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Abstract. The realization of nonclassical states is an important task for
many applications of quantum information processing. Usually, properly tailored
interactions, different from goal to goal, are considered in order to accomplish
specific tasks within the general framework of quantum state engineering. In
this paper, we remark on the flexibility of a cross-Kerr nonlinear coupling in
hybrid systems as an important ingredient in the engineering of nonclassical
states. The general scenario we consider is the implementation of high cross-Kerr
nonlinearity in cavity-quantum electrodynamics. In this context, we discuss the
possibility of performing entanglement transfer and swapping between matter
qubits and light fields initially prepared in separable coherent states. The recently
introduced concept of entanglement reciprocation is also considered and shown
to be possible with our scheme. We reinterpret some of our results in terms of
applications of a generalized Ising interaction to systems of different nature.
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1. Introduction

Quantum state engineering is a necessary preliminary step in many applications of quantum
information processing (QIP). The realization of nonclassical states of discrete as well as
continuous variables (CVs) is often required as an off-line resource in protocols for quantum
computation and communication. As an example, the preparation of Schrödinger cat states
of a CV system is one of the key ingredients in the performance of coherent state quantum
computation [1, 2]. Very recently, efficient proposals for the realization of optical Schrödinger
cat states using cross-Kerr nonlinear interactions have been put forward [3]. On the other hand,
an entangled coherent state of two field modes [4] serves as a quantum channel in the realization
of teleportation-based coherent state-quantum computation [5, 6]. In these last years, the use of
hybrid quantum registers made up of systems having different nature (i.e. spanning Hilbert spaces
of different dimensions) has been recognized to be a useful way to improve the flexibility of a
physical device. Both the manipulability and the robustness against decoherence in computation
and communication are often improved by a hybrid setup. Therefore, the necessity of performing
quantum state engineering involving systems of different nature is raising increasing interest in
the QIP community.

A usual requirement in the context of quantum state engineering of coherent states is the
availability of efficient sources of nonlinear interactions. Unfortunately, the current state of the
art is such that only small nonlinear rates can be attained. This represents a big hindrance not
only for the creation of nonclassical states but also for single-photon quantum computation.
Ways to nearly-deterministically bypass this bottleneck have been envisaged with the simulation
of nonlinear interaction by photodetection [7]. More recently, Nemoto and Munro [8] showed
an efficient way to perform all-optical quantum computation using single photons by adopting
the quantum non-demolition (QND) measurement technique using a low cross-Kerr nonlinearity
and a strong amplitude coherent field [9].

Even though this represents a major step forward in the field of manipulating the state of
travelling-light waves, the proposal in [8] is not the only situation where the use of nonlinearity-
based QND can be successfully exploited. In cavity-quantum electrodynamics (cavity-QED), a
very similar technique involving a bosonic system in a coherent state and a fermionic system
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in a two-dimensional state has already been experimentally demonstrated. In particular, Bertet
et al [10] measured the Wigner distribution of a Fock state based on the theoretical proposals [11],
which exploit cross-Kerr-based QND techniques and, very recently, Maioli et al [12] performed
Rydberg atom counting based on QND measurement. It is worth stressing that, differently from
a running field, the nonlinearity rate achievable in cavity-QED is large enough not to require
exceedingly long interaction times or intense light fields. This is a major practical advantage of
this proposal.

In this paper, we investigate further the use of cross-Kerr QND interactions by suggesting
theoretical protocols for the implementation of effective quantum state engineering in a cavity-
QED setup. The possibility of strong interactions between qubit and light and their controllability
(in terms of the effects of an external environment on the performances of the protocols) allow
for reliable and robust implementations. In the schemes suggested here, the synergy between
two-level and infinite dimensional systems is the key element. We address explicitly the transfer
of entanglement between subsystems of different nature, thoroughly analysing the conditions
for the transfer of a complete ebit of entanglement. This results in the proposal for entanglement
transfer from atomic to field mode systems, whose state turns out to be an entangled coherent state.
This class of states is extremely useful in the general context of coherent QIP [2]. Under certain
conditions, in the Hilbert space spanned by the quasi-orthogonal coherent states {|α〉 , |−α〉}
(with α the amplitude of the coherent state), it has been pointed out that one ebit of entanglement
can be associated to the entangled coherent states [13, 14], which is typical of a discrete variable
maximally entangled state. In light of this analogy, we investigate exactly about the formal
conditions to attain a full ebit in an entangled coherent state. The adaptation of the recently
proposed protocol for entanglement reciprocation [15] is also discussed, which achieves a
complete ebit of a two-qubit state starting from one ebit being deposited in the previously
generated entangled coherent state. The inherently hybrid nature of the cross-Kerr interactions
treated here allows us to design a simple scheme for entanglement swapping [16] between
entangled qubit states and entangled coherent states. The possibility of using the resulting state for
building up effective quantum repeaters [17] for long-range communication is briefly sketched.

The remainder of this paper is organized as follows. In section 2, we briefly describe the
formal approach to the interaction between an atom and a coherent state of a cavity field-mode at
the basis of the effective cross-Kerr interaction. Section 3 is devoted to information transfer, which
serves as a basic building block to be used for the other tasks analysed in our work. These are
mainly entanglement transfer, approached in section 4 and entanglement reciprocation, which
is the centre of section 5. Section 6 shows that the transfer and reciprocation scheme can be
generalized in such a way that an initial entanglement corresponding to n ebits can be mutually
exchanged between matter and light. Finally, in section 7, we fully exploit the hybrid nature of
the QND model used here to suggest a suitably modified version of an entanglement swapping
protocol. Section 8 outlines and remarks our main results.

2. Interaction model

In this section, we briefly describe how the cross-Kerr effect is achieved in a cavity-QED system.
We consider a two-level atom with excited and ground states |e〉 and |g〉 respectively, interacting
with a single-mode cavity field with bosonic annihilation (creation) operators â (â†). The atomic
transition frequency is ω0 and the frequency of the cavity field mode is ω while the interaction
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rate between the two subsystems is indicated by λ. In the interaction picture and under the
rotating-wave and electric dipole approximations, the Hamiltonian of the system is

Ĥ = δ

2
(|e〉〈e| − |g〉〈g|) + λ(â†|g〉〈e| + â|e〉〈g|), (1)

where δ = ω0 − ω denotes the detuning between the two-level atom and the cavity field. In
the ordered atomic basis 〈e| = (1, 0), 〈g| = (0, 1), the time-evolution operator Û = e−iĤt =(

Û11 Û12

Û21 Û22

)
is given by the following explicit expression [18]

Û =




cos �̂n+1t − iδ
sin �̂n+1t

2�̂n+1

−iλâ
sin �̂nt

�̂n

−iλâ† sin �̂n+1t

�̂n+1

cos �̂nt + iδ
sin �̂nt

2�̂n

.


 (2)

Here, we have introduced the effective Rabi frequency

�̂n =
√

(δ2/4) + λ2n̂ (3)

with the photon-number operator n̂ = â†â. Inspired by the idea of QND interactions [19], Brune
et al [20] proposed an experimental realization in cavity-QED using the model whose evolution
is described by equation (2). For this purpose, a dispersive interaction characterized by a large
detuning δ has been considered rather than a resonant one. These are exactly the sort of working
conditions we want to adopt in this paper. Under the condition δ2/4 � λ2n̄, λ2�n, where n̄ and
�n are respectively the average photon number of the cavity field and the corresponding variance,
the Rabi frequency is dominated by the detuning and only the diagonal terms in equation (2) are
non-negligible, reading

Û11 ≈ e−i�̂n+1t, Û22 ≈ ei�̂nt.

In order to better gather the explicit form of the effective time-evolution operator, we consider the
approximation �̂n ≈ δ

2 + λ2

δ
n̂ and move to a frame rotating at a frequency equal to the detuning

δ. In these conditions, the evolution operator equation (2) of the atom–field system becomes

Ûr ≡ e−i λ2
δ

t(n̂+1)|e〉〈e| + ei λ2
δ

tn̂|g〉〈g|, (4)

which clearly shows that no energy exchange between the atom and the field occurs. Just the
phase of the atomic state changes depending on the intensity of the cavity field mode. This is the
key for the QND interaction not to destroy the photon number during its measurement. This is in
perfect analogy with the evolution operator for the cross-Kerr coupling Ûck = eiκtâ†âb̂†b̂ between
two modes a and b with the coupling strength κ. A big technical difference between these two
models is that, while κt is extremely small in current optical-fibres (frequently used in order to
achieve photon–photon coupling, in running-wave configurations), λ2t/δ can be large enough
to guarantee an effectively large phase-shift within the decoherence time of the system at hand
[20]. This is an important reason which makes the cavity-QED realization of QND attractive.
Recently, based on this dispersive interaction between a field and an atom, Wang and Duan [22]
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proposed to engineer Schrödinger cat states and Toscano et al [23] suggested a Heisenberg-
limited measurement of displacements and rotations.

Throughout the paper, we assume that the cavity is initially prepared with a coherent state
|α〉 of amplitude α ∈ C which is routinely done, experimentally, by coupling an external coherent
field with the cavity. As a coherent state is a superposition of number states with the Poissonian

weight, |α〉 = e− |α|2
2

∑∞
n=0

αn√
n!

|n〉, applying the evolution operator in equation (4) to the joint state

of discrete and CV systems for the interaction time λ2t/δ = π/2, we find that

|e〉|α〉 Û−→ −i|e〉| − iα〉, |g〉|α〉 Û−→ |g〉|iα〉, (5)

which shows the conditional phase-shift achieved by the initial coherent state. These
transformations will be frequently used throughout this paper as the central ingredients of our
protocols.

The general scenario we envisage in order to implement our proposals, i.e. microwave
cavity-QED, allows us to neglect effects of photon losses and spontaneous emission by the
atoms. Indeed, even in the dispersive limit we are considering here, the order of magnitude of the
cavity energy relaxation time (≈10−3–10−2 s for a niobium superconducting cavity), atom-field
coupling strength λ (hundreds of MHz) and spontaneous emission rate (in the range of tens of
milliseconds) [21] permit the accomplishment of the transformations listed above well within
the characteristic coherence times of the system (the atomic transit time through a cavity can be
accurately set to be at least one order of magnitude smaller than the cavity decay rate, for atomic
velocities in the range of 100 m s−1 and centimetre-sized cavities [20, 21]). Moreover, it is worth
stressing the reliability of any atomic detection required in the following protocols. They can
be performed with high accuracy (≈99% detection efficiency) by means of atomic channeltrons
which, by selective ionization, allow us to reliably infer the state of the atomic qubits.

3. Information transfer

By rescaling the atomic energy in such a way that Eg = 0, with Eg being the energy of the
ground state of each atom, it is straightforward to see that the Hamiltonian of the system can

be written so that the corresponding time-evolution operator reads Ûr = e−2i λ2
δ

tn̂|e〉〈e|. This form
of the coupling Hamiltonian, which has been discussed in many contexts of quantum optics
and QIP [6, 11], is here reinterpreted as the generalization of the Ising interaction between
two qubits, after a proper rescaling of the energy of each qubit. This latter has the structure

ÛI = exp[−iχÎ−σ̂
1
z

2
Î−σ̂2

z

2 ], where 1 and 2 are the labels for the two qubits, χ is the interaction rate,
Î is the identity operator and σj

z is the z-Pauli operator for qubit j = 1, 2. Evidently, neither ÛI

nor Ûr describe an effective exchange of excitations between the subsystems they involve. Just a
conditional phase-shift is applied, as a result of these two time-propagators, on the joint state of
the two subsystems. As the Ising interaction is the basis of the theoretical approach to QIP with
cluster states [24], this formal reinterpretation paves the way toward an interesting analysis of the
quantum state transfer, quantum entanglement transfer and entanglement reciprocation in terms
analogous to the mechanisms which rule the propagation and manipulation of information in a
cluster state-based scenario. The following discussion, which is taken from the general cluster
state formalism [24, 25], serves as a building block for the description of the information and
entanglement transfer protocols with equation (4).
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In order to transfer a (normalized) single-qubit quantum state, |ψ〉 = a|0〉1 + b|1〉1 of qubit 1
to qubit 2 (logical states {|0〉 ≡ |g〉, |1〉}j, j = 1, 2 and a, b ∈ R, for simplicity), we first prepare
2 in the balanced superposition |+〉 = (|0〉 + |1〉)/√2. Then, we apply ÛI , which is equivalent
to a control-phase operation that, for χ = π, gives a phase-flip only when both the qubits are
in |1〉. The joint system is thus in the quantum state

|�〉12 = a|0, +〉12 + b|1, −〉12.

By performing a projective measurement {|±〉1} on the qubit 1 (with |−〉1 = (1/
√

2)(|0〉 −
|1〉)1), the output state of 2 becomes a|+〉2 ± b|−〉2, corresponding to the measurement outcome
± respectively. Depending on the outcome of the measurement, a conditional unitary operation on
2 is applied, in order to retrieve perfectly the information initially encoded in the state of qubit 1.
For the outcome +, 11 has to be applied to qubit 2 while, for the outcome −, the application of σ̂x is
required (where σ̂x is the x-Pauli operator).After these conditional correction operations, the state
of 2 becomes a|+〉 + b|−〉. Notice that the initial qubit is now encoded in the eigenstates |±〉 of
σ̂x rather than in the energy eigenstates. The conversion into this basis can be accomplished with
the application of a byproduct operator [24, 25] corresponding to a Hadamard transformation,
which rotates the state into the original basis {|0〉, |1〉}.

In complete analogy to the above discussion, a complete state transfer to a coherent state
of the cavity field can be accomplished, through Ûr in equation (4), by applying a modified
version of the above protocol. The initial information-encoded qubit a |0〉 + b |1〉 is now allowed
to interact with a coherent state of the cavity field |α〉 through equation (4) for an interaction
time λ2t/δ = π/2, leading to the joint state

(a |0〉 + b |1〉) |α〉 Ûr−→ (a |g〉 |iα〉 − ib |e〉 |−iα〉). (6)

A projection of the qubit state onto the y-Pauli matrix σ̂y eigenstates |±〉y =
(1/

√
2)(|g〉 ± i|e〉) leads to the state N+(a|iα〉 − b|−iα〉) (for an outcome |+〉y) or N−(a|iα〉 +

b|−iα〉) (for an outcome |−〉y), where N± = (1 ± 2abe−2|α|2)−1/2. By remarking that, already for
|α| � 2, 〈iα| − iα〉 
 10−4, the resulting states represent information-encoded quasi-qubit states.
Differently from the case where the information-receiver was a qubit, in this instance the wrong
relative phase appearing in correspondence to the |+〉y outcome can be corrected by applying a
z-rotation in the Hilbert space of the qubit spanned by {|iα〉, |−iα〉}. This rotation can be formally
performed by exploiting the technique developed in [2, 6]. In our cavity-QED setup, we need
the injection of an external, amplitude-controlled coherent state into the cavity, which can be
done as explained in [20]. However, as our tasks are not related to quantum computation but to
communication and information transfer, it is enough to assume here a conservative approach
based on just the post-selection of the events leading to the |−〉y outcomes.

As we have already remarked, the controllability of the atom-field interaction behind
this basic building block for information transfer is mature enough to allow a high degree of
confidence in the value of the interaction strength and the transit time of each atom through a
microwave cavity. However, it could be interesting to investigate the resilience of the information-
transfer protocol with respect to small imprecisions in the value of the rescaled interaction time
λ2t/δ. This may be due to imperfect setting of the atomic velocity as well as an improper
value of the detuning δ (which is typically determined by the amplitude of an external static
electric field which Stark-shift the atomic energy levels and sets a detuning with respect to the
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0.02 0.04 0.06 0.08
ε

0.9

0.94

0.98

Fimp

Figure 1. Fidelity of the information transfer against the dimensionless
imprecision parameter ε quantifying the deviation from the ideal value
λ2t/δ=π/2. In this plot |α| = 2 and we have considered initial states to be
transferred having a = 0.1 (–·–·–·–·–), a = 0.3 (· · · · · · · · ·), a = 0.5 (———-)
and a = 0.7 (– – – – –).

cavity field mode frequency). In order to quantitatively assess this source of imperfection, we
consider λ2t/δ = π/2 + ε with ε within some percentage of the desired value π/2. In this case,
the transformations in equation (5) are no longer valid and the joint state equation (6) is modified
into

a|g〉|iαeiε〉 − ibe−iε|e〉|−iαe−iε〉. (7)

The protocol then follows the lines depicted above, where we assume a measurement to
be performed on the σ̂y eigenbasis with the corresponding outcome |−〉y to get |imp〉 =
Mt(a|iαeiε〉 + be−iε|−iαe−iε〉), where Mt = [1 + 2abe−|α|2(1+cos 2ε) cos(ε − |α|2 sin 2ε)]−1/2. By
evaluating the scalar products 〈±iα| ± iαe±iε〉 it is straightforward to calculate the fidelity

Fimp = |N−(a〈iα| + b〈−iα|)|imp〉|2.

As soon as ε > 0, a dependence from the actual value of a (with b = √
1 − a2) is developed in

the behaviour of the fidelity function. We have exemplified such a trend in figure 1 for various
values of a and for a significant range of ε within 5% of π/2, which considerably overestimate
the imprecision in the achievable values of λ2t/δ [20]. Nevertheless, a good robustness of the
transfer protocol against imperfections in the rescaled interaction time is found to hold (with a
striking fidelity � 0.98, for all the a’s considered and ε as large as 2% of π/2). A more rigorous
approach implies the total lack of knowledge about the actual value of ε. This is equivalent
to the average of the fidelity over a distribution of values for the imprecision parameter ε. By
assuming a Gaussian distribution, centred in ε = 0 and with a spread as large as 2% of π/2
lead to average fidelities larger than 0.84 for all the a’s considered above. As the last step in the
protocol is the performance of a simple atomic measurement, which can be performed with very
high accuracy, this analysis addressed the most relevant source of imperfection in the scheme
at hand.
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+/−

+/−

β

α
π
2

π
2−

Figure 2. Quantum circuit scheme of the protocol for entanglement transfer from
a pair of entangled qubits to two initially separable coherent states. The wave-line
represents the entanglement initially between the qubits (inner lines). The symbols
for the conditional phase-shift gates implemented by the cross-Kerr nonlinear
interactions are shown with the corresponding phase-shift. We also include the
atomic-state detectors (which perform projections onto the eigenstates of σ̂x).

4. Entanglement transfer

The basic principles described in the previous section can be adapted and exploited in order to
transfer quantum correlations initially in a two-qubit state to the separable state of two cavity
field-modes. The task is relevant and interesting as the creation of an entangled channel of a CV
state is one of the focus points in quantum state engineering with CV. Recently, a considerable
interest has been directed toward the achievement of particular regimes of interaction between
matter and light to be used for the purposes of generating entangled coherent states [26]. On
the other hand, here the approach is different as our task would be the transfer of correlations
already present in an ancillary state onto the joint state of a bipartite mode-field. Such a scenario
is made possible by the ease with which entangled pairs of atoms can be created in microwave
cavity-QED, as reported in [27], where the entangling technique has been also extended to the
generation of three-particle entanglement. The quantum circuit of the protocol is sketched in
figure 2.

We consider two atoms, labelled as 1 and 2, in the maximally entangled state (generated as
an off-line resource)

|ψ+〉12 = 1√
2

(|eg〉 + |ge〉)12 . (8)

As a receiving two-mode system we can consider either two separate single-mode microwave
cavities or a single bimodal cavity. In the first situation, the protocol we are going to describe
works with two cross-Kerr interactions performed in parallel. The second configuration, on the
other hand, would imply a sequence of atomic passages. The atomic detunings can be set in such
a way that, if we label the field-modes as a and b, the effective interaction configuration would
involve the pairs (1, a) and (2, b), with the interaction being ruled by equation (4) for each pair.
The initial state of the cavity fields is taken to be |ψ〉ab = |α, β〉ab so that the composite system
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π
2

π
2−

H

H

β

x

0

0 σ

xσ

α+/−

+/−

Figure 3. Quantum circuit scheme of the protocol for entanglement reciprocation
between an entangled coherent state of two modes (outer lines connected by
the wavy line) and two initially separable qubits. A complete ebit can be
transferred from the field modes to the qubits. The symbols for the Hadamard
gates and the conditional phase-shift gates implemented by the cross-Kerr
nonlinear interactions are shown (these latter with the corresponding phase-shift).
We also include the field-state detectors (which should discriminate between
±ξ with ξ = α, β). Finally, some operations (in the form of σ̂x rotations) are
required, conditioned on the result of the field measurements and some classical
communication.

is in the state

|�〉1a2b = 1√
2

(|e, α, g, β〉 + |g, α, e, β〉)1a2b . (9)

In what follows, δAf represents the atom-field detuning with A = 1, 2 and f = a, b. The working
conditions we adopt here are such that, for a sequential passage of atoms 1 and 2 through a
bimodal cavity, |δ1b|, |δ2a| � |δ2b| = |δ1a|. Obviously, this condition can be relaxed for a parallel
realization involving two separate cavities. The atom-field interaction is arranged in order to
satisfy the evolution Ĉ1a

p ≡ Ûr(
λ2t

δ1a
= π

2 ) and Ĉ2b †
p = Ûr(

λ2t

δ2b
= −π

2 ), where the latter condition
is possible by setting the detuning δ2b < 0. The state of the composite system is thus given by

∣∣∣�
(π

2

)〉
= i√

2
(−|e, −iα, g, −iβ〉 + |g, iα, e, iβ〉) . (10)

The information about the atomic state is now written onto the CV state. In order to extract
just the state of the field-mode, we perform a measurement over the atomic part of |�(π/2)〉 by
projecting it on the basis |±〉1 |±〉2 with |±〉j = (|e〉 ± |g〉)j/

√
2, (j = 1, 2). Ignoring the global

phase of i, the output state of the two-mode field is given by

Nα,β,−(|−iα, −iβ〉 − |iα, iβ〉), for (±, ±), (11)

Nα,β,+(|−iα, −iβ〉 + |iα, iβ〉), for (±, ∓) (12)

New Journal of Physics 8 (2006) 23 (http://www.njp.org/)

http://www.njp.org/


10 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

with Nα,β,± being proper normalization factors. Obviously, an analysis analogous to the one
performed in section 3 can be done here. We omit the details as the formal approach is not
different from the general recipe depicted before and just mention that for imprecisions in both
the Ĉ1a

p and the ˆC2b†
p operations as large as 2% of |π/2|, an overall fidelity as large as 0.92 is

achieved.
For a large enough amplitude of the coherent states involved in equations (11) and (12),

these states manifestly show that entanglement is present. However, we wish to know whether
or not this entanglement is maximal, and so to establish the conditions for optimality of the
entanglement transfer protocol, given that we started with an initial atomic ebit. In the following
analysis, we thoroughly investigate the conditions under which an ebit is encoded in a two-mode
entangled coherent state.

4.1. Complete ebit for an entangled coherent state

For simplicity of the argument, let us assume two modes having the same amplitude γ ≡ iα = iβ
with γ real. The states (11) and (12) are then simply

1√
2(1 − e−4γ2

)
(|−γ〉|−γ〉 − |γ〉|γ〉), (13)

1√
2(1 + e−4γ2

)
(|−γ〉|−γ〉 + |γ〉|γ〉). (14)

We find that the probability of getting the (+, +) or (−, −) outcome is P++ = P−− = 1
4(1 − e−4γ2

)

and that of getting the (+, −) or (−, +) outcome is P+− = P−+ = 1
4(1 + e−4γ2

). Let us consider
two orthogonal bases |φ〉 = Nφ(|γ〉 + |−γ〉) and |ψ〉 = Nψ(|γ〉 − |−γ〉). It is straightforward to
see that, for the measurement events (±, ±), the field modes (13) can be written in the form

1√
2
(|φ〉|ψ〉 + |ψ〉|φ〉), (15)

which is a maximally entangled qubit state. We can get this maximally entangled state with
probability 2P++. However, it is not possible to find an effective orthonormal qubit basis such
that the state (14) is written as a maximally entangled state. Indeed, by using the same orthonormal
basis exploited above, we get that equation (14) can be reduced to the form

1√
N 4

φ + N 4
ψ

(N 2
ψ |φ〉 |φ〉 + N 2

φ |ψ〉 |ψ〉) (16)

with Nφ = [2(1 + e−2γ2
)]−

1
2 and Nψ = [2(1 − e−2γ2

)]−
1
2 . The von Neumann entropy (VNE)

can be used as a measure of the entanglement in this pure effective two-qubit state. It is
straightforward to see that VNE approaches unity for a large enough amplitude of the coherent
state component of equation (14), whereas (13) carries one ebit regardless of α.

More generally, the condition to assign a complete ebit for an entangled coherent state
can be written as follows. A coherent superposition of a field mode f = a, b is

|ψ〉f = a|α〉f + b|β〉f . (17)

New Journal of Physics 8 (2006) 23 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The state may be described in a two-dimensional Hilbert space, spanned by {|α〉f , |β〉f }. The
coherent states are mutually non-orthogonal and one can find an orthonormal basis [13] such as

|ψ+〉f = 1√
Nf

(e−iφf /2 cos θf |α〉f − eiφf /2 sin θf |β〉f ),

|ψ−〉f = 1√
Nf

(−e−iφf /2 sin θf |α〉f + eiφf /2 cos θf |β〉f ), (18)

where Nf = cos(2θf ), sin(2θf ) = |f 〈α|β〉f | and exp [ − iφf ] =f〈α|β〉f /|f 〈α|β〉f |. By inverting
the above relations, the coherent states can be written as

|α〉f = eiφf /2 cos θf |ψ+〉f + eiφf /2 sin θf |ψ−〉f ,

|β〉f = e−iφf /2 sin θf |ψ+〉f + e−iφf /2 cos θf |ψ−〉f .
(19)

Suppose that we have an entangled coherent state,

|�〉 ≡ |α1, α2〉ab + eiψ|β1, β2〉ab, (20)

neglecting the normalization. This pure state carries one ebit of entanglement if Trb(|�〉〈�|) ∝ 11.
Here Trf stands for the partial trace over the two-dimensional Hilbert space of the mode f . This
condition is equivalent to

sin 2θa = sin 2θb,

ψ − φa − φb = (2n + 1)π, (21)

where n ∈ Z. For a state like |�̄〉 = |−iα, −iα〉ab + eiψ|iα, iα〉ab, we have θa = θb and φa =
φb = 0. Therefore, the condition that the entangled coherent state has one ebit is reduced to
ψ = (2n + 1)π. More generally, a state having the form |�′〉 = |α, β〉ab + eiψ|β, α〉ab carries one
ebit if ψ = (2n + 1)π.

The above analysis shows that the post-selection of the atomic detection events (±, ±) allows
us to achieve the optimal performance of the entanglement transfer protocol. The initial atomic
ebit is converted, by a process involving cross-Kerr-based QND interactions and orthogonal
projection of qubit states, to an entangled coherent state carrying exactly one ebit.

5. Entanglement reciprocation

In the previous section, we have described a protocol to transfer an ebit of entanglement from
a discrete variable to the joint state of two CV subsystems. The opposite process, which should
allow the retrieval of the qubit entanglement, is denominated entanglement reciprocation [15].
In the context of [15], it has been shown that a full ebit can be reciprocated to and from a
CV state through the use of a resonant atom-field interaction and appropriate post-selection
processes. Here, we extend these results to the case of the dispersive model we use and show
that a full reciprocation mechanism is possible for a cross-Kerr interaction. On one hand, this
analysis allows us to stress the flexibility of the cross-Kerr interactions in the context of quantum
state engineering. On the other hand, the results of this investigation relieve the entanglement
reciprocation mechanism from the specific interaction model considered in [15], showing its
effectiveness for other, non-resonant interaction Hamiltonians. Once again, the basic building
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block will be the use of cross-Kerr interaction in effective information transfer processes. The
quantum circuit of the protocol is sketched in figure 3.

In order to reciprocate the entanglement contained in a CV channel (such as an entangled
coherent state) to two initially separable atoms, we consider a procedure entirely similar to the
qubit → CV entanglement transfer. We suppose the fields are in a state equivalent to equation
(11) which, as we have already remarked in section 4.1, contains exactly one ebit, and we prepare
two atoms in the product state of two σ̂x eigenstates

|ψ〉12 = |+, +〉12. (22)

Now the state of the composite system is given by

|�〉1a2b ∝ (|+, −iα, +, −iβ〉 − |+, iα, +, iβ〉)1a2b . (23)

The next step is the application of an effective Ĉ†
p gate to the pair (1, a), while Ĉp is applied

to the atom–field subsystem (2, b). The state becomes

|�〉 ∝ [(|e, e〉 − |g, g〉) (| − α, β〉 − |α, −β〉) + i (|e, g〉 + |g, e〉) (|α, β〉 − | − α, −β〉)]. (24)

In order to disentangle the CV state from the qubit state we perform a measurement of the
field modes by projecting them onto {|±α〉} and {|±β〉}. If the phase of both the fields is the same,
the atoms are projected onto the maximally entangled state equation (8). On the other hand, if the
phases are different, a conditional unitary operation σ̂y on the second atom has to be applied in
order to retrieve the form (8).A strategy suitable for the implementation of a measurement that can
discriminate the states {|±α〉} and {|±β〉}) has been suggested in [15]. Briefly, it is based on the
implementation of the displacement operation by means of the injection of an external coherent
field inside each cavity [20]. Indeed, by using the obvious identity D̂(α) |0〉 〈0| D̂†(α) = |α〉 〈α|
with D̂(α) the displacement operator, we recognize that the implementation of the displacement
operation by −α and −β in the first and second cavity respectively, followed by the detection
of no-photon in the cavities implements exactly the measurement 〈α| 〈β| |�〉 we require. For
the sake of definiteness, in what follows we will refer to this projection as ‘homodyning’. The
inference of no-photon being in the cavities can be done optically, by electrically releasing one
mirror of each cavity and photo-detecting the outcoming field or following the steps described
in the section 7. The efficiency of the entire reciprocation scheme obviously depends on the
projective measurements performed on the field modes, whose success probability depends on
the magnitudes of α and β. If |α| � 1 and |β| � 1, the success probability approaches unity.
Correspondingly, the final atomic state will be pure and carry one ebit. Otherwise, if the success
probability is smaller, the corresponding atomic state is mixed and only partially entangled.
In [15], we have assessed the effects of the main sources of inefficiency in such a detection
scheme, showing that an effective reciprocation is possible within the current state of the art. The
quantification of these effects is not the focus of this paper and will be left to further investigations
along the lines depicted in this section. Here, to fix the ideas, we quantify the efficiency of the
protocol and its resilience against imprecisions in measurements. We exemplify the results of a
protocol where {|α〉, |β〉} are measured. The other cases can be treated in a manner equivalent to
the approach we are going to describe.

We model the measurement as a projection of the state (24) performed by the operator

�̂a⊗�̂b =
∫

dγ

∫
dδ |γ〉a〈γ| ⊗ |δ〉b〈δ| Gγ(�, α)Gδ(�, β), (25)
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where Gµ(�, χ) (µ = γ, δ and χ = α, β) are proper (normalized) weighting function centred
on χ and having width �. This model accounts for the detection of a coherent state which is not
exactly the state we would like to detect. For the sake of simplicity, we can assume each weighting

function to be a normalized Gaussian Gµ(�, χ) = 1√
2π�

e− (µ−χ)2

2� . It is obvious, however, that the
model (25) is independent of the actual choice for these functions.

It is straightforward to prove that the normalized conditioned qubit density matrix, after the
detection event, is given by

ρ12 = 1

P1 + P2
[P1 |φ−〉12〈φ−| + P2 |ψ+〉12〈ψ+| − iP3(|φ−〉12〈ψ+| − |ψ+〉12〈φ−|)], (26)

where |φ−〉12 = (1/
√

2)(|gg〉 − |ee〉)12, |ψ+〉12 = (1/
√

2)(|ge〉 + |eg〉)12 and Pj (j = 1, 2, 3) are
real functions depending on the overlaps 〈±α|γ〉 and 〈±β|δ〉 (for definiteness we assume here
α, β ∈ R). We are interested in the fidelity Fψ+ = 12〈ψ+|ρ12|ψ〉12 which estimates how close the
two-qubit state is to |ψ〉12 after the measurement. Analytically, we find

Fψ+ = 1 + e− 4(α2+β2)
1+2� − 2e− 2(1+�)(α2+β2)

1+2�

(P1 + P2)(1 + 2�)
(27)

with

P1 = 1

1 + 2�

(
e− 4α2

1+2� + e− 4β2

1+2� − 2e− 2(1+�)(α2+β2)
1+2�

)
,

P2 = 1

1 + 2�

(
1 + e− 4(α2+β2)

1+2� − 2e− 2(1+�)(α2+β2)
1+2�

)
.

The behaviour of the fidelity against the width �, for two choices of the amplitudes α, β

of the coherent states, is shown in figure 4. A considerable robustness of the scheme against
imperfections in the CV-state detection events is made evident for a proper choice of the amplitude
of the components of the field part. Plots showing analogous trends can be obtained regarding the
entanglement in the atomic state and its purity: for α, β � 3 a highly pure state carrying nearly
one ebit of entanglement can be obtained for values of � up to 3. The corresponding state is
extremely close to |ψ+〉12, as shown by a fidelity-based analysis.

6. Entanglement transfer from multiple entangled atomic pairs and reciprocation

The entanglement transfer and reciprocation schemes discussed in this paper can be easily
extended to a multiple set of entangled atomic pairs. The trick is simply to make successive
pairs of entangled atoms interact with their respective cavity fields for distinct amounts of time.
We start by representing the joint entangled state of n atoms as

|�〉12 = |ψ+〉⊗n
12 = 1

2n/2

2n−1∑
x=0

|x, xc〉12, (28)

where we have used the labelling |e〉 = |0〉, |g〉 = |1〉, and x = x1x2 . . . xn and xc = xc
1x

c
2 . . . xc

n

are binary numbers. If we start with the cavity fields in |α〉a and |α〉b, and make each pair of
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Figure 4. Fidelity of the conditioned atomic state against the width � of the
weighting functions in equation (25). Here, we show the results for α = β = 2
(———) and α=β=3 (– – – – –). The robustness of the scheme for reciprocation
is dramatically improved for properly large amplitudes of the coherent states.

π
2

0/1

Homodyne

a

b

2

1

Figure 5. Quantum circuit scheme of the protocol for entanglement swapping.
The wavy lines represent the entanglement initially present in the bipartite state
of modes a and b and between the qubits 1 and 2. We also show the symbol for
the conditional phase gate between atom 2 and mode b. The swapping process
is completed by the measurement of these two subsystems. The measurement of
mode b, in particular, is performed by a homodyne detection scheme as described
in the body of the paper.

atoms interact with the cavity fields for half the time as the previous one in succession, we can
obtain the state

|�(t)〉12,ab =
2n−1∑
x=0

|x, xc〉12|α(x)〉a|α(xc)〉b, (29)
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where α(x) = αeiπ(x1/2+x2/4+...+xn/2n). Next all the atoms are measured in the |±〉 basis. Say the
outcome is |+〉⊗n

1 |+〉⊗n
2 . Then the cavities are projected to the state

|�(t)〉ab =
2n−1∑
x=0

|α(x)〉a|α(xc)〉b. (30)

If α � 1/ sin(π/2n), then the above is a 2n × 2n dimensional maximally entangled state.
In other words, all the entanglement of the initial n-ebits stored in the atomic states have been
transferred to the fields. All the other outcomes also give the same type of entangled state apart
from different relative signs between the superposed components in |�(t)〉ab. For reciprocation
of the entanglement back to the atoms, a set of n atoms in each cavity are first prepared in the state
|+〉⊗n

1 |+〉⊗n
2 ≡ (

∑2n−1
x=0 |x〉1)(

∑2n−1
x=0 |x〉2). The previous pattern of interactions is now repeated, but

with opposite sign of the interaction (this can be achieved by a |e〉 ↔ |g〉 followed by the original
interaction). Only for the term

∑2n−1
x=0 |x, xc〉12 in the expansion of (

∑2n−1
x=0 |x〉1)(

∑2n−1
x=0 |x〉2), both

cavity fields are going to return to their original state |α〉a ⊗ |α〉b. Thus by measuring the cavity
fields, and obtaining the outcome |α〉a ⊗ |α〉b (again assuming α � 1/ sin(π/2n), so that this
measurement is nearly one to an orthogonal basis), one projects the atoms to the n pairs of ebits
entangled state |�〉12. Thus the full amount of entanglement can be reciprocated conditional on
an appropriate outcome.

7. Entanglement swapping

Let us suppose that a two-mode entangled coherent state of the form Nα,α,−(|α〉 |α〉 −
|−α〉 |−α〉)a,b has been created (for instance through the scheme described in section 4) between
modes a and b. On the other hand, we assume we have at our disposal a maximally entangled
qubit state, of the form in equation (8), of qubits 1 and 2. The joint state will read

Nα,α,−√
2

(|e, α, g, α〉 − |e, −α, g, −α〉 + |g, α, e, α〉 − |g, −α, e, −α〉)1,a,2,b. (31)

We arrange a Ĉp ≡ Ûr(π/2) interaction between qubit 2 and mode b which will change the state
above into

Nα,α,−√
2

(|e, α, g, iα〉 − |e, −α, g, −iα〉 − i |g, α, e,−iα〉 + i |g, −α, e, iα〉)1,a,2,b. (32)

A homodyne detection of mode b, in the sense of the measurement described in the previous
section, will project equation (32) onto either (|e, α, g〉 + i |g, −α, e〉)1,a,2 or (|e, −α, g〉 +
i|g, α, e〉)1,a,2. Then, a measurement of qubit 2 on the eigenbasis of σ̂2

y projects these states
onto superpositions which can be always reconducted (through local atomic unitaries) to the
prototypical form

1√
2
(|g, α〉 + |e, −α〉). (33)

The state in equation (33) falls into the category of states which can be represented by the general
relation |g, α〉 + |e, eiϕα〉 with ϕ ∈ [0, π]. The entanglement in this class of states has been studied
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in detail in [28]. It is possible to show that, for ϕ = π and |α| � 2, the vNE corresponding to the
state (33) is exactly one ebit therefore implying that, under these conditions, the entanglement
swapping procedure implemented by the scheme presented here is complete. The quantum circuit
of the protocol is sketched in figure 5.

Similarly to what has ben described in the previous section, the homodyning of the cavity
field-mode b is here performed by injecting an external coherent state of amplitude iα into the
cavity. This will add to the pre-existent coherent state in such a way that either the state |0〉 0b or
|2iα〉b is obtained. Then a resonant interaction lasting for a rescaled interaction time π with an
ancillary atom prepared in its ground state |g〉 is required. If the field-mode was in its vacuum
state, the probability of finding the atom in |g〉 will be strictly 1. On the other hand, for a large
enough |α|, such a probability is smaller (being still nonzero because of the overlap between |0〉
and a coherent state), allowing for the discrimination of the phase of the cavity field.

The realization of the hybrid quantum channel in equation (33) can find application in the
realization of quantum repeaters [17] between cavity modes. Suppose, indeed, that the atomic
flying qubit interacts with another cavity field-mode c of an independent cavity. The task is
the realization of an entangled channel of modes a and c which allows for long-haul quantum
communication. The state transfer procedure described in section 3 can be used in order to achieve
such a result and create a two-mode coherent entangled state of a and c. The realization of this
scheme requires the passage of a single atom through multiple cavities, which is foreseeable
with state of the art microwave cavity-QED technology [29].

8. Conclusions

We have addressed the problem of quantum state engineering with cross-Kerr nonlinearities
implemented in a cavity-QED based setup. This has allowed us to address not only the case of
systems spanning Hilbert spaces of the same dimension but also the interesting situation of a
hybrid system of static and flying qubits. In this context, we have addressed different problems,
such as entanglement transfer and reciprocation in order to build up static-qubit and flying-qubit
channels for quantum communication and computation. Entanglement swapping between a qubit
state and an entangled coherent state has been addressed in order to consider the possibility of
constructing entangled hybrid channels that can have useful application in the context of quantum
repeaters.
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