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ABSTRACT

MODi (http://modi.uos.ac.kr/modi/) is a powerful and
convenient web service that facilitates the inter-
pretation of tandem mass spectra for identifying
post-translational modifications (PTMs) in a peptide.
It is powerful in that it can interpret a tandem mass
spectrum even when hundreds of modification types
are considered and the number of potential PTMs in a
peptide is large, in contrast to most of the methods
currently available for spectra interpretation that limit
the number of PTM sites and types being used for PTM
analysis. For example, using MODi, one can consider
for analysis both the entire PTM list published on
the unimod webpage (http://www.unimod.org) and
user-defined PTMs simultaneously, and one can
also identify multiple PTM sites in a spectrum. MODi

is convenient in that it can take various input file for-
mats such as .mzXML, .dta, .pkl and .mgf files, and it is
equipped with a graphical tool called MassPective
developed to display MODi’s output in a user-friendly
manner and helps users understand MODi’s output
quickly. In addition, one can perform manual
de novo sequencing using MassPective.

INTRODUCTION

Identification of post-translational modifications (PTMs) is
important to understand cellular functions of proteins (1).
Sensitive methodologies based on conventional biochemical

methods are lacking for the identification of PTMs in vivo, but
recent advances in proteomic technology including mass
spectrometry provide an approach to identify PTMs (2–5).
Sequencing by tandem mass spectrometry (MS/MS) which
has aided protein identification offers a tremendous potential
for detecting PTMs (1).

Three approaches have been used to automatically interpret
tandem mass spectra for peptide sequencing (6), namely, data-
base searching (7–9), de novo peptide sequencing (10–12) and
sequence tag approach (13,14), and there have also been
efforts to combine these methods (15,16). Interpretation of
experimental spectra is harder if a peptide sequence contains
PTMs. One might consider extending one of these approaches
in a straightforward manner to sequence a peptide with any
number, any kind and any combination of PTMs, i.e. devel-
oping a virtual peptide database by incorporating peptides with
all possible combinations of PTMs, or extend the set of amino
acids by introducing new virtual amino acids such that the
mass of each virtual amino acid corresponds to the mass of a
post-transitionally modified amino acid. However, such exten-
sions yield an exponential time algorithm or a polynomial
time algorithm, the degree of which is very high. Thus these
algorithms are not appropriate to interpret tandem mass spec-
tra with multiple PTMs in a reasonable amount of time.
Recently there have been efforts to formally define this prob-
lem and suggest a way to reduce the time requirement of
PTM identification (17,18).

We have developed a convenient method called MODi for
rapidly interpreting tandem mass spectra of peptides with mul-
tiple PTMs. This method adopts a hybrid approach that com-
bines de novo sequencing with database searching. It performs
well even when a large number and types (>100 modification
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types) of potential PTMs are considered. In addition, we
developed a graphical tool called MassPective that shows
MODi’s output in a user-friendly manner. MassPective enables
a user not only to quickly view and understand MODi’s output,
but also to perform additional manual de novo sequencing so
that a MODi’s interpretation can be manually inspected.

By incorporating MODi and MassPective with web-based
interface, we have produced MODi web service. MODi web
will provide the biological community a fast and convenient
vehicle for identifying PTMs from tandem mass spectra.

METHODS

MODi consists of five stages: peak selection, tag discovery,
database search, tag chain generation and PTM identification.
It assumes that the number of candidate proteins has already
been reduced to 20 or less by protein identification, before the
spectra set is analyzed for PTM identification.

(i) Peak selection: We select peaks with relatively high
intensities (both globally and locally). The number of
peaks selected is proportional to a parent ion mass.

(ii) Tag discovery: We perform partial de novo sequencing on
the selected peaks to identify all the tags (partial amino
acid sequences that do not contain PTMs) of length up to 3.

(iii) Database search: Using the tags identified, we search the
peptide database for candidate peptides that contain any
of the identified tags (called forward tags) or the reverse
sequences of the identified tags (called reverse tags) of

length at least 3. It should be noted that the peptide
database we use does not contain any PTM information.
Thus the scalability requirement is satisfied.

(iv) Tag chain generation: For each candidate peptide, we
build a tag chain. A tag chain for a candidate peptide
consists of non-overlapping forward or reverse tags of
length at least 2, occurring in the candidate peptide and
in-between gaps, where each gap is a maximal consecu-
tive amino acid subsequence of the candidate peptide that
is not covered by any tags. The difference between the
mass of a gap and the size of its aligned segment of the
spectrum is called mass offset for the gap. (Figure 1)

(v) PTM identification: For each gap of a tag chain, we find a
set of PTMs that best interprets the gap. We first enu-
merate candidate sets of PTMs that correspond to the
mass offset of each gap, and then select the best candidate
set by comparing the partial theoretical spectra generated
by each candidate set with the partial experimental spec-
trum of the gap.

INPUT, OUTPUT AND PARAMETERS

Input

MODi requires users to input spectra, protein database and
PTM database.

(i) Spectra. MODi can take several different formats of spec-
tra: ISB mzXML format (*.xml), Thermo Finnigan
dta format (possibly compressed to a *.zip format),

Figure 1. A tag chain ‘__GG_glg_gga__’ for a spectrum from histone. A sequence of capital letters represents a forward tag, a sequence of small letters a reverse tag
and each underline a gap. This tag chain consists of one forward tag ‘GG’, two reverse tags ‘glg’ and ‘gga’ and four gaps in between. A mass offset for a gap can be
calculated by subtracting the mass of a gap from the size of its aligned segment of the spectrum. For example, the mass offset of the leftmost gap can be calculated as
41.947 Da, based on the size of aligned segment of 227.063(228.063 � 1) and the mass of the sequence ‘GK’ corresponding to the gap of 185.116 (Glycine: 57.021,
Lysine: 128.095).
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Micromass pkl format (*.pkl) and Mascot mgf format
(*.mgf). For reliable interpretation of PTMs, we recom-
mend users to input spectra with mass error tolerance
<1 Da.

(ii) Protein database. Protein database should be in fasta
format (*.fasta) and contain 20 or less protein sequences
because a large protein database may produce bulky false
positive results.

(iii) PTM database. MODi can consider the entire unimod
PTMs published in http://www.unimod.org. In addi-
tion, users can configure their tailored PTM list
composed of selected unimod PTMs and user-defined
PTMs. It is possible to save and load user-selected
PTM lists.

Parameters

Users can adjust MODi parameters appropriately according to
one’s experimental conditions. The parameters include max-
imum number of missed cleavages, mass tolerance, precursor
mass tolerance and enzymes used. In addition, users can fine-
tune MODi by fitting advanced parameters such as offset
minimum/maximum value per gap, tag chain discard rate,
minimum normalized intensity to consider, peak selection
window size and minimum/maximum peaks in a window.
Users can save parameters on a local host to re-use them
for later analysis. A more detailed description of each para-
meter can be found in help pages of the MODi website.

Output

MODi outputs a unidta file (*.unidta) and a unidrawing file
(*.unidrawing). To guarantee random access, each file has a
tailing offset list which indicates file offsets of input spectra.
The unidta file is a set of input spectra and the unidrawing file

is an XML formatted file which contains interpretations of
input spectra.

MassPective

MassPective has been developed to help users understand the
interpretation from unidta and unidrawing files. MassPective
is a graphical tool that displays MODi’s output in a user-
friendly manner and helps users understand MODi’s output
quickly. It shows each spectrum with ion-type annotation,
candidate peptides for the spectrum, tag-chains for the can-
didate peptides and possible PTM interpretations for the tag-
chains using graphical user interface. In addition, it enables
users to perform additional manual de novo sequencing so that
a MODi’s partial interpretation can be manually annotated
with additional sequencing information.

Given a spectrum, MassPective displays MODi’s output in
three tiled windows (candidate peptide list, detailed informa-
tion, and spectrum windows) and a pop-up gap list window
(Figure 2). Candidate peptide list window shows candidate
peptides for the current spectrum and tag-chains of each can-
didate peptide. By selecting a candidate peptide or a tag chain,
a user can see useful information such as score, offset list or
gap list in the detailed information window. If a user clicks a
tag chain, a pop-up window showing gap list appears. Gap list
window shows combinations of PTMs that may occur in each
gap and their scores and a user can select an interpretation of
each gap so that the corresponding annotation in the spectrum
window can be displayed. Spectrum window displays the
selected spectrum together with various annotations a user
selects. By clicking buttons in the toolbar, a
user can see spectral alignment of y ion tags, b ion tags,
theoretical y-ion peaks and theoretical b-ion peaks
respectively.

Figure 2. MassPective screen shot. This is the interpretation of a spectrum corresponding to the peptide ‘GKGGKGLGKGGAKR’ of histone. It shows spectral
alignments of y ion tags, theoretical y-ion peaks, and their ion annotation in red and those of their b counterparts in blue.
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Another function of MassPective is to report protein
summary in CSV (Comma-Seperated Values) file format
(Figure 3) or save spectral image in *.bmp or *.jpeg format
and print out the currently displayed spectrum.

MassPective also supports manual de novo sequencing
with PTMs by identifying every amino acid (possibly with
a PTM) of which mass corresponds to the mass
difference of any two peaks in a designated spectral segment.
(Figure 4)

RESULTS

MODi web server has been tested by four groups: a group that
uses a nano-LC/MS–MS system consisting of an Ultimate

HPLC system (LC Packings) for nano-LC and a Q-TOF
Ultima Global mass spectrometer (Micromass) equipped
with a nano-ESI source, a group that uses a Finnigan LTQ
equipped with ‘in-house’ nano-ESI source, a group that uses
Finnigan LCQ equipped with ‘in-house’ nano-LC system and
a group that uses Applied Biosystems 4700 Proteomics
Analyzer MALDI-TOF/TOF equipped with Agilent 1100
series capillary HPLC system.

Figure 5 shows how MODi interprets a spectrum with mul-
tiple modifications successfully. MODi interprets the spectrum
as a peptide ‘GKGGKGLGKGGAKR’ with four acetylation
sites at every Lysine in the peptide. As shown in Figure 5,
MODi first finds a tag chain __GG _glg_gga__, computes the
mass offsets of the gaps, which are 41.95, 41.92, 41.94 and

Figure 4. Manual sequencing by MassPective. If a user designates an area in the spectrum, a window pops up showing all possible combinations of one amino acid
mass possibly with one PTM whose mass agrees with the difference of two peaks in the area with higher intensity than the intensity value of the designated line.

Figure 3. A protein summary report generated by MassPective. It is a summary of the output of MODi for each identified protein, containing protein information and
sequence coverage for proteins which correspond to input spectra. Also, for each interpreted spectrum, it gives a submitted mass, matched peptide sites in protein
sequence, match score, a spectrum identifier and identified PTMs.
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41.93 Da, respectively, estimates four acetylation sites from
the mass offsets and evaluates the estimation by a simple
scoring scheme.

MODi can find multiple PTMs in a single gap. In Figure 6,
MODi identifies a deamidation on ‘N’ and a di-methylation on
‘K’ in a gap ‘NGK’. In general, considering various combina-
tions of possible modifications requires prohibitively huge
computational time as the numbers of possible modification
sites and types increase. This example demonstrates how
MODi successfully manages the time complexity of modifica-
tion analysis problem so that it can spend time on identifying
multiple closely located PTMs in a peptide. This is possible
because MODi has already identified regions in a peptide that
do not contain modified residues and are anchored on those

sites before starting modification analysis for each gap. Thus,
it narrowed down the search space for multiple PTMs to each
gap region of a peptide, which is generally a lot shorter than
the entire peptide length.

DISCUSSION

Identifying multiple PTMs in a single gap mandates trying all
possible combinations of feasible PTMs. This implies that as
the number and the type of PTMs being considered grow, the
number of combinations grows exponentially. This is the
reason why most of the previous methods limit the number
of PTM sites and PTM types being considered. However, we
manage the computational complexity of PTM identification

Figure 6. Shows that MODi can find multiple PTMs in a single gap. It identifies a deamidation on ‘N’ and a di-methylation on ‘K’ in a gap ‘NGK’.

Figure 5. Interpretation for a spectrum with precursor ion 719.663 (2+) corresponding to a peptide ‘GKGGKGLGKGGAKR’ of histone. MODi first finds a tag chain
__GG _glg_gga__, computes mass offsets of the gaps, which are 41.95, 41.92, 41.94 and 41.93 Da, respectively (shown in Figure 1). Every Lysine is interpreted with
an acetylation and the estimation is evaluated by a scoring scheme.
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innovatively and therefore MODi can interpret a tandem mass
spectrum when hundreds of modification types are considered
and the number of potential PTMs in a peptide is large. MODi

is different from existing methods based on sequence tags in
that it aligns multiple sequence tags to a candidate peptide and
isolates regions that might include post-translationally
modified amino acids, while most of the previous methods
align a single tag to a candidate peptide and try to identify
modifications over the entire peptide. By first fixing unmodi-
fied regions in a peptide and then interpreting potentially
modified amino acids in relatively small regions in between
these unmodified tags, MODi can greatly reduce the search space
for PTMs. In our experiments, MODi demonstrates its power by
identifying uncommon modifications and artefacts such as
di-methylation, acrylamide adduct (propionamide), cysteine
oxidation to cysteic acid and tryptophan oxidation to formylky-
nurenin. Such results are in accordance with the recent publication
by Pevzner group where a variety of PTMs are reported (18).

Owing to the efficiency gain obtained by our method, MODi

runs in a reasonable amount of time. We tested MODi on a
web server of Intel Xeon 3.06 GHz dual processor with 2 GB
memory, running Windows Server 2003. For a dataset of
5684 spectra, with 211 different PTM types downloaded
from http://www.unimod.org and nine protein sequences,
obtained from Mascot’s protein ID results, in the Protein
DB, it took �360 s. When the same dataset was run with a
database of 20 proteins (additional 11 random proteins from
IPI human database), it took �1070 s.

The current version of MODi assumes that the number of
candidate proteins is limited to 20 or less, and focuses on finding
PTMs in tandem mass spectra. Candidate proteins can be easily
identified using tandem mass spectra that do not contain PTMs
using any of existing methods such as SEQUEST, Mascot or
X!Tandem (7,8,19). In order to conduct protein identification on
the same web server, instead of using separate software tools,
we are planning to generalize the current version of MODi so
that it also includes the protein identification step.
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