Prefix-querying with an L, distance
metric for time-series subsequence
matching under time warping

Sanghyun Park

Department of Computer Science, Yonsei University, Korea

Sang-Wook Kim

School of Information and Communications, Hanyang
University, Korea

Received 13 September 2005
Revised 18 November 2005

Abstract.

This paper discusses the way of processing time-series sub-
sequence matching under time warping. Time warping
enables sequences to be found with similar patterns even
when they are of different lengths. The prefix-querying
method is the first index-based approach that efficiently
performs time-series subsequence matching under time
warping without false dismissals. This method employs the
L., distance metric as a base distance function so as to allow
users to issue queries conveniently. In this paper, we extend
the prefix-querying method for absorbing L,, which is the
most widely used as a base distance function in time-series
subsequence matching under time warping, instead of L.
We formally prove that the prefix-querying method with the
L, distance metric does not incur any false dismissals in the
subsequence matching. To show its superiority, we conduct
performance evaluation via a variety of experiments. The
results reveal that our method achieves significant perform-

Correspondence to: Sang-Wook Kim, School of Information
and Communications, Hanyang University, Korea. E-mail:
wook@hanyang.ac.kr

ance improvement over the previous methods, up to 10.7
times, with a data set containing real-world Korean stock
data sequences, and up to 180 times with data sets contain-
ing a very large volume of synthetic data sequences.

subsequence

Keywords: time-series databases;

matching; time warping

1. Introduction

A time-series database is a set of data sequences, each
of which is an ordered list of elements [1]. Sequences
of stock prices, money exchange rates, temperature
changes, product sales rates, and company growth rates
are typical examples of time-series databases [2—4].
Sequence matching is an operation that finds
sequences or subsequences whose changing patterns
are similar to that of a given query sequence. It is of
growing importance in many new applications such as
data mining and data warehousing [1, 2, 4-6].

In order to measure the similarity of any two
sequences of length n, say X (=[x, x5, ..., Xx,]) and
Y (=ly1, Vo, - - -, Val), most earlier approaches map the
sequences into points in n-dimensional space and
compute the distance function L,(X, Y) defined as

follows.
Lp(X,Y]Zf/Z(lXj—Yi |)P
i=0

The L, distance function has been widely used to
measure the similarity of two sequences X and Y of the
same length. L, is the Manhattan distance, L, is the
Euclidean distance, and L., is the maximum distance
in any pair of corresponding elements [7]. In real

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 387

Prefix-querying with an L, distance metric

applications, two sequences X and Y are considered
similar to each other when Lp(X, Y) is smaller than a
given tolerance € [1, 4, 6, 8—11].

Sequence matching performed only with the L,
distance function, however, often fails to search for the
data sequences that are actually similar to a query
sequence in the user’s perspective. To overcome this
problem, various types of transformation can be used
so as to properly define the similarity model appropri-
ate to target applications. For this purpose, recent work
has proposed methods to support transformations such
as scaling [2, 9], shifting [2, 9], normalization [10,
12—13], moving average [6, 14], and time warping
[15-20].

Among these, time warping is a transformation that
allows any sequence element to replicate itself as many
times as needed without extra costs [20]. The time
warping distance is defined as the smallest distance
between two sequences transformed by time warping.
Given two sequences S and Q, the time warping
distance D;,,(S, Q) is defined recursively as follows [18,
20-21]:

Definition 1. (1) D, (<>, <>) =0,
(2) Dy S, <>) = Dy(<>, Q) = 0,
(3) DS, Q) = (| Ly(First(S), First(Q)) 1P +
| min(D,, (S, Rest(Q)), D;,(Rest(S), Q),
D, (Rest(S), Rest(Q)))|P)1/p

Here, First(S) is the first element of S, and Rest(S) is a
subsequence of S that includes the elements from
position 2 to the end. <> denotes a null sequence. The
min() is a function to take the minimum value amongst
the three arguments. L, can be properly chosen accord-
ing to applications, but the Manhattan distance L, is
the most popular one for time warping distance.

The time warping for two sequences proceeds
towards minimizing the time warping distance
between the two sequences after the transformation.
For example, two sequences S = <20, 21, 21, 20, 20, 23,
23, 23> and Q = <20, 20, 21, 20, 23> can be identically
transformed into <20, 20, 21, 21, 20, 20, 23, 23, 23> by
time warping, which results in D;,,(S, Q) of 0.

As described earlier, the L, distance can be applied
only to two sequences of the same length, However, the
time warping distance fits well with databases where
sequences are of varying lengths and so the L, distance
cannot be applied [17]." The time warping distance has
actually been used in voice recognition [22] and electro-
cardiogram analysis [20], and can also be applied to the
analysis of stock prices, temperature changes, and
company growth rates [21] in a similar way.

References [17] and [21] proposed an index-based
sequence matching method under time warping, and
reference [19] proposed the prefix-querying method for
subsequence matching by extending the index-based
method. These two methods employ L. as a base
distance function for users’ convenience in querying.
However, in discussions with other researchers
working in the same area, we had been recommended
to extend those index-based methods to employ L,
which is most popular for time warping [15-16, 18, 20,
23]. This paper is a discussion of the points arising
from this recommendation [24].

This paper discusses an index-based subsequence
matching under time warping. The existing prefix-
querying method [19] has not been verified to work
correctly when used with L, for a base distance
function. This paper addresses an extension of the
prefix-querying method to take L, as a base distance
function. We formally prove that the proposed method
does not incur any false dismissals in subsequence
matching. To show the superiority of our method,
we conduct performance evaluation via extensive
experiments.

This paper is organized as follows. Section 2 reviews
the previous methods for (sub)sequence matching
under time warping, and Section 3 discusses and for-
malizes the extension of the prefix-querying method.
Section 4 evaluates the performance of the prefix-
querying method. Finally, Section 5 summarizes and
concludes the paper.

2. Related work

This section reviews the previous methods for
sequence matching under time warping: Naive-Scan,
LB-Scan, ST-Filter and LB-Filter. For each method, we
discuss (1) the whole matching strategy, (2) the subse-
quence matching strategy? and (3) the characteristics.

2.1. Naive-Scan

2.1.1. Whole matching. It reads all the data sequences
from disk and computes the time warping distance
D;,(S, Q) between a data sequence S and a query
sequence QQ using the dynamic programming technique
[15]. When D,,(S, Q) is smaller than a given tolerance
&, S is considered to be similar to Q. In computing the
time warping distance between S and Q using the
dynamic programming technique, each element T(i, j)
of the cumulative distance table T is constructed by
the recurrence relation as follows [15]. The dynamic

388 Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

programming technique fills in the cumulative distance
table T successively from the bottom to the top as the
computation proceeds.

T(0,0) = 0, T(0,) = T(;, 0) = 0 (i =1, > 1)

T, j) = 1Qli] = S[j1l + min(T(-1, j), T(U, j— 1),
Ti—-1,j-1) (>1,j2>1)

Table 1 shows a process of computing the time warping
distance between S and Q using the cumulative
distance table, where L, is employed as a base distance
function. As a result of those computations, D;,[(S, Q)
becomes 12.

2.1.2. Subsequence matching. It reads all the data
sequences from disk and computes the time warping
distance of every subsequence Sli:j], contained in each
data sequence S, to a query sequence Q using the
dynamic programming technique.

2.1.3. Characteristics. The processing time is exces-
sive since Naive-Scan does not go through the filtering
step [17]. That is, there is a serious overhead to access
all the data sequences from disk. Also, the CPU pro-
cessing time for computing D, between the
(sub)sequences X and D is O(1 X| * 1 QI), which is quite
large. Here, | X| and |1 Q! denote the sizes of X and Q,
respectively. As a result, its search performance
degrades seriously in large databases.

2.2. LB-Scan

2.2.1. Whole matching. The filtering step is performed
using a lower-bound function Dy, which returns a value
always smaller than the time warping distance Dj,.
That is, after a data sequence S is accessed from disk,
Dy(S, Q) is applied for S and a query sequence Q. If
Dy(S, Q) is smaller than a tolerance & the post-
processing step is performed to compute its actual time

Table 1
An example of computing the time warping distance
between S = <4, 5,6, 7, 6, 6> and Q = <3, 4, 3>

6 16 11 12
6 13 9 10
7 10 7 8
6 6 4 5
5 3 2 3
4 1 1 2
s/Q 3 4 3

S.H. PARK AND S.W.KIM

warping distance D;,(S, Q). For the computation of
D;,(S, Q), a similar way to that of Naive-Scan is used
with the dynamic programming technique.

2.2.2. Subsequence matching. After a data sequence S
is accessed from disk, Dy,(S[i:j], Q) is applied for every
subsequence Sl[i:j] contained in S and a query sequence
Q. Here, if Dy, (S[i:j], Q) returns a value smaller than a
tolerance €, the post-processing step is performed to
compute its time warping distance D, (S[i:j], Q) using
the dynamic programming technique.

2.2.3. Characteristics. Since all the data sequences are
accessed from disk without any index structure in the
filtering step, the disk access time of this method is
equal to that of Naive-Scan. In the filtering step, Dy, is
computed between all the (sub)sequences X and a
query sequence Q. The CPU processing time for com-
puting Dp(X, Q) is O(IXI+1Ql), which is much
smaller than O(IXI*1Ql) for D,,(X, Q) [7]. The pro-
cessing time for the post-processing step can be signifi-
cantly improved since the (sub)sequences that are
unlikely to be included in a final result are eliminated
in advance through the filtering step [17]. Thus, when
many (sub)sequences are excluded via the filtering
step, the performance improves considerably.

2.3. ST-Filter

2.3.1. Whole matching. For the filtering step, the
elements of data sequences in a database are trans-
formed into symbols, and the symbol sequences are
stored in a suffix tree [25]. By using the suffix tree tra-
versal, the filtering step chooses candidate sequences S
whose Dy, to a query sequence Q is likely to be smaller
than a tolerance ¢. For every S, the post-processing step
computes D;,(S, Q) using the dynamic programming
technique.

2.3.2. Subsequence matching. For the filtering step,
the elements of all the suffixes within every data
sequence are converted into symbols, and these sym-
bolized suffixes are stored in the suffix tree. Via the
suffix tree traversal, the filtering step finds candidate
subsequences Sl[i:j] whose Dy, to a query sequence Q is
likely to be smaller than a tolerance €. For every Sliij],
the post-processing step computes Dy, (S[i:j], Q) using
the dynamic programming technique.

2.3.2. Characteristics. Owing to employing the suffix
tree traversal in the filtering step, ST-Filter needs to
access only a part of the suffix tree, rather than entire

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 389

Prefix-querying with an L, distance metric

data sequences, from disk. However, the suffix tree is
usually much larger than the whole volume of data
sequences. Also, optimal categorization [18] cannot be
easily obtained to provide good performance in
sequence matching [17]. Furthermore, there is a big dif-
ference in the performances of subsequence matchings
with ST-Filter on the same database, depending on
query sequences even when their lengths are the same.

2.4. LB-Filter

2.4.1. Whole matching. For performance improve-
ment, a multi-dimensional index is used. Feature
vectors consisting of the first, last, greatest, and
smallest elements are extracted from a query sequence
and a data sequence, respectively. The feature vectors
of data sequences are stored in a four-dimensional tree,
and the candidate sequences S are filtered by travers-
ing the tree with the feature vector of a query sequence.
In the post-processing step, for every S, D,,(S, Q) is
computed by dynamic programming.

2.4.2. Subsequence matching. The subsequence match-
ing with LB-Filter is called prefix-querying [19]. Prefix-
querying extracts a number of windows of a fixed size
from every data sequence, obtains a feature vector from
each window as in whole matching, and then con-
structs a four-dimensional tree on all the feature
vectors. For query processing, prefixes are extracted
from a query sequence Q, and then a feature vector is
obtained from each prefix. The candidate sequences
S[i, j] are filtered by the tree traversal with every feature
vector. In the post-processing step, for every S[i, jl,
Dy, (Sli, j1, Q) is computed by dynamic programming.

2.4.3. Characteristics. By using the multi-dimen-
sional index, LB-Filter performs the filtering step much
faster than LB-Scan. Also, the size of the tree used in
ST-Filter is larger than that of data sequences, but the
prefix-querying method does not need a large space for
the tree, because a feature vector employs only four
element values. Furthermore, LB-Filter does not incur
any false dismissals in subsequence matching.

3. Extension of the prefix-querying method

This section addresses an extension of the prefix-
querying method [19] for the use of L, as a base
distance function. In reference [17], it has been proven
that LB-Filter does not incur false dismissals by
showing that Dy, j, with L., is not only the lower-bound
function of D,,, but also satisfies triangular inequality.

In this paper, we extend the prefix-querying method to
employ L, instead of L., and also prove that this exten-
sion produces no false dismissals in subsequence
matching.

Definition 2. Dy, (S, Q) = L,(Feature(S), Feature(Q)),
where Feature(S) <First(S), Last(S), Greatest(S),
Smallest(S)>, Feature(Q) = <First(Q), Last(Q),
Greatest(Q), Smallest(Q)>.

Next, based on Theorems 1 and 2, we prove that the
function Dy, j, is not only the lower-bound function of
D, with L; but also satisfies triangle inequality.
Assumption 1 is made for the processes of proving
Theorems. For the case where the assumption does not
hold, Theorem 5 suggests solutions.

Assumption 1. If the time warped sequences of a data
sequence S and a query sequence (Q are denoted as S’
and Q', respectively, a value of s;', s’, q;', q' in S’ =
<s;, 89, ...,s¢'>and Q' =<q,', q,, ..., q'> is neither
the maximum nor the minimum within the correspon-
ding sequence.

Lemma 1. For two arbitrary sequences S = <s;, Sy, . . .,
s> and Q = <qy, Qg - - . , Q> the following is always
true:

D, (S, Q) 2 L,(<First(S), Last(S) >, <First(Q), Last(Q)>)
Proof. Note that, in time warping, data sequences S
and Q are transformed into the sequences to have the

minimum L,. We denote these transformed sequences
as S’and Q', where ISl = 1Q'| = k(I1S| <k, 1QI <k).

Dy,,(S, Q) = L(S", Q)

=Li(<s1, 83, « + 5S> <Q1s Qo - - - Q)
= Ly(<8}, 83, .+« , 81>, <Q2, @, - -+ 5 Qhr) +
L1(<S1, k>, <q1. qi>)
= Ly(<s3, 83, « +, Sk1>, <Qa, @3y + + -, Qhd) +
L,(<First(S), Last(S)>, <First(Q), Last(Q)>)
> L,(<First(S), Last(S)>, <First(Q), Last(Q)>)

Hence, Lemma 1 always holds.

Lemma 2. For two arbitrary sequences S = <s;, Sy, . . .,
sp> and Q =<qq, Qo - - -, Qm>, the following is always
true:

D, (S, Q) > L,(<Greatest(S), Smallest(S)>,
<Greatest(Q), Smallest(Q)>)

Proof. As in Lemma 1, the time warped sequences of
S and Q are denoted S’ and Q’, respectively. Also, let

390 Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

Greatest_Match(Q’) and Smallest_ Match(Q’) be the
elements of Q' matched with Greatest(S’) and
Smallest(S’) after transformation, respectively. The
meanings of Greatest Match(S’) and Smallest_
Match(S’) are analogous.

In this proof, as shown in Figure 1, we are to prove
that Lemma 2 holds for all the three cases which may
occur according to the value ranges of the elements in
the two sequences. For convenience, it is assumed to
be Greatest(S') > Greatest(QQ’). In the opposite case, i.e.
Greatest(S') < Greatest(Q'), we can prove it in the same
way by a simple role exchange.

3.1. Case 1: when S' and Q' are disjoint

Dy (S, Q) = Ly(S', Q")

| Greatest(S’) — Greatest_Match(Q’) | +

| Smallest(Q') — Smallest_Match(S’) |

| Greatest(S’) — Greatest(Q') | +

| Smallest(Q’) — Smallest(S’) |

= L,(<Greatest(S’), Smallest(S')>,

<Greatest(QQ’), Smallest(Q')>)

= L,(<Greatest(S), Smallest(S)>,
<Greatest(QQ), Smallest(Q)>)

[\

vV

3.2. Case 2: when S’ encloses Q'

DtW(Sr Q) = Ll(S/5 Q/)

> | Greatest(S’) — Greatest_Match(Q')| +
| Smallest(S’) — Smallest_ Match(Q') |

> | Greatest(S') — Greatest(Q') | +
| Smallest(S’') — Smallest(Q’) |

= L,(<Greatest(S’), Smallest(S')>,
<Greatest(QQ'), Smallest(Q')>)

= L,(<Greatest(S), Smallest(S)>,

<Greatest(QQ), Smallest(Q)>)

Case 1

Greatest(S’) Greatest(S’) O

Smallest(S’)
Greatest(Q’)

Smallest(Q’) Smallest(S') O

Fig. 1. Three possible arrangements of ranges of S’ and QQ’.

Case 2

Greatest(Q')

S.H. PARK AND S.W.KIM

3.3. Case 3: when S’ and Q' overlap

Dy, (S, Q) = Ly(S", Q')

> | Greatest(S’) — Greatest_Match(Q') | +
| Smallest(Q’) — Smallest_Match(S’) |

> | Greatest(S’) — Greatest(Q’) | +
| Smallest(Q’) — Smallest(S’) |

= L,(<Greatest(S’), Smallest(S')>,
<Greatest(Q'), Smallest(Q’)>)

= L,(<Greatest(S), Smallest(S)>, <Greatest(Q),
Smallest(Q)>)

Since Lemma 2 is true for every case, the proof is
completed.

Theorem 1. For two arbitrary sequences S = <s;, S,
., 8> and Q = <qy, Qs - .., Qu>, the following is
always true:

Dy (S, Q) 2 Dy (S, Q)

Proof. Let S’ and Q' be the time warped sequences of
S and Q, respectively.

Dy, (S, Q) = Ly(Feature(S), Feature(Q))

= L,(<First(S), Last(S), Greatest(S),
Smallest(S)>, <First(Q), Last(Q),
Greatest(QQ), Smallest(Q)>)

= L,(<First(S), Last(S)>, <First(Q), Last(Q)>)
+ L,(<Greatest(S), Smallest(S)>,
<Greatest(QQ), Smallest(Q)>)

=1,(8", Q')

=L(<81, 83, -+, SE> <Q1, Q3y + -+ 5 Qi)

= L,(<First(S), Last(S)>, <First(Q), Last(Q)>)
+ Ly(<s3, 83, « oy Ske1>s <Q3, Q35+ -+ 5 Qhr>)

By Assumption 1, the values of s, si, g1, g are neither

the maximum nor the minimum in S’ and Q’. Thus, by
Lemma 2, it holds that

DtW(S: QJ

Case 3

Greatest(S’)

Greatest(Q’)

Smallest(Q’)

Smallest(S’)

Smallest(Q")

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 391

Prefix-querying with an L, distance metric

Li(<S3, 83, « -+ Ske1>, <Q3, Q55 -+ - 5 Qh1>) 2
L,(<Greatest(S); Smallest(S)>, <Greatest(Q);
Smallest(Q)>). Therefore, D;, (S, Q) = Dy, (S, Q)

Using Theorem 1, the following Corollary 1 can easily
be induced.

Corollary 1. For two arbitrary sequences S = <s;, S,
..., 8>and Q=<qy, qs, - - ., q>, and for an arbitrary
value g, the following is always true.

D[S, Q)< €= Dy, (S, Q)< €

Theorem 2. For three arbitrary sequences X, Y, and Z,
the following always holds.

thﬁ]b[X) Z] < thf]b[X: Y] + thﬁlb[Y: Z}

Proof. Dy, ;,(S, Q) = L,(Feature(S), Feature(Q)). Also,
any L, satisfies triangular inequality. Hence, Theorem 2
always holds.

Next, it is shown that the prefix-querying method
does not incur false dismissals in the case of applying
L, to Dy pp-

Theorem 3. For two arbitrary sequences s and q, and
for an arbitrary positive value w(1 < w< | sl), if the time
warping distance between s and q is less than ¢, there
exists a prefix of q whose time warping distance to a
prefix of s, s[1:wl, is less than €. That is, the following
holds in all cases.

Dy s, @) £ €= (3x)(Dy, (s[1:w], ql1:x]) <€)

Proof. Let p=<pl1], pl2], ..., pl[lpl]>be the warping
path that minimizes D;,, between s and g, where |s| <
Ipl and gl < Ipl. Also, let plh] = (sliyl, qlju]) be an
element of the warping path, and let s’ (=(sl[ip])), q'
(=(qljn])) be the time warped sequences of s and g,
respectively, which exist on the warping path, where
1<h<Ipl,1<ip<Isl,and 1<j, < Iql. Here, Dy, for
s and q is calculated as follows.

th(s’ q) = Ll[s’a q’)

Also, according to the monotonic and continual prop-
erties of the warping path, the following always holds.

(3x) (plx] = (s[wl, qlj,])), where 1 < w< Isl,
1<x<Ipl,1<j,< gl

Dy, with L, takes the maximum difference between any
pair of elements existing on the warping path. On the
other hand, D;,, with L, takes the sum of the differences
between all the pairs of two elements. Accordingly, the
sub-warping path from p[1] to p[x] returns a time

warping distance which is always less than that of p,
the whole warping path. Thus, if the warping path p
returns a distance less than ¢, then the sub-warping
path from p[1] to p[x] also returns a distance less than
e Since Dy, (s[1:wl], g[1:j]) denotes the time warping
distance for the sub-warping path from p[1] to plx],
Theorem 3 holds.

Since Dy, j, used by LB-Filter is the lower-bound
function of the time warping distance Dy, Corollary 2
can be easily induced from Theorem 3.

Corollary 2. For two arbitrary sequences s and q, and
for an arbitrary positive value w(1 < w < Isl), the
following holds in all cases.

Dy (s, q) < €= (3x)(Dyy, pp(s[1:w], gl1:x]) < &),
where 1 <x < I gl

3.3.1. Multi-role elements in feature vectors. Until
now, we have assumed that the values of si, s, q1, qi
are neither the maximum nor the minimum in the time
warped sequences S’ = <sj, S, ..., s> and Q' = <qy,
Q3 - .., qi>. In practice, however, they could be the
maximum or the minimum, although it is not that
frequent. Here, we investigate this issue and propose
the solution to it.

If the values of s;, s; are the maximum or the
minimum in a time warped sequence S’ = <sj, s, . . . ,
sg>, it implies that, in Feature(S) = <First(S), Last(S),
Greatest(S), Smallest(S)>, First(S) = Greatest(S) or
Smallest(S), or Last(S) = Greatest(S) or Smallest(S). It is
analogous in a query sequence. In this situation, we
take two different cases into consideration as follows.

3.4. Case 1: One of s, S5, . . ., Sk is equal to s; (or s;)

This is the case that the first value s; (or the last value
si) of a sequence is the maximum or the minimum but
one of 85, s3, . . ., i1 is equal to s; (or s). In such cases,
although s (or s) is the maximum or the minimum,
since there exist other elements which have the same
value, the feature vector is to contain four distinct
elements. Thus, the problem situation does not occur
since the following formula used in the proof of
Theorem 1 is satisfied.

L1(<Sév Sé’ LR SI,<—1>’ <Qé’ CI?')’ LR q1’<—1>) 2
L,(<Greatest(S), Smallest(S)>,
<Greatest(QQ), Smallest(Q)>)

3.5. Case 2: None ofsj, ss, . . ., Si_; s equal to sy (or si)

This is the case that the first value s; (or the last value
si) of a sequence is the maximum or the minimum, and

392 Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

does not appear in the remaining part of the time
warped sequence. In such cases, if a feature vector is
constructed from a sequence, an identical element is
represented as two features. We call this a multi-role
element. If there exist multi-role elements in a feature
vector, two features in a vector are extracted from the
same element in the time warped sequence. In this
case, Greatest(S) or Smallest(S) does not appear in
<S5, S4 ..., Sk.>. Thus, Theorem 1 does not hold in
this case.

Example 1. It happens that D;,, < D,,, j, due to a multi-
role element in a feature vector.

S =<100, 20, 15, 5, 30>, Q = <15, 20, 15, 5, 30>
Feature(S) = <100, 30, 100, 5>, Feature(Q) = <15, 30, 30, 5>
S’ =<100, 20, 15, 5, 30>, Q' = <15, 20, 15, 5, 30>
D;,(S, Q) = 85, Dy, (S, Q) = 155

Thus

DtW(S’ QJ < thf]b(s’ QJ

Theorem 4. To avoid prefix-querying with L, incurring
any false dismissals, no two elements of Feature(S)
(=<First(S), Last(S), Greatest(S), Smallest(S)>) should
be extracted from the same element in the time warped
sequence S' = <8y, S3, 83, . . ., Sk_1, Si>.

Proof. If no two elements of Feature(S) are extracted
from the same element in S’, Smallest(S) can be
extracted from sj, s3, . .., si_,. If the same condition is
also satisfied for a query sequence Q, the feature
vectors for S and Q satisfy the conditions used in the
proof of Theorem 1. Therefore, the proof of Theorem 4
is completed.

In this paper, we propose a solution to the case in
<Example 1>. This solution is to guarantee no false dis-
missals by performing index searching in the range of
an enlarged &.

Theorem 5. If either of a data sequence S and a query
sequence Q has a multi-role element in its feature
vector, index searching with 2e makes prefix-querying
with L, guarantee no false dismissals.

Proof. By Lemma 1 and Lemma 2, for two arbitrary
sequences S = <8y, Sy, ..., Sp> and Q = <qy, qy, - - -,
qm>, the following are always true.

D[S, Q) > L,(<First(S), Last(S)>, <First(Q), Last(Q)>)

D, (S, Q) > L,(<Greatest(S), Smallest(S)>,
<Greatest(QQ), Smallest(Q)>)

S.H. PARK AND S.W.KIM

As shown in Theorem 1, Dy, (S, Q) can be defined
as follows.

Dy, (S, Q) = Ly(Feature(S), Feature(Q))
= L,(<First(S), Last(S)>, <First(Q),
Last(Q)>) + L,(<Greatest(S), Smallest(S)>,
<Greatest(QQ), Smallest(Q)>)

According to Lemma 1, Lemma 2, and Theorem 1,
regardless of appearances of multi-role elements in
feature vectors, the following formula holds in all
cases.

ZDtW(S’ Q) 2 th_lb(Sr Q)

Hence, by this formula and Corollary 2, we complete
the proof of Theorem 5.

Prefix-querying with L, does not incur false dis-
missals even for the feature vectors having multi-role
elements. However, the number of false alarms increases
due to an enlarged e To resolve this problem, we
maintain two different trees T; and T, in indexing
feature vectors. T; contains feature vectors that do not
contain multi-role elements, T, contains feature vectors
that may contain multi-role elements. However, we
cannot recognize whether multi-role elements exist in a
sequence exactly because we do not have the time
warped sequences at the time of index construction. So,
we build T, on sequences whose first (or last) value is
the maximum or minimum one. The same idea is
applied to the case of a query sequence. If a query
sequence does not have any multi-role elements in its
feature vector, index searches are performed on T; with
eand T, with 2&. On the other hand, if a query sequence
has multi-role elements in its feature vector, index
searches are performed on both T, and T, with 2&. In the
latter case, the number of false alarms increases, thus the
processing time gets large. It is noted, however, that
multi-role elements are infrequent when we consider
that sequences are long and have a variety of values.

4. Performance evaluation

This section evaluates the performance of the prefix-
querying method in comparison with Naive-Scan, LB-
Scan, and ST-Filter. In Section 4.1, the experiment
environment for performance evaluation is described,
and in Section 4.2, experimental results are presented.

4.1. Experiment environment

For performance evaluation, we used two data sets: K-
Stock-Data and Syn-Data. K-Stock-Data is a real-world

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 393

Prefix-querying with an L, distance metric

Korean stock data set that consists of 620 data
sequences of length 300. Syn-Data is a synthetic data
set that contains sequence S = <sy, sy, ..., s,> gener-
ated by the following random walk expression.

S;i=S8;1+2Z;

Here, z; is a random variable that takes a value within
the range of [-0.1, 0.1], and s, the first element of the
sequence, takes a random value within the range of
[1, 10]. For a scalability test, we generated four sets of
Syn-Data that include 1000, 2000, 3000, and 4000 data
sequences of length 200, respectively, and another four
sets of Syn-Data that include 1000 data sequences of
lengths 200, 300, 400, and 500, respectively.

Also, we generated query sequences Q by taking an
arbitrary subsequence of length Len(Q) among the
sequences chosen from a database. To form a query, we
adjusted € to make the query meet the specified query
selectivity defined as below.

query selectivity =

number of subsequences in the final set

number of subsequences whose length is appropriate
to be matched to Q of Len(Q) in a database

For performance evaluation, a PC with 1.7GHz
Pentium IV CPU and 1.2GB RAM was used as a
hardware platform, and the Linux kernel of version
2.4.18 and Glibc 2.2.4 were used as a software platform.
To prevent interference with other processes during
experiments, the operating system was set to a single-
user mode. Also, for categorization in ST-Filter, we

used the maximum entropy method, resulting in a
domain of 50 intervals.

4.2. Results and analyses

In Experiment 1, we used the selectivities of 7.10 X
1078, 2.13 X 1077, 3.55 X 1077 and 4.97 X 107 and
compared the performance of the prefix-querying
method with the existing methods. The length of the
query sequences used was 110, and 2, 6, 10, and 14
sequences were returned as final results depending on
query selectivities. Figure 2 shows the results.

With the increase of selectivities, the total elapsed
time increases in all the methods. In particular, ST-
Filter shows a great increasing rate. This is because,
with L;, the amount of CPU operations required to
construct the cumulative distance table in searching
the suffix-tree for the candidates is greatly affected by
e. LB-Scan does not show good performance since it
needs to access all data sequences in searching for the
candidate sequences.

Note that Naive-Scan is always better than LB-Scan
and ST-Filter in all cases. This is because the optimized
version of Naive-Scan [23] was used in our experi-
ments for CPU processing. This Naive-Scan is able to
maximize CPU performance by removing most redun-
dant calculations required in computing the time
warping distance of a query sequence against data sub-
sequences. As a result, Naive-Scan resolves perform-
ance bottlenecks incurred in CPU processing, showing
a high performance as in our experiments. Such a per-
formance inversion is shown consistently in all our

20,000

B .
é —&— Naive_Scan
2 —=— LB_Scan
£ 10,000 S -
s —a— ST _Filter
c;; —a&— Prefix_Querying
R
0 e —® — & — —8
7.10E-08 2.13E-07 3.55E-07 4.97E-07
Selectivity

Fig. 2. Performance results with different selectivities.

394 Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

experiments, which coincides with the results of [23].
The prefix-querying method shows a superior perform-
ance over all other methods, and it shows up to 10.7
times better performance than Naive-Scan, the best of
existing methods. This is because the filtering step is
greatly improved by using the index in prefix-querying.

The term of maxWarpRatio represents how many
times each element of a sequence can replicate itself
by time warping [15]. In Experiment 2, for
maxWarpRatio 3, 6, 9, and 12, we compared the per-
formance of the prefix-querying method with existing
ones. Here, the length of query sequences was 110
while the selectivity was 2.13 X 1077. Figure 3 shows
the results.

As maxWarpRatio increases, the number of candi-
date subsequences returned from the filtering step
grows in all the methods. Thus, we can see that the
total elapsed time is gradually increasing. In the case
of the prefix-querying method, the minimum length
of query sequences(minQLen) [19] divided by
maxWarpRatio was used as a window size, i.e. w =
[minQLen/maxWarpRatiol. Accordingly, the increase
of maxWarpRatio brings about the growth in the
number of candidate subsequences as well as the
number of the prefixes, thereby increasing the post-
processing time. In this experiment, the prefix-
querying method shows at best a 4.4 times better
performance than Naive-Scan, the best one among
existing methods.

In Experiment 3, we evaluated the performance of
the prefix-querying method against existing ones with
different minQLen of 10, 40, 70, and 100. The length of

S.H. PARK AND S.W.KIM

query sequences was 110 and the selectivity was 2.13
X 1077. Figure 4 shows these results.

ST-Filter shows a smaller total elapsed time with a
larger minQLen. The increase of minQLen leads to the
reduction of the suffixes in the suffix tree, consequently
reducing the computation time in the filtering step.
Other methods show almost the same performance
even with different values of minQLen. The prefix-
querying method shows an up to 3.8 times better per-
formance than Naive-Scan.

In Experiment 4, we evaluated the performance of
the prefix-querying method against existing methods
with changing query sequence lengths of 80, 140, 200,
and 260. The query selectivity used is 2.13 X 1077.
Figure 5 shows the experiment results.

As the length of query sequences increases, the cost
for computing the distances goes up, which leads to the
increase of the time spent in the filtering step and the
post-processing step. With increasing lengths of query
sequences, ST-Filter and LB-Scan show drastic growth
in elapsed time while Naive-Scan and the prefix-
querying method observe smooth growth. In particular,
the prefix-querying method shows the best perform-
ance, and achieves up to 3.6 times speed-up over
Naive-Scan.

The stock data set used in the previous experiments
is relatively small. For scalability tests, we generated
synthetic data sets of various numbers of sequences
with varying lengths for the following experiments. In
Experiment 5, while fixing the length of data
sequences at 200, we evaluated the performance of the
prefix-querying method against existing methods while

16,000

A & &

o

é —&— Naive_Scan

= . = = —8— LB Scan

£ 8,000 =

ks —a— ST _Filter

% —&— Prefix_Querying

H
e S 1

0 e o — @ — 8

3 6 12

maxWarpRatio

Fig. 3. Performance values of results with different maxWarpRatio.

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 395

Prefix-querying with an L, distance metric

16,000
—4
g
E —e— Naive_Scan
] —m— LB_Scan
£ 8,000 . -) .
; —a— ST Filter
=
E —&— Prefix_Querying
P S N
0 L E— : ¢ ' *
. 20 70 100
minQLell

Fig. 4. Performance results with different values of minQLen.

—&— Naive_Scan

—m— LB Scan

40,000

3

[«5)

w

E -
g 20,000 o

= ///

‘g el
H l,,,,,,,,,,,,,l,,,,,,,,,,,,,,,,

0 s— 3 3

—&— ST Filter

—a— Prefix_Querying

80 140 200

260

Query sequence length

Fig. 5. Performance results with different lengths of query sequences.

changing the number of data sequences to 1000, 2000,
3000, and 4000. The length of query sequences used
was 60, and the query selectivity was 1.47 X 1077.
Figure 6 shows the results.

As the number of data sequences increases, we see
that the total elapsed time increases linearly in all the
methods. ST-Filter and LB-Scan show a drastic degra-
dation in performance while Naive-Scan and the
prefix-querying method show a relatively smooth
degradation in performance. In this experiment, the
prefix-querying method shows up to 180 times better
performance than the best among existing ones.

In Experiment 6, while fixing the number of data
sequences at 1000, we ran experiments with different

lengths of data sequences of 200, 300, 400, and 500.
The query selectivity used was 1.47 X 1077. Figure 7
shows the results.

As the length of data sequences increases, the total
elapsed time increases in all the methods. The
overall performance tendency of ST-Filter and LB-
Scan is very similar to that in Experiment 5. LB-Scan
shows exactly the same results as in Experiment 5
even for the case with long data sequences because
it needs to access all the elements of sequences in
the filtering step. In this experiment, the prefix-
querying method shows the best performance, and
reveals performance up to 180 times better than
Naive-Scan.

396 Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

20,000

S.H. PARK AND S.W.KIM

10,000

—&— Naive_Scan

—8— LB Scan

Total time (msec)

—a4a— ST Filter

—&— Prefix_Querying

1000 2000 3000

4000

Number of sequences

Fig. 6. Performance results with different numbers of data sequences.

30,000
=)
g —e— Naive_Scan
F 15,000 /. —=8— LB_Scan
£ —a— ST _Filter
-fé —&— Prefix_Querying
e
K e
0 —— .
200 300 400 500

Data sequence length

Fig. 7. Performance results with different lengths of data sequences.

5. Conclusions

Prefix-querying is the first index-based method to
perform time-series subsequence matching under time
warping without false dismissals. It employs L. as a
base distance function for users’ convenience in
forming queries. In this paper, we have addressed an
extension of the prefix-querying method to the use of
L, which is most popular for time-series subsequence
matching under time warping, instead of L., as a base
distance function. The contributions of this paper are
summarized as follows.
e We have extended the prefix-querying method to
employ L, instead of L., as a base distance function.

e We have formally proven that the prefix-querying
method guarantees no false dismissals in subse-
quence matching under time warping.

e We have empirically shown the superiority of the
prefix-querying method via extensive experiments.
The results reveal that our method achieves sig-
nificant performance improvement over the
previous methods, by up to 10.7 times with a data
set containing real-world Korean stock data
sequences, and up to 180 times with data sets
containing a very large volume of synthetic data
sequences. According to the experiment results,
the prefix-querying method improves the prior
methods dramatically.

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401 397

Prefix-querying with an L, distance metric

In the case of large databases, even with the prefix-
querying method, the performance is not quite satisfac-
tory due to a large number of candidate subsequences
returned after the filtering step. Thus, we need more
sophisticated techniques to reduce the number of can-
didate subsequences in the filtering step. As a further
study, we are considering devising a lower-bound
function that fits the time warping distance more
tightly.

Acknowledgement

This research was partially supported by the MIC
(Ministry of Information and Communication) of Korea
under the ITRCC Information Technology Research
Centre support program supervised by the IITA (IITA-
2005-C1090-0502-0009).

Notes

(1) Sequences of different lengths need to be compared in the
following situations [13]: (a) when sequences have differ-
ent sampling rates, for example, one sequence may be
sampled every minute while another sequence is
sampled every hour; and (b) when sequences have differ-
ent starting points; for example, a sequence may start
today while another sequence began a year ago. The time
warping distance is very useful in these situations.
Instead of focusing on individual elements of sequences,
the time warping distance compares their fluctuation
patterns along the time axis.

(2) Whereas ST-Filter was originally designed for subse-
quence matching, Naive-Scan and LB-Scan were for
whole matching. In this section, we simply extend them
for subsequence matching, retaining their basic ideas.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami., Efficient simi-
larity search in sequence databases. In: D.B. Lomet (ed.),
Proceedings of the International Conference on Founda-
tions of Data Organization and Algorithms (FODO)
Chicago, October 1993 (Springer, London, 1993) 69-84.

[2] R. Agrawal et al., Fast similarity search in the presence
of noise, scaling, and translation in time-series data-
bases. In: U. Dayal et al. (eds) , Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB),
Zurich, September 1995 (Morgan Kaufmann, San Fran-
cisco, 1995) 490-501.

[3] C. Chatfield, The Analysis of Time-Series: an Introduc-
tion (Chapman and Hall, New York, 1984).

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

C. Faloutsos et al., Fast subsequence matching in time-
series databases. In: R.T. Snodgrass and M. Winslett
(eds), Proceedings of the International Conference on
Management of Data, ACM SIGMOD, Minneapolis,
Minnesota, May 1994 (ACM Press, New York, 1994)
419-29.

M.S. Chen et al.,, Data mining: an overview from
database perspective, IEEE Transactions on Knowledge
and Data Engineering 8(6) (1996) 866—83.

D. Rafiei and A. Mendelzon, Similarity-based queries for
time-series data. In: Proceedings of the International
Conference on Management of Data, ACM SIGMOD,
Tucson, Arizona, June 1997 (ACM Press, New York,
1997) 13-24.

B.K. Yi and C. Faloutsos, Fast time sequence indexing
for arbitrary Lp norms. In: A. El1 Abbadi et al. (eds), Pro-
ceedings of the International Conference on Very Large
Data Bases, VLDB 2000 (Morgan Kaufmann, San Fran-
cisco, 2000) 385-94.

K.P. Chan and A.W.C. Fu, Efficient time-series matching
by wavelets. In: Proceedings of the International Confer-
ence on Data Engineering (ICDE), Sydney, March 1999
(IEEE, Washington, DC, 1999) 126-33.

K.K.W. Chu and M.H. Wong, Fast time-series searching
with scaling and shifting. In: V. Vianu and C. Papadim-
itriou (eds), Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS), Philadelphia, Pennsylvania, May 1999 (ACM
Press, New York, 1999) 237-48.

D.Q. Goldin and P.C. Kanellakis, On similarity queries
for time-series data: constraint specification and imple-
mentation. In: U. Montanari and F. Rossi (eds), Proceed-
ings of the International Conference on Principles and
Practice of Constraint Programming, Cassis, France,
September 1995 (Springer, London, 1997) 137-53.

D. Rafiei, On similarity-based queries for time-series
data. In: Proceedings of the International Conference on
Data Engineering (ICDE), Sydney, Australia, March 1999
(IEEE, Washington, DC, 1999) 410-17.

G. Das, D. Gunopulos and H. Mannila, Finding similar
time-series. In: H.J. Komorowski and J. Zytkow (eds),
Proceedings of the European Symposium on Principles
of Data Mining and Knowledge Discovery (PKDD) 1997
(Springer, London, 1997) 88—100.

W.K. Loh, SSW. Kim and K.Y. Whang, Index interpola-
tion: an approach for subsequence matching supporting
normalization transform in time-series databases. In: A.
Agah et al. (eds), Proceedings of the ACM International
Conference on Information and Knowledge Manage-
ment, ACM CIKM 2000 (ACM Press, New York, 2000)
480-7.

W.K. Loh, S.W. Kim and K.Y. Whang, Index interpola-
tion: a subsequence matching algorithm supporting
moving average transform of arbitrary order in time-
series databases, IEICE Transactions on Information and
Systems, E84-D 1 (January, 2001) 76—86.

398

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

[15]

(17]

D.J. Berndt and J. Clifford, Finding patterns in time-
series: a dynamic programming approach. In: U.M.
Fayyad et al. (eds), Advances in Knowledge Discovery
and Data Mining (AAAI/MIT Press, Menlo Park, 1996)
229-48.

E. Keogh, Exact indexing of dynamic time warping. In:
Proceedings of the International Conference on Very
Large Data Bases (VLDB) 2002 (Morgan Kaufmann, San
Francisco, 2002) 406—17.

S.W. Kim, S.H. Park and W.W. Chu, An index-based
approach for similarity search supporting time warping
in large sequence databases. In: Proceedings of the Inter-
national Conference on Data Engineering, IEEE ICDE
2001 (IEEE, Washington, DC, 2001) 1607-14.

S.H. Park et al., Efficient searches for similar subse-
quences of difference lengths in sequence databases. In:
Proceedings of the International Conference on Data
Engineering, IEEE ICDE 2000 (IEEE, Washington, DC,
2000) 23-32.

S.H. Park, S.W. Kim, J.S. Cho and S. Padmanabhan,
Prefix-querying: an approach for effective subsequence
matching under time warping in sequence databases.

[20]

[21]

[22]

(23]

[24]
[25]

S.H. PARK AND S.W.KIM

In: H. Paques et al. (eds), Proceedings of the ACM
International Conference on Information and Knowl-
edge Management, ACM CIKM 2001 (ACM Press, New
York, 2001) 255-62.

B.K. Yi, H.V. Jagadish and C. Faloutsos, Efficient
retrieval of similar time sequences under time warping.
In: Proceedings of the International Conference on Data
Engineering, IEEE ICDE 1998 (IEEE, Washington, DC,
1998) 201-8.

S.W. Kim, S.H. Park and W.W. Chu, Efficient processing
of similarity search under time-warping in sequence
databases: an index-based approach, Information
Systems 29(5) (2004) 405—20.

L. Rabiner and H.H. Juang, Fundamentals of Speech
Recognition (Prentice Hall, Englewood Cliffs, 1993).
S.W. Kim, S.W. Kim and M.Y. Shin, Optimization of sub-
sequence matching under time warping in time-series
databases. In: ACM Symposium on Applied Computing,
April 2005 (ACM Press, New York, 2005) 581-6.

C. Faloutsos, Private Communication (2001).

G.A. Stephen, String Searching Algorithms (World
Scientific Publishing, Singapore, 1994).

Journal of Information Science, 32 (5) 2006, pp. 387—-399 © CILIP, DOI: 10.1177/0165551506064401

399

