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Abstract: Building-integrated photovoltaics (BIPVs) are the most promising systems for net-zero
energy buildings. However, there are few practical cases because of shortcomings, such as the lack of
solar tracking and the rapid rise in PV surface temperature. Therefore, methods of increasing the effi-
ciency of BIPVs have been proposed and studied. These include using phase change material (PCM)
or heat fins, wavelength selection, decreasing the PV surface temperature, or using a thermoelectric
generator (TEG) and convection cooling to utilize the waste heat from the PV. Many preceding studies
have been conducted on TEG and convection heat dissipation methods to utilize as much waste
heat as possible. Therefore, in this study, a TEG–PCM hybrid system using mPCM was proposed to
improve constructability. Herein, the appropriate phase change temperature of the PCM, the heat fin
spacing in the PCM container, and the TEG arrangement were analyzed through computational fluid
dynamics (CFD)-based simulations. The appropriate melting temperature of the PCM, the heat fin
interval, and the arrangement of the TEG for the proposed system are 25 ◦C, 20 mm, and 140 mm,
respectively. In order to achieve optimal efficiency, it is necessary to consider an appropriate amount
of heat transfer, and it has been confirmed that if there are too many thermoelectric elements, the
opposite effect occurs.

Keywords: building-integrated photovoltaic; energy harvesting; thermoelectric generator

1. Introduction

Currently, because of urbanization, the increasing number of people living in cities has
led to the construction of more buildings [1]. In addition, more and more electronic devices
are being used in buildings, such as Internet of things (IoT) sensors, electric cars, electric
heaters, ventilation systems, air conditioning (HVAC) systems, etc., and this causes a large
amount of electrical energy to be consumed by buildings [2]. Therefore, to obtain such a
large amount of electric energy consumption in an environmentally friendly way, many
studies are being conducted on the application of renewable energy to cities. Photovoltaic
(PV) panels are the most widely used tools in this field. Nevertheless, the reality is that it
is challenging to supply a large amount of renewable energy due to the limited space of
cities. Therefore, many studies have been conducted on building-integrated photovoltaics
(BIPVs), which refers to solar panels integrated with buildings.

Unlike conventional PVs, BIPVs are fixed to the wall or roof of the building. Therefore,
BIPVs have a limited time and angle for receiving sunlight, and the generation efficiency of
the PV panels is reduced due to a lack of heat rejection. When the temperature of the PV
panel increases, the power generation efficiency decreases by 0.4 or 0.65% per ◦C [3], and
when the panel surface temperature reaches 65 ◦C, the power generation efficiency can be
lowered to about 2.6% [4]. Therefore, to solve this problem, various methods of lowering
the temperature of the solar panel have been studied. The various cooling technologies for
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PV panels are shown in Figure 1 [5]. According to the heat transfer method, the cooling
technology of the PV panels can be classified into three types: convection, conduction,
and radiation. In general, it has been proposed that a panel cooling system should utilize
convection and conduction. Among these, liquid convection cooling showed the highest
efficiency improvement at 22%, with phase change materials improving efficiency by up to
21.2%, air convection cooling improving efficiency by 20%, and radiation cooling improving
efficiency by up to 2.6%.
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Therefore, many convection heat rejection solutions have been proposed to improve
the efficiency of BIPVs. Koyunbaba et al. proposed an air-cooling-based BIPV thermal
(BIPVT) system with a trombe wall system. An analysis based on experiments and compu-
tational fluid dynamics (CFD) calculations showed that the average electrical and thermal
efficiencies of this system could reach 4.52% and 27.2%, respectively [3]. Kaiser et al. stud-
ied a BIPV module system in a forced convection condition. This study experimentally
analyzed the influence of the air gap size and the forced convection ventilation system.
Under a duct velocity of 6 m/s, the power generation increased by 19% relative to the
natural ventilation case [6]. In addition, some studies focused on water-cooling BIPVT
systems. Kim et al. experimentally analyzed the energy performance of a water-cooled
BIPVT integrated on a roof. According to the experimental results, it was found that the
average thermal and electrical efficiencies of the BIPVT were 30% and 17%, respectively [7].

However, there are disadvantages in that additional power sources are required (pump,
valve, etc.), and the system becomes complicated when fluid is used. In addition, most
solar heat removed from the PV is discharged back to the outside air of the city; therefore,
it increases the urban heat island effect.

In the case of BIPVs, installation and maintenance are more complex than conventional
PV panels because it is installed on the exterior of a building. Therefore, the use of fluid
makes it difficult to apply practically because using fluid can often cause problems, such
as leakage. Therefore, research was conducted on the BIPV system using a phase change
material (PCM) and thermoelectric generator (TEG) to increase efficiency via a passive
method. According to previous research, using PCM is an efficient passive cooling method
for PV panels [8–12]. Hasan et al. experimentally and numerically analyzed the PV–PCM
system in a hot climate. It was found that PCM can decrease the temperature of the PV panel
by 13 ◦C at peak time, and the PV panel’s average energy efficiency increased by 5.9% every
year relative to that of an existing panel combined with PCMs [13]. Sharma et al. analyzed
the paraffin wax on a building-integrated concentrated photovoltaic (BICPV) system. A lap-
scale experiment was conducted to examine the cooling effect of the PCM under different
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levels of xenon lamp irradiation (500 W/m2, 750 W/m2, and 1200 W/m2). The experiment
results show that the electrical efficiency increased by 1.15%, 4.2%, and 6.8%, respectively,
and that the PV panel surface temperature reduced to 3.8 ◦C [14]. Stropnik and Stritih, in
experiments and simulations using TRNSYS software, analyzed how much the PV panel
efficiency increased with a PCM. The experimental results show that the PV with the PCM
could maintain the PV panel temperature 35.6 ◦C lower than the PV panel without the
PCM, and that annually it could produce 7.3% more electricity [15].

In order to reduce the panel temperature and produce additional renewable energy
simultaneously, studies have been conducted on a hybrid system in which thermoelectric
generators (TEGs) are integrated onto PV panels. The TEG is a semiconductor that can
generate electric power with a temperature difference based on the Seeback effect. Therefore,
the TEG can easily adjust the sizing. There is no need for other combustion or moving parts
during the power generation process; therefore, it can be used semi-permanently without
noise and have good durability.

Different PV–TEG hybrid system configurations were analyzed in many previous
studies [16–18]. Moreover, the research showed that the PV–TEG hybrid system could
increase efficiency by 1–16% compared with the conventional PV panel system. Makki
proposed a heat-pipe-based PV–TEG hybrid system and investigated it numerically and
experimentally. This study shows that a further overall system efficiency development of
approximately 5% was possible using a TEG [19]. In addition, Cotfas et al. analyzed the
three types of TEG material for the PV–TEG hybrid system. Finally, the simulation results
showed that the PV–TEG hybrid system could produce approximately 7% more electric
power and increase the overall system efficiency by 18.93% more than the conventional
PV panel [20].

In the case of the previously proposed PV–TEG hybrid system, a cooling source,
such as air or water, is required on the cold side of the TEG. However, most convection
methods require additional power sources to circulate the fluids. Therefore, studies us-
ing phase change material (PCM) to cool the cold side of the TEG passively have been
proposed [21–23]. Darkwa et al. analyzed the PV–TEG–PCM system numerically and ex-
perimentally. The results showed that the PV–TEG–PCM system could achieve 9.5% more
electric power output than the standalone PV and PV–TEG hybrid system [4]. Ko and Jeong
suggest a BIPV–TEG–PCM system and analyzed the power generation performance of the
proposed system. The proposed system could generate 3.05 kWh from the TEG per year,
with respective generation improvements of 0.91%, −1.32%, 2.25%, and 3.16% each season
from spring to winter [24]. Cui et al. conducted a simulation study for concentrating a
PV–PCM–TE system. Their results showed that the total daily efficiency of the PV–PCM–TE
system was higher than the standalone PV system by 1%.

In preceding studies, only the possibility and energy performance analysis of a system
combining PVs, TEGs, and PCM were conducted. However, previous research on an
appropriate design for maximum efficiency is still insufficient. Therefore, a numerical
analysis was conducted to find the optimal design for the manufacture of the proposed
BIPV–TEG–PCM, which uses microencapsulated phase change material (mPCM) to har-
vest solar/thermal energy wasted from the building envelope. Finally, different heat fin
spacing, the melting temperature of the PCM, and the TEG arrangement were studied
using a computational fluid dynamics (CFD) heat transfer analysis to derive an appropriate
thermal structure.

2. System Overview
2.1. Building-Integrated Photovoltaic with TEG and PCM (BIPV–TEG–PCM)

The building-integrated photovoltaic system with a thermoelectric generator and
phase change material (BIPV–TEG–PCM) is installed on the exterior wall of the building. It
consists of a PV panel, a TEG, and a PCM container (Figure 2). The PV panel is installed
at the outermost part to recover the sunlight wasted from the exterior wall. In addition, a
PCM container is installed between the exterior wall of the building and the BIPV panel to
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reduce the temperature rise of the BIPV module. The TEG layer is located between the BIPV
module and the PCM container to recover and generate electricity from the temperature
difference between the BIPV and the PCM during the heat transfer process. The hot side
of the TEG layer is installed on the backside of the PV panel, and aluminum heat fins are
installed on the cold side to improve heat transfer with the PCM. The aluminum heat fin
improves the low thermal conductivity of the PCM and keeps the temperature of the cold
side of the TEG low.
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The proposed system is a PVT system that utilizes both sunlight and solar heat to
generate electricity. Unlike the conventional PVT system, the BIPV–TEG–PCM does not
produce hot water, using solar heat to produce electricity. The power generation process
is shown in Figure 3 below. During the daytime, electricity is first generated from the PV
panel through sunlight. While the power is generated, the PV surface temperature rises due
to solar heat. The solid-state mPCM absorbs the PV panel heat, decreasing the PV panel
surface temperature and preventing the decrease in PV panel efficiency. In this absorbing
process, a temperature gradient is created at both sides of the TEG, and the TEG generates
the electric power based on the temperature gradient. Therefore, dual power generation is
possible using solar heat (Figure 3a).

Conversely, during the night, the phase change material is regenerated through long-
wave sky radiation cooling that occurs between the surface of the PV panel and the sky.
In this case, the PV panel is the cooling source, and the PCM is the heat source for the
TEG. Therefore, the hot and cold sides of the TEG are reversed (Figure 3b). Thus, the
BIPV–TEG–PCM, unlike the conventional PVT system that cannot produce hot water in
the absence of the sun, is able to produce electricity even at night.
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2.2. Microencapsulated Phase Change Material (mPCM)

A phase change material (PCM) can store energy without changing temperature by
storing energy in latent heat. PCMs have been used for energy storage or heat dissipa-
tion [25–28]. However, the regular PCM is the liquid state PCM, and the particles are
small. Therefore, it causes leakage problems and reactivity with the external environ-
ment. If packing is neglected, leakage occurs when used for a long time, and if a defect
occurs in the casing, leakage can occur very quickly [29]. To solve these problems of the
conventional PCM, many studies were proposed. The microencapsulation technique is
a promising technology for overcoming the shortcomings of this thermal storage system.
The microencapsulation phase change material (mPCM) is made in such a way that the
organic or inorganic materials can cover PCM droplets smaller than 1000 µm. Therefore,
the shortcomings of the regular PCM, such as the low thermal conductivity and leakage
problems, can be overcome by increasing the surface-to-volume ratio of the PCM and
covering the liquid PCM surface [30].

Therefore, this study selected a microencapsulated PCM (mPCM) to construct a prac-
tical BIPV–TEG–PCM system. Due to the fact that BIPVs are installed on exterior walls,
simple maintenance is possible for commercialization, and stability must be maintained
even after long-term use. Therefore, the leakage problem was eliminated using an mPCM.
It is easy to manufacture and has good structural stability.

The mPCM used in this simulation was chosen with reference to data from previous
studies. The physical properties of the mPCM used in this simulation are shown in Table 1.
Based on the results of the experiments in a preceding study [31], a 6:4 ratio of PCM to
tetrabutyl titanate (TBT) was selected for the mPCM. In general, the physical properties of
an mPCM are slightly affected by the phase change temperature. However, the previous
study did not show a significant difference in the properties of the mPCM. Therefore, the
mPCM properties were fixed, and only the phase change temperature was varied in the
simulations (25 ◦C to 45 ◦C).
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Table 1. Properties of the mPCM.

Description Value

Phase change temperature [◦C] 25, 35, 45
Latent heat capacity [J/kg] 192,660

Specific heat capacity [J/kg] 1970
Density

[
kg/m3 ] 946.4

Thermal conductivity [W/mK] 0.749
Particle size [µm] 10

3. Numerical Analysis Method

In this study, the photovoltaic (PV) panel surface temperature of the BIPV–TEG–
PCM was simulated using finite volume discretization based on the computational fluid
dynamics (CFD) Ansys Fluent R1. The solution for the governing equations and their
specific boundary conditions was based on a fixed-grid computational domain. This study
analyzed the melting temperature of the phase change material (PCM), the heat fin spacing,
and the thermoelectric generator (TEG) arrangement for the largest temperature difference
in the TEG while lowering the panel surface temperature. Ansys Fluent is the CFD most
commonly used to analyze the PCM effect for the system scale. For example, Diarce et al.
and Darzi et al. used Ansys Fluent to analyze PCM ventilation systems [32,33].

A transient heat transfer analysis was performed through Ansys Fluent with 2D
geometry. As is shown in Figure 4, using Ansys meshing, only the hexa-mesh was created,
and the total number of nodes was about 54,800. The time step was set to 1 s, and the
total simulation time was 4 h (14,400 s). The simulation analysis was performed using the
standard test condition (STC) of the PV panel as the initial condition (the initial temperature
was 25 ◦C). Therefore, the boundary conditions for CFD are shown in Figure 5. Except
for the glass surface, the rest of the outer surfaces were in an adiabatic condition, and
1000 W/m2 of solar radiation was received through the glass surface (Figure 5). Therefore,
in convective terms, turbulence did not occur in the mPCM. Therefore, laminar flow was
assumed to reflect the character of the mPCM. The used physical properties of the BIPVT-
EG-PCM are shown in Tables 1 and 2 below [34–36]. Figure 6 show the heat transfer process
of the CFD under the STC condition.
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The energy equations in the Ansys models are shown below in Equations (1)–(5). In
Ansys Fluent, the method suggested by Voller and Swaminathan was used to update the
liquid fraction Equations (1)–(5).

The enthalpy of the material is computed as the sum of the sensible enthalpy, h, and
the latent heat, ∆H.

H = h + ∆H (1)

where

h = hre f +

T∫
Tre f

cpdT (2)



Sustainability 2022, 14, 15559 8 of 17

where href is reference enthalpy, Tref is reference temperature, and cp is specific heat at
constant pressure.

For solidification/melting problems, the energy equation is written as

∂

∂t
(ρH) +∇ ·

(
ρ
→
v H
)
= ∇ ·(ρ∇H) + S (3)

where H is the enthalpy, ρ is the density,
→
v is the fluid velocity, and S is the source term.

The liquid fraction, β, can be defined as

β = 0 i f T < Tsolidus

β = 1 i f T > Tliquidus

β =
T − Tsolidus

Tliquidus − Tsolidus
i f Tsolidus < T < Tliquidus (4)

∆H = βL (5)

4. Results and Discussion

This study selected the melting temperature of the PCM, the heat fin interval for the
PCM container, and the TEG arrangement to derive an appropriate BIPV–TEG–PCM design.
In addition, this simulation study was conducted as a parametric analysis to produce a
design that satisfies the minimum PV surface temperature and maximum TEG temperature
difference at the same time.

4.1. Effects of PCM Melting Temperature

The PCM melting temperature was compared in each heat fin interval to derive the
appropriate melting temperature of the PCM. Moreover, Figure 7 contrasts the system
temperature distribution and the melting fraction for the high and low melting temperature
cases. According to the results of the simulation, the PCM melting temperature of 25 ◦C
showed the best performance for the low PV surface temperature in each case (Figure 8).
However, in the cases of close interval heat fin spacing of 5 mm and 10 mm with a PCM
melting temperature of 25 ◦C, it was kept low for the first two hours, and after two hours
showed a steeper temperature rise as the phase change progressed. This phenomenon
occurs because the amount of PCM and heat transfer rate through the heat fin is not in
balance. As the number of fins increases, heat transfer becomes faster. However, as the
amount of PCM decreases, the total amount of energy stored is thereby reduced.

On the other hand, the close interval heat fin spacing of 5 mm and 10 mm with melting
temperatures of 35 ◦C and 45 ◦C showed a lower PV surface temperature after 2 h. The
high phase change temperature delayed the forming of the melting region. Therefore, the
PV surface temperature rose quickly at the beginning because of the low solid specific heat
capacity of the PCM. However, it could be kept lower than the melting temperature of
25 ◦C at the overall average. The high melting temperature of the PCM showed a similar
pattern of increasing gradually at 35 ◦C and 45 ◦C. The cases using the 45 ◦C PCM were
maintained at about 1–5 ◦C higher than the 35 ◦C PCM. However, there was no pattern of
substantial difference.
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In the case of the temperature difference of the TEG, there was not much difference in
the overall case. The reason is that the TEG is a semiconductor and has a higher thermal
conductivity than the PCM, leading to a lower temperature difference. On the contrary, it
was found that a larger temperature difference occurred in the case where the PCM was
35 ◦C and 45 ◦C due to heat accumulation in the PV panel. However, as the efficiency of the
PV panel is still better than that of the TEG, a PCM that can lower the surface temperature
of the PV panel is preferred. Finally, it was confirmed that 25 ◦C is the optimal temperature
for the PCM to facilitate the heat dissipation of the PV panel. However, if the efficiency
of the TEG were improved, it would be necessary to optimize the appropriate melting
temperature of the PCM.
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4.2. Effects of Heat Fin Interval

Figure 9 shows the temperature distribution and liquid fraction of the BIVP–TEG–PCM
system. Furthermore, the results for the PV surface temperature distribution and temper-
ature difference of the TEG with different heat fin spacings is shown in Figure 10 below.
This study analyzed five heat fin spacings: no fin, 5 mm, 10 mm, 20 mm, and 30 mm. The
surface temperature of the PV panel and the temperature difference of the TEG in each heat
fin spacing case were compared for each PCM melting temperature (i.e., 25 ◦C, 35 ◦C, and
45 ◦C). As a result of the simulation, it was found that the 20 mm heat fin spacing could
maintain the lowest panel surface temperature, regardless of the PCM melting temperature.
When the fin spacing was dense, heat transfer to the PCM was improved. However, due to
the decreased amount of the PCM, the melting area of the PCM was crated faster than in
the case of wide fin spacing and a low melting temperature of the PCM. On the contrary,
a high melting temperature of the PCM can be secured, which shows better results than
when the PCM has a low phase change temperature.

In addition, for the temperature difference of the TEG, the heat fin interval of 20 mm
showed the best performance. There were cases with similar temperature differences
depending on the phase change temperature of the PCM, but the 20 mm spacing showed
an above average temperature difference in most cases. These results have determined the
most appropriate thermal conductivity in the heat transfer equilibrium described above.
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heat fin intervals.

4.3. Arrangement of Thermoelectric Generator (TEG)

The arrangement of the TEG was selected as the distance of the middle of each TEG.
The maximum length of the TEG was referred to in previous studies that showed that
the most uniform temperature distribution was achieved when the distance between the
middle of the TEG was 280 mm [37]. In addition, the melting temperature of the PCM
and the heat fin interval were selected as the middle case of the previous simulation (PCM
melting temperature: 35 ◦C; heat fin interval: 10 mm). By adding the TEGs one by one
between the TEGs at both ends based on a 280 mm interval, four TEG intervals were
selected for simulation (i.e., 70 mm, 93 mm, 140 mm, and 280 mm). Figure 11 shows the
temperature distribution and liquid fraction of the BIVP–TEG–PCM system at 280 mm and
70 mm TEG intervals.
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Figure 11. PCM liquid fraction change with different TEG intervals. (a) Temperature distribution of
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As a result of the TEG spacing simulation (Figure 12), in the case of the solar panel
surface temperature, there was a difference of about 0–2 ◦C depending on the teg spacing,
and the highest panel surface temperature appeared at a spacing of 280 mm. In addition, it
was confirmed that the maximum temperature difference was up to 5 ◦C depending on the
TEG interval. It was found that the temperature difference between the cold and hot sides
of the TEG increased as the TEG interval widened. The TEG interval of 280 mm showed
the highest temperature between both sides of TEG. Therefore, a TEG interval of 140 mm
was determined to be optimal to create the largest temperature difference of the TEG while
lowering the temperature of the PV surface.

As in the previous analysis, it was confirmed that, due to the thermal conductivity
of the TEG, the larger the thermoelectric element is, the faster the heat from the PV panel
passes and the faster the PCM on the cold side of the TEG is melted. As a result, the
temperature difference between the cold and hot sides of the TEG is reduced. However, it
was confirmed that limiting the amount of heat transfer through the TEG to a certain extent
is a way to increase the efficiency of both the panel and the TEG.

In addition, the panel surface temperature distribution of the remaining cases (except
for 280 mm) showed a similar pattern. The largest temperature difference occurred when the
TEG was spaced at 140 mm. Therefore, the most appropriate TEG spacing was determined
to be 140 mm.

Each parametric study result focused on the solar panel. Therefore, the results focused
more on lowering the solar panel’s surface temperature. However, considering usability
in the natural environment, if the efficiency of the thermoelectric element is improved, it
is judged that there will be an optimal point to obtain the maximum power generation of
both the solar panel and the thermoelectric element generator.
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5. Conclusions

This study numerically investigated the impact of the heat fin interval, the TEG
arrangement, and the phase change temperature on the BIPV–TEG–PCM system through
CFD transient simulations. Using the PCM increased the PV efficiency and, at the same
time, additional electricity was generated by utilizing the Seebeck effect of the TEG. The
simulation was conducted under STC conditions. The results of the simulation show that
a low phase change temperature helps inhibit an early temperature rise of the PV panel.
However, it has been shown that a high melting temperature of the PCM also maintains
similar temperatures for a more extended period if there is a properly designed heat fin
interval. Thus, using a suitable PCM melting temperature with the proper heat fin interval
can increase the efficiency of the PV panel. Therefore, in conclusion, to keep the surface
temperature of the PV panel low and to increase the temperature difference between both
ends of the TEG, it was found that a PCM melting temperature of 25 ◦C and a heat fin
interval of 20 mm was most efficient. Additionally, a TEG distance of 140 mm was found to
be the most effective. However, since the results in this study were analyzed under STC
conditions, a standard test condition for solar panels, it is difficult to see that the results are
appropriate for all conditions and climates. Therefore, additional research on the optimal
points in each region is needed.

Consequently, the BIPV–TEG–PCM system constitutes a system capable of generating
power 24 h a day without additional devices by securing power generation through
improved efficiency and the utilization of unused waste heat sources to realize a zero-
energy building. We intend in future research to manufacture actual prototypes and verify
their performance through field tests.
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