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Abstract

This work proposes a vibration-based damage evaluation method that can detect, locate, and size damage utilizing
only a few of the lower mode shapes. The proposed method is particularly advantageous for beam-like structures with
uncertain applied axial load, mass density, and foundation stiffness. Based on a small damage assumption, a linear rela-
tionship between damaged and undamaged curvatures is revealed in the context of elasticity. It turns out that the result-
ing damage index equation inherently suffers from singularities near inflection nodes. The transformation of the
problem into the multi-resolution wavelet domain provides a set of coupled linear equations. With the aid of the sin-
gular value decomposition technique, the solution to the damage index equation is achieved in the wavelet space. Next,
the desired physical solution to the damage index equation is reconstructed from the one in the wavelet space. The per-
formance of the proposed method is compared with two existing damage detection methods using a set of numerical
simulations. The proposed method attempts to resolve the mode selection problem, the singularity problem, the axial
force problem, and the absolute severity estimation problem, all of which remained unsolved by earlier attempts.
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1. Introduction

It is essential to periodically monitor the load-carrying capacity of a structure, since the accumulation of
damage may result in a catastrophic structural failure. For such an application, the vibration-based inspec-
tion method has received increasing attention for civil engineering structures. This is due to remarkable
advances in techniques for the extraction of modal parameters of real structures. However, the vibra-
tion-based nondestructive damage evaluation (NDE) techniques inherently suffer from the following
incompleteness of measured modal data: (1) only a few of the lower modes can be measured; (2) the
complete sets of degrees of freedom cannot be measured; and (3) the complete spatial resolution of mode
shape cannot be achieved. Attempts to overcome this incompleteness of measured modal data have
motivated the continued evolution of NDE techniques over the last two decades.

Damage in a structure may cause various changes in structural responses such as frequency shifts, mode
shape variations, changes in mode shape curvature, changes in modal flexibility, variations in strain mode
shape, modal strain energy fluctuations, etc. Among the various research efforts, the utilization of a fre-
quency shift was popular in early studies. The frequency-based NDE is based on the concept that changes
in local stiffness are reflected by changes in eigen-frequencies (Cawley and Adams, 1979). The apparent
practical advantage using natural frequencies for NDE is twofold: First, frequency information is indepen-
dent of the probing position of the transducers; second, the measured frequencies are relatively accurate
compared to mode shapes. Consequently, several techniques have been proposed to detect, locate, and size
damage using frequency information. However, the frequency-based methods have at least two weaknesses:
First, the frequencies of structures are also affected by changes in mass density, applied axial force, and
foundation stiffness. In practice, such structural changes are generally unknown. Furthermore, the natural
frequencies are altered by the site�s environmental conditions such as air temperature, humidity, mean air
pressure, and rainfall on the day preceding the test (Farrar and Jauregui, 1998). In addition, in the case of
symmetrical structures, the changes in natural frequency due to damage at two symmetric locations are ex-
actly the same. Thus, solutions may not be unique. Second, in the case of small, local damage, frequency
changes could be comparable in size to the measurement errors. Thus, the insensitivity problem is unavoid-
able in frequency-based methods.

Such drawbacks of the frequency approaches draw special attention to methods utilizing displacement
measures such as the mode shape curvature (MSC) method given by Pandey et al. (1991) and the damage
index (DI) method given by Stubbs et al. (1995). Simulating damage on a cantilever and a simply supported
beam model, Pandey et al. (1991) numerically showed that the changes in the curvature mode shapes are
highly sensitive to damage and can be used to localize it. The MSC method utilizes the flexural formula
for an Euler–Bernoulli beam, and the curvatures of mode shapes are obtained by applying the central dif-
ference formula to the measured mode shapes. However, the MSC method has at least the following five
deficiencies: First, the small errors in mode shape measurements may be magnified in the required central
difference process. Second, the method requires a sufficient spatial resolution to obtain accurate second
derivatives of mode shapes. Third, the estimation results can be different if more than one mode is used.
Fourth, the method cannot estimate the absolute severity of damage even when the localization of damage
is successful. Finally, the singularity problems near the inflection points of mode shapes make detecting
damage more difficult.

The first weakness is unavoidable, because the MSC method is based on the displacement measures.
Compared to the second weakness of the frequency-based methods, this trade-off is essential for higher sen-
sitivity to damage. In general, the intensity of this problem can significantly be reduced by a large number
of statistical tests. Another approach to resolve this problem is to use wavelets. The concept behind apply-
ing wavelets is that the wavelet transformation with n vanishing moments is identical to differencing the
signal n times (Shao and Ma, 2003). Thus, the finite difference process to obtain the second derivative of
mode shapes could be replaced by the wavelet transformation. Recently, wavelets with two vanishing
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moments have been applied for damage detection (Wang and Deng, 1999; Hong et al., 2002; Douka et al.,
2003; Gentile and Messina, 2003; Messina, 2004; Loutridis et al., 2004). In such applications, the Haar
wavelet among the various wavelets is excluded because it has vanishing moments of first order. The appar-
ent advantage of the wavelet application lies only in its de-noising feature. However, this limitation of the
wavelet technique is shared with the mentioned second through fourth limitations of the MSC method. The
second shortcoming of the MSC method can be overcome by increasing the number of measurement loca-
tions. Although this requirement may not be acceptable for a conventional transducer, a recently developed
scanning laser vibrometer could make it feasible. In the technical literature, the feasibility studies on the use
of a large number measurement grid with a large number of sampling points have been reported and have
been accepted recently by several pioneers. For instance, Pai and Young (2001) have reported the successful
collection of the operational deflection shapes at 200 or 400 points for both a real beam and plate using a
scanning laser vibrometer. To date, the third, fourth, and fifth shortcomings listed may be critical, because
there is no way to resolve such problems even at cost. A few attempts to resolve those problems have been
reported. To resolve the third shortcoming, Doebling et al. (1996) and Pandey et al. (1994) suggest the use
of modal flexibility, because it provides a rational way to combine all the measured modes. However, the
modal flexibility still depends on mass and surrounding stress, because it is reconstructed from frequency
information. To resolve the fourth drawback, Wahab and Roeck (1999) propose a curvature damage fac-
tor. However, no theoretical support for the proposed indicator has yet been presented. As a consequence,
the proposed factor still shares the same difficulty. To resolve the fifth drawback, Kim et al. (2002) derived
the so-called flexural damage index equation. However, the proposed approach does not consider the non-
linearity due to an axial force and mass uncertainty because of the utilization of modal flexibility. There-
fore, the third, fourth, and fifth drawbacks of the family of MSC methods still need to be addressed.

This study attempts to overcome the aforementioned drawbacks, and to improve the efficiency, accu-
racy, and reliability of the family of MSC methods. To achieve this objective, we follow three steps: First,
the theoretical background of damage mechanics and the fundamentals of multi-resolution Haar wavelet
transformations is discussed in detail. Second, with the aid of the wavelet transformation, a technique
for solving the previously derived damage index equation is introduced. Finally, various numerical verifi-
cations are provided to illustrate the performance of the proposed approach.
2. A theory of damage detection

2.1. Damage mechanics

Consider a deformable body shown in Fig. 1. The real line, w, denotes a deformed configuration with an
elastic modulus E due to the applied loads (P1, P2, and P3). The dashed line, w*, denotes a deformed con-
figuration due to changes in the elastic modulus of E* at an arbitrary location. Assume that the presence of
the small deformations (d1, d2, and d3) due to damage and slight changes in the lines of action of the loads
will have only an insignificant effect on the internal forces. This condition requires that the change in shapes
of the body due to damage must not affect the action of the applied loads. In the development that follows,
two conditions are assumed to hold. First, a small damage event, a priori, will have no effect on the internal
forces of a statically determinate structure. Second, it is assumed that the same condition holds in a stat-
ically indeterminate structure with low redundancy. Hence, the stresses, r, in the deformable configuration
are constant during changes in strain due to damage:
r ¼ r� ð1Þ

where the asterisk denotes the damaged state. The stress-strain relationship of a deformable body following
Hook�s law is illustrated in Fig. 2. The strain energy densities before and after a small damage event are the
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areas OAD and OBC, respectively. Thus, total strain energy is altered by damage during a small damage
event. The work done on stress fibers caused by a preloading is the area ABCD. Hence, the strain energy
density supplied to the body for the damage event is equal to the area OAD + ABCD � OBC = OAB.

In the case of the Euler–Bernoulli beam, the internal moment of a beam can be obtained by integrat-
ing Eq. (1) with respect to the cross-sectional area after multiplying by vertical coordinates on both
sides:
M ¼ M� ð2Þ
Applying the kinematics between strain and deflection yields a damage index equation that gives a linear
relationship between undamaged and damaged curvature:
j� ¼ bj ð3Þ

in which
b ¼ E
E�

ð4Þ
where b and j denote the damage index and the undamaged curvature, respectively. Suppose that the cur-
vatures of the damaged and undamaged conditions are available. Then, the desired damage index can easily
be obtained by dividing the damaged curvature by the undamaged curvature in Eq. (3) unless the undam-
aged curvature is nonzero.
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b ¼ j�

j
ð5Þ
However, inflection points of a deflection profile are often encountered in practice. Therefore, one must re-
sort to a way of avoiding this singularity problem. To extend the generosity of solving the singularity prob-
lem, the recent application of wavelets to engineering problems draws special attention. Before discussing
further developments in the damage detection theory, the following section describes the basics of the multi-
resolution wavelet analysis.

2.2. Multi-resolution analysis of the Haar wavelet

The Haar basis is the simplest orthonormal wavelet basis for multi-resolution analysis (Mallat, 1998).
The Haar domain consists of a scaling function /(x) and a wavelet function w(x). The Haar scaling func-
tion and wavelet function satisfy the following dilation and wavelet equations, respectively:
/ðxÞ ¼ /ð2xÞ þ /ð2x� 1Þ ð6Þ
wðxÞ ¼ /ð2xÞ � /ð2x� 1Þ ð7Þ
Multiplying both sides by a factor 1/2, Eqs. (6) and (7) reveal that the scaling and wavelet functions act like
averaging and differencing operators, respectively (Stollnitz et al., 1995). The solutions to the scaling and
wavelet equation are known as:
/ðxÞ ¼
1; 0 6 x < 1

0; otherwise

�
ð8Þ

wðxÞ ¼
1; 0 6 x < 1=2

�1; 1=2 6 x < 1

0; otherwise

8><
>: ð9Þ
Plots of the scaling and wavelet equations are given in Fig. 3.
Consider functions defined on the interval 0 6 x < 1. Let Vj be a set of functions that are constant on the

2j intervals {n/2j
6 x < (n + 1)/2j, n = 0,1, . . . , 2j � 1}. Then, any function in Vj can be represented by a lin-

ear combination of the 2j orthonormal functions:
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Fig. 3. Scaling and wavelet equation of Haar basis.
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The factor 2j/2 only plays a role in the normalization of /(2jx � n), since �[/(2j/2x)]2 dx = 2�j. For a fixed
resolution level j, the scaling and wavelet bases are defined by
Uj ¼ /j;nðxÞ; n ¼ 0; 1; . . . ; 2j � 1
� �

ð12Þ
Wj ¼ wj;nðxÞ; n ¼ 0; 1; . . . ; 2j � 1

� �
ð13Þ
Applying Eqs. (6) and (7), the basis of Uj can be represented by a direct sum of two orthonormal bases of
the next lower resolution level:
Uj ¼ Uj�1 �Wj�1 ð14Þ
Let the space Vj be represented by Uj. Then the successive application of Eq. (14) yields
Vj ¼ U0 �W0 �W1 �W2 � � � � �Wj�2 �Wj�1 ð15Þ

Therefore, any function in Vj can be represented by a set of wavelet bases Wj and a fundamental scale basis
U0.

For instance, consider a simply supported beam with total length L. For a transverse load P = 27/L, the
curvature profile measured at the 8 nodes with a uniform interval of L/9 is shown in Fig. 4. For a nondi-
mensional coordinate, x ¼ �x=L starting from the first sensor location, the resolution level of the measured
curvature profile, j = {2,4,6,5,4,3,2,1}, becomes at least j = 3 because 2j = 8. The curvature profile se-
quences can be represented by a linear combination of the 23 = 8 scaling functions /3,n(x) = 23/2/
(23x � n), n = {0,1, . . . , 7}:
jðxÞ ¼
X7

n¼0

a3;n/3;nðxÞ ð16Þ
where aj,n denotes the nth representation of j(x) in the space Uj. Applying the inner product to j(x) and
/3,n(x), the representation coefficients can easily be extracted: a3 = 2�3/2{2,4,6,5,4,3,2,1}. The next step
involves finding the scaling and wavelet functions at the resolution level j = 2. Note that the space U3

can be decomposed into two subspaces, U2 and W2, whose bases consist of the functions /2,n(x) = /
(22x � n) and w2,n(x) = w(22x � n) for n = {0,1, . . . , 3}, respectively. Therefore, the curvature can be
expressed by
jðxÞ ¼
X3

n¼0

a2;n/2;nðxÞ þ
X3

n¼0

b2;nw2;nðxÞ ð17Þ
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where bj,n denotes the nth representation of j(x) in the space Wj. Combining Eqs. (16) and (17) yields
X7

n¼0

a3;n/3;nðxÞ ¼
X3

n¼0

a2;n/2;nðxÞ þ
X3

n¼0

b2;nw2;nðxÞ ð18Þ
After multiplying both sides of Eq. (18) by /2,n(x), and integrating with respect to x yields the representa-
tions of a2,n:
a2;n ¼ 2�1=2 a3;2n þ a3;2nþ1ð Þ for n ¼ 0; 1; . . . ; 3f g ð19Þ
Note that the orthonormal condition between the spaces U2 and W2 makes the manipulation easy. Simi-
larly, the representation b2,n can be obtained by the integration after multiplying both sides of Eq. (18)
by w2,n(x):
b2;n ¼ 2�1=2ða3;2n � a3;2nþ1Þ for n ¼ 0; 1; . . . ; 3f g ð20Þ
The explicit expressions of the resulting representations for the resolution level 2 are a2 = 2�2{6,11,7,3}
and b2 = 2�2{�2,1,1,1}. By the same token, the space U2 can be further decomposed into two subspaces,
U1 and W1, whose basis components consist of /1,n(x) = 21/2/(2x � n) and w1,n(x) = 21/2w(2x � n) for
n = {0, 1}, respectively. Then, the first term in the right hand side of Eq. (18) can be written as
X3

n¼0

a2;n/2;nðxÞ ¼
X1

n¼0

a1;n/1;nðxÞ þ
X1

n¼0

b1;nw1;nðxÞ ð21Þ
The identical procedure using the orthonormal property in the resolution level j = 1 yields the unknown
representations:
a1;n ¼ 2�1=2ða2;2n þ a2;2nþ1Þ for n ¼ f0; 1g ð22Þ

b1;n ¼ 2�1=2ða2;2n � a2;2nþ1Þ for n ¼ f0; 1g ð23Þ
After some calculations, we then obtain a1 = 2�5/2{17,10} and b1 = 2�5/2{�5,4}. Similarly, the space U1

can be decomposed into two subspaces, U0 and W0. The first term in the right hand side of Eq. (21) can
be written as
X1

n¼0

a1;n/1;nðxÞ ¼
X0

n¼0

a0;n/0;nðxÞ þ
X0

n¼0

b0;nw0;nðxÞ ð24Þ
where a0;0 ¼ 27
8

and b0;0 ¼ 7
8
. Combining Eq. (17) with Eqs. (21) and (24) yields the curvature in terms of

wavelet basis:
jðxÞ ¼
X0

n¼0

a0;0/0;nðxÞ þ
X0

n¼0

b0;nw0;nðxÞ þ
X1

n¼0

b1;nw1;nðxÞ þ
X3

n¼0

b2;nw2;nðxÞ ð25Þ
Note that the curvature in terms of the scaling function at a single resolution level j = 3 (see Eq. (16)) is
now expressed by the wavelet functions at multiple resolution levels in Eq. (25). This iterative, hierarchical
successive decomposition procedure is called the multi-resolution analysis of wavelets. Eq. (25) is illus-
trated in Fig. 5. Hence, the representation of the curvature in the Haar wavelet basis is

jHaar ¼ 27
8
; 7

8
;� 5

4
ffiffi
2
p ; 1ffiffi

2
p ;� 1

2
; 1

4
; 1

4
; 1

4

n o
. Note that the representation a0,0 is equal to the average value of all
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the measured curvatures. Furthermore, a set of multi-resolution wavelet bases and a scaling basis comprise
a set of orthonormal bases (see Eq. (15)) although the scaling bases are not orthogonal for each resolution
level.

The Haar wavelet basis has many features. One important feature is the capability for coupling with only
a finite number of adjacent data points. For instance, the Haar transformation of a unit impulse

{1,0,0,0,0,0,0,0} is 1
8
; 1

8
; 1

4
ffiffi
2
p ; 0; 1

4
; 0; 0; 0

n o
. Unlike the Fourier basis, the unit impulse is correlated with

four nonzero values in the Haar basis. Therefore, a point-wise relation in the real domain can be trans-
formed into the finite coupling one in the Haar domain. As shown in the following section, this feature
plays a major role in resolving the singularity problem in Eq. (3).

2.3. Damage evaluation using multi-resolution wavelet analysis

For the resolution level j, the curvature profiles in Eq. (25) can be rewritten as
jðxÞ ¼ a0;0/0;0ðxÞ þ
Xj�1

m¼0

X2m�1

n¼0

bm;nwm;nðxÞ ð26Þ
Now, the damaged curvature profiles j*(x) and the damage index b(x) can be also represented by the same
multi-resolution wavelet basis:
j�ðxÞ ¼ a�0;0/0;0ðxÞ þ
Xj�1

m¼0

X2m�1

n¼0

b�m;nwm;nðxÞ ð27Þ

bðxÞ ¼ p0;0/0;0ðxÞ þ
Xj�1

m¼0

X2m�1

n¼0

qm;nwm;nðxÞ ð28Þ
where p0,0 and qm,n are the 0th and nth representation of the function b(x) in the space U0 and Wm, respec-
tively. Substituting Eqs. (26)–(28) into the previously derived damage index equation (3) yields
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a�0;0/0;0ðxÞ þ
Xj�1

m¼0

X2m�1

n¼0

b�m;nwm;nðxÞ ¼ p0;0 a0;0/
2
0;0ðxÞ þ

Xj�1

m¼0

X2m�1

n¼0

bm;nwm;nðxÞ/0;0ðxÞ
 !

þ
Xj�1

m¼0

X2m�1

n¼0

qm;n a0;0/0;0ðxÞwm;nðxÞ þ
Xj�1

k¼0

X2k�1

t¼0

bm;nwm;nðxÞwk;tðxÞ
 !

ð29Þ
Suppose that the representations fa0;0; bm;n; a�0;0; b
�
m;ng of the measured curvatures in the damaged and

undamaged conditions are known by the Haar transformation. Then, the representations {p0,0,qm,n} of
the damage index b(x) can be identified. After multiplying both sides of Eq. (29) by /0,0(x), the integration
with respect to x from zero to unity yields:
a�0;0 ¼ p0;0a0;0 þ q0;0b0;0 þ q1;0b1;0 þ q1;1b1;1 þ � � � qj�1;2j�1�1bj�1;2j�1�1 ð30Þ
Note that the orthonormal property of the multi-resolution wavelet basis plays a significant role in reducing
computation. Similarly, the integration after multiplication of /m,n(x) into Eq. (29) yields:
b�m;n ¼ q0;0 a0;0

Z 1

0

/0;0/0;0/m;n dxþ
Xj�1

k¼0

X2k�1

t¼0

bk;t

Z 1

0

/0;0wk;t/m;n dx

 !

þ q1;0 a0;0

Z 1

0

w1;0/0;0/m;n dxþ
Xj�1

k¼0

X2k�1

t¼0

bk;t

Z 1

0

w1;0wk;t/m;n dx

 !

þ q1;1 a0;0

Z 1

0

w1;1/0;0/m;n dxþ
Xj�1

k¼0

X2k�1

t¼0

bk;t

Z 1

0

w1;1wk;t/m;n dx

 !
� � �

þ qj�1;2j�1�1 a0;0

Z 1

0

wj�1;2j�1�1/0;0/m;n dxþ
Xj�1

k¼0

X2k�1

t¼0

bk;t

Z 1

0

wj�1;2j�1�1wk;t/m;n dx

 !
ð31Þ
Combining Eqs. (30) and (31) yields a set of coupled linear algebraic matrix equations:
Ax ¼ b ð32Þ
where the j� 1 vector x ¼ bp0;0; q0;0; q1;0; q1;1; q2;0; . . . ; qj�1;2j�1�1c
T denotes the representation coefficients of

the damage indices to be identified. The j · 1 vector b ¼ ½a�0;0; b
�
0;0; . . . ; b�j�1;2j�1�1

�T denotes the representa-

tions of the damaged curvature in the Haar basis. The j · j matrix A denotes the brackets in Eq. (31). When
computing the matrix A, the direct numerical integration of the three multiples of the basis function is not
recommended. One can easily obtain the matrix A by simple multiplications and summation of the Haar
basis functions because they are constants in their support. In principle, any wavelet can be used to con-
struct Eq. (32). However, the Haar wavelet is the best for the computation of the required triple integral
in Eq. (31). If there is no singularity in the curvature, the solution can be easily achieved by solving Eq.
(32) for the representations of damage index. Using the resulting representations of damage index in the
Haar domain, the physical true damage index can be reconstructed by Eq. (28).

For instance, consider a damaged curvature profile j* = {2,4,6,10,4,3,2,1} caused by the 50%
reduction of the flexural rigidity at the location of the 4th sensor. Using the identical multi-resolution anal-
ysis, the representations of the damaged curvature profile in the Haar domain become

j�Haar ¼ 4; 3
2
;� 5

2
ffiffi
2
p ; 1ffiffi

2
p ;� 1

2
;�1; 1

4
; 1

4

n o
. Then, the damage index equation (32) is given by
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Note that the matrix A is symmetric, which can reduce computational efforts significantly. Inverting the

matrix A directly, the solution to Eq. (33) is given by x ¼ 9
8
; 1

9
;� 1

4
ffiffi
2
p ; 0; 0;� 1

4
; 0; 0

j kT

. From this resulting

representation of damaged indices in Haar wavelet domain, the desired physical damage index can be
reconstructed by Eq. (28): The computed damage index is b = {1,1,1,2,1, ,1,1,1}. This result can be imme-
diately interpreted as a 50% reduction of the Young�s modulus at the location of the 4th sensor. Indeed,
dividing each component of the damaged curvature profile j* by that of the undamaged curvature profile
j yields the exact damage indices as stated in Eq. (5). However, when the curvature profiles include zeros,
one cannot apply Eq. (5) directly. In that case, the wavelet damage index equation (32) must be solved. The
following section deals with such a singularity problem.

2.4. Solution to the singularity problem

If there exist r singularities in a curvature profile, the matrix A definitely suffers from a rank deficiency of
r. Consequently, the direct inversion of the matrix A is not possible. This singularity problem can easily be
resolved by providing the additional equations generated by the different curvature profiles. Here, a neces-
sary condition for such an additional curvature profile is that the locations of the singularities should not
the same as those in the previously used curvature profiles. In practice, a few of the lower mode shapes are
available through typical modal testing. Therefore, one choice is to make use of two curvature profiles com-
puted by the first and second mode shapes because the singularities of those profiles usually do not coincide.
The other choice is to take a set of modal flexibilities reconstructed with a few lower modal parameters.
Recall that modal flexibility is a modal approximation of the deflection profiles caused by a unit load
(Berman and Flannelly, 1971). Thus, for a given set of modal parameters, many different deflection profiles
can be reconstructed for various locations of an applied unit load. However, the modal flexibility is not free
from uncertainty in mass and surrounding stresses, because the frequencies are involved in the required
reconstruction process. Hence, the utilization of modal flexibility profiles is limited.

Using either curvature mode shapes or modal flexibility curvatures, the size of the matrix A will be in-
creased to m · n with the condition m > n. Consequently, Eq. (32) results in an over-determined equation
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with rank n. In this case, the a pseudo-inverse solution satisfying all the Moore–Penrose conditions (Golub
and Van Loan, 1996) can be obtained by
x ¼ YX�1YTATb ð34Þ
where the n · m matrix Y and the m · m matrix X are the sets of the singular vectors and the singular values
of an n · n symmetric matrix ATA, respectively:
ATA ¼ YXYT ð35Þ
It can be shown that the solution presented in Eq. (34) is an optimum solution of L2 minimization. After
obtaining the representations of the damage index in Eq. (34), the desired damage index can be recon-
structed by Eq. (28).

2.5. Extraction of curvature profiles

In practice, the number of sensor locations is often not a power of two. To resolve this problem, one
convenient choice is to add zeros. For example, if there are 14 sensors, two zeros can be added to give a
total of the 16 points on mode shapes. This addition of zeros does not affect the accuracy of the estimation
results.

To extract curvature profiles from mode shapes with coarse and irregular intervals, the interpolation
process with a refined uniform interval is a prerequisite before differencing. The reason is that the well-
known central difference formula is applicable to a uniform interval. Among many classes of interpolation
functions, the spline interpolation of measured deflection profiles with a refined interval is preferred. This
preference is totally based on various numerical experiences. After the interpolation of the deflection pro-
files, the refined curvature profiles can be obtained by the central difference approximation. This enlarged
interpolated curvature profile could be used to extract curvatures at the sensor locations. Then, the size of
the resulting curvature profile is the same as with the measured mode shape. However, there still exists
uncertainty in the estimation of the severity of damage at unmeasured locations, since the true curvature
profile between two measured adjacent nodes remains unknown. To alleviate this uncertainty, a recently
used technique is to measure displacements on dense grids using a scanning laser vibrometer (Pai and
Young, 2001).

An interesting recent alternative to computing curvature profiles from measured deflection profiles is to
apply a wavelet transformation instead of a finite difference formula. Recall that the wavelet equation (7)
acts like a difference operator. Thus, the wavelet transformation with n vanishing moments is analogous
to differencing the signal n times. This approach is particularly advantageous when noise is involved in
the measured deflection profiles. For extracting the second derivatives from the noise deflection profiles,
the wavelet transformation with two vanishing moments provides superior accuracy to the finite difference
formula (Shao and Ma, 2003; Gentile and Messina, 2003). However, this approach to wavelet transforma-
tion requires a dense measurement grid.

When using either method to extract the curvature profiles, the mode shapes of a structure should be
extracted first. In extracting mode shapes from modal testing, one should be very careful because the sta-
tistical variation of mode shapes is typically larger than the other modal parameters. Thus, a large number
of modal tests should be repeated to achieve an averaged mode shape with small statistical variations. If
typical modal testing and analysis methods are used with a large number of sensor locations, the required
tasks are significantly magnified. This problem can be dealt with the recently developed time domain
decomposition technique (Kim et al., 2004), which is an efficient modal parameter extraction method when
there are many senor locations.
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3. Numerical study

For a simply supported beam, the effect of an axial force P (positive for compression), on the ith eigen-
value of the structure is (Timoshenko, 1928):
x2
i ¼

ip
L

� �4 EI
qA
� ip

L

� �2 P
qA

ð36Þ
where, q, A, L, and EI denote the density, the cross-sectional area, total length, and flexural rigidity of the
beam, respectively. The first term on right hand side of Eq. (36) represents the pure bending mode without
an axial force, and the second term represents the axial mode of a flexible taut string. Thus, the natural
frequencies can be changed by not only local variations of flexural rigidity, but also by changes in mass
density and applied axial force. Therefore, detecting damage using only frequency information is very dif-
ficult in an axially loaded beam whose mass density varies. The mode shapes of the pinned–pinned, pinned–
sliding, and sliding–sliding beam are unaffected by the applied axial force (Blevins, 1979). The mode shapes
of the other boundary conditions are functions of axial load. However, the changes in mode shapes due to
large changes in axial loads are generally very small.

In order to examine the performance of the proposed method, the clamped–pinned pre-stressed concrete
beam in Fig. 6 was considered. The sectional area, second moment of area, Young�s modulus, length, and
density of the beam, were 0.11 m2, 4.6857 · 10�3 m4, 28.6 GPa, 30 m, and 2400 kg/m3, respectively. The
theoretical buckling load of the beam was 3.0 · 106 N. A finite element model consisted of 300 linear ele-
ments (301 nodes) with a uniform length of 0.1 m. For an axial load of 10% of the buckling load, the first
two natural frequencies were 1.7859 Hz and 5.9998 Hz. For an intact state of the beam, a constant flexural
rigidity EI was assumed for the all elements, while the damaged beam was simulated by reducing EI for
specific elements. The distributed damage was simulated by the 10% uniform reduction of flexural rigidity
between x = 13.5 m and x = 16.5 m. Therefore, the exact damage index at the damaged region was
b = 1.1111. Furthermore, the damaged beam had an axial load of 20% of the buckling load and a 15% uni-
form reduction of mass density. Note that the applied axial load and mass density in the damaged beam
were different from those of the undamaged beam. This assumption is quite reasonable, because the applied
axial loads and mass density were typically unknown in practice. For instance, any damage event on the
deck of a cable-stayed bridge is accompanied by unknown changes in axial forces, because the transverse
traffic loads are transferred into axial loads via the inclined cables. It is assumed that an output-only modal
testing technique was used to extract the first two mode shapes. The first two frequencies of the damaged
beam were 1.8042 Hz and 6.3701 Hz. Note that the frequencies increased when the beam was damaged.
This is because the frequencies were affected by changes in local stiffness, mass density, and axial load.
The measured mode shapes consisted of only the transverse degrees of freedom with a uniform spacing
of 1.5 m at the 19 sensor locations from x = 0.9 m to x = 27.9 m. Thus a 19 · 1 mode shape vector for each
mode was available before and after a damage event. The first two mode shapes of the undamaged beam are
shown in Fig. 7.
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Fig. 6. Axially loaded beam.
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To approximate the curvature profiles, the cubic spline interpolation method with a uniform interval of
0.0528 m was applied to each mode shape vectors. Applying the central difference formula to the interpo-
lated mode shape vectors (512 · 1), the curvature profiles vector (19 · 1) were extracted at the sensor loca-
tion. The resulting curvature mode shapes for the undamaged beam are shown in Fig. 8. Two end nodes
were extrapolated for convenience. The first curvature mode shapes had a singularity near x = 8 m, while
the second curvature mode shapes had two singularities near x = 4.4 m and x = 16.6 m. Since those singu-
larities do not overlap, these two mode shapes could be used to construct the wavelet damage index equa-
tion (32). The resolution level of the estimated curvature is j = 5, because the number of sensors 19 is less
than 32 = 25. Therefore, 13 zeros were added to the curvature profiles in order to make a 32 · 1 vector.
Using the Haar wavelet decomposition, the representations of the curvature mode shapes of two modes
could be readily obtained. With the aid of Eqs. (30) and (31), a 64 · 32 matrix A and a 64 · 1 vector b

in Eq. (32) were constructed in the Haar domain. For the resulting system of equations, the pseudo-inverse

solution in Eq. (34) was obtained. Finally, the desired damage indices were reconstructed by Eq. (28). Here,
only 19 of 32 damage indices were nonzero, because 13 zeros were added previously to extend the curva-
tures profile vector. The results are shown in Fig. 9. The localization of damage is successful because a
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Fig. 8. Curvature mode shapes of the undamaged beam.
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Fig. 9. Estimated damage index using the proposed method (N = 19).
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distinguishable hump occurred near the damaged region. The identified damage index was b = 1.1074 at the
center of damaged region, and the percentage error of this estimation was only 0.3%. Thus, the severity
estimation of damage was also successful. A small hump was also found near the location of the first sin-
gularity. This error might be caused by the pseudo-inversion, which is an optimum solution. If a scanning
laser vibrometer is used, the curvature profile could be determined from a dense deflection profile (up to
512 · 512 points). Considering the ideal case, the identical solution procedure was repeated with the reso-
lution level j = 8 for a 256 · 1 measured deflection vector. The resolution of damage was improved as
shown in Fig. 10.

For the purpose of a comparison study, the MSC and the DI methods were applied to the beam column
with the same damage scenario. For the MSC method, the damage index is defined by absolute changes in
mode shape curvature:
bMSC ¼ jj� j�j ð37Þ
For the 19 · 1 curvature mode shape of the first mode, the identified damage indices are shown in Fig. 11.
The localization of damage was successful, because a clear peak was identified near the damaged region.
However, the severity of damage cannot be estimated from the direct inspection of the identified damage
index. In fact, the substitution of the damage index equation (3) into Eq. (37) revealed a connection be-
tween the proposed damage index and those of the MSC method:
bMSC ¼j jðb� 1Þ j ð38Þ
For the DI method, the damage index of the mth element is defined by
bDI ¼
Xn

i¼1

R
mðj�i Þ
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where the subscript �i� denotes the considered mode. For the two interpolated 64 · 1 curvature profiles, a
numerical integration was performed. The estimated damage indices for the two modes are shown in
Fig. 12. The clear peak near the simulated damage region was identified. To estimate the severity of dam-
age, a sensitivity-updating algorithm, which is a model-based approach, can be applied (Stubbs and Kim,
1996). However, unlike the proposed wavelet method, the quantitative severity estimation of damage is not
attainable by directly inspecting the damage indices.

To investigate the sensitivity of noise, the time history with random noise was considered. For the same
damage scenario and measurement grid mesh of 19 · 1, the displacement time series at the sensor locations
were simulated by the modal superposition technique with the first ten lower modes. Here, the required time
integrations were carried out in the discrete state-space for unit impulses. The total simulation time, sam-
pling frequency, and damping ratio were 80 s, 500 Hz, and 1.5%, respectively. Thus, the response time his-
tories of the 4 · 104 samples were available at the 19 sensor locations. Next, 19 sets of random noise
samples were generated and added to the sets of the response time histories. Here, the noise-to-signal ratio
of 5% (a ratio of maximum magnitude of noise to signal) was used. To examine the effect of the number of
modal tests, four cases are considered. The modal testing of Case I, II, III, and IV consisted of a total of 5,
10, 30, and 50 simulations, respectively. For example, the modal testing of Case II contained the 10 sets of
the 19 noisy time response histories of the 4 · 104 samples for both undamaged and damaged states. For
each case of the modal testing scenario, the recently developed time domain decomposition (TDD) tech-
nique (Kim et al., 2004) was applied to extract the first two lower mode shapes. Here, the TDD technique
is known as an ambient modal analysis method that is efficient and accurate, particularly when there are a
large number of sensor locations. After the repeated applications of the TDD technique to each case of
modal testing, Case I, II, III, and IV had 5, 10, 30, and 50 sets of the first two lower 19 · 1 mode shapes
for undamaged and damaged conditions, respectively. For the identified damaged mode shapes, the max-
imum coefficients of variation (a ratio of the standard deviation to the mean value) were 0.0100, 0.0118,
0.0129, and 0.0118 for Case I, II, III, and IV, respectively. Prior to the application of the proposed iden-
tification procedures, a set of representative deterministic mode shapes should be computed for each case of
modal testing. The representative mode shapes were achieved by averaging the identified mode shapes val-
ues at each location. Finally, the proposed method was applied to the resulting averaged mode shapes. The
resulting damage indices are shown in Fig. 13. In Case IV, the error of the identified damage index at the
damaged region increased by 1.3%. It is seen that the estimated damage indices are degenerated by noise.
However, the effect of measurement noise decreased as the number of tests increased. As shown in Fig. 13a,
the damage region of Case I could hardly be distinguished from the fictitious peaks that were due to noise.
However, the damage regions of Cases II, III, and IV could be distinguished from noise peaks. Therefore, it
is concluded that the proposed method requires that clean mode shapes be produced through modal testing.
Here, achieving accurate mode shapes relies entirely on the applied modal testing, modal analysis, and data
acquisition techniques. Those techniques are continuously evolving by virtue of the challenges posted by
other relevant fields.
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Fig. 12. Estimated damage index using the DI method.
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4. Field study

The field data to be used here to evaluate the feasibility of the proposed method are extracted from the
study of the impact of inflicted damage on the changes in modal parameters of the I-40 Bridge over the Rio
Grande (Farrar et al., 1994). This data set was selected for at least three reasons: First, the data acquisition
and processing were performed by an independent and competent team of investigators. Second, the data
have received the scrutiny of the technical community. Finally, the data have been used to evaluate several
existing damage detection theories.

The north bound and south bound I-40 Bridges over the Rio Grande in Albuquerque, New Mexico,
were demolished in 1993 and were replaced by a new bridge. The spans of each bridge consisted of a con-
crete deck supported by two welded, steel, plate-girders and three steel stringers. The stringers transferred
loads from the deck to the plate girders via floor beams located at 6.096 m (20 ft) intervals. Cross-bracing
was provided between the floor beams. During the summer of 1993, New Mexico State University and Los
Alamos National Laboratory introduced sequential damage to the bridge to simulate fatigue crack growth
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in the main plate girder of one of the bridges in order to test various damage identification methods. To
simulate fatigue cracking in the bridge, four levels of damage were introduced to the middle span of the
north plate girder. Damage was introduced by making various torch cuts in the web and flange of the gir-
der. In this paper, data collected from the mentioned first through fourth levels of damage is used to eval-
uate the field applicability of the proposed method.

A set of forced vibration tests was performed on the referenced structure (i.e., the structure before any
simulated damage was introduced). For each sequential damage scenario, forced vibration tests were re-
peated. The excitation source was a hydraulic shaker consisting of a 96.526 kN reaction mass supported
by three air springs on top of drums filled with sand. The input force was provided by a 9.7861 kN hydrau-
lic actuator bolted under the center of the mass. A random-signal generator was used to produce a
8.8964 kN peak-force uniform random signal over the frequency range 2–12 Hz. An accelerometer
mounted on the reaction mass was used to measure the force input-time history. However, this measured
excitation signal was not included in the modal analysis. The location of the shaker was the eastern-most
span directly above the south plate girder. To measure the output acceleration time histories in the vertical
direction and with refined sensor intervals, 11 Endevco 7751-500 accelerometers were mounted on the in-
side web of the plate girder at mid-height of the plate girder with a nominal spacing of 4.8768 m (16 ft) as
shown in Fig. 14. Mode shapes were determined from cross-spectra of the various accelerometer readings
relative to accelerometer X3. Each cross-spectrum was obtained using 30 averages with no overlap utilizing
a Hanning window. The averaged cross-spectrum had a 0.03125 Hz resolution with 1024 frequency sam-
ples. The first three modes were obtained for the undamaged (referenced) structure and four subsequently
damaged structures. The first and third modes were bending modes and the second mode was a torsional
mode. Note that the mass normalized mode shapes were not available in this forced vibration test because
the measured forced input was ignored and the cross-spectra of outputs were used to extract modes. The
two flexural mode shapes obtained from the cross-spectra analysis and reported in Farrar et al. (1994)
are used in this study.

Since modal data for the undamaged condition of the bridge are available, no attempt is made to build a
numerical model of a base-line structure. It is expected that the behavior of the bridge superstructure under
investigation here can be modeled accurately by an Euler–Bernoulli beam, since the aspect ratio of the gir-
der to be analyzed is larger than 10. Since only damped modal parameters are available, it is also assumed
that a bias in the severity estimation of damage due to the presence of damping is insignificant comparing to
the errors due to the placed coarse sensor interval. Since the sensor interval was not uniform, cubic spline

interpolation with uniform 0.1918 m interval was used to obtain the set of 256 · 1 mode shape vectors.
After applying the central difference formula to the resulting mode shapes, the sets of 11 · 1 curvature vec-
tors before and after four damage events were extracted at the original sensor location. Thus, sets of the
22 · 11 system matrices of undamaged (referenced) bridge, A, with full rank (11) were obtained in the Haar
domain with the aid of Eqs. (30) and (31). Next, sets of the 11 · 1 damaged curvature vectors, b, were
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Fig. 14. Sensor location of north plate girder of the Interstate-40 Bridge.
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constructed in wavelet space. The resulting set of the over-determined damage equations in Eq. (32) were
solved using the previously mentioned pseudo-inverse technique in Eq. (34). Finally, sets of the estimated
results of the damage index vectors in the Haar domain were reconstructed by Eq. (28). The estimated re-
sults with the inflicted damage scenario (gray area) are shown in Fig. 15.

Based on the results, the following three observations can be made: First, the proposed method success-
fully located the damage in a real structure except the first level of damage. Second, the modal data of the
first damage scenario may have poor accuracy. Partial evidence may be inferred from the fact that the over-
all variation of the estimated damage indices of the first damage scenario is relatively larger compared to
the other severe damage scenarios. Third, the proposed method successfully estimated the relative severity
of damage, because the estimated damage indices at the location of damage increased as the severity of in-
flicted damage increased. However, it seems that more accuracy in the severity estimation of damage re-
quires a denser measurement grid. The trade-off between the required costs and desired accuracy should
be made.
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5. Summary and conclusions

The objective of this study was to introduce a new vibration-based NDE technique. The proposed method
made use of the Haar wavelet to resolve some existing deficiencies of the MSC and the DI methods. The defi-
ciencies include the mode selection problem, the singularity problem, the axial force consideration, and the
estimation of the absolute severity of damage. In order to achieve this goal, a damage mechanism that inher-
ently contains a singularity problem was given. To resolve the singularity problem, the fundamentals of the
multi-resolution wavelet analysis were introduced in detail. Using the Haar wavelet transformation, the
damage mechanism gave a set of linear algebraic equations. With the aid of singular value decomposition,
the singularities in the damage mechanism were discarded. Finally, the desired damage index was recon-
structed using the pseudo-inverse solution. Next, the performance of the proposed method was compared
with two existing NDE methods for an axially loaded beam without any special knowledge about mass den-
sity and an applied axial force. Finally, the effect of random noise on the performance was simply examined.

Based on the results of the numerical experiments, the following five findings can be asserted: First,
the proposed method provided a single representative damage index using more than one mode. Thus,
the uncertainty of mode selection that exists in earlier attempts was resolved. Second, the proposed method
made use of the singular value decomposition of the system of equations in a wavelet domain. Thus, the
singularity problem near the inflection points can be resolved. Third, the proposed method did not require
any special knowledge about mass density, applied axial force, or foundation stiffness. The reason is that
such structural environments do not affect the internal moments. Thus, the proposed method could be ap-
plied to a pre-stressed or post-tensioned beam, a deck of cable-stayed bridges, etc. Fourth, the estimated
damage index could be interpreted as a ratio of the undamaged flexural rigidity to the damaged flexural
rigidity. Therefore, the location and the severity of damage could be directly recognized by the inspection
of the resulting damage indicator. Finally, starting from Eq. (1), the proposed method could be easily ex-
tended to other classes of structures, because the proposed approach is based on the well-established con-
text of elasticity.

Despite its strong features, the proposed method still has at least the following two weaknesses: First, a
dense measurement of grid was needed for good accuracy. For this problem, the aforementioned scanning
laser vibrometer seems to be a unique solution at this time. Second, the accurate extraction of the mode
shapes was considered to be a prerequisite. This requirement may be overcome by advanced modal testing,
modal analysis techniques, and novel data acquisition devices.
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