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Abstract.

Exact match queries, wildcard match queries, and k-
mismatch queries are widely used in various molecular
biology applications including the searching of ESTs
(Expressed Sequence Tags) and DNA transcription factors.
In this paper, we suggest an efficient indexing and process-
ing mechanism for such queries. Our indexing method
places a sliding window at every possible location of a DNA
sequence and extracts its signature by considering the occur-
rence frequency of each nucleotide. It then stores a set of sig-
natures using a multi-dimensional index such as the R*-tree.
Also, by assigning a weight to each position of a window, it
prevents signatures from being concentrated around a few

spots in indexing space. Our query processing method
converts a query sequence into a multi-dimensional rec-
tangle and searches the index for the signatures overlapping
with the rectangle. Experiments with real biological data
sets have revealed that the proposed approach is at least 4.4
times, 2.1 times, and several orders of magnitude faster than
the previous one in performing exact match, wildcard
match, and k-mismatch queries, respectively.

Keywords: DNA database; indexing; query processing;
exact match; wildcard match; k-mismatch

1. Introduction

DNA sequences hold the code that determines the
characteristics of living organisms, and can be repre-
sented as a long list using the alphabet of nucleotides.
In molecular biology, a basic way to understand a
newly discovered DNA sequence is to infer its charac-
teristics from the existing similar DNA sequences that
have been understood [1]. DNA sequence searching is
an operation that finds, from a DNA database, DNA
(sub)sequences whose nucleotide arrangements are
similar to that of a given query sequence. This opera-
tion helps molecular biologists infer the role, evolu-
tional process, and chemical structure of a new DNA
sequence. To cater for the evolutionary mutations and
noises in DNA sequences, approximate match queries
are preferred to exact match queries for DNA sequence
searching.

The most fundamental way for processing approxi-
mate match queries is to use the Smith-Waterman
alignment algorithm [2], which is based on dynamic
programming to find an optimal local alignment
between two sequences. The similarity model used in
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this algorithm has been adopted by a majority of biol-
ogists, and thus has affected subsequent researches
significantly. This algorithm, however, takes a long pro-
cessing time of 0(mn), where m and n are the lengths
of the two sequences to be aligned, respectively. Also,
it has to access the whole data sequence from disk
before processing.

The drawbacks of the method employing the Smith-
Waterman alignment algorithm arise from comparing a
whole data sequence with a query sequence. A natural
idea to resolve this kind of drawback is to employ the
filtering and refinement approach, which quickly finds
only some candidate subsequences having a high
possibility of being matched with the query sequence
in the filtering stage, and then examines whether each
candidate actually matches the query sequence in the
refinement stage. BLAST [3, 4] is a typical example that
follows this approach. Due to performance reasons, it
uses a heuristic algorithm based on a similarity model
that is slightly different from the one adopted in the
Smith-Waterman alignment algorithm. Recently,
Kaheci et al. [5] proposed the MR-Index, which also
follows the filtering and refinement approach, for
efficient processing of k-difference queries. A k-
difference query is to find data subsequences that can
be matched with a given query sequence by performing
at most k replacing, inserting, and deleting operations.

In this paper, we address efficient processing of
DNA sequence searching, especially exact match
queries, wildcard match queries, and k-mismatch
queries. Exact match queries search a DNA database
for the subsequences that exactly match a query
sequence. Wildcard match queries contain wildcard
characters marked as ‘*’ in a query sequence, and find
the subsequences that match a query sequence. Note
that a wildcard is regarded as matching any single
nucleotide. k-Mismatch queries retrieve the data sub-
sequences that have at most k nucleotides mis-
matched with those of a given query sequence. Note
that the definition of a k-mismatch does not allow any
insertions or deletions of nucleotides, but just inspects
matches and mismatches. These exact match,
wildcard match, and k-mismatch queries are widely
used in various molecular biology applications such
as retrieval of expressed sequence tags and DNA
transcription factors [6].

The method employing the Smith–Waterman align-
ment algorithm and the method based on the MR-index
can be also considered to process these three types of
query. However, the query answers targeted by these
methods are quite different from those targeted by the
exact match, wildcard match, and k-mismatch queries.

That is, these two methods retrieve more data than
those retrieved by these three types of queries. Thus,
they are not directly applicable to the applications this
paper currently focuses on.

The Boyer–Moore algorithm [7] and the Knuth–
Morris–Pratt algorithm [8] have been proposed for
exact match queries. Also, the method combining the
Aho–Corasick algorithm [9] and a scan vector has been
proposed for wildcard match queries. These methods
aim at optimizing the CPU performance in determining
whether two sequences match each other. However,
they suffer from a large processing time since they
compare every possible subsequence in a data
sequence with a query sequence. Moreover, they have
to access the entire data sequence sequentially from
disk.

The method based on suffix trees [6, 10], which is a
kind of filtering and refinement approach, traverses the
suffix tree to find candidates and then examines
whether each candidate really matches a query
sequence. This method can process the exact match,
wildcard match, and k-mismatch queries, and achieves
a relatively high performance since it accesses only the
candidates from disk in the refinement stage. However,
it incurs large storage overheads due to the character-
istics inherited from the suffix tree. Suffix arrays [11]
and compact suffix arrays [12–14] are also widely used
as a variant of suffix trees. Both of them need less space
than suffix trees, but are less efficient in processing the
wildcard match and k-mismatch queries.

In this paper, we propose an approach for processing
approximate queries that overcomes the problems
mentioned above. We first suggest an effective method
for indexing DNA databases. The method places a
sliding window at every possible location of a data
sequence, and extracts its signature by considering the
occurrence frequency of each nucleotide. It then stores
a set of signatures using a multi-dimensional index
such as the R*-tree [15]. In addition, by assigning a
weight to each position of a window, it tries to scatter
the signatures over indexing space and thus success-
fully reduces the number of false alarms [16]. Using the
proposed indexing method, we also suggest an algo-
rithm which processes all the exact match queries,
wildcard match queries, and k-mismatch queries
efficiently. The algorithm converts a query sequence
into a multi-dimensional rectangle, searches the index
for signatures overlapping with the rectangle, and
obtains the final answers by examining the signatures
retrieved by index search.

To reveal the superiority of the proposed approach,
we perform a variety of experiments with real biological
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data sets and compare its performance with that of
other previously adopted methods. The experimental
results show that the proposed method is at least 4.4
times, 2.1 times, and several orders of magnitude faster
than the suffix-tree-based method in performing exact
match, wildcard match, and k-mismatch queries,
respectively.

This paper is organized as follows. Section 2 defines
some terminologies for further presentation, and also
formulates the problem we are trying to solve. Section
3 briefly reviews previous methods related to approx-
imate query processing in DNA databases, and then
points out their drawbacks. Section 4 presents our
basic approach for indexing and query processing.
Section 5 addresses the limitations of our basic
approach and then proposes an enhanced approach
that overcomes them. Section 6 shows the effective-
ness of the proposed approach via performance evalu-
ation. Finally, Section 7 summarizes and concludes
our work.

2. Definitions

In this section, we define the notations and terminolo-
gies used in this paper, and formulate the problem we
are going to solve.
Definition 1: DNA sequence
A DNA sequence T = <t1, t2, . . . , tn> is an ordered list
of characters in the alphabet of nucleotides. |T|
denotes the length of T, i.e. the number of characters in
T. A DNA sequence stored in a database is called a data
sequence and a DNA sequence submitted as a query is
called a query sequence. Q = <q1, q2, . . . , qm> denotes
a query sequence with m characters. We use T� to
denote a contiguous subsequence of T. All the charac-
ters in T� must occur contiguously in T. In this paper,
we use the term ‘subsequence’ to mean ‘contiguous
subsequence’ for brevity.
Definition 2: alphabet Σ of nucleotides
The alphabet Σ of nucleotides consists of 15 characters
that can occur in DNA sequences.

Σ = {A, C, G, T, R, Y, S, W, K, M, B, D, H, V, N}

Four characters, A, C, G, and T, are used to express
the regions of a DNA sequence whose characteristics
are discovered completely. We call these four charac-
ters ‘principal nucleotides’. The remaining characters
of the alphabet express the regions that have not been
understood perfectly. For example, character Y denotes
either C or T. Table 1 shows the characters included in
the alphabet of nucleotides.

Definition 3: window
DNA data sequences are usually much longer than
query sequences and also are of arbitrary lengths.
Therefore, we use a window-based scheme to build an
index for DNA data sequences. A ‘window’ is defined
as a subsequence of fixed length taken from a DNA
sequence. W and |W| denote a window and its length,
respectively. The window beginning at the ith position
of a DNA sequence is denoted as Wi.
Definition 4: matching of two characters, s and q
Any two characters s and q are said to be matched with
each other if the intersection of the set of characters
represented by s and the set of characters represented
by q is not empty. For example, let us consider two
characters R and K. Characters R and K representing
{A, G} and {G, T} respectively (see Table 1) are matched
because their intersection is not empty (i.e. {A, G} ∩
{G, T} = {G}). However, characters R and Y are not
matched because their intersection is empty (i.e. {A, G}
∩ {C, T} = ∅).
Definition 5: matching of query sequence Q and data
subsequence T�
There can be three types of match between query
sequence Q and data subsequence T�.
• Exact match: Q and T�, both of which are from the

alphabet Σ, are said to be in ‘exact match’ when
they satisfy both of the following conditions: (1)
|Q| = |T�|, and (2) for each i between 1 and |Q|,
the ith element of Q matches the ith element of T�
(i.e. qi matches t�i).

• Wildcard match: T� from the alphabet Σ and Q from
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Table 1
Characters included in the alphabet of nucleotides

Code Bases Mnemonic

A A A-denine
C C C-ytosine
G G G-uanine
T(or U) T T-hymine (or U-racil)
R A or G pu-R-ine
Y C or T p-Y-rimidine
S G or C S-trong(3 H-bonds)
W A or T W-eak(2 H-bonds)
K G or T K-eto
M A or C a-M-ino
B C or G or T not-A
D A or G or T not-C
H A or C or T not-G
V A or C or G not-(T or U)
N(or X) any base a-N-y(or Unknown)
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Σ ∪ {*} are said to be in ‘wildcard match’ when they
satisfy both of the following conditions: (1) |Q| =
|T�|, and (2) for each i between 1 and |Q|, the ith
element of Q matches the ith element of T� (i.e. qi
matches t�i). Note that wildcard ‘*’ matches any
single character in the alphabet Σ.

• K-mismatch: T� from the alphabet Σ and Q from
Σ ∪ {*} are said to be in ‘k-mismatch’ when they
satisfy both of the following conditions: (1) |Q| =
|T�|, and (2) there are at least |Q| – k characters in
Q that are matched to the characters of their corre-
sponding positions in T�.

Definition 6: DNA sequence searching problem
Given DNA data sequence T stored in a database and
query sequence Q, the DNA sequence searching problem
is to find all the subsequences T� of T that match Q.
In the definition of the DNA sequence searching
problem, we focus on just a single DNA sequence
stored in a database. In real applications, however, we
may need to search a set of DNA data sequences. This
can be handled simply by creating a long sequence by
concatenating all DNA data sequences, and then
searching this long sequence. Therefore, from now on,
we do not discuss the searching of a set of DNA data
sequences any more. Table 2 summarizes the notations
used throughout the paper.

3. Related work

In this section, we introduce practical applications that
necessitate the exact match queries, wildcard match
queries, and k-mismatch queries targeted in this
research, and review prior work on processing such
queries.

3.1. Exact match queries

3.1.1. Applications: retrieval of expressed sequence
tags. The expressed sequence tag (EST) is a DNA
sequence of length 200–300, and appears only once in
an entire gene sequence [6]. More than five million
ESTs have been found and stored in databases. When a
new DNA sequence is found, it is important to identify
which ESTs are contained in the sequence. To achieve
this, biologists perform an exact match query by using
each EST as a query sequence. As a result, they can
conjecture the characteristics of the newly discovered
DNA sequence.

3.1.2. Previous methods. Without using any extra
space, the Boyer–Moore algorithm [7] and the Knuth–
Morris–Pratt (KMP) algorithm [8] effectively locate the
positions within a data sequence, where a query
sequence appears. Their worst-case time complexity
for processing an exact match query is O(n + m) where
n and m are the lengths of data and query sequences,
respectively. These algorithms, however, should access
the entire data sequence from disk because they are
based on the sequential scan.

The method based on suffix trees [6, 10] processes
exact match queries with time complexity O(m + k)
where m is the length of query sequence and k is the
number of answers. This method, however, incurs large
storage overheads because the storage requirement of a
suffix tree is 12n bytes even with careful implementa-
tion [17]. For example, Hunt et al. [18] reported a suffix
tree of size 19G bytes for a DNA sequence of length
286M bases. Suffix arrays [11] are also widely used for
the same purpose. A suffix array is constructed by
sorting all suffixes of a sequence in lexicographic
order and storing pointers to the suffixes in this order.
Exact match queries can be processed efficiently by
performing binary searches on suffix arrays. Suffix
arrays, however, take more than 4n bytes. Other
competing structures include the compact suffix array
(CSA) [12, 14] and the compressed compact suffix array
(CCSA) [13]. On reducing the redundancy in the suffix
array, the CSA takes less than 2n bytes and the CCSA
takes about 1.6n bytes. Time complexities for perform-
ing exact match queries using the suffix array, the CSA,
and the CCSA are O(m log n + k), O(m log n + k), and
O((m + k) log n), respectively; these bounds are much
worse than the bound of the suffix tree.
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Table 2
Notations used throughout the paper

Symbol Definition

T DNA data sequence
ti ith character of DNA data sequence T
T� contiguous subsequence of T
Q DNA query sequence
qi ith character of DNA query sequence Q
|T| length of DNA data sequence T
|Q| length of DNA query sequence Q
Σ alphabet of nucleotides
W window
|W| length or size of window W
Wi window beginning at the ith position of a DNA

data sequence
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3.2. Wildcard match queries

3.2.1. Applications: retrieval of DNA transcription
factors. The DNA transcription factor binds to specific
locations in DNA and regulates, either enhancing or
suppressing, the transcription of the DNA into RNA [6].
In this way, the production of the protein that the DNA
codes for is regulated. The studies of transcription
factors have exploded in the past decade; many tran-
scription factors have been discovered and can be
separated into groups. Multiple DNA transcription
factors in each group are represented by a sequence
that includes wildcards. Hence, if a new sequence is
found, one way to identify its features is to examine
which DNA transcription factors belong to the
sequence. The wildcard match query would be a good
means for this.

3.2.2. Previous methods. The method combining the
Aho-Corasick algorithm [9] and the scan vector has
been proposed for this purpose [6]. By eliminating all
the wildcards from a query sequence, this method first
obtains a set of subpatterns and their starting positions
within a query sequence. Next, by using a one-
dimensional array called a scan vector, it finds the data
subsequences, each of which contains all those sub-
patterns in order. This method, however, has a large
storage overhead since it maintains a scan vector as
large as the data sequence. Also, it requires a large
processing time because it accesses the whole data
sequence from disk.

3.3. K-mismatch queries

3.3.1. Applications: retrieval of expressed sequence
tags. As stated earlier, the retrieval of ESTs is an
application of exact match queries. However, DNA
sequences frequently include deformations due to
evolutionary mutations as well as contaminations.
Thus, k-mismatch queries are preferred to exact match
queries to cater for such deformations. By using the
k-mismatch queries, we can allow at most k deforma-
tions to occur in a data sequence.

3.3.2. Previous methods. The suffix-tree-based method
[10] constructs a suffix tree on data and query
sequences. Next, it finds, from the suffix tree, the
lowest one among the common ancestor nodes of both
sequences. It then traverses down the subtree of that
node until it encounters k mismatches. This method
can be applied to the processing of exact match and
wildcard match queries in a similar way. However, it

suffers badly from a large storage overhead and the
high cost of maintaining and traversing a huge suffix
tree.

The method proposed in [19] also employs a suffix
tree on data sequences, and efficiently handles both
wildcard match queries and k-mismatch queries by
using the concept of ‘centroid path decompositions’ of
the suffix tree. This method assumes the suffix tree
resides in main memory, and thus aims at optimizing
the CPU processing time. Hence, it is not efficiently
applicable to large database environments where data
sequences and suffix trees should reside in disk rather
than in main memory. While we can also consider
storing the suffix tree in disk, this approach still has the
problems caused by the aforementioned nature of the
suffix tree.

Recently Amir et al. [20] used the occurrence fre-
quency of each character in an alphabet and the
pigeonhole principle to filter out unpromising answers
at an early stage of their k-mismatch algorithm. This
algorithm runs in time O(n ) for a data sequence
with n elements, but it is effective only when the size
of the alphabet is larger than 2 .

4. Basic signature index

This section proposes a new indexing method called
BSI (Basic Signature Index) which efficiently supports
approximate queries in large DNA databases, and also
suggests a query processing method based on the
proposed index.

4.1. Index construction

We first locate a sliding window of size W on every
possible position of data sequence T. We then extract a
basic signature from each window, considering the
minimum and maximum frequencies of each principal
nucleotide.
Definition 7: basic signature
Let BS(Wi) be a basic signature of window Wi. BS(Wi)
is expressed as follows:

BS(Wi) = (([minA,maxA], [minC,maxC], [minG,maxG],
[minT,maxT]) i )

Here, minA and maxA denote the minimum and
maximum numbers of occurrences of character A,
respectively, in Wi. The meanings of minC, maxC, minG,
maxG, minT, and maxT are analogous.

Note that a sliding window is represented as a
rectangle rather than a point. This is because the data

k

k klog
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sequence may contain some characters that represent
more than a single principal nucleotide. For example,
character B can be viewed as one of three characters: C,
G, and T. Therefore, if a sliding window contains char-
acter B, we increase the maximum frequencies of C, G,
and T by one, respectively.

Let us explain how to extract a basic signature from
an example window W100 = ‘ACTBGT’. Remember that
character B can be replaced by one of three characters
C, G, and T. Character A occurs once in the window
and no character can be substituted for character A.
Therefore, we obtain minA = 1 and maxA = 1. Charac-
ter C occurs only once in the window but character B
may be substituted by C. Therefore, we obtain minC =
1 and maxC = 2. Similarly, we obtain minG = 1 and
maxG = 2. Character T occurs twice, once in the third
position and again in the sixth position. Furthermore,
character B may be replaced by character T. Therefore,
we obtain minT = 2 and maxT = 3. In summary, the
basic signature of W100 = ‘ACTBGT’ becomes (([1,1],
[1,2], [1,2], [2,3]), 100).

BS(Wi) is regarded as a four-dimensional rectangle of
([minA,maxA], [minC,maxC], [minG,maxG], [minT,maxT]),
along with the identifier i and thus can be stored in a
multi-dimensional index such as the R*-tree [15] and
the X-tree [21]. The total number of windows taken
from a data sequence T is |T| – |W| + 1. Since |T| >>
|W| in most cases, |T| – |W| + 1 ≅ |T|. That is, the
number of windows to be stored in an index is almost
the same as the number of characters in T. Note that the
space required to represent a single window in index
space is several times larger than that for storing a
single character.

To reduce this storage space, we only store the MBRs
(Minimum Bounding Rectangles) which cover the sig-
natures for consecutive c data windows extracted from
a data sequence. Note that the signatures for any two
consecutive data windows are not that different from
each other and thus are located closely in four-dimen-
sional indexing space. Therefore, we expect that the
MBR covering consecutive c signatures will not be
enlarged much. By using this approach, we are able to
reduce storage space for indexing to 1/c. We call c the
‘index compression coefficient’.

4.2. Query processing

The first step for query processing is to construct a
query rectangle from query sequence Q. A query
rectangle is formed depending on the types of a query
submitted. Let us first suppose |Q| = |W|.

Exact match query. We construct a four-dimensional
query rectangle, ([minA,maxA], [minC,maxC], [minG,
maxG], [minT,maxT]), which represents the minimum
and maximum numbers of occurrences of the four prin-
cipal nucleotides, A, C, G, and T, respectively, on the
query sequence. That is, the minimum and maximum
values of each dimension of a query rectangle are
decided by the minimum and maximum frequencies of
the corresponding nucleotide.
Wildcard match query. We first construct a four-
dimensional query rectangle by using the procedure for
exact match queries. We then increase maxA, maxC,
maxG, and maxT by the number of occurrences of the
wildcard in the query sequence.
K-mismatch query. We construct a four-dimensional
query rectangle by using the procedure for wildcard
match queries. We then increase maxA, maxC, maxG,
and maxT and by the value of k, and also decrease
minA, minC, minG, and minT by the value of k. This
implies that k-mismatches allow each principal
nucleotide in a data window to occur k times more
than or less than that in a query signature. If an
adjusted minimum value becomes less than 0, we set it
to 0. For example, given a query sequence ‘ACTT’ for a
one-mismatch query, we obtain a four-dimensional
rectangle ([0,2], [0,2], [0,1], [1,3]).

After constructing a query rectangle from a query
sequence, we search the index for the data rec-
tangles overlapping with the query rectangle. We call
them ‘candidate rectangles’. Then, we perform a
post-processing step to discard false alarms, those
candidates that are not real answers. Using the
identifier of each candidate rectangle, this step reads
its corresponding data window from the database,
and then verifies whether the data window actually
matches with the query sequence. Only the candidate
rectangles which pass this verification are returned as
final answers.

Remember that the proposed index stores only the
MBRs covering signatures for consecutive c data
windows. The identifier of each candidate rectangle
is the beginning position of its consecutive c data
windows. Therefore, by using the identifier of each
candidate rectangle, we actually retrieve and verify
the corresponding c data windows together in the
post-processing step.

Until now, we have assumed |Q| = |W|. This
assumption, however, does not hold in real appli-
cations since a query sequence and a data window may
differ in their size. To handle this situation, we gener-
alize our method as follows.
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Case 1. |Q| = |W|
We construct a query rectangle, and search the index for
the data rectangles overlapping with the query rectangle.
Case 2. |Q| < |W|
We generate a new query sequence Q� of length |W| by
appending |W| – |Q| wildcards to the end of Q. Then,
we apply the procedure used for Case 1 to Q�.
Case 3. |Q| > |W|
We first partition a query sequence Q into p subquery
sequences, Q1, Q2, . . . , and Qp, such that p = ⎡|Q| /
|W|⎤ and |Qi| = |W| for every i between 1 and p. Here,
the last subquery sequence Qp can be overlapped with
Qp–1 as shown in Figure 1 to satisfy the constraint |Qi|
= |W|. Next, we apply the procedure for Case 1 to every
subquery sequence, and then obtain final answers by
merging all the results.

The performance of query processing is greatly
affected by window size. As the window size gets
larger, the performance of index searching gets better
since the discriminating power of the signature
extracted from a window becomes greater. However,
when |Q| < |W| (as described in Case 2), we append
some wildcards to the end of Q to make a new query
sequence Q� become of length |W|. These wildcards
enlarge the search space of the index and thus increase
the time for query processing. For efficient query pro-
cessing, we could construct multiple indexes for differ-
ent window sizes [5]. In our approach, however, rather
than maintaining multiple indexes, we just keep a
single index for an optimal window size which is care-
fully chosen by analyzing query patterns and consider-
ing the space–time trade off.

5. Weighted signature index

In this section, we point out the limitations of BSI and
then propose a new index called WSI (Weighted Signa-
ture Index) to overcome them.

5.1. Limitations of BSI

BSI has a couple of intrinsic limitations.
Limitation 1: There are many distinct windows repre-
sented by the signature. In BSI, the signature of a
window is decided only by the number of occurrences
of each principal nucleotide. Therefore, there may be a
large number of windows that are different from one
another but are represented as an identical signature. It
causes a large number of false alarms, resulting in high
index-searching and post-processing costs. According
to the result shown in Appendix A, there are
4|W|/4H|W| disparate windows on the average that are
represented by the same signature. Here, H is a symbol
denoting permutation with repetition. Among these
windows, only a single window matches a query
sequence exactly and the others are just false alarms.
Limitation 2: The signatures are not uniformly distrib-
uted over indexing space. In most DNA sequences, the
occurrence ratios of the four principal nucleotides A,
C, G, and T are roughly 30%, 20%, 20%, and 30%,
respectively [5]. The windows taken from such
sequences also show similar occurrence ratios regard-
less of their beginning positions. Therefore, it is likely
that many windows are represented by the signatures
located close to this center (0.3 � |W|, 0.2 � |W|,
0.2 � |W|, 0.3 � |W|). By this skew in distribution, as
a query signature approaches the center, more false
alarms appear after index searching. On the contrary, as
a query signature gets away from the center, fewer false
alarms occur. This makes the query response time
unpredictable.

To overcome the above limitations, we need to
increase the number of distinct signatures and spread
them evenly across the indexing space.

5.2. Basic strategy

The simplest way to overcome the limitations of BSI is
to extract more features from windows. For instance,
we can consider representing the signature of an
window as <value1, value2, value3, . . . , value|W|>,
where valuei corresponds to an integer number
implying a character located at the ith position within
the window. In this case, we note that a signature
becomes large. This increases the dimensionality of the
underlying index, and thus leads to the well-known
‘dimensionality curse’ [16]. To represent windows
more discriminately without increasing the dimension-
ality, we propose a simple but effective method that
assigns a weight to each position within a window.
This makes it possible to express both occurrence

182 Journal of Information Science, 32 (2) 2006, pp. 176–190 © CILIP, DOI: 10.1177/0165551506062329

Q

Q1
Q2

Q3
|W|

|Q|

Fig. 1. Partitioning of a long query sequence into a set of
sub-query sequences.
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frequencies and occurrence positions of nucleotides
with a signature of the same dimensionality. To in-
corporate this method into our indexing approach, we
first define a weight function w( j ) (1 ≤ j ≤ |W|) which
assigns a weight to each position j within a window. We
then extract a weighted signature from each window.
Definition 8: weighted signature
Let WS(Wi) be a weighted signature of window Wi
beginning at the ith position of a DNA sequence to be
indexed. WS(Wi) is expressed as follows:

WS(Wi) = (([wminA,wmaxA], [wminC,wmaxC],
[wminG,wmaxG],[wminT,wmaxT]) i )

Here, wminA is the sum of the weights of the positions
at which character A must occur in window Wi, and
wmaxA is the sum of the weights of the positions at
which character A may occur in Wi. The meanings of
wminC, wmaxC, wminG, wmaxG, wminT, and wmaxT are
analogous.

For example, consider window W200 = ‘ACTBGT’
which includes character B that can be substituted for
one of three principal nucleotides C, G, or T. When the
weight function is defined as w( j ) = j, the weighted
signature of W200 is computed as follows: character A
occurs only at the first position whose weight is 1.
Other than the first position, there are no other posi-
tions where character A may occur. Therefore, we
obtain wminA = 1 and wmaxA = 1. Character C occurs
only at the second position but it may occur at the
fourth position as a substitute for character B. Since the
weights of the second and fourth positions are 2 and 4,
respectively, we obtain wminC = 2 and wmaxC = 6. By
a similar computation, we obtain wminG, wmaxG,
wminT, and wmaxT. In summary, we obtain (([1,1],
[2,6], [5,9], [9,13]), 200) as the weighted signature of
W200.

By taking the above weighting scheme, disparate
windows that were represented by the same basic sig-
nature may now be expressed by different weighted
signatures. For example, consider two windows, W100
= ‘ACTGGT’ and W150 = ‘CGAGTT’. Both of them are
represented by the same basic signature ([1,1], [1,1],
[2,2], [2,2]), but they are expressed differently by their
weighted signatures, ([1,1], [2,2], [9,9], [9,9]) for W100
and ([3,3], [1,1], [6,6], [11,11]) for W150. We incorporate
the above weighting scheme into the proposed
indexing method, thus producing a very effective
index structure called WSI (Weighted Signature Index).
WSI solves the problems of BSI by scattering the
disparate windows, which were represented by the
same basic signature, over indexing space as shown in
Figure 2.

The query processing algorithm for WSI is not that
different from that for BSI. However, when we con-
struct a query rectangle for answering a k-mismatch
query by using WSI, we need to consider the positions
at which mismatches may occur. The procedure to
build a query rectangle for a k-mismatch query is as
follows.
(1) For each principal character X, we compute

wminX and wmaxX, the smallest and largest sum
of weights of character X, respectively.

(2) We need to reduce wminX further since mis-
matches are allowed at the positions where
character X must occur. Among the positions at
which X must occur, we select the positions with
the top k weights. Let m be the sum of weights of
such k positions. If characters other than X occur
at all these positions, the smallest weighted sum
for X becomes wminX – m.

(3) Similarly, we need to increase wmaxX further
since mismatches are allowed at the positions
where character X does not occur. Among the
positions at which X does not occur, we select
the positions with the top k weights. Let M be the
sum of weights of such k positions. If X occurs at
all these positions by mismatches, the largest
weighted sum for X becomes wmaxX + M.

(4) Thus, the smallest and largest weighted sums for
character X now become wminX – m and wmaxX
+ M, respectively. According to these new values,
we enlarge the search range of the corresponding
dimension of the query rectangle.

5.3. Weight function

Since the weight function determines the distribution
of signatures in indexing space, it has to be carefully
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represented by the same basic signature, over indexing space
by using a weighting scheme.
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designed. Consider a set of data windows which have
the same basic signature. Their weighted signatures get
scattered over indexing space by the weight function.
Let us consider an MBR that covers all such weighted
signatures. A larger MBR implies that the weighted
signatures are scattered over a larger region. However,
if the weighted signatures are scattered too widely, the
corresponding MBR may overlap with its neighboring
MBRs, producing new false alarms. Therefore, we have
to choose a weight function which enlarges MBRs as
much as possible without making them overlap with
their neighboring MBRs.

Let us give a formal discussion on this issue. For
each principal character X, let Rmin(X,s) denote the
minimum of all wminX values obtained from the set of
all windows in which X occurs s times. That is,
Rmin(X,s) = sw( j ) where sw( j ) denotes the jth
smallest weight value in a window. Similarly, let Rmax
= (X,s) denote the maximum of all wmaxX values
obtained from the set of all windows in which X occurs
s times. That is, Rmax(X,s) = sw( j ).

To prevent neighboring MBRs from overlapping,
Rmax(X,s) < Rmin(X,s+1) should be satisfied for every s
between 0 and |W| – 1.

We are able to achieve the best distribution of signatures
when a weight function satisfies the above inequality.
Supposing w( j ) = j + C, let us solve the inequality. Note
that sw( j ) is identical to w( j ) in this case.

Since the above inequality should be satisfied for every
s between 0 and |W| – 1, we obtain the following:

Among the values of C which satisfy C > – 1, we
choose |W|2 for the sake of simplicity. That is, we use
w( j ) = j + |W|2 for a weight function.

5.4. Consideration of index compression

Since the basic signatures of neighboring data windows
are located close together in indexing space, MBRs
covering the basic signatures of consecutive c data
windows will not be enlarged much. Exploiting this
property, in Section 4.1 we suggested representing con-
secutive c data windows with a single MBR. In order to
apply the same idea to WSI, we have to design a weight
function which locates the weighted signatures of
neighboring data windows close together in index
space. Since the weight function discussed in Section
5.3 restricts the distance between weighted signatures
and corresponding basic signatures within a certain
range, MBRs covering the weighted signatures of con-
secutive data windows would not be too large. There-
fore, WSI also uses a single MBR to express consecutive
c data windows in index space.

6. Performance evaluation

This section verifies the superiority of the proposed
method via performance evaluation with extensive
experiments. Sections 6.1 and 6.2 present the environ-
ment and parameter settings for experiments, respec-
tively. Section 6.3 presents and analyzes the results.

6.1. Environment for experiments

In our experiments, as data sequence T, we used six
sets of DNA sequences downloaded from NCBI [22]:
human chromosome 3 (2.5 Mbp), 17 (5 Mbp), 1
(7.5 Mbp), 2 (10 Mbp), 10 (20 Mbp), and 5 (40 Mbp). As
a query sequence, we used 1000 DNA sequences of
length 256 to 2048. Half of them were randomly
selected from T, and the other half were obtained from
DNA sequences [23] frequently used by biologists at
laboratories.

We evaluated the performances of four approaches:
BSI, WSI, SeqScan, and Suffix. BSI and WSI are the
methods proposed in this paper. SeqScan is the method
based on the sequential scan, and Suffix is the method
that uses the suffix tree as an index structure. As
performance criteria, we employed the index size and
the average elapsed times for processing the exact
match queries, wildcard match queries, and k-
mismatch queries.

The hardware platform was a Pentium IV 2.6 GHz PC
equipped with 512MB main memory and 80 GB hard
disk with 7,200 RPM. The software platform was
Redhat Fedora core2 with a buffer size set to 2 MB.
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6.2. Parameter settings

6.2.1. Window size. As pointed out in Section 4.2,
when a query sequence is shorter than a window, we
should process queries after padding wildcards to the
end of the query sequence, which results in perform-
ance degradation. Thus, the window size is set slightly
smaller than the typical size of a query sequence.

To determine a window size, we analyzed the lengths
of 35,685 query sequences downloaded from NCBI.
From the results, we observed that 62% of them have
lengths of 256 to 2048. Thus, we set the basic window
size to 256 for further experiments.

6.2.2. Index compression coefficient. In order to
reduce the size of an index, we store MBRs, each of
which encloses signatures extracted from c adjacent
data windows, rather than storing individual signa-
tures. The index compression coefficient c directly
affects the size of an index as well as the performance
of query processing time. In order to find an optimal
value for the compression coefficient, we evaluated the
index size and the query processing time of BSI and
WSI. We used human chromosome 2 of 10 Mbp as a
data sequence and 1000 sequences of length 256–2048
as query sequences. After setting the value of k to 1%
of the length of query sequences, we measured an
average time for processing k-mismatch queries.

Figure 3 shows how the index size changes as the
compression coefficient increases. In both BSI and
WSI, the index size gets noticeably smaller as the
compression coefficient increases. Figure 4 indicates

the relationship between the size of the compression
coefficient and the time for query processing. Note that
the query processing time is represented as the sum of
the index search time and the post-processing time. As
the compression coefficient increases up to 80, the
query processing time of both BSI and WSI decreases.
This is because a larger compression coefficient con-
tributes to a reduced index searching time owing to a
smaller index. From that point, however, the query
processing time of both BSI and WSI increases as the
compression coefficient gets larger. The reason for this
is that a larger compression coefficient also causes
more false alarms, thus enlarging the post-processing
time. In the subsequent experiments, we set the base
value for the compression coefficient to 80.

Let us consider Figure 3 again to discuss the issue on
the size of the proposed indexing method. When the
index compression coefficient is set to 80, the sizes of
BSI and WSI are 7.43 and 7.30 Mbytes, respectively, for
the underlying data sequence of size 10 Mbp. The
experiments with various data sets reveal that both BSI
and WSI take about 0.7n bytes when an optimal value
of compression coefficient is employed for indexing.
This space requirement is much less than the 12n
bytes needed by the suffix tree, the 4n bytes needed by
the suffix array [11], and the 1.6n to 2n bytes needed
by other compressed suffix arrays [12–14].
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6.3. Results and analyses

To show the effectiveness of our approach, we con-
ducted performance evaluation in terms of query
processing time via experiments.

6.3.1. Experiment 1: query processing time with
various query lengths. In this experiment, we
compared the query processing times of all the
approaches while changing the length of query
sequences. We set the window size and the index
compression coefficient to 256 and 80, respectively, as
mentioned earlier, and used human chromosome 2 of
10 Mbp as a data sequence.

Figure 5 depicts the query processing times of all the
approaches for exact match queries. In SeqScan and
Suffix, whether a sequence matches with a given query
sequence is decided by inspecting the first few
characters in most cases. Therefore, SeqScan and Suffix
show nearly constant performance regardless of the
length of query sequences. In BSI and WSI, if query
sequences get longer, the time for index searching
becomes larger while the time for post-processing gets
smaller due to the reduced number of candidates.
Thus, we observe that the query processing time
decreases until the length of a query sequence reaches
a point (i.e. 512), and then grows gradually after that
point.

The query processing times for wildcard match
queries are shown in Figure 6(a) and (b) where the
numbers of wildcards are 1 and 5%, respectively, of
the length of query sequences. Let us first analyze the

graphs in Figure 6(a). Every approach spends more
time to process wildcard match queries than exact
match queries. If a query sequence contains wildcards,
query processing tends to produce more answers, and
also traverses a wider part of the indexes. In BSI and
WSI, wildcards in a query sequence enlarge the
corresponding query rectangle and increase the
number of candidates, which leads to a long query
processing time. As a query sequence gets longer,
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however, the number of candidates decreases remark-
ably at the cost of multiple index searches. As a result,
the query processing performance of both BSI and WSI
does not deteriorate abruptly even when query
sequences become very long. The above analysis also
holds for the graphs shown in Figure 6(b). The com-
parison of the graphs of Figure 6(a) with those of Figure
6(b) indicates that the performance improvement of BSI
and WSI over SeqScan and Suffix is larger when the
number of wildcards is 1% of the length of query
sequences.

The query processing times for k-mismatch queries
are shown in Figure 7(a) and (b) where the values of ‘k’
are 1 and 5%, respectively, of the length of query
sequences. Let us first analyze the graphs in Figure 7(a).
Every approach spends much more time processing k-
mismatch queries than exact match queries and
wildcard match queries. In particular, Suffix shows
even worse performance than SeqScan since the part of
the index to be traversed increases explosively. In BSI
and WSI, as a query sequence gets longer, the query
processing times of BSI and WSI grow gradually. The
above analysis also holds for the graphs shown in
Figure 7(b). The comparison of the graphs of Figure 7(a)
with those of Figure 7(b) indicates that the performance
improvement of BSI and WSI over SeqScan and Suffix
is larger when the value of k is 1% of the length of
query sequences.

The above discussion on query processing perform-
ance does not consider an exceptional case where the
length of a query sequence is half of the window size
(i.e. 128 vs 256). In this case, BSI and WSI may get
slower than SeqScan because 128 wildcards padded to
the end of a query sequence enlarge the search space
significantly. If this situation is anticipated from the
relationship between the query length and the window
size, it would be better to execute SeqScan rather than
adhering to the proposed indexing system.

Let us compare the four approaches quantitatively
without considering the query sequences of size 128. In
exact match queries, WSI outperforms SeqScan, Suffix,
and BSI 19–61 times, 4.4–13 times, and 1.3–2 times,
respectively. In wildcard match queries with the
number of wildcards set to 1% of query length, WSI
performs better than SeqScan, Suffix, and BSI 12–43
times, 3.3–14 times, and 1.3–1.6 times, respectively. In
wildcard match queries with the number of wildcards
set to 5% of query length, WSI performs better than
SeqScan, Suffix and BSI 3.1–10 times, 2.1–7 times, and
1.1–1.3 times, respectively. In k-mismatch queries with
the value of k set to 1% of query length, WSI performs
faster than SeqScan, Suffix, and BSI 17–51 times, more

than 267 times, and 1.2–1.6 times, respectively. Finally,
in k-mismatch queries with the value of k set to 5% of
query length, WSI performs faster than SeqScan, Suffix,
and BSI 1.5–6 times, more than 10,000 times, and
1.0–1.1 times, respectively.

6.3.2. Experiment 2: processing time of k-mismatch
with various k values. In this experiment, we
compared the processing times of k-mismatch queries
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of different approaches with various k values. We used
human chromosome 2 of 10 Mbp as a data sequence.
Figure 8 shows an average query processing time for
each approach while setting k from 0 to 15% of the
length of a query sequence. We observe that the query
processing time of WSI, BSI, Suffix, and SeqScan gets
higher as k grows. In WSI and BSI, a higher k value
increases the part of an index to be traversed, and thus
increases the query processing time gradually. In
Suffix, however, as k grows, the part of an index to be
traversed becomes explosively larger, and thus, the
query processing time grows abruptly. The results
reveal that WSI shows the best performance, and
performs better than SeqScan, Suffix, and BSI 1.9 to 31
times, 3 to several thousand times, and 1.0 to 2.3 times,
respectively.

6.3.3. Experiment 3: query processing time with
various data sizes. In this experiment, we measured
the query processing times of different approaches with
various data sizes. As mentioned earlier, we set the
window size, the index compression coefficient, and
the length of query sequences to 256, 80, and between
256 and 2048, respectively. We excluded Suffix in this
experiment since its performance degradation in
performing k-mismatch queries on a large database is
too serious to conduct experiments. We set both k for
k-mismatch queries and the number of wildcard
characters for wildcard match queries to 1% of the
length of query sequences. Figure 9 shows an average
processing time for each approach for exact match,
wildcard match, and k-mismatch queries.
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The processing time of BSI and WSI for three kinds
of queries increases almost linearly as the data size
grows. WSI performs better than the other approaches
in processing all kinds of queries. In exact match
queries, WSI runs faster than SeqScan and BSI 25–33
times and 1.8–2.5 times, respectively. In wildcard
match queries, WSI outperforms SeqScan and BSI
15–19 times and 1.7–1.9 times, respectively. Also, in k-
mismatch queries, WSI performs better than SeqScan
and BSI 13–20 times and 1.0–1.5 times, respectively.

7. Conclusions

Exact match queries, wildcard match queries, and k-
mismatch queries are widely used in various molecu-
lar biology applications including the searching of
ESTs (Expressed Sequence Tags) and DNA transcrip-
tion factors. In this paper, we have discussed the
method for the effective processing of such queries.

The method based on the Boyer–Moore algorithm, the
method based on the Knuth–Morris–Pratt algorithm,
and the method combining the Aho–Corasick algorithm
and a scan vector have been proposed for exact and
approximate matching problems. They focus on
reducing the CPU cost needed to find the occurrences
of a query pattern in data sequences. However, they
have a limitation in improving search performance
because they have to read the entire data sequence from
a disk at the search stage. The method based on suffix
trees achieves a rather good performance by adopting a
filtering and refinement strategy. This method,
however, incurs a large space overhead and also suffers
from the high cost of traversing a large suffix tree.

In this paper, we have proposed an approach for pro-
cessing exact and approximate queries that overcomes
the problems mentioned above. We have suggested an
effective indexing method for a set of nucleotide
sequences. The method places a sliding window at
every possible location of a data sequence, and extracts
its signature by considering the occurrence frequency
of each nucleotide character. It then stores and
manages a set of signatures in a multi-dimensional
index such as the R*-tree. In addition, by assigning a
weight to every position of a window, it scatters the sig-
natures over indexing space and thus reduces false
alarms. Using the proposed indexing method, we have
also suggested an algorithm which processes exact
match queries, wildcard match queries, and k-mismatch
queries efficiently. Experiments with real biological
data sets reveal that the proposed method is at least 4.4
times, 2.1 times, and several orders of magnitude faster

than the suffix-tree-based method in performing exact
match, wildcard match, and k-mismatch queries,
respectively.
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Appendix: derivation of the average number
of disparate windows represented by the
same basic signature

The average number of disparate windows which are repre-
sented by the same basic signature is computed as follows:
(1) Any one of four principal nucleotides can appear at

every interior position of window W. Hence, there are
4|W| windows whose contents are different from others.

(2) The basic signature of window W is represented by the
occurrence frequency of each of four principal
nucleotides and the sum of all occurrence frequencies
should be |W|. Hence, the total number of distinct
basic signatures is 4H|W|. Here, H is a symbol denoting
permutation with repetition.

(3) Combining the above two results, the average number
of disparate windows which are represented by the
same basic signature is expressed as 4|W|/4H|W|.


