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Generic Bell Inequalities for Multipartite Arbitrary Dimensional Systems
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We present generic Bell inequalities for multipartite arbitrary dimensional systems. The inequalities
that any local realistic theory must obey are violated by quantum mechanics for even dimensional systems.
A large set of variants are shown to naturally emerge from the generic Bell inequalities. We discuss
particular variants of Bell inequalities that are violated for all the systems including odd dimensional
systems.
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Quantum nonlocality is the most significant evidence of
physical observations that cannot be explained by theories
based upon local realism. Local realism is rooted in the
classical view of measurement, namely, that an observation
on one of a pair of subsystems cannot affect the other
system faster than the speed of light. In fact, since the
advent of quantum mechanics, the nonclassical implica-
tions have given rise to fundamental questions on the
nature of the act of measurement. In quantum mechanics,
a measurement does not provide a preexisting value of
the system, rather it is a manifestation of the state of the
probed system and the probing apparatus, as advocated by
Mermin [1].

As early as 1964, Bell [2] proved that local realism
implies constraints on a correlation of measurements be-
tween two separate systems. These constraints are incom-
patible with the quantitative predictions by quantum theory
in the case of two coupled spin-1=2 particles. These con-
straints, expressed as so-called Bell inequalities, are of
paramount importance in the conceptual foundations of
quantum mechanics. But these are idealized experiments
with archetypal nonclassical system. A key question re-
mains of whether a complex system of high-dimensional
quantum subsystems could eventually simulate a pseudo-
classical system that does not contradict local realism.

Since this startling discovery [2], investigating Bell
theorem for a general system has been regarded as one of
the most important challenges in quantum mechanics and
quantum information science (QIS) [3–15]. The motiva-
tion is obvious from a scientific and technological view-
point. First, proving the Bell theorem for a general system
would show that quantum physics would apply to macro-
scopic complex systems. Second, for QIS to outperform
the acquisition, manipulation, and transmission of infor-
mation over its classical counterpart, the property of non-
locality is closely related to its extraordinary power. In fact,
the manipulation of a complex quantum system rather than
a simple one has practical advantages. Gaining access to
the states is easier and more efficient (for example, effi-
cient cluster state QIS [16] and increased security in high-
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dimensional quantum cryptography [17]). It follows that a
nonlocality test for such a complex system is highly desir-
able. Third, the controllability of quantum operations de-
pends on the nature of the system. Certain logical
operations are relatively easy for one system but impos-
sible or difficult for another. It is then essential to under-
stand the nonlocal properties of different systems in order
to couple them together, to arrange interfaces between the
systems.

Suppose that measurements are performed locally on N
subsystems. On each subsystem, one out of two observ-
ables is measured, bearing d outcomes each, in order to
consider a Bell inequality in the composite system of �N; d�
[3]. Garg and Mermin formulated marginal probabilities
predicted by quantum mechanics for �2; d� and investigated
if they can be derived from higher-order joint probabilities
[4]. This investigation suggested loss of incompatibility
between quantum mechanics and local realism in the limit
of d! 1. Kaszlikowski et al. [5] argued that loss of
incompatibility was due to restrictions in the type of mea-
surement. They suggested the full use of the d-dimensional
Hilbert space to address this issue. Later, Collins et al.
derived Bell inequalities for high d values, which can
exhibit incompatibility for d! 1 [6]. These works to-
gether with an information-theoretic approach of the Bell
theorem [18] are all for a composite system of �2; d�. For a
multipartite spin-1=2 system of �N; 2�, Mermin [7],
Ardehali [8], and Belinskii and Klyshko [9] formulated
Bell inequalities based on the statistical properties of the
Greenberger, Horne and Zeilinger (GHZ) nonlocality [10].
In summary, we have seen proofs of the Bell theorem for
systems of �2; d� and �N; 2� for any N and d. However, note
that there are no proofs for arbitrary �N; d� despite its prime
importance, as this will complete the proof to rule out any
local realistic view which has been driven into the corner to
stand for measurements having a continuum of values for a
continuum of particles. Very recently, Lee et al. showed
Bell theorem without inequalities for multipartite multi-
dimensional systems in generalized GHZ states [11]. In
this Letter, we generalize the Mermin-Ardehali Bell in-
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equality for a system of arbitrary �N; d�. However, we
neither suggest to find all the Bell inequalities nor their
nonlocality condition. We do not consider many measure-
ment settings other than two, either. This is because our
interest is the currently important issue, a proof of the Bell
theorem for arbitrary �N; d� system, which has been a long-
awaited problem.

Generic Bell inequalities.—Before investigating general
cases, in order to understand the principal ideas, we con-
sider a tripartite arbitrary dimensional system which is
already significant. Consider three observers and allow
each to independently choose one of two variables. The
variables are denoted by Aj and Bj for the jth observer.
Each variable takes, as its value, an element in the set S �
f1; !; . . . ; !d�1g where the elements of S are the dth roots
of unity over the complex field. With these variables and
their powers, Anj and Bnj , we propose a generic Bell func-
tion, B:

B �
1

23

Xd�1

n�1

*Y3

j�1

�Anj �!
n=2Bnj �

+
� c:c:; (1)

where c.c. stands for complex conjugate. The symbol h�i is
introduced to denote the statistical average over many runs
of the experiment. It is remarkable that the higher-order
correlation functions appear in our Bell function. If d � 2,
our generic Bell function is reduced to Mermin’s [7]. In the
classical view of the statistical average, the local realism
implies that the values for the variables are predetermined,
before measurement, by local hidden variable �: Aj��� and
Bj���. The correlation among the variables is the statistical
average over �, i.e.,

Z
d�����

Y3

j�1

Vj���;

where Vj 2 fAj; Bjg, and ���� is the statistical distribu-
tion of � with ���� � 0 and

R
d����� � 1. The classical

upper bound of the Bell function B will be obtained by
noting the following facts. First, by definition the val-
ues of Aj and Bj are !�j and !�j , where �j and �j
are integers. Second, for integer �, we have two iden-
tities: (a)

Pd�1
n�0!

�n�d�d���, where �d��� � 1
if � � 0 mod d and �d����0 otherwise, and
(b)

Pd�1
n�1!

���1=2�n�c:c:�0. Third, the average value of
a function f��� must be less than its maximum:R
d�����f��� 	 sup�f���. We then obtain

B	
d
4

�d��1��2��3���d��1��2��3�1�

��d��1��2��3�1���d��1��2��3�1���1:

If d is even, the four arguments in the �d functions cannot
all be 0 mod d because �1 � �2 � �3 would be even and
then the sum of the last three arguments would be odd.
Hence
06040
B 	
3d
4
� 1; if d is even: (2)

For odd d, on the other hand, the Bell function has a larger
classical upper bound, B 	 d� 1. We will show that
quantum mechanics violates the generic Bell inequalities
in even dimensions while it does not in odd dimensions.

Violation by quantum mechanics.—For quantum me-
chanical description, we introduce an operator V̂j to rep-
resent the measurement for a variable Vj 2 fAj; Bjg of the
jth observer. An orthogonal measurement of a given vari-
able V is described by a complete set of orthonormal basis
vectors fj�iVg. Distinguishing the measurement outcomes
can be indicated by a set of values, called eigenvalues. As
the variable V 2 fA;Bg takes a value !� 2 S, let the
eigenvalues be the elements in S so that the operator is
represented by V̂ �

Pd�1
��0 !

�j�iVVh�j. In this representa-
tion the ‘‘observable’’ operator V̂ is unitary [11,12,19].
Each measurement described is nondegenerate with all
distinct eigenvalues, called a maximal test [20].

The statistical average over the local hidden variable �
in Eq. (1) is replaced by a quantum average to derive the
quantum mechanical Bell function. For the purpose we
obtain the nth order quantum correlation function

EnV1V2V3
� h jV̂n1 � V̂

n
2 � V̂

n
3j i;

where V̂nj is the nth power of V̂j and j i is a quantum state
of the system. It is obvious that jEnj 	 1 as the operator V̂j
and its powers are all unitary. After replacing the local
hidden-variable averages for Aj and Bj with the quantum
averages for Âj and B̂j in Eq. (1), we derive the quantum
mechanical Bell function in a useful form of

B q�
1

22

Xd�1

n�1

�EnA1A2A3
�!nEnA1B2B3

�!nEnB1A2B3

�!nEnB1B2A3
�: (3)

By noting jEnj 	 1, the generalized triangle inequality
implies that Bq is bounded from above,

jBqj 	 d� 1: (4)

The quantum upper bound �d� 1� is larger than the clas-
sical upper bound �3d=4� 1� for an even dimension, as
shown in (2), while they are equal for an odd dimension. It
is not clear yet whether Bq actually takes the quantum
upper bound as its maximum. If so, it implies that quantum
mechanics violates the generic Bell inequalities (2) for
even d’s that any local realistic theories must satisfy. We
will show that this is indeed the case if the system is
prepared in a generalized GHZ state and the observable
operators Âj and B̂j are given by ones which are employed
in showing a generalized GHZ nonlocality [11].

A generalized GHZ state for a tripartite d dimensional
system is defined as
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j i �
1���
d
p

Xd�1

��0

j�;�; �i; (5)

where fj�ig is an orthonormal basis set. We consider the
two observable operators Â and B̂ that are introduced in
Ref. [11]. For a given eigenvalue !�, the eigenvector of Â
is given by applying quantum Fourier transformation F̂ on
the basis vector j�i in Eq. (5):

j�iA � F̂j�i �
1���
d
p

Xd�1

��0

!���j�i; (6)

where the subscript A stands for the observable Â.
Similarly, the eigenvector of B̂ is given by

j�iB � P̂1=2F̂j�i �
1���
d
p

Xd�1

��0

!����1=2��j�i; (7)

where P̂� is a phase shift operator such that P̂�j�i �
!���j�i. If d � 2, the two observable operators Â and B̂
reduce to Pauli operators �̂x and �̂y, respectively. It is
convenient to introduce a raising operator Ĵ such that
Ĵjd� 1i � 0 and Ĵj�i � j�� 1i for 0 	 �< d� 1. In
particular, the raising operator can be written in terms of Â
and B̂ as Ĵ � �Â�!1=2B̂�=2. Its Hermitian conjugate
(H.c.), Ĵy, is a lowering operator. The operator Ĵn (Ĵny)
implies raising (lowering) by n levels. It is remarkable that
the n-level raising operator can be expressed by the nth
powers of Â and B̂, that is,

Ĵ n �
1

2

�
Ân �!n=2B̂n

�
: (8)

When Bq is written in the form similar to Eq. (1), the
generic Bell operator is now given by

B̂ q �
Xd�1

n�1

O3

j�1

Ĵnj � H:c: (9)

The generalized GHZ state j i is an eigenstate of B̂q with

the eigenvalue �d� 1�, i.e., Bq � h jB̂qj i � d� 1. It
implies that the quantum expectation Bq takes as its maxi-
mum the quantum upper bound �d� 1�, derived in Eq. (4),
if the tripartite system is in the generalized GHZ state j i
and the measurements are chosen with their bases in
Eqs. (6) and (7). For the tripartite even dimensional system,
we have thus shown the Bell theorem that quantum me-
chanics conflicts with any local realistic description.

In showing the Bell theorem, the maximal tests of
measurements enable the quantum expectation Bq to
take the quantum upper bound in Eq. (4). As the violations
are being exhibited in even dimensions, nevertheless, one
might apprehend that our Bell inequalities would be simple
extensions of or equivalent to the ones with dichotomic
observables, for instance, Mermin’s inequality [7]. This is
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not the case: No dichotomic observables can achieve the
quantum upper bound (4). Further, if the observables are
simultaneously decomposable into the direct sum of di-
chotomic observables, the inequality is equivalent to a two-
dimensional one [11–13]. However, our generic Bell in-
equalities are genuinely d dimensional in the sense that the
observables are not simultaneously decomposable into any
subdimensional observables [11].

Generalization to multipartite systems.—The Bell theo-
rem for a tripartite even dimensional system has been
proven by showing the incompatibility of the quantum
expectation with the generic Bell inequality (2). Our for-
mulation can be generalized to arbitrary multipartite even
dimensional systems simply by increasing the number of
parties, N � 3. Then, the Bell inequality becomes B 	
d�2�N=2 � 2�1� � 1 if N is even, and B 	 d�2��N�1�=2 �
2�1� � 1 otherwise. The quantum expectation Bq is inde-
pendent of N and it takes the maximum of �d� 1�, which
is clearly larger than the upper bounds of the Bell inequal-
ities. For qubits of d � 2, our generic Bell inequalities
reduce to Mermin’s [7].

For a bipartite and/or odd dimensional system, on the
other hand, quantum mechanics does not violate the ge-
neric Bell inequalities as the classical upper bounds are
equal to the quantum. For such a system, however, one may
consider variants from the generic Bell inequalities and
show that some of them are violated by quantum mechan-
ics, as done for qubits [8].

Variants from the generic Bell inequalities.—A large set
of variants can emerge from the generic Bell operators.
Such a variant Bell operator is written in the form of

B̂ � �
1

2N
Xd�1

n�1

!�n
ON
j�1

�Ânj �!
n=2B̂nj � � H:c:; (10)

where � is a rational number. We obtain the variant Bell
operators from a generic one by some local unitary trans-
formation; for instance, B̂� is obtained by applying the
phase shift operation on the Nth subsystem: P̂y�

1
2 �Â

n
N �

!n=2B̂nN�P̂� � P̂y�Ĵ
n
NP̂� � !�nĴnN , where P̂� is defined

after Eq. (7). These variants have the same quantum maxi-
mum of �d� 1� for a generalized GHZ state since they are
obtained by local unitary transformation.

All variants of Bell inequalities are not violated by
quantum mechanics. For instance, if � is an integer, the
variant becomes equivalent to the generic Bell inequality,
which is not violated in a bipartite system. For any
N-partite d dimensional system, consider the variant Bell
functions, Bo

1=4 for an odd N and Be
1=4 for an even N, that

satisfy the inequalities,

B o
1=4 	

1

2N�1

X�N�1�=2

k�0

bN;k � 1; (11)
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B e
1=4 	

1

2N

 X�N�2�=2

k�0

bN�1;k � bN�1;N=2

!
� 1; (12)

where

bn;k � ��1�k
n

�n� 1� 2k�=2

� �
cot
��2k� 1�=4d�

with a binomial coefficient �ab�. The classical upper bounds
in the inequalities (11) and (12) are smaller than the
quantum maximum, �d� 1�. Thus, the Bell theorem holds
for all multipartite arbitrary dimensional systems. For qu-
bits, the variant inequalities are equivalent to those derived
in Ref. [8]. For a bipartite system of N � 2, in particular,
the inequality (12) becomes

B e
1=4 	

1

4

�
3 cot

�
4d
� cot

3�
4d

�
� 1: (13)

Further, a two-qubit system has the classical and quantum
upper bounds of 1=

���
2
p

and unity, respectively, and thus
their ratio is equal to

���
2
p

as is in the Clauser-Horne-
Shimony-Holt inequality [21].

Remarks.—In our Bell inequalities, the quantum to clas-
sical upper bound ratios (QCRs) are always larger than
unity, which is a clear proof of the Bell theorem for all the
systems. The QCRs in our Bell inequalities decrease as the
dimensionality grows, which should be compared with the
opposite behavior of the Bell inequality that Collins et al.
proposed for a bipartite arbitrary dimensional system [6].
Acin et al. [15] also suggested an inequality to show a
similar trend for a tripartite three dimensional system. It
has been shown [22] that the composite measurements of
Collins et al. are classically correlated. On the other hand,
those in this Letter are composed of mutually independent
local measurements. The potential inconsistency is in fact
not a problem as Bell inequalities are not uniquely defined
in any way. However, one important issue to point out is
that whereas the inequalities by the others are maximally
violated for the partially entangled state [23], our Bell
inequalities show the maximum violation for the maxi-
mally entangled state. It is an open question as to whether
one can construct other variants of Bell inequalities which
show the increase of the QCR for the increase of
dimensions.

In summary, we proposed the Bell inequalities for all
multipartite arbitrary dimensional systems. They were con-
structed based on the generalized GHZ nonlocality for
multipartite multidimensional systems [11]. Quantum me-
chanics violates the generic Bell inequalities for even
dimensional N-partite systems for N � 3. The generic
Bell inequalities were shown to be genuinely multidimen-
sional in the sense that the observables are not simulta-
neously decomposable into any subdimensional ones. It
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was found that the large set of variants of Bell inequalities
naturally emerge from the generic ones and a particular
variant is violated by quantum mechanics for every
N-partite d dimensional system.
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