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Smartphone accelerometer data as a proxy for clinical data in
modeling of bipolar disorder symptom trajectory
Casey C. Bennett 1,2✉, Mindy K. Ross 3, EuGene Baek1, Dohyeon Kim1 and Alex D. Leow3,4

Being able to track and predict fluctuations in symptoms of mental health disorders such as bipolar disorder outside the clinic walls
is critical for expanding access to care for the global population. To that end, we analyze a dataset of 291 individuals from a
smartphone app targeted at bipolar disorder, which contains rich details about their smartphone interactions (including typing
dynamics and accelerometer motion) collected everyday over several months, along with more traditional clinical features. The aim
is to evaluate whether smartphone accelerometer data could serve as a proxy for traditional clinical data, either by itself or in
combination with typing dynamics. Results show that accelerometer data improves the predictive performance of machine learning
models by nearly 5% over those previously reported in the literature based only on clinical data and typing dynamics. This suggests
it is possible to elicit essentially the same “information” about bipolar symptomology using different data sources, in a variety of
settings.
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INTRODUCTION
Recent years have seen an explosion of researchers using
smartphones to understand patterns of user behavior and their
relationship to chronic health conditions1–3, including in particular
typing dynamics for conditions such as bipolar disorder4,5. Typing
dynamics refers to the speed and rhythm with which users type
on their phone (e.g., when sending emails or text messages or
posting to social media), which can be captured in various metrics
that describe things such as the transition time between
keypresses, repetitive presses of the same key, press duration,
use of backspace and autocorrect, and so on. Patterns in those
metrics are thought to potentially relate to a person’s underlying
physiological and cognitive state, and, thus, by extension, to their
current health status. Indeed, previous research has shown how
such typing dynamics can predict fluctuations of symptoms in
conditions such as bipolar disorder with a high degree of
accuracy6–8.
However, an open question remains as to the integration of

other sensor data from smartphones with typing dynamics, e.g.
accelerometer data. Would such data enhance the predictive
performance of the aforementioned models, or could it even serve
as a substitute for typing dynamics or traditional clinical data?
Accelerometer data is of particular interest for mental health
conditions such as bipolar disorder, where psychomotor dis-
turbances leading to periods of increased movement (agitation) or
decreased movement (impairment) can be notable symptoms9.
For instance, during psychomotor agitation, those disturbances
can manifest as pacing, fidgeting, shaking, etc., which could
theoretically correspond to changes in phone movement during
use. Similar patterns may also be present in other disorders with
psychomotor disturbances, such as dementia10.
Some research has recently begun to explore similar questions

related to multimodal data for use in predicted trajectories of
chronic health conditions outside the clinic walls11,12, but it is
often thus far limited in scope, both in terms of the types of
sensors explored and the setting (e.g., controlled study vs. real-

world). There are many possible sensor data sources that could be
incorporated, in many different ways, either potentially as new
separate features in the dataset or through sensor fusion methods
to enhance existing typing dynamics features via the creation of
fused features13. In short, understanding how all those possible
data sources might be integrated with typing dynamics
requires isolating the effects of each source and carefully
studying the impact on overall model performance in real-world
settings where user behavior is unconstrained and the sensor data
often very messy. Our purpose here is to do just that, focusing on
the integration of accelerometer data with typing dynamics for
predicting fluctuations in bipolar symptoms outside the clinic
using a crowdsourced open-science dataset.
Furthermore, those above questions have even broader

applicability if one considers the inclusion of sensor data from
devices beyond the smartphone itself, such as wearables, in-home
robotics, and other smart home technology, which could
communicate with the smartphone as part of internet-of-things
(IOT) systems. The same methods and approaches for studying
multimodal smartphone data could then be extended to those
other types of data sources, in order to understand the impact of
multi-device sensing on the modeling of chronic health conditions
relative to existing traditional clinical data. As many societies seek
to expand healthcare into community-based settings to address
issues like a growing elderly population, increased demand for
mental health services, and limited health resources, research
along these lines takes on fundamental importance14,15. The true
power of many technologies likely lies at the intersection of using
them in concert, integrating various types of sensor data, and
providing back actionable information to patients and clinicians.
The question is how we do so.
One of the defining features of bipolar disorder, averse to other

affective disorders, is reoccurring manic/hypomanic and depres-
sive episodes16. Individuals with this disorder experience repeated
changes in mood, ranging between clinical definitions of mania
and depression, as well as subclinical fluctuations that occur on a
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more rapid basis. Such mood instability has significant implica-
tions for both treatment and patient outcomes in bipolar
disorder17,18, as well as understanding the underlying etiology of
the disease19.
Given the above, mood instability has been one of the research

targets for developing digital biomarkers for bipolar disorder in
recent years6. For instance, previous research has found sig-
nificantly higher mood instability in the 60 days leading up to a
clinical event of depression or mania20. Such findings have led to
work that attempted to predict bipolar status based on device
sensor data, such as smartphone geolocation data21, as well as
daily activity patterns from wearable smartwatches22. Some
research has also investigated technology interaction with the
device itself (rather than trying to sense external activity) as a
proxy for mental health status, using a range of technology,
including smartphones, wearables, and other mobile devices23.
Such approaches fall into the category of ambulatory assessment24.
Other researchers have developed smartphone apps for patient
daily self-reports25,26, while still others have explored real-time
self-report assessment repeatedly throughout the day using
techniques known as ecological momentary assessment (EMA)6.
In short, there are a plethora of different approaches being
explored. Passive smartphone data (e.g., typing dynamics and
accelerometer data) is of particular use for this purpose, as it can
be collected in a completely unobtrusive manner based on a
device people normally use every day anyway, in contrast to
wearables (e.g., Apple Watch) that may require users to
consistently use an additional device that they normally don’t or
methods based on GPS or voice recognition that may present
more serious privacy concerns27.
Our primary research aim here is to evaluate whether

smartphone accelerometer data could serve as a proxy for
traditional clinical data (e.g., similar to what one might find in an
electronic health record, or EHR) in the management and
treatment of the bipolar disorder, both by itself or in combination
with typing dynamics from keyboard interactions with the phone.
Furthermore, we are interested in whether accelerometer data
would enhance the predictability of mood instability, beyond
what has been previously observed using clinical data and typing
dynamics. To that end, we focus here on predicting changes in
depressive symptoms in bipolar disorder based on data in the
weeks prior to the change, in order to allow for a direct
comparison to previous research results6–8. Such depressive
symptoms have been found to dominate illness presentation
and influence functional outcomes more than manic symp-
toms18,28, so digital biomarkers related to them are of particular
relevance. Furthermore, we utilize a naturalistic dataset of users
that are typically seen in real-world clinical settings, rather than a
controlled study, meaning that it includes the kinds of “messy”
data seen in those settings.
As alluded to in the Background section above, our broader aim

here is to understand how different approaches to the in-the-wild
real-time assessment of mental health disorders can be best
realized via different data sources and multiple technologies.
Understanding the subtle differences in different types of
smartphone data for that purpose is a necessary first step towards
integrating smartphones with similar real-time monitoring data of
patient daily activities from technologies such as smart home IOT
devices and in-home robotics29–31.

RESULTS
Main results
The data used here consisted of an open-science dataset of 291
individuals who downloaded the BiAffect smartphone app from
the Apple Appstore between Spring 2018 and Spring 2021. On
average, we had roughly 3 months of data for each individual.

After downloading, the BiAffect app substitutes a cosmetically
similar keyboard in place of the standard iOS keyboard, which
allows it to record keystroke dynamics metadata regardless of
how the phone is used (e.g., texting, writing an email, posting on
social media, etc.)4. Simultaneously, accelerometer data from the
phone was also being recorded alongside the typing dynamics
metadata whenever the keyboard was in use. This allows us to
collect pervasive data on passive technology interactions and their
relationship to phone movement in 3-dimensional space over an
extended period of time. Restricting accelerometer data to only
periods of keyboard use allowed us to avoid the known problem
in the field of human activity recognition of “noisy” data due to
users carrying their phones in different orientations (e.g., on its
side in their jacket pocket or purse rather than upright in their
pants pocket, laying in the cupholder while driving)32–34. In our
dataset, we found that users' phones were in an approximately
upright position while typing, typically about 80% of the time.
Dataset features are shown in Table 1, grouped by category

(also see Fig. 1 below). We note that included traditional clinical
data, such as diagnoses, standardized clinical symptom measures
(e.g., MDQ), and demographic variables like age and gender. Each
week, users were also pinged to complete several types of self-
report assessments on a daily or weekly basis. That included a
weekly PHQ outcome scale, which is a widely used measure of
depression symptoms35. Approximately 2/3 of the individuals
reported having been diagnosed bipolar, whereas others were
undiagnosed (who may or may not have bipolar). Our dataset thus
contains both diagnosed and potential cases of bipolar disorder in
the general population. The aim was to predict clinically-relevant
changes in PHQ scores for a given week before they occur, based
on smartphone interaction data in the weeks prior.
The main results of our analysis can be seen in Table 2 (with

mean imputation) and Table 3 (excluding missing data). In
general, we note that the differences between imputation and
exclusion were small and of mixed effect. Given that fact and since
imputation left us with an overall larger dataset, that method was
chosen for the rest of the analysis presented here.
The tables clearly show that the performance gradually

decreases as we go from All features (slice 1, see Methods
section) down to Accelerometer only (slice 4), though we note the
changes were slight. We also note that Random Forest models
tended to show about 2–4% higher accuracy and slightly higher
AUC values than Gradient Boosting models. Curiously, the
standard deviations also reduced as we moved down to smaller
feature slices (e.g., using only typing or accelerometer features),
which we interpreted as due to a reduction in “noise” in the
dataset after removing other features.
Overall, the inclusion of accelerometer features here with

clinical features and typing dynamics improves performance
over models created without accelerometer features reported
previously in many papers by roughly 4.5% (94.5 vs ~90%)6–8.
Statistically speaking across the five cross-validation folds
(standard deviations of 0.03 and 0.02, respectively), those
performance values are significantly different in a two-tailed,
independent-samples t-test (t= 2.79, p value= 0.0235). That
difference includes reported results using both traditional
machine learning models (e.g., Random Forest, Gradient Boosting)
as well as various types of deep learning neural networks. This
indicates that there is value in utilizing smartphone accelerometer
data during user interactions to predict bipolar symptom
prognosis that goes beyond the direct interaction data itself (i.e.,
typing dynamics) or clinical data. Moreover, we also note that the
combination of typing dynamics and accelerometer data achieved
a performance of over 91.3% accuracy in making those same
predictions, which could be useful for monitoring patients outside
clinical settings (where clinical data may be unavailable or not
recent). Finally, the results of the accelerometer data alone show
that it can still be used to predict bipolar symptoms with roughly
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87% accuracy. While that is a decrease from models including
other types of data, it is indicative of the potential for using
accelerometer data to monitor everyday chronic health condi-
tions, which could have wide applicability to other technologies,
not just smartphones but wearable devices or in-home robotic
companions. We return to this idea in the Discussion section.

Feature selection
We were also curious as to which features were being selected
when using the different slices of the dataset features (as
described in the Methods section). In particular, we were

interested in whether the utility of some of the accelerometer
and typing features were being “obscured” by the clinical features,
due to the fact that the information contained within them
relative to the target (bipolar symptom fluctuations) was
duplicative. If, in fact, accelerometer features could serve as a
proxy for clinical data (as suggested by the results in the Main
Results section above), then we would indeed expect the
information contained within them to be duplicative. In simpler
terms, we should be able to produce multiple feature sets that are
capable of similar modeling performance by restricting the input
features.

Table 1. Feature list.

Category Data Description

Clinical Age, gender User’s age/gender

phoneSize Scale of phone size based on phone model

ADHD, anxiety, BD_binary, depression, OCD, PTSD, schizophrenia,
seasonal affective disorder, substance addiction disorder

Diagnosis of ADHD/anxiety/bipolar disorder/depression /OCD/
PTSD/schizophrenia/seasonal affective disorder/substance
addiction disorder

Diag_PreferNotAnswer Preferred not to respond to diagnosis questions

MDQdiag MDQ diagnosis

NoneOfTheseDiag None of the listed diagnoses

PHQ_before_1w Absolute value of the PHQ8 score from weeks prior

Typing dynamics autocorrectRate, backspaceRate Fraction of autocorrect events / backspaces per total
keypresses for each week

autocorrectRate_wkSD, bkspRate_wkSD, medIKD_wkSD Standard deviation of autocorrect rates/backspace rates/
median IKDs for each day over the week

Avg_medPressDuration Median keypress duration for each typing session averaged
over the week

Avg_nAlphanum, Avg_nAutocorrect, Avg_nBackspace Number of alphanum/autocorrect/backspace keypresses
per session averaged over each week

Avg90PercentileAA Ninetieth percentile of alphanum-alphanum transitions for
each typing session averaged over the week

AvgMAD_AA Median absolute deviation of alphanum-alphanum transitions
for each typing session averaged over the week

AvgMedAA, AvgVarAA Median/variance of alphanum-alphanum transition for each
typing session averaged over the week

AvgMedAB, AvgvarAB Median/variance of alphanum-backspace transition for each
typing session averaged over the week

AvgMedBB, AvgVarBB Median / variance of backspace-backspace transition for each
typing session averaged over the week

distToCenterPrevRatioAA Median ratio of distance to center of key and distance to the
previous keypress for alphanum-alphanum transitions for
each week

medianDistCenter Median distance from touch to center of key for each week

medianIKD Median IKD for each week

medianPressDur Median keypress duration for each week

nKeypresses Number of keypresses per week

Accelerometer arc_sum 3D Rotational motion per week (calculated based on X/Y/Z
accelerometer readings)

count_Xhorizontal Number of X readings that were greater than ± 0.8 per week
(i.e. number of times phone was in a horizontal position to the
ground)

medianX, medianY, medianZ Median X/Y/Z accelerometer readings per week

n_XYZ Number of accelerometer readings per week, indicating the
number of times motion was detected (based on “sensor
events”)

Xmotion_sum, Ymotion_sum, Zmotion_sum Sum of differences between consecutive X/Y/Z readings
per week

Xmotion_sd, Ymotion_sd, Zmotion_sd Standard deviation of differences between consecutive X/Y/Z
readings per week
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To evaluate this, we attempted a variety of feature selection
methods on those slices, which we summarize here for brevity.
Table 4 shows the results of the feature rankings extracted by the
filter method using information gain, based on the same slices
shown in Tables 2 and 3 above. One can see that there are
significant shifts in which features are “important” based on this
approach. One clear example is nKeypresses, which was relatively
unimportant when clinical features or accelerometer features are
included, but became one of the top two most important features
when only using typing features. We can see similar effects on other
typing features, such as autocorrect and backspace rates, as well on
some of the accelerometer features medianX and medianZ.

When all features were used for prediction, the clinical features
dominated many of the top-ranking spots, with a few typing and
accelerometer features such as medianPressDur and n_XYZ also
showing significant contributions. Further comparing typing
+accelerometer data to the slices for either typing only or
accelerometer only, we note that medianPressDur, medianX,
arc_sum, and n_XYZ consistently ranked in the top 5. These shifts
across different slices of the data also influenced our choices for
which features to attempt to use for sensor fusion, which we
describe in the next session. Overall, these results indicate that
there seems to be significant duplicative information in the
different feature categories, which combined with the results in
the Main Results section, again underscores the potential for using
accelerometer data as a proxy for clinical data in individuals with
bipolar disorder.

Sensor fusion
Along with comparing different feature categories, we were also
curious about what affect fusing features across categories might
have, in particular, whether the model performance could be
improved through such sensor fusion. To test this idea, we fused
two accelerometer features—medianX (ranking #2), arc_sum (#4)
—with four typing features—medianPressDur (#1), backspaceRate
(#13), autocorrectRate (#15), nKeypresses (#24)—based on the
results of feature selection using only typing and accelerometer
data (the “Typing+ Accel” column in Table 4). The accelerometer
features were selected from those among the top ranks. For the
typing features, one was chosen from the top rank (medianPress-
Dur), whereas the other three were chosen based on their high
degree of shifting between data slices (columns in Table 4), as well
as their identified importance for predicting bipolar fluctuations in
the previous research6.
Sensor fusion here was conducted by dividing each of the

typing features by each of the accelerometer features to produce
a single value (a ratio, in essence) that combined the information
of both of the original features. After that, the original features
were removed from the dataset, and only the new composite
fused feature was used for modeling. Such modeling included
performing the same feature selection and modeling process
again as described in the Main Results and Feature Selection
sections above, using the imputed dataset to evaluate the
“Typing+ Accel” features with the new fused feature (without
clinical features). A total of eight different analyses were produced
in this way so as to isolate the effects of each fusion. However,
only four of those eight showed a higher feature ranking for the

Fig. 1 Visual diagram of accelerometer coordinate system. Note
that each coordinate is bidirectional along its axis, e.g., the z-axis can
entail moving the phone away from oneself but also moving it
towards oneself.

Table 2. Main results with mean imputationa.

Features (# of features) Classifier Acc Acc std AUC AUC std Sensitivity

All (50) Random Forest 0.9450 0.03 0.9912 0.01 0.9391

Gradient Boost 0.9377 0.06 0.9810 0.03 0.9077

Neural Network 0.9275 0.01 0.9751 0.01 0.9844

Typing+Accel (34) Random Forest 0.9134 0.01 0.9442 0.01 0.9119

Gradient Boost 0.8836 0.02 0.9430 0.02 0.8972

Neural Network 0.8907 0.02 0.9456 0.02 0.9119

Typing (22) Random Forest 0.8998 0.02 0.9403 0.01 0.9035

Gradient Boost 0.8778 0.02 0.9398 0.01 0.8888

Neural Network 0.8871 0.02 0.9332 0.02 0.8969

Accel (12) Random Forest 0.8704 0.02 0.9328 0.02 0.9119

Gradient Boost 0.8395 0.03 0.9042 0.02 0.8919

Neural Network 0.8623 0.01 0.9114 0.02 0.8854

aAcc accuracy, AUC area under curve, std standard deviation.
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fused feature than the ranking for the original features (based on
the average ranking of the two original features). For brevity, we
only report the results of those four below, to see whether the
improved fused feature led to any improvement in model
performance or not.

Fusion of “medianX” with typing features
Table 5 shows the results of sensor fusion using the medianX
accelerometer feature with typing features that produced higher
average feature rankings than the original features. Compared to
the results of “Typing+ Accel” in Table 2, the accuracy, AUC, and
sensitivity are almost unchanged. We can see here that even if two
features with high mutual information are fused as one, that still
does not necessarily lead to higher predictive power in terms of
model performance. Though we do note that the performance of
the models in Table 2 was already quite good, so perhaps there
was little room for improvement in this case.

Fusion of “arc_sum” with typing features
Similar to the previous section, Table 6 shows the results of sensor
fusion using the arc_sum accelerometer feature with typing features
that produced higher average feature rankings than the original
features. Compared to the results of “Typing+ Accel” in Table 2, the
accuracy, AUC, and sensitivity are almost unchanged. The fusion did
increase the rankings of the typing features (see next section), but
once again, the overall performance was not enhanced in this case.
Of course, it is possible other types of fusion on typing and
accelerometer data from smartphones would see more success.

Feature selection of fused features
Table 7 shows the results of feature selection performed after sensor
fusion for each of the four fusion attempts described earlier in this
section. The most notable effect here was when combining
nKeypresses and medianX. That shifted the combined feature to
3rd overall, whereas nKeypresses was originally 24th on the list. The
combined feature was similar to the original medianX ranking (#2).
This can be interpreted in a couple of ways: either the sensor fusion
produced a more parsimonious dataset that could predict as well
with fewer number of features or that nKeyPresses is not more
relevant for predicting fluctuations in bipolar symptoms than
medianX accelerometer alone regardless of whether it is fused or not.
The other three sensor fusion analyses showed a similar pattern,

compensating for the limitations of the typing features by fusing
them with the accelerometer features. However, none of the fused
features were better than the original accelerometer feature, nor

did they improve overall model predictive performance (as noted
in the previous sections above). Our overall takeaway from this
analysis was that sensor fusion of the chosen features here had
limited effect, and that using said features independently may be
a better choice for the time being. Of course, it is possible that if
the features are fused in a different way or if different typing and
accelerometer features are chosen, then the result could be
different. That is a question for future research, as there are
essentially unlimited possibilities with regard to sensor fusion.

DISCUSSION
We analyzed a longitudinal open-science dataset of 291 indivi-
duals from the BiAffect smartphone app targeted at those with
bipolar disorder, which contained rich details about their
smartphone interactions (including typing patterns and acceler-
ometer motion) collected everyday over several months, along
with more traditional clinical features. The aim was to predict
weekly fluctuations in depression symptoms in those individuals
prior to the change. The main results showed that such
smartphone data was capable of serving as a proxy for more
traditional clinical data. Moreover, accelerometer data improved
the predictive performance of machine learning models by nearly
5% over those previously reported in the literature based only on
clinical data and typing dynamics. Our interpretation of these
results is that some of the accelerometer features, notably
median_X and arc_sum, may be related to characteristic patterns
of psychomotor abnormalities such as agitation or impairment in
bipolar disorder (see Introduction section). For instance, median_X
may capture the frequency of side-to-side planar motion of the
phone during use (i.e., swinging or swaying), while arc_sum might
be indicative of the frequency of orientation changes of the phone
(in a 3-dimension rotational sense).
A key takeaway from this study is that it appears that there are a

number of parallel feature sets using different data related to
bipolar disorder that can result in comparable predictive
performance in machine-learning contexts. This harkens back to
early days of researchers attempting to use machine learning to
predict breast cancer genes in the early 2000s, including the
famous arguments over the “optimal 70-gene set”36–38. Research-
ers gradually realized that there were actually many different sets
of 70 genes that could obtain similar performance, given the
complex interactions between genes and the small effects of any
individual gene39. While that result was at first met with chagrin as
a failure (given that all researchers want to be the one to “find the
answer”), it eventually became accepted within the data science

Table 3. Main results excluding missing dataa.

Features (# of features) Classifier Acc Acc std AUC AUC std Sensitivity

All (50) Random Forest 0.9211 0.06 0.9752 0.04 0.9228

Gradient Boost 0.8898 0.09 0.9697 0.05 0.8824

Neural Network 0.8555 0.03 0.9321 0.04 0.9653

Typing+Accel (34) Random Forest 0.8952 0.04 0.9768 0.02 0.9559

Gradient Boost 0.8713 0.05 0.9642 0.03 0.9338

Neural Network 0.8670 0.05 0.9224 0.06 0.9563

Typing (22) Random Forest 0.9155 0.03 0.9774 0.01 0.9375

Gradient Boost 0.8861 0.04 0.9584 0.02 0.9485

Neural Network 0.8691 0.04 0.9383 0.04 0.9512

Accel (12) Random Forest 0.8694 0.03 0.9512 0.01 0.9228

Gradient Boost 0.8272 0.02 0.9083 0.01 0.9044

Neural Network 0.8545 0.04 0.9183 0.04 0.9168

aAcc accuracy, AUC area under curve, std standard deviation.
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Table 4. Feature rankings by data slicea.

All Typing+ Accel Typing Accel

1 PHQ_before_1w medianPressDur medianPressDur n_XYZ

2 Age medianX nKeypresses count_Xhorizontal

3 phoneSize Xmotion_sd bkspRate_wkSD arc_sum

4 MDQdiag arc_sum Avg_nAutocorrect medianX

5 Gender n_XYZ AvgVarAB Ymotion_sum

6 medianPressDur autocorrectRate_wkSD autocorrectRate_wkSD medianZ

7 BD_binary medianIKD medIKD_wkSD Xmotion_sum

8 Depression Avg_nAlphanum medianIKD Zmotion_sd

9 PTSD medianDistCenter backspaceRate Ymotion_sd

10 Anxiety medIKD_wkSD medianDistCenter Zmotion_sum

11 count_Xhorizontal bkspRate_wkSD Avg_nBackspace Xmotion_sd

12 ADHD AvgMedAA distToCenterPrevRatioAA medianY

13 SubstanceAddictionDisorder backspaceRate AvgMedAA

14 n_XYZ Avg_nAutocorrect AvgVarBB

15 arc_sum autocorrectRate AvgMAD_AA

16 OCD AvgVarAB autocorrectRate

17 medianDistCenter AvgMedBB Avg90PercentileAA

18 Avg_nBackspace AvgVarBB Avg_nAlphanum

19 backspaceRate Avg_medPressDuration AvgVarAA

20 nKeypresses Zmotion_sum AvgMedBB

21 AvgMAD_AA Ymotion_sum Avg_medPressDuration

22 Avg_nAutocorrect AvgMedAB AvgMedAB

23 AvgMedBB medianZ

24 AvgVarBB nKeypresses

25 NoneOfTheseDiag AvgMAD_AA

26 autocorrectRate Avg_nBackspace

27 medianZ count_Xhorizontal

28 AvgVarAB AvgVarAA

29 autocorrectRate_wkSD distToCenterPrevRatioAA

30 medianX Zmotion_sd

31 medianIKD Xmotion_sum

32 Avg90PercentileAA Avg90PercentileAA

33 Ymotion_sum medianY

34 distToCenterPrevRatioAA Ymotion_sd

35 AvgMedAA

36 Avg_nAlphanum

37 AvgMedAB

38 Ymotion_sd

39 Xmotion_sd

40 medIKD_wkSD

41 Zmotion_sum

42 Avg_medPressDuration

43 medianY

44 AvgVarAA

45 bkspRate_wkSD

46 SeasonalAffectiveDisorder

47 Zmotion_sd

48 Xmotion_sum

49 Schizophrenia

50 Diag_PreferNotAnswer

aFeatures in bold/italic are used later in sensor fusion.
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community that being able to solve a problem in multiple ways
opens up opportunities to develop alternative solutions to a given
problem as well as re-evaluate old solutions given new data,
expanding our toolset. Not a failure per se, but rather an
opportunity40,41.
Likewise, in the domain of mental health disorders, having

multiple ways to model and predict patient trajectories expands
our capabilities to deal with those problems in different ways in
different settings42. For some patients, that might involve
traditional clinical care, but for others, community-based rehabi-
litation may be more appropriate43. As the results show here, it is
possible to elicit essentially the same “information” about the
patients relative to their symptomology from different data
sources, enabling us to track and monitor such patients in a
variety of settings.
There were a number of limitations to this study, which are

important to keep in mind. First, one major limitation was that the
BiAffect app was designed to collect naturalistic data, via a crowd-
sourced “open-science” approach (aka citizen science44). On the
one hand, that means that our dataset here is more representative
of the population that clinicians see during real-world practice,
and that the “messiness” of the data is reflective of what one
might find in a real-world clinical dataset. On the other hand, since
that approach relies on self-reported data and patient-reported
outcome measures (e.g., PHQ and MDQ), it lacks the rigorous
validity of data that might be gathered in a controlled trial, though
conversely, a controlled trial often results in less-representative
data due to stringent inclusion criteria, strict protocols, and
financial incentives for participants (none of which typically exist
in real-world practice). That trade-off between research and
practice is a long-standing one in healthcare that has been
extensively discussed by LW Green and others45. Suffice it to say,
there is likely a need for both types of research (naturalistic and
controlled) in the field, but it’s important to note that both
approaches have their limitations, which impact the general-
izability of their results. That does suggest an opportunity for
future research on the topic presented in this paper, to provide
further lines of evidence.
Second, another limitation is that the BiAffect mobile app

currently only works on iPhone, rather than Android as well. Part

Table 7. Top features after sensor fusiona.

Ranking nKeypresses (24)/medianX (2) Ranking backspaceRate (13)/
medianX (2)

1 medianPressDur 1 medianPressDur

2 count_Xhorizontal 2 n_XYZ

3 nKeypresses_X 3 count_Xhorizontal

4 autocorrectRate_wkSD 4 arc_sum

5 Avg_nAutocorrect 5 medianIKD

6 n_XYZ 6 backspaceRate_X

7 AvgVarBB 7 Zmotion_sum

8 backspaceRate 8 nKeypresses

9 AvgMedAB 9 medianDistCenter

10 AvgVarAB 10 AvgVarAA

11 medianZ 11 Avg_nAutocorrect

12 medianIKD 12 Avg_medPressDuration

13 Avg90PercentileAA 13 AvgVarAB

RankingnKeypresses (24)/
arc_sum (4)

RankingautocorrectRate (15)/
arc_sum (4)

1 medianPressDur 1 medianPressDur

2 count_Xhorizontal 2 n_XYZ

3 n_XYZ 3 count_Xhorizontal

4 AvgVarAB 4 medianX

5 medianDistCenter 5 medianDistCenter

6 Avg_nAutocorrect 6 autocorrectRate_arc

7 backspaceRate 7 bkspRate_wkSD

8 autocorrectRate 8 autocorrectRate_wkSD

9 medianIKD 9 Avg_medPressDuration

10 medianX 10 Avg_nBackspace

11 nKeypresses_arc 11 medIKD_wkSD

12 AvgVarAA 12 nKeypresses

13 AvgVarBB 13 medianIKD

aFeatures in bold are the newly fused features. For the original features at
the top of each column, the number in parentheses is the original ranking
from the “Typing+ Accel” column in Table 4.

Table 6. Sensor Fusion of arc_sum feature with typing features.

Accelerometer Classifier Acc Acc std AUC AUC std Sensitivity

nKeypresses Random Forest 0.9009 0.01 0.9406 0.01 0.9098

Gradient Boost 0.8751 0.01 0.9417 0.02 0.8961

Neural Network 0.8964 0.01 0.9494 0.01 0.9156

autocorrectRate Random Forest 0.9017 0.02 0.9438 0.02 0.9129

Gradient Boost 0.8767 0.03 0.9435 0.02 0.8909

Neural Network 0.8958 0.02 0.9523 0.01 0.9131

Table 5. Sensor fusion of medianX feature with typing features.

Accelerometer Classifier Acc Acc std AUC AUC std Sensitivity

nKeypresses Random Forest 0.9077 0.02 0.9386 0.001 0.9108

Gradient Boost 0.8706 0.02 0.9347 0.01 0.8825

Neural Network 0.8868 0.02 0.9426 0.01 0.9125

backspaceRate Random Forest 0.9119 0.01 0.9449 0.001 0.9182

Gradient Boost 0.8788 0.02 0.9396 0.02 0.9035

Neural Network 0.8850 0.02 0.9435 0.02 0.9072
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of that is a technical limitation in deploying these kinds of sensor-
based ambulatory assessment apps on both iPhone and Android,
due to the way their application programming interfaces (APIs)
handle sensor hardware. Additionally, there are challenges with
fragmentation in Android, with multiple concurrent OS versions
and countless original equipment manufacturer (OEM) hardware
modifications. Indeed, many existing crowd-sourced smartphone
sensing studies tend to be done on iPhones only, for those very
reasons46. There is an advantage to that approach, given that we
do not have to deal with calibration issues across two platforms
running different software. However, Android is available on a
wider array of smartphone devices, including lower-cost devices.
There are also vast differences in market share across countries.
While wealthier countries like the United States, Canada, and
Japan have roughly 50% iPhone market share, in many less-
developed countries in Africa, South America, and Asia, conversely
Android dominates the marketplace with 80–90% market share47.
That means there may be some sample bias in our dataset that
unintentionally excludes lower socioeconomic individuals. If, and
how, any differences in typing dynamics or accelerometer data
exist in such individuals is something that future research should
consider. Doing so will likely demand targeted research aimed at
lower-socioeconomic individuals and/or less-developed countries
specifically, using Android-based data collection apps that are
accessible to such populations, to overcome the limitations of the
current generation of iPhone-based crowd-sourcing approaches.
Third, the use of the MDQ instrument here merits further

discussion. While MDQ has been shown to be a valid screening
questionnaire for bipolarity among patients with mood disorders
with good overall diagnostic accuracy48, its use in the general
population is less clear. In a recent large-scale study in England,
MDQ was reported to have a lower sensitivity when it was applied
to determine the lifetime prevalence of bipolarity in the
community49. Indeed, due to the substantially lower prevalence
of bipolar disorders in the general population (compared to, say,
the prevalence among patients who present in psychiatric
outpatient clinics), it becomes much harder for any screening
test to have sufficient positive predictive value. However, it should
be noted that in this study, many of the BiAffect app users who
participated likely did so because of their personal connections to
mental health and psychiatric disorders, and thus the study
sample was drawn from a population enriched for mood
disorders. For readers who are interested in the use of MDQ as
a screening tool in different populations, we refer to recent
discussions on its validity in refs. 50,51.
Finally, a fourth limitation here to consider is the cost and

privacy risks associated with collecting this kind of data about
individuals. Given that the BiAffect app used in this study is free
for users largely mitigates the cost issue, but the privacy issues are
ones that cannot be ignored. There is significant potential for
typing dynamics and phone motion data (i.e., accelerometer) to
be misused, or alternatively, if such data can be linked to
individual behavior patterns or health symptoms, for that
information to be used in ways that may not be in the best
interest of the patient (e.g., creating individualized insurance
premium rates). There is likely a need for some ethical standards
and/or legal frameworks to be developed to regulate the use of
this kind of smartphone data, similar to how the use of genetic
information has been regulated in recent years52,53.

METHODS
Dataset description
The target here was clinically-relevant changes in the PHQ
outcome scale, defined as a difference of 4 or more points based
on weekly sampling35. The aim was to predict those changes
before they occur based on smartphone interaction data in the

one week prior gathered via the BiAffect mobile app4. The dataset
included three kinds of features: clinical, typing dynamics, and
accelerometer (see Table 1). Our purpose here is to evaluate the
utility of combining both typing and accelerometer data for
making such predictions of the target, averse to previous studies
that looked at only typing dynamics features5,6. Furthermore, we
were interested in whether that combination would make it
possible to exclude clinical data while still maintaining the high
accuracy of the predictions. Excluding such clinical data might
enable models that could be used to screen for bipolar-related
symptoms in the general population, even amongst people who
had never been diagnosed or those who had been diagnosed but
not visited a doctor or clinic recently (and thus lack valid clinical
data). The study was approved by the IRB at the University of
Illinois—Chicago (protocol #2016-1261).
Before starting the modeling process, the data was pre-

processed to deal with various data-related issues. All isomorphic
features in the typing data, such as features that represent the
forward and reverse order of the same feature (e.g., typing interval
between alphabetical and backspace keys), were reduced to
eliminate collinearity in the dataset so that only the forward-
sequence intervals remained. After this, we were left with 50
features in total. Those features can be seen in Table 1, grouped
by category. We note that for the accelerometer features, many
are based on three-dimensional motion (defined as X, Y, and Z
coordinates by the manufacturer), that can be visualized as shown
in Fig. 1. More information can be found on IOS or Android
websites, e.g., https://developer.apple.com/documentation/
coremotion/getting_raw_accelerometer_events.
There were also many missing values in each column of data.

The ratio of missing data generally ranged between 0% to up to
25–30% for some features, depending on the feature. As such, we
attempted two ways to preprocess these data, with one approach
replacing all the missing values with the average value across all
individuals of the corresponding feature, and the other approach
simply excluding all individuals with any missing data during
analysis. For the latter case, excluding individuals resulted in a
smaller dataset of 148 individuals, i.e., about half the individuals
were missing some data. The results of both approaches are
shown in the Results section.
On average, each individual had 9.6 weeks worth of data for

analysis. A clinically-relevant PHQ change occurred roughly 18.7%
of the time, with approximately half of the individuals experien-
cing at least one significant PHQ change (54.4%). The average age
was 41.3, with nearly 66% being female. Roughly 2/3 of the
individuals reported having been diagnosed bipolar and a similar
number screened positive on the MDQ, whereas others were
undiagnosed (who may or may not have bipolar). Approximately
62% reported having depression (with an average PHQ score of
~9.3), and 24% reported having PTSD. In terms of keypress
dynamics, the average number of weekly keypresses per person
was roughly 5280 (total of 15.1 million overall), while the average
weekly autocorrect rate was 0.013 (1.3% of presses) and the
backspace rate was 0.089 (8.9% of presses). The average interkey
delay between keypresses was 360 milliseconds, whereas the
typical hold time of each keypress (median press duration) was
approximately 90 milliseconds.

Analysis approach
Our primary analysis here looked at the comparison of different
slices of the total dataset’s features described in the previous
section. Those four slices can be categorized as shown below. We
also note that a previously reported analysis of “Typing+ Clinical”
features using this same dataset showed similar performance as
“Typing Features Only”6, so Typing+ Clinical is omitted here for
brevity.
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1. All features (including clinical ones)
2. Typing and accelerometer features (excluding clinical features)
3. Typing features only
4. Accelerometer features only

For analyzing the data, multiple modeling methods were
attempted: Random Forest, Gradient Boosting, and deep learning
(DL) Neural Networks. Data here was primarily modeled using
Python’s Scikit-Learn package (https://pypi.org/project/scikit-learn/).
Models were run using the default parameters in Scikit, though
some experimentation was performed (similar to ref. 5). For the
neural networks, those were ran using the python package Keras
(https://keras.io/, version 2.5), which is a deep learning library based
on TensorFlow, using a single dense hidden layer with 70 units and
sigmoid activation output layer. In previous research, we explored
the effect of hyperparameter tuning the models (including varying
the number and types of layers in the DL models), but in general,
that had minimal effect on performance6. As such, models here are
using set parameters based on that previous research. Beyond the
models themselves, we also explored various types of feature
selection to determine which features were driving patterns
observed in the data. Those results are presented in the Results
section. Model performance was estimated using multiple evalua-
tion metrics, including accuracy (Acc) and area under the curve
(AUC) based on fivefold cross-validation, following standard
machine learning guidelines54.
Given the imbalanced nature of the target variable (~18.7% of

weekly samples had a clinically-relevant change in PHQ score as
defined at the beginning of the Methods section, versus 81% did
not), we used Python’s imblearn package (https://pypi.org/project/
imblearn/) to deploy a hybrid approach (combining undersam-
pling with SMOTE55) in order to rebalance the data, based on its
superior performance in the previous research6. Additionally, we
evaluated multiple feature selection methods for comparison,
including both filter-based and wrapper-based methods56. The
filter-based method utilized information gain (i.e., entropy) to rank
each feature (univariate approach) which could then be used to
select some top k features (k-count). The wrapper-based method
used a Random Forest model to evaluate different sets of features
across hundreds of trials, identifying the best set of features based
on the predictive performance of the resulting model. Further-
more, sensor fusion13 was utilized to evaluate whether directly
combining typing dynamics and accelerometer features together
into single features could lead to improved performance over the
original raw features.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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