
A simple and general bit log-likelihood ratio (LLR) 
expression is provided for Gray-coded rectangular 
quadrature amplitude modulation (R-QAM) signals. The 
characteristics of Gray code mapping such as symmetries 
and repeated formats of the bit assignment in a symbol 
among bit groups are applied effectively for the 
simplification of the LLR expression. In order to reduce 
the complexity of the max-log-MAP algorithm for LLR 
calculation, we replace the mathematical max or min 
function of the conventional LLR expression with simple 
arithmetic functions. In addition, we propose an 
implementation algorithm of this expression. Because the 
proposed expression is very simple and constructive with 
some parameters reflecting the characteristic of the Gray 
code mapping result, it can easily be implemented, 
providing an efficient symbol de-mapping structure for 
various wireless applications. 
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I. Introduction 

Quadrature amplitude modulation (QAM) is an attractive 
technique to achieve an improved high-rate transmission over 
wireless links without increasing bandwidth. For this reason, 
QAM is strongly recommended as a prospective modulation 
scheme for wireless communication systems, such as 3G and 
4G mobile communication systems, wireless LAN, and digital 
video broadcasting. To function satisfactorily in a wireless link, 
however, QAM communication systems require a high signal-
to-noise ratio (SNR) to combat the harsh wireless environment. 
In order to overcome this drawback, iterative decoding 
schemes with turbo or turbo-like codes such as the low density 
product code (LDPC) are being considered. Several works [1]-
[3] have been done on adopting Turbo trellis coded modulation 
(TTCM). However, the TTCM system requires a specific 
Turbo codec corresponding to the Turbo code of the TTCM 
system.  

The notably good performance of iterative decoding 
suggests that there is promise in combining Turbo or Turbo-
like codes with a well-structured binary decoder for multi-level 
modulated signals in order to simultaneously obtain large 
coding gains and high bandwidth efficiency [4]-[11].  

Although binary iterative decoding schemes provide coding 
gain with M-ary modulated signals, they require calculation of 
the bitwise metric. Performing this calculation with a 
conventional algorithm such as log MAP and max-log-MAP, 
however, is very tedious work. In order to reduce the complexity 
of the bit metric calculation, several methods [5]-[13] have been 
proposed for Gray coded signals, such as the pragmatic approach, 
the log likelihood ratio (LLR) approach, and others. But these 
approaches presented either specific soft metric algorithm for 
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each corresponding modulated signal or approximated 
expression. 

In this paper, we present a simple and general expression of 
an LLR based on the observation of the max-log-MAP 
algorithm for a rectangular QAM (R-QAM) signal. In addition, 
we suggest an implementation algorithm of the proposed 
expression. The remainder of this paper is organized as follows. 
Section II includes the system model with R-QAM and Gray 
code mapping. Section III surveys a conventional LLR 
expression and a method of obtaining the bit LLR for R-QAM 
signals. Section IV presents a simple and generally applicable 
bitwise LLR expression based on the Max-Log-MAP 
algorithm and shows its operation in detail. Section V discusses 
the numerical results of the provided LLR expression to verify 
its validity, and the implementation of the suggested algorithm. 
Section VI summarizes our conclusions. 

II. System Model 

The modulated arbitrary rectangular Gray coded QAM signal 
is assumed to be transmitted over an additive white Gaussian 
noise (AWGN) channel. In an N×L rectangular QAM, log2(N·L) 
bits of a serial information stream are mapped onto a 2-
dimensional signal constellation using Gray coding, where N is 
the number of signal constellations on the in-phase axis and L is 
on the in-phase axis. Among the grouped information of T = 
log2(N·L) bits constituting code word C = (c0, c1, ····, cT-1), the K = 
log2N bits constituting codeword CI  = (bI,0, bI,1, ····, bI,K-1) are 
mapped onto the in-phase channel, whose amplitude AI is 
selected over the set of {± dI, ± 3dI, ···, ± (N-1)dI}. Similarly, the 
X = log2L bits constituting codeword CQ = (bQ,0, bQ,1, ····, bQ,X-1) are 
mapped onto the quadrature channel, whose amplitude AJ is 
selected over the set of {± dQ, ± 3dQ, ···, ± (L-1)dQ}. Note that dI 
and dQ can be different without any loss of generality. The R-
QAM signal can be divided into two independent Gray coded 
pulse amplitude modulation (PAM) signals, in-phase and 
quadrature components, and the two PAM signals have identical 
signal characteristics except for the rotation of the axis. Hence, 
we first consider a one-dimensional PAM signal with equidistant 
symbols, and then expand to an R-QAM signal. Figure 1 
illustrates an 8-PAM constellation with its decision regions, the 
definition of the bit levels and the bit groups where the signal 
points in the constellation are assigned a perfect one-dimensional 
Gray code [12], [14]. When we consider only the bit b0 level, it 
becomes the 2-PAM constellation. 

The received R-QAM signal hypothesis can be expressed as 

nszHi += α: ,                 (1) 

where α is a channel gain; complex received symbol z = zI + 

jzQ; complex transmitted symbol s = sI + jsQ; and complex 
AWGN n = nI + jnQ with zero mean and variance σ2 per 
dimension. The in-phase component sI of the transmitted 
symbol s belongs to a set of constellation points, sI ∈ {S-N/2, . . . , 
S -1, S 1, . . . , S N/2}, and the symbol sI = f(b0,b2,…,bK-1), where 
f(ㆍ) is the Gray code mapping function with K bits. Figure 1 
shows a signal space of N-PAM when N = 8. The signal space 
of the quadrature component sQ of the transmitted symbol s can 
be expressed exactly the same as that of the in-phase 
component except for the number of signal points in the signal 
space. The character of the channel model depends on the 
probabilistic characteristics of the channel gain α. For example, 
if the channel gain is time-invariant, the channel is AWGN. 
 

 

Fig. 1. Gray coded 8-PAM signal constellation. 
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III. N-PAM Log-Likelihood Ratio Calculation 

1. Ordering of Citations 

For an AWGN process (α=1), when perfect channel 
knowledge is available, an N-PAM LLR test of the received 
symbol as in [5] is given by  

( )

( ) .
2

expln

2
expln)(

}1:{
2

2

}1:{
2

2

∑

∑

−=∈

=∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

k

k

bsB

bsA
kI

Bz

AzbLLR

σ

σ
       (2) 

When we adapt the approximation ( )∑ − jaexp
j

ln   
)min()max( jj aa =−≈ in [14] to simplify the calculation 

process of (2), the LLR (2) is rewritten as 
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When the specific symbols A and B for the mathematical 
min function in (3) are selected, (3) can be reduced to 
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where D is an arbitrary value. 

Conventionally, the LLR in (3) is calculated through case-
by-case and region-by-region tests over the signal space to find 
the appropriate symbol values A and B for the mathematical 
min function in (3), resulting in (4). If we consider a stationary 
channel, we can normalize the LLR (3) and (4) with respect to 
constant 2/σ2 as 

)(
2

)(
2

kIkI bLLRb σ
=Λ .              (5) 

Using (5), the bit b0 LLR of the 2-PAM signal in Fig. 2(a) is 
obtained by 

dzdzddzdbI −=+−−=Λ 4/)]2()2[()( 22
0 ,     (6) 

for all z. 
However, such calculations become very tedious work with 

the increase of the modulation order, due to the large number of 
cases and symbol regions that must be considered to find the 
minimum value over the entire signal space. 

For example, consider calculating the bitwise LLR of the 8-
PAM symbol referred to in Fig. 1. The bit of interest b0 is the 
first bit of the binary 3-tuple {b0, b1, b2}, which is a set of a 
symbol’s bit group constituting one symbol for 8-PAM. We 
define the hypotheses, P0 and P1, of the bit of interest b0 where 
the bit b0 has a value of -1 (or 0) and +1 (or 1), respectively. As 
we receive a symbol on the S1 region with the bit b0 assigned a 
value of 0, we can easily acquire the hypothesis P0 of the first 
min(ㆍ) term in (3). In order to calculate the second min(ㆍ) 
term in (3), however, we should find the minimum value of the 
opposite hypothesis P1 after region-by-region examination 
among the four possible regions {S -4, S -3, S -2, S -1}, the regions 
in which the first bit b0 is valued 1. In a similar way, as we 
receive a symbol on the region S -1 with the bit b0 valued 1, we 
have to search the minimum value of P0 among the results for 
the regions {S 1, S 2, S 3, S 4}. It is also necessary to follow the 
same complex process in order to get the bitwise LLRs of the 
other bits in the symbol. 

In particular, let us assume that the received symbol value is 
placed in 0 < zI ≤ 2d, S1, on an 8-PAM signal space as shown in 
Fig. 1, and we are trying to get the LLR of the first bit b0. As 
this received symbol is placed on the bit b0 region valued 0, we 
can easily decide the hypothesis P0. However, we need to find 
the minimum value among the hypotheses P1 of interest over 

{S-4, S-3, S-2, S-1} using (3) as 
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where all elements of the set {S-4, S-3, S-2, S-1} have the bit of 
interest b0 valued at 1. 

In the same way, the bitwise LLRs on each symbol region in 
Fig.1 are evaluated as 

)( 0bIΛ =  

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−>
−≤<−
−≤<−
≤<−

+−
+−
+−

−
>

≤<
≤<

≤<

−
−
−

−

dz
dzd
dzd

zd

zdd
zdd
zdd

dz
dz

dzd
dzd

dz

zdd
zdd
zdd

dz

6
64
42
02

),3(4
),2(3
),(2

,
6

64
42

20

),3(4
),2(3
),(2

,

 )( 1bIΛ =    (7) 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−≤
−≤<−
−≤<−
≤<−

+−
+−
+−
+−

>
≤<
≤<

≤<

−−
−−
−−
−−

dz
dzd
dzd

zd

zdd
zdd
zdd
zdd

dz
dzd
dzd

dz

zdd
zdd
zdd
zdd

6
46
24
02

),5(2
),4(
),4(
),3(2

6
64
42

20

),5(2
),4(
),4(
),3(2

)( 2bIΛ =  

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−≤
−≤<−
−≤<−
≤<−

+−
+−

+
+

>
≤<
≤<

≤<

−−
−−

−
−

.6
46
24
02

),6(
),6(

),2(
),2(

6
64
42

20

),6(
),6(

),2(
),2(

dz
dzd
dzd

zd

zdd
zdd

zdd
zdd

dz
dzd
dzd

dz

zdd
zdd

zdd
zdd

IV. General LLR Expression for R-QAM Signals 

If we observe the result of the Gray code mapping rules and 
expand the LLR expression of the 2-PAM in (6) to that of the 
higher order PAM (in-phase channel or quadrature channel of 
the R-QAM signal), we can effectively establish a simple and 
general expression of a bitwise LLR by searching only the 
confined region, not over the entire signal space as in section 
III. In this section, we consider only the in-phase component of 
8 × L R-QAM, the 8-PAM constellation. 
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According to the Gray mapping rule, two or more 
consecutive symbols make a paired bit group {1, 0} or {0, 1} 
for the k-th bit of interest of the binary K-tuple, and we can define 
two important terms for the next step of the LLR calculation. 
First, the group can be classified as either a mirror-image or 
isomorphic group, seen in the bit-arranged form of the 2-PAM in 
Fig. 2(a). Second, each group can be identified as an axis-shifted 
version of 2-PAM where the amount of the shift is the distance 
from the decision line to the origin of the signal space.  

For the bit b2 of the 3-tuple, there are 4 groups, G1(b2)={S -4, S -

3}={1, 0}, G2(b2)={S -2, S -1}={0, 1}, G3(b2)={S 1, S 2}={1, 0}, and 
G4(b2)={S 3, S 4}={0, 1}. Among the four groups, G1(b2) and 
G3(b2) are of the isomorphic groups, whereas G2(b2) and G4(b2) 
are mirror-image groups for the 2-PAM bit arrangement, the 
shaded groups in Fig. 2 (b). Each group has a different amount of 
shift from the bit decision line to the absolute coordinate origin. 
For example, group G1(b2) is a version of 2-PAM axis-shifted to 
the extent of -6d, and group G4(b2) is shifted to the extent of +6d, 
as shown in Fig. 2(c). Figure 2 illustrates the relationship between 
2-PAM and each group of 8-PAM, as well as the detailed b2 LLR 
process for groups G1(b2) and G4(b2) on the 8-PAM signal space. 
For the bit b1 of a binary 3-tuple, there are two paired bit groups, 
the isomorphic group G1(b1)={S-4, S -3, S -2, S -1}={1, 1, 0, 0} and 
mirror-image group G2(b1)={S 1, S 2, S 3, S 4}={0, 0, 1, 1} as shown 
in Fig. 2 (b). The amounts of the shifts of the two groups, G1(b1) 
and G2(b1), are +4d and -4d, respectively. 

When a received symbol is placed on a specific symbol 
region on the signal space, the search region can be confined 
within the same group. In order to obtain the bitwise LLR, we 
 

 

Fig. 2. Bit allocation relationship between 2-PAM and groups of
8-PAM, and the detailed LLR process for the bit b2 of the 
groups G1(b2) and G4(b2) on the 8-PAM signal space. 
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need to choose the minimum value of the opposite hypothesis (1 
or 0) to the hypothesis of the bit of interest (0 or 1) for the received 
symbol. The limited search region is due to the most likely error 
caused by noise that involves the detection of the erroneous 
amplitude, which is located in the very next region to the 
transmitted symbol region in all probability. For this reason, we 
can easily decide that the region for the minimum opposite 
hypothesis to that of the bit of interest is always the nearest symbol 
region that has the opposite bit value. Also, to directly adapt the 2-
PAM LLR expression (6) for the group of each bit in the symbol 
codeword, the decision line of the group of interest is moved to the 
axis of the origin (absolute zero) as shown in Fig. 2(c).  

Considering the previously defined terms and the widely 
spread results in (7), we can come to some specific conclusions 
straightforwardly. 

1) The sign of the bitwise LLR is affected by the bit 
arrangement form parameter mk and by the sign of the 
changed value ( ẑ ) resulted from the axis movement of 
the received value (z), as shown in Fig. 2 (c). 

2) The LLR parameters are also related to the minimum and 
maximum distances, the relationship between the 
boundaries of the relevant symbol region, and the decision 
line of the bit group of interest. 

3) The LLR is also sensitive to axis movement. 

Considering the previously stated description and (4), the 
bitwise LLR for the k-th bit of the in-phase component of an R-
QAM signal can be straightforwardly written as 

}ˆ{)( min,max,,ˆ kkkkkzkI zddmGb −×××=Λ ,       (8) 

where the parameters are defined as follows: 
kẑ : Axis shifted value of the in-phase component zI to the 

distance Dk (from the decision line of the bit group of 
interest to the absolute origin). 

mk: Mirrored group indication. If the group is mirrored for the 
2-PAM, mk is -1; if not, mk is +1. 

kzG ,ˆ : Sign of the compensated received value . kẑ
kdmin, : Absolute value of the minimum distance from the k-

th bit decision line of the group of interest to the received 
symbol region after scaling with 2.  

dmax,k: Absolute value of the maximum distance from the k-th 
bit decision line of the group of interest to the received 
symbol region, which can be obtained from dmax,k = dmin,k 
+ d after scaling with 2. 

In the same way as (8), the LLR for the quadrature 
component of R-QAM can also be expressed as 

)( xQ bΛ

}ˆ{)( min,max,,ˆ xxxxxzxQ zddmGb −×××=Λ        (9) 

with the quadrature component zQ of the received R-QAM 

294   Ki Seol Kim et al. ETRI Journal, Volume 28, Number 3, June 2006 

 22337326, 2006, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.06.0105.0161 by H

anyang U
niversity L

ibrary, W
iley O

nline L
ibrary on [17/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



symbol value for the x-th bit of the quadrature codeword CQ. 
Note that the minimum and maximum distances can easily 

be calculated only by using the received value z and the prior 
information of modulation. For example, the minimum and 
maximum distances for the bit b1 in the symbol of 8-PAM in 
Fig. 2(b) are as follows. 

 
1) If the received symbol is in the region S-1, S-4, S1, or S4, 
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dmax,1 = dmin,1+ d = d. 

To verify the effectiveness of the presented bitwise LLR 
expression of (8), we use it to calculate the LLRs for an 8-PAM. 
If we assume the received 8-PAM symbol is positioned in the 
region S1, 0 < z ≤ 2d for the LLR of the bit of interest b1, we 
can evaluate the required parameters in (8) as 

S1: .2,,1,1,4ˆ 1max,1min,111 ddddmGdzz ==−=−=−= (10) 

Then, we calculate the LLR of the bit b1 in the region by 
substituting (10) into (8): 

[ ] )3(2|4|211)( 1 zdddzddbI −−=−−⋅−⋅−=Λ .   (11) 

In a similar way, as we receive a symbol on the S-2 
region, -4d < z ≤ -2d, for the LLR of the same bit b1 of interest, 
the parameters of (8) become 

S-2: dddmGdzz ==+=+=+= 1max,1min,111 ,0,1,1,4ˆ . (12) 

By substituting (12) into (8), we have 

[ ] )4(|4|011)( 1 zdddzdbI +−=+−⋅+⋅+=Λ .    (13) 

The LLR results (11) and (13) of the bit of interest b1 are the 
same as the conventional results in (7) on the same symbol 
region. Similarly, other bitwise LLRs of the 8-PAM signal for 
each bit of the received symbol regions can also be easily 
evaluated with (8). Thus, we can confirm that the results of the  

 

Fig. 3. Bitwise LLR conversion of a received 8-PAM symbol: (a)
LLR of bit b0, (b) LLR of bit b1, and (c) LLR of bit b2. 
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presented expression (8) are all exactly the same as the results 
of the conventional case-by-case, region-by-region calculation 
method of the Max-Log-MAP algorithm. This is because we 
induced the proposed expression from (3). 

Figure 3 shows the computer-simulated bitwise LLR curves 
of a 3-tuple {b0, b1, b2} of an 8-PAM symbol using the 
presented expression (8). Even though (8) looks like a linear 
function of the received signal amplitude, the plot is not piecewise 
linear. This is because the parameters in (8) are not constant, but 
are variable values depending on the received symbol region, as 
shown in examples from (10) to (13). 

Note that if we combine the LLR expression (8) for the in-
phase component and the expression for the quadrature version 
with the different number of symbols on each axis, we can 
directly obtain the LLRs for R-QAM signals.  

V. Implementation of the Bitwise LLR 

In the previous section, we presented a simple expression to 
calculate the bitwise LLR for (N×L) R-QAM signals. To 
apply the proposed expression to an R-QAM signal, as a 
practical example, we need to implement (K + X) bitwise LLR 
calculation blocks. Figure 4 shows the in-phase LLR 
calculation block for the received in-phase component with K-
bit LLR blocks of an N-PAM signal, where the sign( · ) 
function takes the sign (+1 or -1) from the input value. The 
LLR calculation block for the quadrature component has the  
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Fig. 4. LLR calculation block diagram for the in-phase 
component of an (N×L) R-QAM signal. 
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Fig. 5. Detail block diagram of the bitwise LLR calculation in Fig. 4.
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same structure as in Fig. 4, except that it uses X-bit LLR blocks 
instead of K-bit LLR blocks. In Fig. 4, when the symbol value 
is received, we first need to limit the received value to the 
maximum energy, and then scale the limited value with the 
reference energy d to simplify value handling.  

The mathematically floored value R = (r0, r1, … , rK-1)2 offers 
simple integer operation at each bitwise LLR block, where 
(…)2 is a binary value representation, r0 is the most significant 
bit (MSB), and rK-1 is the least significant bit (LSB). These 
values are commonly applied for all bitwise LLR blocks.  

Figure 5 shows details of the bitwise LLR block from Fig. 4. 
Note that in Fig. 5, the two multipliers (a) and (b) can be 
replaced with much simpler logical operations such as a 
bitwise Exclusive OR (XOR) with the sign inputs mk, Gk, and 
Qk. The multiplier (c) is a sign converter of the input depending 
on the result of the multiplier (b).  

The parameters in Fig. 5 can be easily obtained with the 
value R through arithmetic operations with digital logic 
operations as follows.  

1) The distance Dk of each bit group for axis-shift: From 
Fig. 2, we can observe that the distances Dk of the bit b0 group 
and the bit b1 group are always fixed as 0 and 4 respectively,  

 

Fig. 6. Tree diagram of the axis-shift distance for each bit group 
of 8-PAM and 16-PAM. 
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regardless of the received value for an 8-PAM signal. In other 
words, the bit b0 group does not need to shift the axis, and the 
bit b1 groups always do the axis-shift to the right or left by an 
amount of 4.  

If we received a 16-PAM signal, the distances for the bit b1 
groups become 8 as in Fig. 6(b). But that of the other groups 
should be found with the value R depending on the received 
symbol region. The relationships of the distances between the bit 
groups of each of the bit levels are given in Fig. 6. Figure 6 shows 
the distance tree diagram for the axis-shift of each bit group. 
Considering the distance of each group for axis-shift, we can find a 
rule for the distance Dk with the mathematically floored value R as: 
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,2}12){(

,2

,0

)(
220

)2(
202

)1(
1

0

−=×+×=

×+×=

=

=

−
−

−

−

KkrrD

rD

D

D

kK
kk

K

K

 (14) 

2) Mirrored group indication mk: Extract the bit placement 
form parameter from the value R. The indication value mk  is +1 
or -1, which can be represented by the 1-bit binary value 0 or 1. 
Because the bit b0 group always shows the isomorphic one as the 
2-PAM bit arrangement, as in Fig. 2, m0 is always 0 (+1). The bit 
b1 groups are always mirrored, thus m1 is 1 (-1). For other bit 
groups, we consider only the positive (left-half) plane after taking 
the absolute value of the received value. This is possible because 
all bit assignments except the bits b0 and b1 are symmetric about 
a line between the left-half and right-half planes, a consequence 
of Gray mapping. The m2 of the bits b2 groups is the bit value r0 
of the value R, and the m3 of the bit b3 groups is the bit value r1. 
Thus, we can find another rule for the indication value mk as 

.1,,3,2),1or0(
),1(1
),1(0

2

1

0

−==
−=
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            (15) 
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3) Calculate the boundary conditions dmin,k and dmax,k of 
each symbol region with the compensated value : Using 
the calculated distance D

kẑ
k, we move the decision axis of the 

group of interest to the absolute zero axis and compensate the 
received value to the amount of the shifted distance Dk. Then, 
we evaluate the boundary conditions with the axis-shifted 
value as in Fig. 5. For the calculation process of the boundary 
condition dmin,k, we use the mathematical floor function and 
division by 2, which can be easily implemented with the bit 
truncation and the logical left-shift operation. In order to obtain 
the other boundary condition dmax,k, an arithmetic addition is 
required with the symbol distance. Here, we consider the 
symbols on the transmitted constellation to be placed at 
equidistance 2d. 

In order to implement the proposed expression for the in-
phase component with Figs. 4 and 5, we assume that the 
format of the sampled value yI is a floating-point. This sampled 
value is the received symbol value of the N-PAM signal in Fig. 
1 by an analog-to-digital converter. Using this sampled 
floating-point value, we can calculate the bitwise LLR in (8) as 
follows: 

(a) Take the absolute value |z I| of the scaled value zI of the 
sampled value yI with dI in Fig. 4. 

(b) After passing through a floor function, the result value RI 
= (r0, r1, r 2)2 can be expressed by the binary form of a 
decimal value from 0 to N, where r0 is the MSB in Fig. 4. 

(c) Calculate the distance Dk for an axis-shift with the value RI 
of (b). For example, we can calculate this distance for the 
8-PAM in Fig. 1, the in-phase component of an (8×L) R-
QAM signal, as follows: For bit b0, D0= 0; for bit b1, 
D1=2K-1=4; and for bit b2, D2= {(r0)2×2+1}×2K-2 = 2 or 6, 
where K=3=log2N in Fig. 5. 

(d) Decide the bit-arranged form parameter mk (0 or 1) with 
the result R of (b). For bit b0, m0 = 0; for bit b1, m1 = 1; and 
for bit b2, m2 = r0. The parameter mk is a bit value 0 or 1 
(+1 or -1) to be used in the binary operation in Fig. 5.  

(e) Take the sign bit Q0 for only bit b0 valued -1 or +1 from 
the sampled value z in Fig. 4. In the case of the other bit bk, 
k ≠ 0, Qk = +1. This parameter can be also represented 
with a single binary bit value (0 or 1) for a simple binary 
logic operation. 

(f) Calculate the compensated value by using the results 
of (a), (c), and (e) in Figs. 4 and 5 as = |z| - C

kẑ
kẑ k. 

(g) Take the sign bit Gk = Qk× sign( ) valued -1 or +1 of the 
result of (f) in Fig. 5. This parameter can be represented 
with a single binary bit value (0 or 1) for simple binary 
logic operation. 

kẑ

(h) Calculate the minimum distance from the result of (f) as in 
Fig. 5. 

(i) Calculate the maximum distance using the result of (h) and 

the known symbol distance as in Fig. 5.  
(j) Finally, calculate the bitwise LLR of bit bk by using the 

results of (d), (g), and (h) in Fig. 5. 
As an example, we define a Gray coded 64-QAM signal 

space with transmitted symbols with the codeword C = (c0, c1, 
c2, c3, c4, c5) = (bI,0, bI,1, bI,2, bQ,0, bQ,1, bQ,2), and assume the 
received symbols are located at y1 and y2 as shown in Fig. 7. 
The received symbols y1 and y2 can be separated into in-phase 
and quadrature components (i, q) as y1 = (-7.8d, 3.5d) and y2 = 
(-3.5d, 4.5d). Using the proposed expressions (8) and (9) and 
their implementation algorithm, we finally obtain the bitwise 
LLR results of these received symbols as in Table 1. Table 1 
shows each result of the processing steps for the received 
values y1 and y2. 
 

 

Fig. 7. Partial constellation of a Gray-coded 64-QAM. 

S-4,4 S-3,4 S-2,4 S-1,4 

S-4,3 S-3,3 S-2,3 S-1,3 
111011 110011 100011 101011 

111010 110010 100010 101010 

111000 110000 100000 101000 

111001 110001 100001 101001 

S-4,2 S-3,2 S-2,2 S-1,2 

S-4,1 S-3,1 S-2,1 S-1,1 

7d 

5d 

3d 

d 

-d -3d -5d-7d

y2 
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Table 1. Bit LLR calculation examples of y1 and y2 for 8-PAM signals.

y1 = (-7.8d, 3.5d) y2 = (-3.5d, 4.5d) 

i = -7.8d q = 3.5d i = -3.5d q = 4.5d Steps

bI,0 bI,1 bI,2 bQ,0 bQ,1 bQ,2 bI,0 bI,1 bI,2 bQ,0 bQ,1 bQ,2

|z| 7.8 3.5 3.5 4.5 

R (111)2 (011)2 (011) 2 (100) 2 

Ck 0 4 6 0 4 2 0 4 2 0 4 6

mk +1 -1 -1 +1 -1 +1 +1 -1 +1 +1 -1 -1

Qk -1 +1 +1 +1 +1 +1 -1 +1 +1 +1 +1 +1

kẑ  7.8 3.8 1.8 3.5 -0.5 1.5 3.5 -0.5 1.5 4.5 0.5 -1.5

Gk -1 +1 +1 +1 -1 +1 -1 -1 +1 +1 +1 -1

dmin,k 3 1 0 1 0 0 1 0 0 2 0 0

dmax,k 4 2 1 2 1 1 2 1 1 3 1 1

LLR 19.2 5.6 1.8 -5.0 -0.5 -1.5 5.0 -0.5 -1.5 -7.5 0.5 -1.5

Decision 1 1 1 0 0 0 1 0 0 0 1 0
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Fig. 8. Uncoded BER performance for different modulation orders.
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Fig. 9. BER performance for different iterations of a turbo decoder
using the proposed algorithm (64-QAM, N=8, L=8). 
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Figures 8 and 9 show the BER performance versus SNR for 
different modulation orders of R-QAM and for different 
iterations of a Turbo decoder with the proposed LLR 
calculation algorithm, respectively. As shown in Fig. 8, the 
numerically calculated (solid line) results are almost the same 
as the simulated (symbol only) results. 

In Fig. 9, as a practical example, we plot the BER versus 
SNR (Eb/N0) for an uncoded result and the first five iterations 
of decoding results for a Turbo coded 64-QAM (N=6, L=8) 
signal over an AWGN channel. In this application, we used a 
random interleaver and two systematic convolutional encoders 
with feedback with memory 2. From this figure, we observe 
that for a BER of 10-3 the SNR is equal to 8.9 dB at iteration = 
1, 6.5 dB at iteration = 2, 5.6 dB at iteration = 3, 5.2 dB at 
iteration = 4, and 5.05 dB at iteration = 5. 

Implementation of a conventional bit metric generating 
function block with the Log-MAP or the Max-Log-MAP 

algorithm has very high structural complexity because of the 
logarithm calculation or Max operation. In order to reduce the 
complexity and the time latency of the conventional structure 
in practice, the highly complex functions are replaced with a 
look-up table (LUT) with pre-calculated values, even though 
this expedient introduces a certain amount of the performance 
degradation because of quantization errors. The proposed 
expression (8) in this paper, however, requires only basic 
mathematical functions such as multiplier and adder functions.  

For the practical applications of certain function blocks, we 
need to take into account that power consumption, 
performance impact, semiconductor layout size, and many 
other areas are trade-offs for an efficient system design. 
Moreover, for an adaptive modulation and coding (AMC) 
scheme or a software radio (SR) system, the universality and 
flexibility of the structure can be considered more important 
than other issues. Taking all this into consideration, we submit 
that the proposed method is a promising alternative to 
conventional methods for reconfigurable systems such as 
AMC and SR. 

VI. Conclusions 

In this paper we provided a general and simple constructive 
expression for bitwise LLR calculation based on the unique 
mapping rules of arbitrary rectangular Gray coded QAM 
signals. Gray mapping creates the symmetric and repeated 
formats for the ‘0’ and ‘1’ assignment of the symbol codeword. 
The results of the proposed bitwise LLR expression are exactly 
the same as the conventional case-by-case, region-by-region 
calculation method of the Max-Log-MAP algorithm. Further, 
the parameters for the proposed LLR algorithm, such as the 
received symbol, the modulation order, and the mapping rule 
are easily extracted from the prior information at the receiver-
side. We also suggested an implementation algorithm for the 
proposed expression. Thus, it can be easily applied for various 
applications with iterative decoding, such as a soft symbol de-
mapper for R-QAM/N-PAM signals as an input to a Turbo or 
LDPC decoder. 
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