
A Single siRNA Suppresses Fatal Encephalitis
Induced by Two Different Flaviviruses
Priti Kumar

1
, Sang Kyung Lee

2
, Premlata Shankar

1*
, N. Manjunath

1*

1 The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of

Bioengineering, Hanyang University, Seoul, Korea

Funding: This work was supported
by NIH grant U19 AI 056900 to NM
and PS.

Competing Interests: The authors
have declared that no competing
interests exist.

Academic Editor: Clifford Lane,
National Institutes of Health, United
States of America

Citation: Kumar P, Lee SK, Shankar
P, Manjunath N (2006) A single siRNA
suppresses fatal encephalitis
induced by two different flaviviruses.
PLoS Med 3(4): e96.

Received: September 20, 2005
Accepted: December 16, 2005
Published: February 14, 2006

DOI:
10.1371/journal.pmed.0030096

Copyright: � 2006 Kumar et al. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License, which
permits unrestricted use,
distribution, and reproduction in any
medium, provided the original
author and source are credited.

Abbreviations: dsRNA, double-
stranded RNA; E, envelope; GFP,
green fluorescent protein; IC,
intracranial challenge; IFN,
interferon; JE(V), Japanese
encephalitis (virus); MOI, multiplicity
of infection; RNAi, RNA interference;
RV-G, rabies virus glycoprotein;
shRNA, short hairpin RNA; siRNA,
short interfering RNA; TU,
transduction units; WN(V), West Nile
(virus)

* To whom correspondence should
be addressed. E-mail: shankar@cbr.
med.harvard.edu (PS); swamy@cbr.
med.harvard.edu (NM)

A B S T R A C T
Background

Japanese encephalitis virus (JEV) and West Nile virus (WNV) are neurotropic flaviviruses that
can cause acute encephalitis with a high fatality rate. Currently there is no effective treatment
for these infections.

Methods and Findings

We tested RNA interference (RNAi)-based intervention to suppress lethal JE and WN
encephalitis in mice. To induce RNAi, we used either lentivirally expressed short hairpin RNA
(shRNA) or synthetic short interfering RNA (siRNA). As target, we selected the cd loop-coding
sequence in domain II of the viral Envelope protein, which is highly conserved among all
flaviviruses because of its essential role in membrane fusion. Using as a target a species-specific
sequence in the cd loop that is conserved only among the different strains of either JEV or
WNV, we could achieve specific protection against the corresponding virus. However, by
targeting a cross-species conserved sequence within the cd loop, we were able to protect mice
against encephalitis induced by both viruses. A single intracranial administration of lentivirally
delivered shRNA or lipid-complexed siRNA before viral challenge or siRNA treatment after viral
challenge was sufficient for protection against lethal encephalitis.

Conclusions

RNAi-based intervention affords near complete protection from both JEV- and WNV- induced
encephalitis in mice. Our results show, to our knowledge for the first time, that siRNA can be
used as a broad-spectrum antiviral agent for treating encephalitis caused by multiple related
viruses.
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Introduction

Flaviviruses are small (40–60 nm) enveloped viruses with a
single-stranded positive–sense RNA genome that is approx-
imately 11 kb long. The genomic RNA encodes a single
polyprotein that is processed into three structural and seven
nonstructural proteins [1]. The mosquito-borne flaviviruses
such as the Japanese encephalitis virus (JEV) and West Nile
virus (WNV) are among the most important examples of
emerging and resurging pathogens. Japanese encephalitis
virus is responsible for ;50,000 cases of encephalitis world
wide annually with 30% mortality and permanent neuro-
logical disabilities in 50% of survivors [2]. JEV is prevalent in
Southeast Asia but has the potential to spread to the New
World [3]. WNV, once confined to Africa and the Middle East,
was introduced into the Americas with 66 cases reported in
New York in 1999. Since then, WNV rapidly spread
throughout the continental US, and by 2003, 45 states were
involved, with 9,858 reported infections and over 2,800 cases
of meningitis/encephalitis [4,5]. Currently no effective drugs
are available to treat flaviviral infections. Once the virus
invades the central nervous system, the course of infection is
very rapid, suggesting that success in developing antiviral
treatment modalities hinges on the ability to reduce the viral
load early in the infection. Moreover, infections by diverse
neurotropic flaviviruses are clinically indistinguishable, which
makes it important to develop broad-based therapeutic
approaches that are effective against multiple viruses within
and across the flaviviral species.

RNA interference (RNAi) was originally described as a
natural antiviral mechanism in plants. Here, long double–
stranded RNA (dsRNA) is processed by the enzyme dicer into
small, 21- to 25-nt dsRNA molecules called short interfering
RNAs (siRNAs), which mediate the sequence-specific degra-
dation of the target mRNA (reviewed in [6–13]). However,
introduction of long dsRNAs in mammalian cells induces an
interferon (IFN) response that results in cell death due to
global inhibition of protein synthesis. A major advance in the
field occurred with the discovery that synthetic short dsRNA
resembling the dicer-processed product could mediate
specific gene silencing in mammalian cells without evoking
the IFN response [14]. Since then, RNAi has emerged as a
powerful tool for gene silencing with a potential for
therapeutic use in viral infections [15–17]. Several studies
have demonstrated that the central nervous system is also
amenable to RNAi [18–21].

In this study, we explored the feasibility of using RNAi to
suppress encephalitis induced by two different flaviviruses.
Our results highlight the feasibility of using RNAi for
potential therapy in acute neuronal infections.

Methods

Cells and Viruses
Baby hamster kidney cell line (BHK21), the mouse neuronal

cell line (Neuro 2a), and Vero cell lines were all obtained from
ATCC (Manassas, Virginia, United States) and maintained in
DMEM with 10% FCS. The Nakayama strain of JEV and B956
strain of WNV were obtained from ATCC, grown, and plaque
titrated using BHK21 cells. LD50 for both viruses was
determined by inoculating serial dilutions of infected mouse
brain lysates into groups of mice as described in [22].

Short Interfering RNA Sequences and Generation of Short
Hairpin RNA-Expressing Lentiviral Vector
siRNAs were synthesized by Dharmacon (Lafayette, Colo-

rado, United States). The sense strand sequence of the siRNAs
designed to target the envelope gene were as follows: FvEJ, 59-
GGATGTGGACTTTTCGGGA-39 (JEV nt 1287–1305); FvEW,
59-GGCTGCGGACTGTTTGGAA-39 (WNV nt 1287–1305);
and FvEJW, 59-GGGAGCATTGACACATGTGCA-39 (JEV nt
1307–1328). To generate a lentiviral vector to express shFvEJ,
two complementary oligonucleotides incorporating the FvEJ

sequence were synthesized as a 21-nt inverse repeat separated
by a 9-nt loop sequence and inserted between the U6
promoter and the termination sequences in the lentiviral
vector Lentilox pLL3.7 as described by Rubinson et al. [23]. A
control vector targeting the luciferase gene was also similarly
generated using a published sequence (nt 155–173) [24].
Lentiviral stocks were generated by cotransfection of the
lentiviral vector plasmid along with the helper plasmid
pHR98.9DVPR (core protein) and either the pVSV-g or
pLTR-RVG envelope construct into 293T cells. After 48 h,
culture supernatants were filtered through a 0.45 lm
membrane filter (Millipore, Billerica, Massachusetts, United
States), aliquoted, and stored at �70 8C. Concentrated virus
preparations were made by ultrapelleting the supernatants in
an SW28 rotor at 25,000 rpm for 1 h. The virus was suspended
in PBS for 3–4 h, aliquoted, and stored at �70 8C. Lentiviral
stocks were titrated by inoculating serial dilutions on 293T
(when pseudotyped with vesicular stomatitis virus glycopro-
tein) or Neuro 2a cells (when pseudotyped with the rabies
virus glycoprotein [RV-G]) and determining green fluorescent
protein (GFP) expression by flow cytometry 2 d later and
expressed as transduction units (TU)/ml.

Cell Lines Stably Expressing Short Hairpin RNA
Overnight cultures of Vero or Neuro 2a cells seeded at 13

105 cells per well in 24-well plates were spin-infected with
lentivirus for 2 h at 2,400 rpm (multiplicity of infection [MOI]
of 10) in DMEM containing 10% FCS and 8 lg/ml of
polybrene. After 2 h further incubation at 37 8C, fresh
medium was added to the cells. After ascertaining the
transduction efficiency on the basis of GFP expression by
flow cytometry (nearly 100% in both cell lines), the cells were
maintained in culture for further experiments. Cells were
challenged with JEV at different multiplicities of infection. At
different times postinfection, the cells were stained with a
JEV-specific antibody (ATCC) followed by a phycoerythrin-
conjugated goat anti-mouse polyclonal antibody (DakoCyto-
mation, Glostrup, Denmark) and examined by flow cytometry.

Northern Blot to Detect Short Hairpin RNA and Viral RNA
Degradation
For Northern blot analysis, 5 lg of total cellular RNA

extracted from the transduced cells by the RNeasy mini kit
(Qiagen, Valencia, California, United States), were run on a
1% denaturing agarose gel, transferred to a positively
charged nylon membrane (BrightStar-plus; Ambion, Austin,
Texas, United States) and probed using the Northern Max
protocol (Ambion). The JEV probe corresponded to the NS4b
gene product of JEV, RT-PCR amplified from JEV-infected
BHK21 cellular RNA. The DECA template-beta-actin-probe
(Ambion) was used for probing the b-actin mRNA that served
as the loading control. The probes were labeled with 32P-
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dATP using the DECA prime II random prime labeling kit
(Ambion), purified by NucAway spin columns (Ambion).
Production of siRNA in lentivirus-transduced cells was
analyzed by modified Northern blot designed to capture
small RNAs efficiently as described earlier [25].

Short Interfering RNA Transfection
Neuro 2a cells were seeded in six-well plates at 1 3 105 per

well for 12–16 h before transfection. Lipid-siRNA complexes
were prepared by incubating 200 nM of indicated siRNA with
Lipofectamine 2000 (Invitrogen, Carlsbad, California, United
States), iFect (Neuromics, Bloomington, Minnesota, United
States), or JetSI/DOPE (Avanti Polar Lipids, Alabaster,
Alabama, United States) formulations in the appropriate
volume as recommended by the manufacturer. Lipid-siRNA
complexes were added to the wells in a final volume of 1 ml
DMEM. After incubation for 6 h, cells were washed, and
reincubated in DMEM containing 10% FCS, and infected
with either JEV or WNV 24 h post-transfection. The infection
levels were monitored after 72 h by flow cytometry using JEV-
specific antibody or WNV-envelope specific monoclonal
antibody (Chemicon International, Temecula, California,
United States).

RT-PCR and ELISA to Detect IFN-Inducible Genes and
Serum IFN Levels

Total RNA was isolated from homogenized mouse brain
tissue with TRIzol Reagent (Invitrogen). A total of 5 lg from
each sample was reverse transcribed using the ReactionReady
first strand cDNA synthesis kit (SuperArray Bioscience,
Frederick, Maryland, United States) according to the manu-
facturer’s instructions. Following reverse transcription, the
samples were processed for PCR using the MultiGene-12
reverse transcriptase-PCR profiling kit for mouse IFN
response genes (SuperArray Bioscience) according to the
manufacturer’s instructions. The PCR program consisted of
an initial incubation at 95 8C for 15 min to denature the
samples followed by 30 cycles of 95 8C for 30 s, 55 8C for 30 s,
and 72 8C for 45 s. After completion of PCR, 10 ll of each
sample was separated by agarose gel electrophoresis, stained,
and scanned as a digital image using a CCD camera. The PCR
gene products were quantified by NIH Image J (version 1.32j)
software. Values obtained for the test samples were normal-
ized with respect to the GAPDH control and divided by the
normalized values obtained with the brain sample from
untreated mice to determine the fold increases in mRNA
levels for each of the genes. IFN levels in serum and brain
samples were quantified by using a mouse type I IFN
detection ELISA kit from PBL Biomedical (Piscataway, New
Jersey, United States), according to the manufacturer’s
instructions.

Mouse Infection
BALB/c mice (Jackson Laboratory, Bar Harbor, Maine,

United States) aged 4–6 wk were used for all in vivo
experiments. All mouse infection experiments were done in
a biosafety level 3 animal facility at the CBR Institute for
Biomedical Research and had been approved by the institu-
tional review board. For experiments using lentiviruses, mice
were inoculated intracranially (IC) with different doses of
lentivirus in 5 ll of PBS through the bregma (4 mm deep
vertically into the brain using a Hamilton syringe fitted with a

30-gauge needle) at different times before the flaviviral
challenge. The mice were subsequently challenged with
different doses of JEV or WNV by IC inoculation through
the bregma at the same spot as described above. For
experiments using siRNA, siRNAs were complexed with iFect
(Neuromics) or JetSI/DOPE (Avanti Polar Lipids) according to
the manufacturer’s instruction. IC injections of siRNA/lipid
complexes and flaviviral challenge were done as described
earlier.

Mouse Tissue Preparation
Mice were euthanized and brains removed and used in

various experiments. For detection of neuronal cell infection
by flow cytometry, freshly isolated brain specimens were used
to make a single-cell suspension by gently teasing with the
back of a syringe piston. For virus titrations, brain tissues
were homogenized in 10% HBSS-BSA followed by repeated
passage through a syringe fitted with a 29-gauge needle at
least 20 times at 4 8C to release all intracellular virus. Viral
titrations were done as described earlier. In some experi-
ments, the same mouse brain homogenates were inoculated
on Neuro 2a cells, cultured for 5 d and examined by flow
cytometry for viral antigen expression. For histology, the
brain samples were fixed in 10% neutral buffered formalin
and embedded in paraffin, and 6-lm horizontal sections were
stained with hematoxylin and eosin.

Results

Suppression of JEV Infection in a Neuronal Cell Line by
Lentivirally Expressed Short Hairpin RNA Targeting the
Viral Envelope Gene
In initial studies, we compared the silencing ability of five

siRNAs targeting different regions of the JEV genome and
found that a siRNA that targets the envelope gene (FvEJ, nt
1287–1305 of the genomic RNA) could afford robust
protection against JEV infection in cell lines (unpublished
data). Moreover, this sequence is completely conserved
among all sequenced wild-type JEV isolates. Since the siRNA
effect diminishes over time in cell lines because of dilution
with cell division, to follow the kinetics of protection we
cloned the sequence as a U6 promoter driven template for
short hairpin RNA (shRNA) in the lentiviral vector pLL3.7
[23]. This vector also contains a GFP gene under the control
of the cytomegalovirus promoter, which allows easy mon-
itoring of transduced cells. We used the neurotropic RV-G
instead of the conventionally used vesicular stomatitis virus
glycoprotein to pseudotype the lentivirus, because it allows
retrograde axonal transport to distal neurons and results in
more extensive spread of the transduced genes, which would
be useful for in vivo applications [26]. When the mouse
neuronal cell line Neuro 2a was transduced with the RV-G
pseudotyped lentivirus encoding FvEJ (shFvEJ) or the
control luciferase shRNA (shLuc), nearly 100% of the cells
were transduced as indicated by GFP expression. However,
FvEJ-specific short, 21-nt RNA was detected by Northern
analysis only in cells stably transduced with shFvEJ, but not
shLuc (Figure 1A), indicating the specificity of shRNA
expression. To test the ability of the shRNA to inhibit viral
replication, the transduced Neuro 2a cells were infected
with JEV, and 60 h later the extent of infection was assessed
by flow cytometry after staining the cells with a JEV-specific
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antibody (ATCC). The high degree of infection seen in the
mock- and shLuc-transduced cells was abrogated with
shFvEJ transduction (Figure 1B). We also tested the ability
of shFvEJ to protect against challenge with increasing doses
of JEV. As Figure 1C shows, shFvEJ exhibited potent
antiviral activity in that it abrogated JEV infection in Neuro
2a cells even at a MOI of 50 (highest dose tested). Decreases
in the steady-state levels of viral RNA in the shFvEJ-
transduced cells were also confirmed by Northern analysis
using a JEV-specific cDNA probe (Figure 1D). The antiviral
effect of FvEJ shRNA was not due to the induction of an IFN
response, because shFvEJ was also able to inhibit viral
replication in Vero cells that lack type I IFN genes (Figure
S1A) [27]. Moreover, there were no apparent differences in
the expression of IFN-responsive genes between shFvEJ- and
shLuc-transduced cells (Figure S1B). Thus, shFvEJ effectively
inhibits JEV replication by RNAi-mediated degradation of
viral RNA.

Lentivirally Expressed FvEJ shRNA Protects Mice against

JEV-Induced Encephalitis
Next we evaluated the potential of shFvEJ to protect against

a lethal IC challenge with JEV. BALB/c mice were injected IC
with the control shLuc or shFvEJ, pseudotyped with RV-G. All
mice were challenged with four lethal doses (LD50) of JEV
injected at the same site half an hour later and observed for
mortality for 21 days. In initial experiments (Figure 2A) the
mice received three IC injections with 2 3 105 TU of
lentiviruses (the first at 4 d, the second at 2 d, and the third
30 min before JEV challenge). JEV challenge in the control
mock- or shLuc-injected mice induced typical symptoms of
viral encephalitis including ruffling of fur, hunching, and hind
limb weakness beginning on day 4 after infection, which
rapidly progressed to paralysis, marked ataxia, and death by
the fifth day (Figure 2A). In contrast, none of the shFvEJ-
injected mice died or developed any of the clinical symptoms
during the entire 21-d period of observation (Figure 2A).

Figure 1. Lentiviral Delivery of FvEJ shRNA Suppresses JEV Replication in Neuro 2a Cell Line

(A) Northern blot shows intracellular processing of FvEJ shRNA. RNA extracted from Neuro 2a cells stably transduced with shFvEJ or shLuc lentivirus was
probed with 32P end-labeled synthetic FvEJ siRNA sense strand to detect intracellular processing of shRNA. Antisense strand of the synthetic FvEJ siRNA
(siFvEJ) was used as positive control. Before loading, the samples were normalized for total RNA content.
(B) shFvEJ inhibits JEV replication in Neuro 2a cells. Mock- or lentivirally transduced Neuro 2a cells were challenged with JEV at a MOI of 1, and the viral
replication monitored 60 h later by flow cytometry after staining the cells with a JEV envelope-specific antibody. Percent of infected cells is indicated.
The results are representative of at least three independent experiments.
(C) Titration of shFvEJ-induced inhibition of JEV replication. Neuro 2a cells transduced with shFvEJ or control shLuc lentivirus were challenged with the
indicated MOIs of JEV, and viral replication was assessed by flow cytometry at different times postinfection. Percent inhibition of viral replication
compared to mock-transduced cells is shown. Results are representative of three experiments.
(D) shFvEJ inhibits accumulation of JEV genomic RNA. Total RNA obtained from the control shLuc- or shFvEJ lentivirus-transduced cells, which were
either uninfected (UI) or infected with JEV, was probed with JEV- or b-actin cDNA in a Northern blot analysis.
DOI: 10.1371/journal.pmed.0030096.g001
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Brain sections from animals challenged with JEV were
examined for pathological changes 5 d after infection. Brains
of shLuc-treated mice showed the typical histopathological
features of a diffuse, disseminated viral encephalitis with
hemorrhage, extensive perivascular leukocyte infiltration, and
neuronal apoptosis, while no brain inflammation or neuro-
pathology was observed in the shFvEJ-treated mice (Figure
2B). On the fifth day after viral challenge, viral titers in the
brain tissue were measured by plaque assays on BHK21 cells.
Brain homogenates from the control mice revealed extremely
high levels of viral replication, whereas the homogenates from
the shFvEJ-treated mice remained virus free (Figure 2C). To
further confirm the lack of infectious virus, we inoculated
Neuro 2a cell monolayers with increasing amounts of brain
homogenates, carried out an extended 5-d culture to allow
replication and expansion of virus, and then evaluated
flaviviral antigen expression in these cells by flow cytometry.
While the Neuro 2a cell cultures inoculated with homogenates
from untreated or shLuc-treated mice expressed high levels of
viral antigen, viral antigen remained undetectable in cells
inoculated with homogenates from shFvEJ-treated mice
(Figure 2D). RT-PCR using RNA from the lentivirus-injected
brains revealed no apparent differences in the expression of
IFN-responsive genes between shFvEJ- and shLuc-injected

mice (Figure S1B). Moreover, serum type I IFN protein levels
were undetectable by ELISA (unpublished data).
The previous set of experiments showed that three

injections of shFvEJ can protect mice against a fatal JEV
challenge. We also tested the effectiveness of just one
injection of shFvEJ along with viral challenge. While injection
with control shLuc did not modify the course of infection,
even a single injection of shFvEJ was sufficient to protect mice
completely against challenge with four LD50 of JEV (Figure
2E). We also tested the ability of a single injection of shFvEJ to
protect against increasing doses of challenge virus. Remark-
ably, a single injection with shFvEJ afforded complete
protection with no detectable virus in the brain homogenates
even after challenge with 50 LD50 of JEV, although no
protection was seen with the unnaturally high dose of 1,000
LD50 (Figure 2E). Collectively these results suggest that shFvEJ

can confer a robust RNAi-mediated resistance to fatal
Japanese encephalitis. Although the shRNA was coadminis-
tered with the challenge virus in these experiments, consid-
ering the lag time for the lentivirally transduced vector to be
integrated into the host genome and processed into siRNA,
the RNAi-mediated antiviral effect is likely to have been
activated after JEV replication had already been initiated,
suggesting that RNAi may be effective even when adminis-
tered postinfection.

Figure 2. shFvEJ Protects Mice against JEV-Induced Encephalitis

(A) BALB/c mice (ten per group) were injected IC on days�4,�2, and 0 with 2 3 105 TU of either shFvEJ or shLuc lentiviruses. On day 0, 30 min after
injection of the third dose of lentivirus, they were injected at the same spot IC with four LD50 of JEV, and the mice were monitored for survival over time.
(B) Brain sections from shFvEJ treated mice reveal no flavivirus-induced pathology. Representative photomicrographs of hematoxylin and eosin-stained
horizontal brain sections obtained from mice treated with shFvEJ or shLuc lentivirus and infected with JEV for 5 d are shown at indicated magnifications.
(C) Lack of infectious virus in the brains of shFvEJ-treated mice. Mice were injected with lentiviruses and challenged with JEV as in (A), and their brain
homogenates, obtained 5 d after JEV challenge, were plaque-titrated on BHK21 cell monolayers. For shFvEJ lentivirus, viral titers after a single (13) as well
as three (33) administrations are shown. The viral titers are shown as log plaque-forming units per total brain. Each symbol represents an individual mouse.
(D) Brains from shFvEJ treated mice are free of infectious virus. Brain homogenates in (C) were pooled, 1, 10, or 50 ll of pooled homogenate were
inoculated onto Neuro 2a cells, and the viral replication was monitored by flow cytometry 5 d later.
(E) A single IC injection with shFvEJ is sufficient for protection against JE encephalitis. Mice (five per group) were injected IC with 2 3 105 TU of shLuc or
shFvEJ, challenged 30 min later with indicated doses of JEV, and observed for survival over time.
DOI: 10.1371/journal.pmed.0030096.g002
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FvEJ Synthetic Short Interfering RNA Can Also Protect
Mice against Flaviviral Encephalitis

Although we observed protection with lentivirally deliv-
ered shRNA, this may not be the ideal therapeutic approach,
because the long-term effects of lentiviral integration are
hard to predict. Moreover, the quantity of siRNA produced
endogenously may be limiting for lentiviral delivery to be
useful in a clinical setting, as brain cells are likely to contain
high levels of replicating virus. On the other hand, similar to
drug treatment, synthetic siRNA offers the possibility of
escalating the dose for optimal viral suppression and is also
potentially safer because of the transient nature of gene
silencing. Moreover, siRNA may be particularly well suited for
acute infections in which long-term treatment is not needed.
However, the poor uptake of duplex siRNA in most
mammalian cells in vivo is a major limitation. Although
there is a report of the successful use of naked siRNA
targeting the pain-related cation channel P2X3 to treat
chronic neuropathic pain in a rat model [28], other studies
suggest that naked siRNA is poorly taken up by brain
parenchymal cells [29,30]. Recently, a cationic lipid formula-
tion, i-Fect (Neuromics) has been found to deliver siRNA into
neuronal cells without toxicity (Dr. Josephine Lai, University
of Arizona Health Sciences Center, personal communica-
tion). We tested if synthetic FvEJ siRNA (siFvEJ) complexed
with i-Fect can protect mice against viral encephalitis. After
confirming that i-Fect can transduse siFvEJ siRNA as
efficiently as lipofectamine to inhibit JEV infection in Neuro
2a cells (Figure 3A), we infected mice by IC injection with JEV
and, after allowing 30 min for viral adsorption, injected the
synthetic siFvEJ or control luciferase siRNA (siLuc) com-
plexed with i-Fect at the same site. All mice injected with
siLuc died by day 5, whereas all of the siFvEJ-injected mice
survived indefinitely (Figure 3B), suggesting that i-Fect can
deliver siRNA into neuronal cells and result in protection
that is similar to the lentivirally delivered shRNA.

We also tested if siRNA treatment can protect against an
established JEV infection. Mice were first injected with JEV,
and siRNA complexed with i-Fect was injected 6 h later, a
time point at which the viral RNA is being actively
synthesized in the infected cells [31]. Under these conditions,
although siFvEJ was not able to prevent death, it was able to
delay it by 2–3 d (Figure 3B). Moreover, the viral loads in
brain tissue from mice treated 6 h postinfection were two logs
lower than in control mice, when tested on day 3 post-
infection (Figure 3C), indicating that siFvEJ complexed with i-
Fect could provide partial, but not complete protection when
administered postinfection. It should be pointed out that the
available i-Fect formulation only allowed us to inject a total
of approximately 6 lg (0.5 nmoles) of siRNA in the volume
small enough to be safely injected by the IC route. Thus, it is
possible that the limited amount of siRNA may not have
spread sufficiently to protect cells distant from the site of
infection, which is critical for complete protection post-
infection. If this were true, injection of a higher dose of
siRNA should protect at later time points. To test this, we
used another combination cationic lipid formulation, JetSI
and the fusogenic lipid dioleoylphosphatidyl-ethanolamine
(DOPE), which has also been recently reported to deliver
siRNA to brain cells in vivo without toxicity [32]. This
formulation allowed us to inject higher amounts of siRNA in

a small volume. After ascertaining that JetSI/DOPE can
successfully deliver siFvEJ into Neuro 2a cells to inhibit JEV
replication (Figure 3D), we injected approximately 40 lg (3.2
nmoles) of siRNAs, complexed with JetSI/DOPE 30 min, 6 h,
or 18 h after infection. All control mice injected with siLuc
died within 5 d. In contrast, in the siFvEJ-treated group, all
animals treated with siRNA 30 min or 6 h postinfection, and
60% of mice treated with siRNA 18 h after infection, survived
indefinitely (Figure 3E). As with i-Fect/siFvEJ-treated mice,
neither IFN-responsive genes nor IFN levels were increased
after JetSI/DOPE/siFvEJ treatment compared to JetSI/DOPE/
siLuc treatment (unpublished data). Moreover, the surviving
siFvEJ-treated mice were completely healthy and brain
sections taken 21 days after challenge showed no histopatho-
logical alterations, suggesting that the treatment was non-
toxic (unpublished data).
Next we tested if siRNA targeting the viral envelope gene can

also suppress WNV. However, upon analysis, the B956 strain
of WNV used in the study was found to contain five
nucleotide mismatches compared to the FvEJ sequence
chosen from JEV. In fact, we found that lentivirally
administered shFvEJ offers little protection from WN
encephalitis (Figure 3F). The inability of shFvEJ to protect
against a mismatched WN target reinforces our data that the
siRNA protects from JEV infection by RNAi rather than by
nonspecific induction of IFN. To test if a fully matched siRNA
protects against WN, we designed a siRNA targeting the
region corresponding to FvEJ, but with nucleotides matched
completely with the WNV B956 sequence (FvEW). This
sequence is also highly conserved in all the sequenced strains
of WNV. After confirming that FvEW siRNA (siFvEW)
inhibited WNV replication effectively in vitro (unpublished
data), we used the siRNA for in vivo studies. Control siLuc or
siFvEW complexed with JetSI/DOPE was injected at 30
minutes or 6 h after infection with WNV and the mice were
observed for mortality. While all the mice injected with siLuc
succumbed by d 5, nine of ten mice injected with siFvEW 30
min after WNV challenge, and four of five mice receiving
siFvEW 6 h after WNV challenge, survived indefinitely (Figure
3G). These results suggest that, similar to siFvEJ treatment for
JEV, siFvEW can protect against WN encephalitis.

A Single Short Interfering RNA Targeting a Highly
Conserved Region in the Viral Envelope Gene Can Protect
Mice against Both JEV- and WNV-Induced Encephalitis
We reasoned that it should be possible to design a common

siRNA that can suppress both JEV and WNV. The flaviviral
envelope glycoprotein is important in host cell receptor
binding as well as in the internalization of the viral genome
by membrane fusion. Probably because the fusion event is
common to all flaviviruses, the cd loop in domain II of the E
protein (aa 98–113), which is the region involved in fusion, is
highly conserved among all flaviviruses at the amino acid level
[33]. Although the FvEJ sequence is also derived from within
this region (E protein aa 98–103), it is not completely
conserved at the nucleotide level and as mentioned earlier,
compared to JEV, the WNV strain that we used has multiple
nucleotide changes. However, another region in the d loop (E
protein, aa 105–111) is highly conserved between JEV, WNV
as well as St. Louis encephalitis virus even at the nucleotide
level. Thus we designed a 21-nt siRNA (FvEJW), which is
identical in sequence between the two viruses except for
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positions 3 and 21 in JEV and WNV target sequence,
respectively. Mismatches at these positions are reported to
be well tolerated with no significant effect on siRNA efficacy
[34]. This siRNA was first tested for its ability to suppress both
JEV and WNV in the Neuro 2a cell line. In these cells, siFvEJW

was found to be as effective as siFvEJ or siFvEW, respectively,
in suppressing the replication of JEV as well as WNV (Figure
4A). We also evaluated the ability of siFvEJW to cross-protect
against a lethal challenge with JEV and WNV. Mice were first
challenged with either JEV or WNV and, after 30 min or 6 h,

injected IC with 3.2 nmoles of siFvEJW complexed with JetSI/
DOPE. All mice injected with the control siLuc, whether
challenged with JEV or WNV, died (Figure 4B). In contrast, all
mice injected with siFvEJW 30 min after infection with either
JEV or WNV survived indefinitely. When siFvEJW was injected
6 h after challenge, 100% of mice challenged with WNV and
80% of mice challenged with JEV survived (Figure 4B).
Collectively these results indicate that the conserved siFvEJW

can confer protection against both JE and WN-induced
encephalitis even when administered postinfection.

Figure 3. siFvEJ Also Protects against Fatal JEV Infection

(A) Transfection of Neuro 2a cells with i-Fect complexed siFvEJ confers protection against JEV infection comparable to lipofectamine transfection. Neuro
2a cells were transfected with siRNA mixed with i-Fect or lipofectamine and after 2 d, they were challenged with JEV at a MOI of ten. Viral replication
was monitored 72 h postinfection by flow cytometry. Also shown is an overlay histogram of uninfected Neuro 2a cells and JEV-infected Neuro 2a cells
treated prior to infection with either i-Fect/siLuc, lipofectamine/siFvEJ, or i-Fect/siFvEJ as indicated.
(B) i-Fect-complexed siFvEJ protects mice from JEV infection when injected 30 min but not 6 h after infection. Mice (five per group) were injected IC with
four LD50 of JEV, and after 30 min or 6 h they were also injected at the same spot with 0.5 nmoles of either siLuc or siFvEJ complexed with i-Fect and
monitored for survival over time.
(C) i-Fect complexed siFvEJ reduces the level of viral replication in mouse brain when administered 6h post challenge. Mice were injected with siRNAs 6
h after JEV challenge and brain homogenates obtained 3 d later were titrated on BHK21 cell monolayers. Log plaque-forming units per brain is shown.
Each symbol represents an individual mouse.
(D) Transfection of Neuro 2a cells with JetSI/DOPE complexed siFvEJ results in inhibition of JEV replication. Neuro 2a cells were treated with siFvEJ or
siLuc as in a using JetSI/DOPE instead of i-Fect to complex the siRNAs. Overlay histogram denotations are indicated.
(E) siFvEJ complexed with JetSI/DOPE protects mice against fatal encephalitis. Mice (ten per group) were injected IC with four LD50 of JEV and were
treated either with 3.2 nmoles siLuc complexed with JetSI/DOPE after 30 min or with JetSI/DOPE complexed with siFvEJ after 30 min, 6 h, or 18 h after
infection and monitored for survival over time.
(F) shFvEJ fails to protect against WNV-induced encephalitis. Mice (five per group) were injected with 2 3 105 TU of RV-G pseudotyped shLuc or shFvEJ

lentiviruses and challenged 30 min later with four LD50 of WNV and monitored for survival over time.
(G) siFvEW protects mice against lethal WNV-induced encephalitis. Mice (ten per group) were infected IC with four LD50 of WNV, and 30 min or 6 h later
they were also injected with 3.2 nmoles of either control siLuc or siFvEW complexed with JetSI/DOPE, and monitored for survival over time.
DOI: 10.1371/journal.pmed.0030096.g003
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Discussion

Here we report the identification of conserved siRNA
sequences that can potently protect mice against lethal
encephalitis induced by two neurotropic flaviviruses, JEV
and WNV. We also demonstrate that siRNA complexed with
certain lipids can be used for effective brain delivery. These
results highlight the considerable therapeutic potential of
RNAi for treating viral encephalitis. Our results also show
that by careful design of conserved target sites, it may be
possible to use a single siRNA to suppress infection by related
viruses across species. This will be particularly important in
treating acute and fatal viral infections, where the clinical
symptoms often overlap and time does not permit exact
etiologic diagnosis.

Although we have demonstrated effectiveness only against
JEV and WNV, the siFvEJW is also likely to be effective in
treating St. Louis encephalitis, because the target sequence is
very well conserved in all strains of SLE virus. Interestingly,
siFvEJW suppressed infections by both JEV and WNV although
there was a single mismatch in the respective target sequence
at positions 3 and 21, suggesting that these mismatches are
well tolerated. These results are in agreement with several
recent studies showing that while there is a stringent
homology requirement for the critical central residues, many
peripheral nucleotide changes are well tolerated [34,35]. In
fact, a detailed study by the Tuschl group has demonstrated
that base pairing of the central 13 nucleotides of the siRNA is
required for activity, but target mismatches at four nucleo-
tides at either end is tolerated [35]. We have not compared

RNAi activity with perfectly matched sequences, and thus it is
possible that we might be able to further increase the potency
using 100% matched siRNAs. However, the siFvEJW we used
was potent enough to suppress viral encephalitis by both
viruses. Recently, a non-RNAi-based antisense approach has
also been used to inhibit replication of multiple flaviviruses
in cell lines [36]. In this study, phosphorodiamidate morpho-
lino oligomers were used to target highly conserved sequen-
ces in the 59 and 39 UTRs of the viral genome. Thus, these
regions could also serve as potential therapeutic targets for
RNAi-based intervention in flaviviral infections.
An earlier study has also demonstrated partial protection

against WNV challenge in a murine model by a siRNA that
targeted a different region in the viral envelope gene [37].
However, unlike our siFvEJW, the sequence of the siRNAs used
in that study is not conserved in JEV or St. Louis encephalitis
virus, and they are unlikely to protect across species.
Moreover, the peripheral route of viral challenge used in
that study does not consistently induce encephalitis in mice,
which makes it difficult to assess the treatment efficacy
accurately. Using the central nervous system route of viral
infection that invariably culminates in fatal encephalitis in
mice, we have shown that siFvEJW can afford near complete
protection against both JE and WN encephalitis.
Importantly, we were also able to use the siRNAs effectively

to suppress WNV postinfection. Intriguingly, based on in
vitro studies in cell lines it has been postulated that actively
replicating WNV may be resistant to cytoplasmic delivery of
siRNA, probably because the viral RNA is sequestered within
specialized membranous structures [38]. However, in that
study, which used an in vitro approach, the failure of the
siRNA to protect postinfection was not uniform and was
observed only when the cells were transfected with the TKO
transfection reagent, and, as the authors themselves pointed
out, disparity among results may be based on the type of
transfection reagent used. The fact that we consistently
observed protection postinfection with both JEV and WNV
suggests that the lipid-complexed siRNA is able to penetrate
the putative viral RNA encased membranes. Alternatively, the
mechanism of viral replication may differ between primary
neuronal cells and cell lines.
Our results suggest that a single treatment with siRNA is all

that is required for protection against fatal encephalitis,
which is encouraging from a therapeutic angle. This may be
due to the fact that the siRNA effect is prolonged for up to
three weeks in the nondividing neuronal cells [39]. Impor-
tantly, we noted that a single administration of siRNA could
provide ;60% protection even when administered 18 hours
after infection. This is significant because the burst phase for
JEV and WNV replication is 18 hours, at which time a large
number of progeny virus is released [31] that can rapidly
spread to distal regions of the brain. It is likely that the siRNA
was able to diffuse from the injection site and thus protect
the neighboring cells.
Although our results suggest that a single lipid-based siRNA

delivery in the brain parenchyma results in some degree of
lateral spread and offers protection even in an established
infection, this approach is unlikely to work when the
infection has spread extensively to involve the entire brain.
Ensuring the presence of siRNA throughout the brain will be
crucial if the potential of siRNA as a therapeutic drug is to be
realized in a clinical setting, where drug administration can

Figure 4. FvEJW Protects against Encephalitis Induced by Either JEV or

WNV

(A) FvEJW siRNA inhibits both JEV and WNV infection in Neuro 2a cells.
siRNA-treated Neuro 2a cells were challenged with a MOI of ten of either
JEV (left) or WNV (right) and examined for viral replication by flow
cytometry 72 h postinfection. Included is an overlay histogram of
uninfected Neuro 2a cells and JEV- or WNV-infected Neuro 2a cells
transfected prior to infection with either JetSI/DOPE/siLuc or JetSI/DOPE/
siFvEJW as indicated.
(B) FvEJW siRNA protects mice against both JEV and WNV-induced
encephalitis. Mice were injected IC with four LD50 of JEV (left) or WNV
(right), and after 30 min or 6 h they were also injected at the same spot
with 3.2 nmoles of either siLuc or FvEJW complexed with JetSI/DOPE and
monitored for survival over time. Ten and five mice per group were used
to test the effect of siRNA 30 min and 6 h postinfection, respectively.
DOI: 10.1371/journal.pmed.0030096.g004
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begin only after the appearance of clinical symptoms. Thus, it
is important to develop improved delivery methods. One
approach may be to use continuous intrathecal or intra-
ventricular infusion with lipids and/or targeting with brain
receptor-specific antibodies. In fact, these methods have been
successfully used in other circumstances [32,40]. Moreover,
pegylated immunoliposomes coated with transferrin receptor
antibody has been successfully used for brain delivery of
shRNA via the intravenous route [19,41]. With any of these
methods, even if some degree of reduction in viral load is
achieved early in infection, the attenuation would increase
the window period available for an immune response to
develop that might eventually clear the infection. Although
viral mutations even at the conserved sequence is a
possibility, given the short time course of viral encephalitis,
this is unlikely to be a major limiting factor.

In summary, our study provides optimism for translation of
the relatively new RNAi technology from a laboratory tool
into a viable clinical strategy for treating acute and deadly
viral infections.

Supporting Information

Figure S1. FvEJ Does Not Induce a Type I IFN Response

(A) Mock- or lentivirally transduced Vero cells were challenged with
JEV at a MOI of 10, and viral replication monitored 72 h later by flow
cytometry after staining with a JEV-specific antibody. Percentage of
infected cells is indicated.
(B) cDNA prepared from Neuro 2a cells stably transduced with shLuc-
or shFvEJ- (left), or shLuc- or shFvEJ- injected mouse brains obtained
4 h (middle) or 24 h (right) after injection were subjected to RT-PCR
to measure the induction of IFN-response genes. The PCR products
were quantified by NIH Image J (version 1.32j) software. Normalized
values obtained for the test samples were divided by that obtained
with untreated Neuro 2a cells or untreated mouse brains to
determine the changes in mRNA levels for each of the genes.

Found at DOI: 10.1371/journal.pmed.0030096.sg001 (33 KB PDF).

Accession numbers
The sequences of the viral strains used in this study are listed in
GenBank (http://www.ncbi.nlm.nih.gov/entrez/) and their accession
numbers are U03694 (JEV, Nakayama strain) and AY532665 (WNV,
B956 strain).
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Patient Summary

Background. There are number of viruses that can cause encephalitis
(inflammation of the brain). Two such viruses are West Nile virus and
Japanese encephalitis virus, part of a family of viruses called flaviviruses,
which are transmitted by mosquitoes and ticks. Other diseases caused by
flaviviruses are yellow fever (for which the viruses are named—‘‘flavus’’ is
Latin for yellow), and dengue. Japanese encephalitis virus occurs in
Southeast Asia, causing 50,000 cases each year. West Nile virus originated
in Africa and the Middle East, but is now in the Americas. Encephalitis
caused by these viruses is often very severe and can be fatal. There are no
specific treatments for the encephalitis caused by these viruses.

Why Was This Study Done? Recently researchers have started to use a
technique known as RNA interference (RNAi) to silence the expression of
specific genes. RNAi was originally described as a natural antiviral
mechanism in plants. RNA is the normal intermediary between the DNA
and proteins. Small stretches of complementary RNA, called short
interfering RNA (siRNA) can be made synthetically and introduced into
cells to specifically target RNA and thus silence particular genes.

What Did the Researchers Do and Find? The researchers identified
areas of similar sequence within genomes of two flaviviruses. They
manufactured short interfering RNA specific for each of these viruses, and
also another common siRNA that could target both viruses equally well.
When the siRNA was injected into the brain before, at the same time as, or
after infection with the virus, it protected mice against infection with the
appropriate virus. In addition, the common RNA could protect mice
against encephalitis induced by both viruses.

What Do These Findings Mean? This study in mice shows that in
principle it might be possible to use the technique of RNAi to protect
against encephalitis caused by these viruses. However, in this study the
treatment was administered only at early time points after infection. Thus,
further studies will need to be done to see if it can work when given much
later in the course of the disease. In addition, before it can be used in
human disease it will be necessary to develop ways to give the interfering
RNA to humans, and to test the safety and effectiveness of the approach.

Where Can I Get More Information Online? MedlinePlus has a page
with links to information on encephalitis:
http://www.nlm.nih.gov/medlineplus/encephalitis.html
and West Nile virus:
http://www.nlm.nih.gov/medlineplus/westnilevirus.html
Wikipedia, the free Internet encyclopedia that anyone can edit, has a page
discussing RNAi with links to other resources:
http://en.wikipedia.org/wiki/RNAi
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