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Robust Design of a Decoupled Vibratory Microgyroscope

Considering Over-Etching as a Fabrication Tolerance Factor∗

Sung Kyu HA∗∗, Hee-Moon JEONG∗∗∗ and JunO KIM∗∗∗

A robust optimal design of a bulk-micromachined, decoupled vibratory microgyroscope
was carried out to determine geometric dimensions such that the gyroscopic performance is
least affected by a fabrication tolerance. Electro-mechanical vibration analysis considering
the sensing electrodes and the electronic signal processing were performed to obtain the fre-
quency responses that influence the gyroscopic performance. A statistically distributed lateral
over-etching (LOE) developed in the fabrication process was selected as a fabrication toler-
ance factor. The dimensions of the driving and sensing spring are selected as design variables
which are the sum of deterministic mask dimensions and the LOE. To minimize the influ-
ence of LOE on the decoupled vibratory microgyroscope performance, the multi-objective
function was formulated so as to minimize the sensitivities of the frequency difference with
respect to the LOE. As a result, the standard deviation of the frequency difference and the
driving natural frequency are reduced to 78% and 8%, respectively, through the Monte Carlos
Simulation (MCS).

Key Words: MEMS Fabrication Tolerance, Over-Etching, Decoupled Vibratory Microgy-
roscope, Robust Design, Optimization

1. Introduction

A number of silicon micromachined vibratory micro-
gyroscopes have been widely developed due to the merits
of low cost, small size and compatibility with IC proc-
ess(1), (2). The basic principle employed in the vibratory
microgyroscope is the Coriolis acceleration effect(1), (3).
Most vibratory microgyroscopes have comb drives for
driving and capacitive electrodes for sensing motion be-
cause the electrodes can be easily embodied by micro-
electro-mechanical system (MEMS) fabrication(4) – (6). To
improve its performance, the vibratory microgyroscope
was designed as a decoupled system between driving and
sensing structures(5) – (8) and the driving structure vibrates
at its natural frequency(1), (4), (9). The decoupled system im-
proved the signal-to-noise ratio by reducing the quadrature
signal error(5), (7). It also gave the designer more freedom
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in designing the driving and sensing frequencies indepen-
dently. The scale factor (or sensitivity) of the gyroscope
is proportional to the driving displacement(5). When the
driving structure vibrates at its natural frequency, the dis-
placement is magnified in proportion to mechanical qual-
ity factor (Q factor).

The MEMS fabrication process considerably influ-
ences the yield of the gyroscope, and it should be con-
sidered in the design process. The scale factor of the
vibratory microgyroscope depends on the frequency dif-
ference between the driving and the sensing structures(9).
The variation in the structural dimension due to the fab-
rication error gives rise to the variation in the frequency
difference and eventually reduces the gyroscope yield sat-
isfying the performance specifications. In the fabrication
process minimization of the fabrication error is essential
in increasing the yield(10), (11) but in the design stage a ro-
bust design to minimize the fabrication tolerance must be
considered in order to increase the yield and to reduce
production cost. Hwang et al.(12) have performed an ax-
iomatic design and then a robust design using Taguchi
concept(13), (14) for the robust performance regardless of
the tolerance. However, since it needs to calculate the
standard deviation, it requires excessive calculation time.
Han et al.(15) obtained the robustness of the objective func-
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tion by minimizing the gradient of the response to uncer-
tain variables in the coupled vibratory microgyroscope.
However, the proposed objective formulation, which min-
imizes the maximum sensitivity of the frequency differ-
ence, is not adequate for the decoupled vibratory micro-
gyroscope.

This paper presents a robust optimal design for the
decoupled vibratory microgyroscope considering fabrica-
tion influence. An over-etching, which has a statistical
distribution and affects all structural dimensions at the
same time, was modeled as a fabrication tolerance fac-
tor. Also the newly defined design variables having two
components were presented for considering the fabrica-
tion tolerances. To minimize the influence of the fabrica-
tion tolerance factor on the decoupled vibratory microgy-
roscope performance, the robust optimal design was per-
formed. The dimensions of the driving and sensing spring
were adopted as design variables, and the multi-objective
function was formulated so as to minimize the sensitiv-
ity of the frequency difference and the sensitivity of the
frequency itself. The results of the robust optimal design
were certified using the Monte Carlos Simulation (MCS).

2. Modeling of a Decoupled Microgyroscope

2. 1 Concept design of the decoupled microgyro-
scope

A decoupled, lateral vibratory microgyroscope con-
sidered in the present research is illustrated in Fig. 1. It
consists of a driving structure and a sensing structure. The
driving structure is driven by the comb drive in the x-
direction. The sensing structure, connected to the driv-
ing structure through the sensing spring, oscillates in the
y-direction due to the Coriolis acceleration relatively to
the driving motion. Two sets of comb sensors are im-
plemented in this gyroscope: the driving sensor comb for
sensing the driving motion and the sensing electrodes for
sensing the sensing motion. Due to the symmetry of the
sensing electrodes with respect to the y-axis, the sensing

Fig. 1 Simplified structure of decoupled microgyroscope

capacitance in the sensing structure does not change by
the driving motion.

2. 2 Dynamic modeling of the electro-mechanical
system

The schematic diagram of the decoupled microgyro-
scope is shown in Fig. 2, and its dynamic equations can be
written as follows:[

ma 0
0 ms

]
ü+

[
ca 0
0 cs

]
u̇+

[
ka 0
0 ks

]
u=F (1)

where the subscripts a and s represent the driving and the
sensing components. The symbols m, c, k, u and F repre-
sent the mass, the damping coefficient, the spring constant
(see Appendix A), the two dimensional displacement and
force vectors, respectively.

The movable structure is oscillated in driving direc-
tion by the driving force that consists of DC voltage Vb

and AC voltage va(t) with the magnitude Va and the driv-
ing frequency ω. When the input angular velocity with the
amplitude Ω0 and the frequency ωR is applied on z-axis
of the gyroscope, the Coriolis force is generated and then
the sensing displacement occurs by the force. The force
vector, which consists of driving force Fa(t) and Coriolis
force Fs(t), and the displacement vector are calculated and
expressed as follows:

F(t)=

 F0
aIm[e jωt]

F0
s

(
Re

[
e j(ω+ωR)t

]
+Re

[
e j(ω−ωR)t

])  (2)

u(t)=


X0Im[e j(ωt−φa)]

2∑
i=1

Y0i Re
[
e j[(ω−(−1)iωR)t−φa−φsi ]

]
 (3)

where t denotes time. In Eqs. (2) and (3) the phase delay,
the force amplitude and the displacement amplitudes in
each component are defined as follows:

φα = tan−1 γα

Qα(1−γ2
α)

(α=a, s1, s2) (4)

F0
a =

4εhnp
c

ga
VbVa (5)

Fig. 2 Mechanical and electrical schematic diagram of
decoupled microgyroscope
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F0
s =F0

s (ω)=msωX0Ω0 (6)

X0 =X0(ω)=
F0

a

ka
Θa (7)

Y0i =Y0i(ω)=
F0

s

ks
Θsi (i=1, 2). (8)

Here, γa = ω/ωa, γsi =
ω− (−1)iωR

ωs
(i = 1, 2), Qa =

√
maka/ca, Qsi =

√
msks/cs (i = 1, 2), and ωα =√

kα/mα ( fα =ωα/2π, α= a, s). In Eq. (5) ε, h, np
c and ga

are permittivity, the thickness of the gyroscope structure,
the number of total pairs of electrode and gap between
the movable and the fixed comb electrodes in y-direction,
respectively. In Eqs. (7) and (8) the non-dimensional vac-
uum magnification factor for each motion are defined as
follows:

Θα=
1√

(1−γ2
α)2+

(
γα
Qα

)2
(α=a, s1, s2). (9)

For Qa� 1, the vacuum magnification factor for driving
motion, i.e., Θa reaches its maximum value when γa = 1:
the driving frequency becomes equal to the driving natural
frequency.

2. 3 Characteristics of the sensing electrodes
The sensing displacement is expressed in terms of ca-

pacitance change. As shown in Figs. 2 and 3, the unit
sensing capacitance change ∆Cu is the difference value be-
tween top unit capacitance Cu

+ and bottom unit capacitance
Cu−, when initial capacitances are the same with each other.
The total sensing capacitance change is calculated from
multiplying the total number of unit sensing electrodes nq

s

by the unit sensing capacitance.

∆Cs=∆Cunq
s = (Cu

+−Cu
−)nq

s (10)

Cu
± =2εlsoh

(
1

gs1∓uy
+

1
gs2±uy

)
. (11)

In order to convert the capacitance change into the voltage
change, a C/V (capacitance/voltage) converter is used, and
DC voltage is applied to the C/V converter.

Fig. 3 A unit model of sensing electrodes

The DC voltage Vt has an additional function of tun-
ing voltage that generates tuning force in y-direction and
reduces sensing stiffness. The tuning force acting on unit
electrodes as shown in Fig. 3 is formulated and its Taylor
series expansion leads to the expression for the tuning
stiffness and then is expressed as follows:

Fu
T =4εlsohV2

t

 1

g3
s1

+
1

g3
s2

 ·uy+O


(

uy
gs1,2

)3 . (12)

The last term in Eq. (12) is negligible because the ratio of
sensing displacement to the gap is considerably less than
1. As a result, the relationship of tuning force and sensing
displacement is linear. The electrical tuning stiffness is
expressed as follows:

ke
t =4εlsohV2

t

 1

g3
s1+g

3
s2

nq
s . (13)

The finial sensing spring constant ks is obtained by sub-
tracting the electrical tuning stiffness from the mechanical
sensing stiffness km

s as follows:

ks= km
s −ke

t . (14)

The mechanical sensing spring constant with L-shape
and the driving spring constant with folded shape are for-
mulated by beam theory (see Appendix A).

2. 4 Modeling of the electronic signal processing
At the gyroscope chip level, the sensing output is in

the form of the capacitance change and has the two com-
ponents of frequency around the driving frequency. The
final voltage output of the input angular velocity is ob-
tained through the signal processing, which contains C/V
conversion process, demodulation and low pass filtering
process.

In the process of converting the sensing capacitance
change into the sensing voltage change ∆Vs, the C/V con-
verter is used and the sensing voltage change is calculated
as follows:

∆Vs =αCV∆Cs (15)

where, αCV =Vt/C f and C f is the capacitance of the feed-
back capacitor in the C/V converter.

In order to separate the signal of the input angular ve-
locity from the driving frequency signal, the demodulation
should be used: the output signal from C/V converter is
multiplied by the driving velocity signal with the unit am-
plitude. The demodulated signal has a high frequency that
is twice of the driving frequency and a low frequency that
is the frequency of the input angular velocity. After the
demodulated signal passes the low pass filter, the high fre-
quency component is removed and only the low frequency
component remains. The final output signal is defined and
calculated as follows:

[LPF]{∆Vs(t) · Im[e jωt]}=ΛRe
[
e j(ωRt−φs)

]
(16)

where Λ is the maximum output amplitude of the gyro-
scope and φs is the final phase delay between input and
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output signals. The amplitude and phase delay are calcu-
lated as follows:

Λ=

√
Λ2

1+Λ
2
2 (17)

Λ1=
αCV

2

2∑
i=1

(−1)iY0i Re
[
e j(φa+φsi )

]
(18)

Λ2=
αCV

2

2∑
i=1

Y0i Im
[
e j(φa+φsi )

]
(19)

φs= tan−1 Λ1

Λ2
. (20)

From Eq. (16), the scale factor, or sensitivity, of the gyro-
scope is defined as follows:

S.F.(t)=
ΛRe

[
e j(ωRt−φs)

]
Ω(t)

; Ω(t)=Ω0Re
[
e jωRt

]
(21)

From Eqs. (17) – (21), the scale factor in frequency do-
main can be expressed as follows:

S.F.(ω)=
Λ

Ω0
(22)

2. 5 Modeling of fabrication tolerance factor
The fabrication processes of the microgyroscope are

shown in Fig. 4. In the etching process for the formation
of the gyroscope structure, lateral over-etching (LOE) and
vertical over-etching (VOE) exist as shown in Fig. 5 and
influence the gyroscope performance parameters. The SOI
wafer with the gyroscope structure and the glass wafer
with cap structure are anodically bonded in high vacuum
to obtain the designed Q factor. The LOE and VOE are de-
fined as fabrication tolerance factors as shown in Fig. 5 (c).
The factors that depend on the location in the gyroscope
structure affect all the structural dimensions. The actual
dimensions used in analysis of the gyroscope system are
defined as follows:

Wp=Wm
p −LOEp (23)

Hp=Hwp −VOEp (24)

where the W, H are in-plane, out-of-plane or height di-
mensions, respectively and the subscript p, superscripts
m, w indicate the location of a structural component, the
mask dimension and wafer dimension, respectively. The

Fig. 4 Microgyroscope fabrication process

mask and wafer dimensions have the deterministic values
as the final design values. The mask dimensions are used
in the mask patterning data for structure fabrication and
the wafer dimensions in a target thickness data for struc-
ture silicon layer in SOI wafer. On the other side the LOE
and VOE have the statistical values which consist of the
mean (µ) and standard deviation (σ).

Since the amount of over-etching is almost the same
over the regions of one gyroscope chip, we can assume
that the variation of the LOE and VOE occur only between
the chips on the wafer. In addition the variation of the
height dimension cannot change the frequencies because
the change of ratio of the spring constants and the masses
due to the variation are the same in this gyroscope sys-
tem. Therefore, from Eq. (23) the design variables can be
expressed as form as follows:

Wp =Wm
p −LOE. (25)

From now on, we can utilize these actual structural
dimensions in the analysis of the gyroscope system and in
the MCS, regarding all mask dimensions as deterministic
design outputs and taking the LOE as the statistical vari-
able applicable to all the structural dimensions. In the case
of the analysis which does not required statistical informa-
tion, only the mean LOE is used.

The variation of the Q factor which affects the am-
plitude of the driving displacement could be another fab-
rication tolerance factor. However, the amplitude of the
driving displacement is kept constant by an automatic
gain control (AGC) in ASIC. The damping coefficients
are mostly influenced by the geometric topology and the
wafer level vacuum package. The effects of the LOE on

(a) Fabricated gyroscope structure

(b) Fabrication influence (c) Design remodeling for
fabrication tolerance factor

Fig. 5 Fabrication tolerance factor in gyroscope structure
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the variation of Q factors are negligible compared with
the other main influences, i.e., the geometric topology and
the vacuum package. Thus, in the design process, the Q
factor was assumed to be independent of the LOE.

3. Robust Design of a Decoupled Microgyroscope

A robust optimal design with the multi-objective
function of the frequency difference sensitivities is carried
out to determine design variables such as spring mem-
ber dimensions while satisfying the performance specifi-
cations of the gyroscope. The fabrication tolerance factor
LOE was measured and used in the optimal design proc-
ess.

3. 1 Fabrication process capability
The variation in the LOE should be determined be-

fore the design process. One might attempt to cut the
portion of the structure and measure the variation in the
LOE, but the most of the suspended structures are easily
broken. In this study, the mean and the standard devia-
tion of the LOE was analytically found without destroy-
ing the gyroscope structure. The mean LOE was deter-
mined as 0.445 µm by the design compensation for the
difference between the analysis result and the fabrication
result in the driving natural frequency. The standard devi-
ations of the frequency difference were measured from the
fabricated gyroscope chips (Fig. 6). Therefore, the varia-
tion in the LOE was analytically determined with the con-
dition that the analytical frequency difference should be
the same as that measured results. As a result, the stan-
dard deviation of the frequency difference was measured
as 77.9 Hz, the corresponding standard deviation of the
LOE as 0.337 µm (Fig. 6). The driving and sensing nat-
ural frequencies and their standard deviations were mea-
sured as 7 777.2 Hz, 7 922.55 Hz, 84.7 Hz, and 111.64 Hz,
respectively. The designed dimensions and specifications
are listed in Tables 1 and 2.

3. 2 Performance design
The gyroscope was designed to meet the specifica-

tions in the performance parameters such as the scale fac-
tor and the phase delay. All the vibratory microgyroscopes
are driven at the driving natural frequency to maximize
the scale factor. In order to maximize the performance
of the gyroscope, the scale factor should be maximized
while the phase delay should be minimized. The scale fac-
tor and the phase delay are expressed in terms of the fre-
quency difference between the fixed driving frequency and
the varying sensing frequency and plotted in Fig. 7. Notice
that the scale factor reaches its maximum value when the
frequency difference is non-zero. It is partly due to the
phase of the multiplier component (in this study, veloc-
ity component) in demodulation process. The simulation
results of the gyroscope indicated that, as the frequency
difference increases, the scale factor and the phase delay
decrease. Therefore, the gyroscope was designed within

Fig. 6 Process capability analysis for the frequency difference

Table 1 Gyroscope performance data

Table 2 Initial design variables in mask dimensions (µm)

Fig. 7 Gyroscope performance with respect to frequency
difference

the feasible design range in which the specifications of the
scale factor and the phase delay were met (Fig. 7).

The dimensions of the driving and sensing spring
structures were taken as the design variables (Fig. 8) be-
cause the frequencies are sensitive to the spring dimen-
sions that are easily altered in mask drawing process.
From Eq. (25) the design variables are denoted as follows:

xi = xm
i −LOE (26)

where the subscript i (= 1 – 4) is the index number of the
dimensions. xi is used in analysis of the gyroscope and
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xm
i in mask dimension as a design result. In this analy-

sis which is not required statistical information, only the
mean LOE is used. Through the design procedure, the per-
formance data and the design variables are determined as
shown in Tables 1 and 2, respectively.

3. 3 Robust optimal design
The robust design could be performed in many dif-

ferent ways according to the system characteristics. A
gyroscope design can be robust when the difference be-
tween the actuating (or driving) frequency and the sensing
frequency is insensitive to the variations of design vari-
ables. The objective can be generally formulated so as
to minimize the maximum sensitivities of the frequency
difference with respect to the design variables with uncer-
tainty. In this study, the LOE is considered to be constant
for all the mask dimensions as shown in Eq. (25). A multi-
objective formulation for a robust optimal design of the
decoupled gyroscope is proposed as follows:

Find xm
i (i=1−4)

To minimize λ1 max

(∣∣∣∣∣∂(∆ f )
∂xi

∣∣∣∣∣
)
+λ2

∣∣∣∣∣ ∂(∆ f )
∂(LOE)

∣∣∣∣∣
where ∆ f = fa− fs

Subjet to fa= f ∗a
∆ f =∆ f ∗
Lxm

i ≤ xm
i ≤U xm

i (i=1−4)

(27)

where λ1, λ2 are the weighting factors. The initial design
values for the mask dimensions and upper and low limits
of these design variables are listed in Table 2. The driving
natural frequency and the frequency difference were kept
the same as the values used in the initial design. These
constraints are needed to keep the performance specifica-
tion constant during the optimal design process. The tar-
get frequency f ∗a and frequency difference ∆ f ∗ values are
presented in Table 1.

Considering the decoupled gyroscope, the first term
in the object in Eq. (27) can be simplified as follows:

max

(∣∣∣∣∣∂(∆ f )
∂xi

∣∣∣∣∣
)
=max

(∣∣∣∣∣∂ fs

∂xi
− ∂ fa
∂xi

∣∣∣∣∣
)

(i=1−4)

=max

(∣∣∣∣∣∂ fa
∂x1

∣∣∣∣∣ ,
∣∣∣∣∣ ∂ fs

∂x2

∣∣∣∣∣ ,
∣∣∣∣∣∂ fa
∂x3

∣∣∣∣∣ ,
∣∣∣∣∣ ∂ fs

∂x4

∣∣∣∣∣
)
.

(28)

(a) Driving spring
part

(b) Sensing spring part

Fig. 8 Design variables for robust optimization

Three cases of the robust optimal design with differ-
ent weighting factors were investigated. For case I, a con-
ventional robust optimal design was performed by setting
λ1 = 1, λ2 = 0. For case II, a newly presented formulation
for the current uncoupled gyroscope with a single fabrica-
tion tolerance was studied: λ1 = 0, λ2 = 1. Last, for the
third case, the mixed form of the first and the second was
considered, i.e., λ1 = 1/2 775, λ2 = 1/267 which were de-
termined as a reciprocal value of each initial sensitivity for
normalization.

4. Results and Discussion

Three cases of robust optimal design were performed
showing the statistical distributions. We used the MCS
and compared the optimal design results with each other.

4. 1 Results of robust optimal design
In the optimization, DOT (design optimization

tools)(16) is used as a optimization tool with SQP (se-
quential quadratic programming) as the optimization al-
gorithm. The initial and final optimal design variables are
respectively listed in Tables 2 and 3. The distributions of
the corresponding frequency difference with respect to the
variation of the mean LOE are shown in Fig. 9. The fre-
quency difference for the initial case was 267 Hz and it is
improved as 180, 24 and 25 Hz, respectively, for cases I, II
and III. The improvements of the robustness for the driv-
ing frequency with respect to LOE are shown in Fig. 10.
In cases I and III the change ratios of the sensitivity for
the driving frequency about LOE were decreased by 9.9
and 8.3%, respectively, but in case II increased by 4.1%.

For case I, which aims to minimize the variation of
the frequency itself about LOE, the driving and sensing

Table 3 Robust optimization results (µm)

Fig. 9 Optimization results: frequency difference with respect
to LOE
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spring widths were increased up to the limits satisfying
the spring length constraints (Table 3), because the more
the spring width is increased, the more the change ratio of
the spring width by the same LOE is decreased. That is
to say, the change ratio of the frequency is also decreased
because the frequency is proportional to the cubic of the
spring width squared (Fig. 10). For case II, whose purpose
is to minimize the variation of the frequency difference
about LOE, the driving and sensing spring widths were
determined when the sensitivities of each frequency with
respect to LOE are to be the same. The ratio of the sensing
spring width to the driving spring width was found as 1.06
(Table 3). For case III, the driving spring width was found
to be similar to case I while the spring width ratio similar
to case II.

4. 2 Certification by Monte Carlos simulation
The Monte Carlos simulation (MCS) was performed

to calculate the statistical distribution. First of all, three
thousand random samples were generated for the LOE,
which has the mean of 0.445 µm and the standard devi-

Fig. 10 Improvement of robustness in driving frequency

Fig. 11 Distribution of frequency difference of the three robust optimal design cases: the sta-
tistical distribution was simulated using a Monte Carlo method

ation of 0.337 µm. In each simulation, the LOE was used
in all structural dimensions as well as the design variables
as expressed in Eqs. (25) and (26). Finally, the optimal
values were obtained for each LOE, and the distributions
of the frequency differences are plotted in Fig. 11.

The improvements of the standard deviations of the
frequency difference are listed in Table 4. The standard
deviations of the frequency difference are decreased by
24.4%, 79.3%, and 78.2%, respectively, for case I, cases
II and III. However, the standard deviations of the driving
frequency for cases I and III are decreased by about 10%,
while the deviation is increased by 4.1% for case II. In
case III, both deviations are decreased.

5. Conclusion

The initial design of the gyroscope was performed
to meet the specifications in the performance parameters
of the scale factor and the phase delay. We found that
the parameters were dependent upon the frequency differ-
ence. The lateral over-etching with the statistical distribu-
tion caused by the fabrication process was defined as the
fabrication tolerance factor and considered as one compo-
nent of the design variables. To minimize the influence of

Table 4 Standard deviation changes from the initial design
after robust optimization (%)
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the fabrication tolerance factor on the decoupled vibratory
microgyroscope performance, the robust optimal design
was performed. The objective functions were formulated
so as to minimize the sensitivities of the frequency differ-
ence and frequency itself with respect to the fabrication
tolerance factor satisfying the same performance specifi-
cations.

It might be possible to adjust the sensing frequency
by tuning the DC voltage. However, the tuned DC voltage
could change not only the sensing frequency but also the
sensing sensitivity. Thus, it is not adequate to adjust the
voltage only to tune the frequency.

The robust optimized results were compared with ini-
tial design results through the MCS. As a result, the stan-
dard deviation of the frequency difference and the driving
natural frequency were reduced to 78% and 8%, respec-
tively.
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Appendix A

The mechanical spring constants of the folded driv-
ing and L-shaped sensing springs, as shown in Fig. 12, are
analytically derived using a beam theory as follows:

km
j =EI j(Γ

j
1−α jΓ

j
2−β jΓ

j
3)−1 ( j=a, s) (A.1)

where E denotes Young’s modulus, I j (= hb3
j/12) a mass

moment of inertia. The symbols Γ j
k (k= 1,2,3), α j and β j

are defined as follows:

Γa
1=

l31+ l33
3
+ l21(l2+ l3) (A.2)

Γa
2= l1l2l3+

(l1l2− l23)l2
2

(A.3)

(a) Driving spring with
folded shape

(b) Sensing spring with
L-shape

Fig. 12 Geometric configuration and parameter definition of
driving and sensing springs

Γa
3 =

l21− l23
2
+ l1(l2+ l3) (A.4)

Γs
1 =
ι31
3
+ ι21ι2 (A.5)

Γs
2 =
ι1ι

2
2

2
(A.6)

Γs
3 =
ι21
2
+ ι1ι2 (A.7){

α j

β j

}
=Φ−1

j

 Γ
j
2

Γ
j
3

 (A.8)

Φa =


l32
3
+ l3l22

l22
2
+ l2l3

Symm. l1+ l2+ l3

 (A.9)

Φs=


ι32
3

ι22
2

Symm. ι1+ ι2

 . (A.10)
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