 2.179 

32 403.099 403.099 2.215 22 412.403 412.404 2.179 
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Fig. 6. Filling factors and relative error vs. red-shift for ZnO opal
infiltrated with GaN.
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Fig. 7 shows the refractive indices of GaN [24] and ZnO
[25,26]. In the visible spectrum the refractive index of GaN
is higher than that of ZnO. Analyzing (4) and (9) one can
see that the relative error mostly depends on the diameter
of the balls and the difference between refractive indices
of the host and infiltrated materials. The decrease of the
refractive index contrast increases the relative error
between filling factors. For silica opal infiltrated with
ZnO the difference between refractive indices is about 0.5
and more in the visible spectrum, while for ZnO opal infil-
trated with GaN it is less than 0.35 (Fig. 7). As a result, the
relative error for infiltrated ZnO opal is higher. It should be
noted, however, that for the visible spectral range, the rel-
ative error between filling factors does not exceed 17.5%
even at complete infiltration.
5. Conclusion

Two equations for the filling factor estimation of infil-
trated ZnO in silica opal and GaN in ZnO opal have been
considered. The first equation is based on effective medium
approximation, while the second one—on Maxwell–Gar-
nett approximation.

The filling factor equations can be simplified for the sil-
ica opal because of its weak dependence of refractive index
on wavelength. However, the filling factor equations for
opal comprising ZnO balls requires a numerical solution.

The comparison between filling factors shows that both
of them can be equally used for quantity estimation of infil-
trated material inside opal matrix. However, at complete
infiltration the relative error between filling factors for
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ZnO opal infiltrated with GaN may exceed 15% due to
small refractive index contrast between zinc oxide balls
and infiltrated gallium nitride nanoparticles.
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