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I. INTRODUCTION 

The finite-difference time-domain (FDTD) method [1-5] 

has been popularly used to study various electromagnetic (EM) 

wave problems due to its accuracy, robustness, and simplicity. 

Over the past three decades, the FDTD method has been ex-

tended to simulate anisotropic dispersive media, including mag-

netized plasma. There are various FDTD formulations for EM 

analysis of magnetized plasma, including the JE convolution 

( JEC) method [6-9], exponential time differencing (ETD) 

method [10, 11], and auxiliary differential equation (ADE) 

method [12-14]. In the JEC method, recursive convolution is 

involved in the relation between the current density and electric 

field. The ETD method avoids the time-consuming recursive 

convolution based on an efficient first-order approximation. 

Simple arithmetic implementation is involved in the ADE 

method, which can also be straightforwardly extended to non-

linear dispersive media, unlike other methods [15, 16]. There are 

two particular implementations in the ADE method for EM 

analysis of magnetized plasma. First, in the H-J collocated ADE 

method, magnetic field (H), and current density ( J) are collocat-

ed in the same time domain when discretizing J [12]. Second, in 

the E-J collocated ADE method, electric field (E), and J com-

ponents are collocated simultaneously [13]. Unlike the H-J col-

located ADE method, the stability condition of the E-J collo-

cated ADE method is independent of the medium properties 

and remains the same as the Courant stability limit for free 

space [14]. 

We perform a comprehensive study on the numerical accuracy 

of four dispersive FDTD formulations for modeling magnetized 
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plasma. For this purpose, we derive the numerical permittivity 

tensor of magnetized plasma in the different methods and com-

pare them with the corresponding analytical counterpart. Nu-

merical examples are employed to investigate the numerical 

permittivity tensor of the JEC, ETD, H-J collocated ADE, and 

E-J collocated ADE methods in detail. 

II. NUMERICAL PERMITTIVITY OF DISPERSIVE FDTD 

FORMULATIONS 

In magnetized plasma, the governing equations are given by 

[14] 

0 t
ε ∂∇ × = +

∂
EH J (1)

0 t
μ ∂∇ × = −

∂
HE (2)

2
0c p bv

t
ε ω∂ + = + ×

∂
J J E ω J ,

 
(3)

where νc is the collision frequency, ωp is the plasma frequency, ωb is the cyclotron frequency, and ε0 and μ0 are the permittivity 

and permeability of free space, respectively. Note that cyclotron 

frequency is a function of the static magnetic field. The cross-

product terms in Eq. (3) can lead to anisotropy of plasma. Thus, 

EM wave behavior depends on the direction of the static mag-

netic field relative to the EM wave propagation direction. It is 

assumed that the external static magnetic field in Cartesian co-

ordinates is parallel to the z-axis; then, the component equa-

tions of Eq. (3) can be written as 
 

2
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x
c x p x b y

J J E J
t

ν ε ω ω∂
+ = −

∂  
(4)

2
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c y p y b x

J
J E J
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ν ε ω ω

∂
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∂  
(5)

2
0

z
c z p z

J J E
t

ν ε ω∂
+ =

∂ ,
(6)

where Jx, Jy, and Jz are the current densities. Eqs. (4) and (5) 

indicate that two components of current density are coupled. 

Therefore, the update equations for polarization current density 

must be solved simultaneously. Moreover, for magnetized plas-

ma, such as in the earth’s ionosphere, the electrons rotate about 

a steady magnetic field vector. Therefore, the plasma becomes 

nonreciprocal, and the scalar relationship between the electric 

flux density and electric field must be replaced by the tensor 

relation. The analytical permittivity tensor can be obtained us-

ing Eqs. (1), (4), and (5) as follows [17]: 
 

( ) ( ) ( ) { }
{ } ( )

2
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/ 1 /
1

1 / /
p c

xx yy
c b

j

j

ω ω ν ω
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ν ω ω ω

 −
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 − −   

(7)
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p b

xy yx
c b

j

j

ω ω ω ω
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(8)

Note that the z component of tensor permittivity is reciprocal 

because the external static magnetic field does not affect the 

wave behavior in that direction [15]. 

Due to the discrete nature of the FDTD technique, the nu-

merical permittivity tensor of magnetized plasma in dispersive 

FDTD approaches is different from its analytical permittivity 

tensor. According to the standard FDTD method, the E field is 

defined at integer time steps and the H field is defined at half 

integer time steps. By applying the central difference scheme 

(CDS) to Eqs. (1) and (2), we have 
  

( ) 1 21 1 2

0 0

nn n nt t
ε ε

++ +Δ Δ= + ∇ × −E E H J (9)

( )1/ 2 1/ 2

0

nn n t
μ

+ − Δ= − ∇ ×H H E
, 

(10)

where tΔ indicates the FDTD time step size and the superscript 

indicates the FDTD time step. In what follows, Eqs. (9) and 

(10) are employed, unless specified otherwise. In addition, the 

tilde characters indicate their numerical counterparts.   

 

1. JEC method  

For time-harmonic dependence, the following frequency-

domain relation can be derived from Eqs. (4) and (5): 
 

( ) ( ) ( ) ( ) ( )x x yJ E Jω σ ω ω ρ ω ω= − (11)

( ) ( ) ( ) ( ) ( )y y xJ E Jω σ ω ω ρ ω ω= + (12)

where 

( )
2

0
p

cj
ω

σ ω ε
ω ν

=
+  

(13)

( ) .b

cj
ωρ ω

ω ν
=

+  
(14)

 

In the time domain, the above equations can be expressed by 

convolution [6–9]: 
 

( ) ( ) ( ) ( ) ( )
0

t

x x yJ t t E t J dσ τ τ ρ τ τ τ = − − −  (15)

( ) ( ) ( ) ( ) ( )
0

t

y y xJ t t E t J dσ τ τ ρ τ τ τ = − + −  (16)

( ) ( )2
0

ct
pt e u tνσ ε ω −=

 
(17a)

( ) ( )ct
bt e u tνρ ω −=

, (17b)

where u(t) is the unit step function. Substitution Eq. (17) into 

Eqs. (15) and (16) yields the following equations: 
 

( ) ( ) ( )2
0 0 0

c c c c
t tt t

x p x b yJ t e e E dz e e J dzν ν τ ν ν τε ω τ ω τ− −= −  (18)

( ) ( ) ( )2
0 0 0

.c c c c
t tt t

y p y b xJ t e e E dz e e J dzν ν τ ν ν τε ω τ ω τ− −= +  (19)

Let us consider the numerical permittivity tensor of magnet-

ized plasma in the JEC method. To derive the numerical per-

mittivity tensor, using Yee’s notation and t = (n+1/2)Δt in Eq. 

(18), we get 
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( ) ( )( )
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0
.
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−


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(20)

At t = (n−1/2)Δt, we have  

( ) ( )( )

( ) ( )( )

1 21 21 2 2
0 0

1 21 2

0
.

c c

c c

n tn tn
x p x

n tn t
b y

J e e E dz

e e J dz

ν ν τ

ν ν τ

ε ω τ

ω τ

− Δ− − Δ−

− Δ− − Δ
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−


  

(21)

Substituting Eq. (21) into Eq. (20), we obtain 

( ) ( )
( )

( )1 21 21 2 1/2

1 2
cc

n tn ttn n
x x n t
J e J e f dνν τ τ

+ Δ− + Δ− Δ+ −

+ Δ
= + 

 
(22)

where 

( ) ( ) ( )2
0 .c

p x b yf e E Jν ττ ε ω τ ω τ = −   
(23)

 

By using the Taylor series expansion of Eq. (22), we have 

( )
( )

( ) ( ) ( )1/2 2
01/2

.c
n t

p x b yn t
f d te E Jν ττ τ ε ω τ ω τ

+ Δ

− Δ
 = Δ −  (24)

 

According to Eqs. (22) and (24), the following second-order 

approximation can be written as  
 

/21/ 2 1/2 2
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(25)

Using a similar procedure, we have 
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(26)

 

By using plane-wave expansion [18, 19] and applying some 

mathematical manipulations, we have 
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( )
( ) ( ){ }

( )
( ) ( ){ }

2
0

0 022

2 2
0

022

2sinh

2sinh cos 2

cos 2

2sinh cos 2

Δ
=

+ Δ Δ

Δ Δ
+

+ Δ Δ

p
y y

b

p b
x

b

t
J E

t t

t t
E

t t

ε ω β

β ω ω

ε ω ω ω

β ω ω
 

(28)

with 
 

.
2

c t j tν ωβ Δ + Δ
=  

 

Substituting Eqs. (27) and (28) into the plane-wave expansion 

version of Eq. (9) and then rearranging the resulting equation 

can lead to the following numerical permittivity tensor: 
  

    

( ) ( )
( ) ( )

2

, 2 2

1
1

1
p c

r xx
c b

j

j

ω ω ν ω
ε

ν ω ω ω

−
= −

− −

   


   
 

(29)

( ) ( )
( ) ( )

2

, 2 21
p b

r xy
c b

j

j

ω ω ω ω
ε

ν ω ω ω
=
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   


   
, (30)

where 
2 tan

2
t

t
ωω Δ =  Δ  


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b
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( ) ( )
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ω
ω
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=

Δ Δ
  

 

The numerical permittivity converges to analytical permittivity 

as the time-step size approaches zero. 

 

2. ETD method  

In this subsection, we derive the numerical permittivity tensor 

of magnetized plasma using the ETD method. In the ETD 

method, the discrete form for Eq. (4) can be written as [10, 11] 
 

( )/221 2 1/2

/ 2
c c
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x x t
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(31)

where 
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Substituting Eqs. (32) and (33) into (31) yields 
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Using a similar procedure 
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By utilizing plane-wave expansion and applying some mathe-

matical manipulations, we have 
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Substituting Eqs. (36) and (37) into the plane-wave expansion 

version of Eq. (9) and then rearranging the resulting equation, 

we have the same Eqs. (29) and (30) with  
 

2 tan
2
t

t
ωω Δ =  Δ  

  
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Again, as the time step size approaches zero, the numerical 

permittivity converges to the analytical permittivity.  

 

3. H-J collocated ADE method  

In the H-J collocated ADE method, we can write [12] 
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Now, we use the plane-wave expansion again and have 
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Following the procedure described above, the numerical permit-

tivity tensor is the same as Eqs. (29) and (30) with 

2 tan
2
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
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Δ
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Note that the collision and cyclotron frequencies are the same as 

the analytical ones. 

 

4. E-J collocated ADE method  

Unlike the other methods considered above, the current den-

sity vectors are collocated at the same time step and position of 

the electric field vectors in the E-J collocated ADE method. 

Therefore, the FDTD update equation for Ampere’s law can be 

written as  

( )
1

1 21

0 0

.
2

n n
nn n t t

ε ε

+
++  Δ Δ += + ∇ × −  

 

J JE E H (42)

 

According to [13], the update equations of the current density 

in the E-J collocated ADE method can be written as 
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We use the plane-wave expansion again and have 
 

2
0

0 02
2

2
0

02
2

2 tan
2

2 tan
2

2 tan
2

p c

x x

c b

p b
y

c b

tj
t

J E
tj

t

E
tj

t

ωε ω ν

ω ν ω

ε ω ω

ω ν ω

 Δ   +  Δ   =
 Δ   + +  Δ   

−
 Δ   + +  Δ    (45)

2
0

0 02
2

2
0

02
2

2 tan
2

2 tan
2

.
2 tan

2

p c

y y

c b

p b
x

c b

tj
t

J E
tj

t

E
tj

t

ωε ω ν

ω ν ω

ε ω ω

ω ν ω

 Δ   +  Δ   =
 Δ   + +  Δ   
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The numerical permittivity tensor of magnetized plasma in the 

E-J collocated ADE method can be obtained by a similar pro-

cedure, and we have the same as Eqs. (29) and (30) with 
 

2 tan
2
t

t
ωω Δ =  Δ  


 

c cν ν=
 

b bω ω=
 
.p pω ω=

 

Note that only the angular frequency has a numerical value dif-

ferent from the analytical one, which implies that the E-J collo-

cated ADE method can lead to better results than the other 

methods considered in this study.  

III. NUMERICAL EXAMPLES 

In this section, we investigate the numerical accuracy of the 

JEC, ETD, H-J collocated ADE, and E-J collocated ADE 

methods. We assume that the plasma frequency 

ωp=2π×50×109 rad/s, cyclotron frequency ωb = 3×1011 rad/s 

[20], and vc = 5×1011 Hz. The simulation frequency ranges 

from 10 to 90 GHz, and the spatial cell is Δz = 75 μm. The 

FDTD time size is Δt = 1.111 ps, which is temporal points per 

period (PPP) equal to 10.  

Fig. 1 shows the numerical relative permittivity tensor of 

magnetized plasma. As shown in the figure, large differences 

between the analytical and numerical permittivity tensors in the 

JEC and ETD methods are observed because all four numerical 

parameters (𝜔෥, 𝜈෤௖, 𝜔෥௕, 𝜔෥௣) are not the same as the analytical 

ones. The H-J collocated ADE method has two numerical val-

ues (𝜔෥,𝜔෥௣) different from the analytical ones, but the E-J collo-

cated ADE method has only one numerical value (𝜔෥) different 

from the analytical one. Therefore, the E-J collocated ADE 

method can yield the best numerical accuracy among the four 

FDTD methods considered in this study.  

Next, let us investigate the root-mean-square (RMS) error of 

the numerical relative permittivity in the four FDTD methods 

versus the FDTD time step size. The RMS error is defined as 
 

2

2
RMS error

b

a

b

a

f

r rf
f

rf

df

df

ε ε

ε

−
=





. (47)
 

Here, 𝜀௥̃, 𝜀௥, 𝑓௔, and 𝑓௕ indicate the numerical relative permit-

tivity, analytical relative permittivity, minimum frequency, and 

maximum frequency in the frequency range of interest. 

Figs. 2 and 3 show the RMS error of the numerical relative 

permittivity tensor. As the time step size decreases (PPP in-

creases), the RMS error decreases. Again, the E-J collocated 

ADE method yields the best accuracy.  

 
(a) Real part of 𝜀௥̃௫௫ 

 
(b) Imaginary part of 𝜀௥̃௫௫ 

 
(c) Real part of 𝜀௥̃௫௬ 

 
(d) Imaginary part of 𝜀௥̃௫௬ 

Fig. 1. Real and imaginary parts of 𝜀௥̃௫௫ and 𝜀௥̃௫௬. 
 

IV. CONCLUSION 

We investigated the numerical accuracy of various FDTD 

formulations for magnetized plasma. The exact expressions of 

the numerical permittivity tensor were derived, and the E-J col-

located ADE method was found to yield the best accuracy. In 

addition, numerical examples were used to validate our investi-

gation.   
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Fig. 2. RMS error of 𝜀௥̃௫௫ versus PPP.  

 
Fig. 3. RMS error of 𝜀௥̃௫௬ versus PPP. 
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