
Citation: Lim, D.; Lee, W.; Kim, W.-T.;

Joe, I. DRL-OS: A Deep

Reinforcement Learning-Based

Offloading Scheduler in Mobile Edge

Computing. Sensors 2022, 22, 9212.

https://doi.org/10.3390/s22239212

Academic Editor: Marco Picone

Received: 17 October 2022

Accepted: 25 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DRL-OS: A Deep Reinforcement Learning-Based Offloading
Scheduler in Mobile Edge Computing
Ducsun Lim 1,† , Wooyeob Lee 1,† , Won-Tae Kim 2 and Inwhee Joe 1,*

1 The Department of Computer and Software, Hanyang University, 222 Wangsimni-ro,
Seoul 04763, Republic of Korea

2 The Department of Computer Science and Engineering, Korea University of Technology and Education,
Cheonan-si 31253, Republic of Korea

* Correspondence: iwjoe@hanyang.ac.kr; Tel.: +82-2-2220-1088
† These authors contributed equally to this work.

Abstract: Hardware bottlenecks can throttle smart device (SD) performance when executing computation-
intensive and delay-sensitive applications. Hence, task offloading can be used to transfer computation-
intensive tasks to an external server or processor in Mobile Edge Computing. However, in this approach,
the offloaded task can be useless when a process is significantly delayed or a deadline has expired. Due
to the uncertain task processing via offloading, it is challenging for each SD to determine its offloading
decision (whether to local or remote and drop). This study proposes a deep-reinforcement-learning-based
offloading scheduler (DRL-OS) that considers the energy balance in selecting the method for performing
a task, such as local computing, offloading, or dropping. The proposed DRL-OS is based on the double
dueling deep Q-network (D3QN) and selects an appropriate action by learning the task size, deadline,
queue, and residual battery charge. The average battery level, drop rate, and average latency of the
DRL-OS were measured in simulations to analyze the scheduler performance. The DRL-OS exhibits a
lower average battery level (up to 54%) and lower drop rate (up to 42.5%) than existing schemes. The
scheduler also achieves a lower average latency of 0.01 to >0.25 s, despite subtle case-wise differences in
the average latency.

Keywords: computation offloading; double dueling deep Q-network; energy consumption; mobile
edge computing (MEC); resource management; reinforcement learning

1. Introduction

The rapid development and propagation of the Internet of Things (IoT) and smart
devices (SDs) have contributed to the growth of smartphones, wearables, tablet computers,
and connected devices [1,2]. SDs can be connected to wireless networks and can change
and expand their usage through software applications [3]. SDs can process various mobile
applications, including virtual and augmented reality, facial recognition, and online interac-
tive games [4]. Most of these applications are sensitive to delays, perform computationally
intensive tasks, and have relatively high energy consumption. Consequently, SDs with lim-
ited computation power and a small battery cannot execute these applications as intended
by the developers [5,6].

In particular, wearable device hardware must be compact for portability. This re-
quirement limits the device features and performance required to run certain applications.
Therefore, mobile devices process data generated by auxiliary devices within a margin of
error, such as cameras and heart rate monitors. For example, even high-performance smart-
phone processors cannot simultaneously handle multiple resource-intensive applications
for extended periods without throttling the hardware.

To resolve this problem, resource-intensive computational tasks can be transferred
to a processor or an external server with larger computational resources, an approach
known as computation offloading. Initially, these tasks could be addressed with mobile

Sensors 2022, 22, 9212. https://doi.org/10.3390/s22239212 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4361-653X
https://orcid.org/0000-0001-9688-6691
https://orcid.org/0000-0003-3426-3792
https://doi.org/10.3390/s22239212
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239212?type=check_update&version=2


Sensors 2022, 22, 9212 2 of 26

cloud computing (MCC) because most of them were compute-intensive tasks. However, the
number of delay-sensitive tasks requiring real-time processing, which were difficult to solve
with MCC, have increased over time. In [7], the use of mobile edge computing (MEC), also
known as multi-access computing [8] was proposed for efficient task processing. Unlike
MCC, MEC provides an effective solution for computation offloading by placing a small,
high-performance server near smart device users (SDUs) in a distributed network. SDUs
can offload computing tasks to the MEC server connected to the base station through a
wireless network. Computation offloading improves the SDU’s quality of experience (QoE)
of applications by significantly reducing the latency and energy consumption. These merits
have increased research interest in the computation offloading of MEC systems.

For example, unmanned aerial vehicle (UAV) [9] services in a smart city, traffic data
analysis, delivery, and public safety networks can significantly reduce delays with MEC
as they gather large volumes of data that require real-time processing. Therefore, MEC is
a promising paradigm that can support delay-sensitive services and smart applications.
However, despite its potential, MEC has some drawbacks. First, MEC is not as effective
for compute-intensive applications because it has a lower computing performance than
MCC [10]. The processing capacity allocated to an SD by MEC varies with workload
because the MEC may have limited processing capacity. A high load may be generated
if many SDs offload tasks to a single MEC server. SDs offload tasks to reduce processing
delay and save energy consumption; however, a high load may cause a task offloading
decision conundrum.

Studies have proposed task offloading algorithms to solve this problem, for example
Wang et al. [11] suggested an algorithm that made decisions about offloading of mobile
devices to maximize the benefits in terms of network. Ali et al. [12] proposed an offloading
algorithm that selected a set of optimal components based on the energy consumption,
network condition, computation load, and data volume according to the residual energy
of the mobile device and the application components. Both [11,12] suggested methods to
process tasks by offloading them to an MEC server for cases where mobile devices had
limited resources. If the mobile device has several tasks to process or if multiple users
request processing simultaneously in an MEC environment, the device may be subjected
to a high load, resulting in a lengthy delay in processing tasks. Furthermore, they did
not consider scenarios in which one or more tasks may be terminated as a result of a
deadline expiring. Tang et al. [13] proposed an algorithm that allowed each device to
determine which task to offload, given that the processing of tasks with expired deadlines
may be terminated if many devices offloaded tasks to the MEC, considering the load of
a single MEC server. However, they did not consider the energy cost of an SD, although
the latency was considered when tasks were input to the queue system of an SD and
dropped during processing. The approach described in [14] aimed to minimize a task
latency and conducted rule-based decision-making on whether to offload to the MEC
server by considering the task buffer queue, the operation status of the local device, and the
transmission queue. We focused on the computation offloading scheduling problem from
the perspective of SDs. The contributions of this study for more realistic MEC scenario
processing of computation-intensive and delay-sensitive SD tasks are as follows:

(1) Task segmentation is assumed to be a complex process because simple task segmen-
tation may not be realistic owing to the dependency between bits in the task. We
consider the default queue system in the SD and MEC. Each task can be processed by
core, and processed as many as the number of multi core.

(2) Unlike previous studies that focused on delay tolerance, this study considers delay-
sensitive tasks with a variable deadline. This is because a task will consume energy or
will be delayed once task processing is initiated, even if it does not meet the deadline
or cannot be completed due to lack of energy.

(3) Successful processing, latency, and energy of the task should be considered for local
and remote processing. If it is difficult to process the task, the SD drops the task
without processing it.



Sensors 2022, 22, 9212 3 of 26

(4) The system is highly complex because it has several variables that need to be con-
sidered to reflect realistic scenarios. Therefore, we propose the deep-reinforcement-
learning-based offloading scheduler (DRL-OS) approach. The DRL is used to obtain
the task offloading policy from the information of the task to be processed in an SD,
network, and MEC state.

The rest of this paper is organized as follows. Section 2 introduces related works and
investigates previous research and reinforcement learning (RL). Section 3 describes the
mathematical models for components, local computing, and offloading. Section 4 proposes
a DRL-based offloading scheduler and explains its structure and operation. Section 5
presents the performance evaluation result. Finally, Section 6 summarizes the study and
suggests future research directions.

2. Related Work

In this section, studies related to offloading and reinforcement learning are reviewed.

2.1. Computation Offloading

Many studies on computation offloading have been conducted over the last few years
to improve SD performances. Each proposed offloading technology has a different purpose
and method; therefore, we only explore research related to our study. Studies on offloading
can be classified into latency-, energy-, and cost-based offloading.

The latency-based offloading method aims to minimize the time consumed by the
processing of delay-sensitive applications. Jia et al. [15] developed a heuristic program
segmentation algorithm in an MCC framework to use the method based on the concept of
load balancing between a mobile device and a server to minimize system delay. However,
they did not consider energy consumption. Sun et al. [16] suggested a latency-aware
workload offloading strategy in terms of a new cloudlet network to minimize waiting
time. Through this, mobile users minimized the average response time by offloading the
computation-intensive tasks of applications to an appropriate cloudlet. Samanta et al. [17]
considered both delay-tolerant and delay-sensitive tasks to achieve optimized service
delay and revenue. Furthermore, to provide a better QoE for delay-sensitive applications,
Tang et al. [13] formulated the offloading problem to minimize the expected long-term cost
(latency and deadline), while considering delay-sensitive tasks in a total offloading situation.
In summary, these studies focused on latency without considering energy consumption.

The energy-based offloading method aims to reduce the energy footprint by identifying
the cause of energy-sensitive tasks, considering the battery of a device with portability
constraints. Xiang et al. [18] proposed an energy-optimal mobile computing framework
to process applications by locally optimized energy or through offloading. However,
if the task of the application exceeded the deadline constraint, it was processed locally.
Zhang et al. [19] developed an expandable dynamic programming algorithm that selects
the adaptive LTE/Wi-Fi link and integrates data transmission schedules to reduce the total
energy consumption of mobile devices in an MCC system. Zhang et al. [20] developed an
optimal computation offloading algorithm for mobile users in intermittently connected
cloudlet systems and formulated the Markov decision process (MDP) model to minimize
the energy cost.

Guo et al. [21] used the variability of features of mobile devices and user prefer-
ences to research an efficient energy computational offloading management method. The
energy consumption of each User Equipment (UE) was minimized by commonly optimiz-
ing the offloading decision, spectrum, power, and resource allocation in an MEC system.
Yang et al. [22] formulated the offloading energy optimization problem, which considered
the computation capabilities and service delay requirements needed to improve the effi-
ciency of the total energy consumption in every system entity. The study did not consider
time costs, but considered the energy consumption of MEC and MCC through a power grid.

Meanwhile, other studies have attempted to reduce the energy cost (i.e., improve
efficiency) by considering both waiting time and energy. In [23], a joint communication



Sensors 2022, 22, 9212 4 of 26

and computation resource allocation algorithm was proposed to minimize the energy con-
sumption of mobile devices, while guaranteeing the offloading waiting time requirements
in a multi-cell MEC system. They investigated the joint task offloading and resource alloca-
tion problem by considering both the required execution time and energy consumption.
Lyu et al. [24] programmed an algorithm that minimized the offloading energy consump-
tion according to the task deadline, focusing on delay-sensitive tasks. Eshraghi et al. [25]
proposed an algorithm that optimized the decision on the allocation of computational
resources of the offloading and MEC of mobile devices, considering their uncertain compu-
tation requirements. Yang et al. [26] developed a distributed offloading algorithm to resolve
competition for wireless channels among mobile devices. The objectives of computation
offloading in MEC are minimizing energy consumption and processing tasks within the
deadline constraints. The study focused on the processing aspect between MEC and MCC.

This study considered offloading system scenarios that reflected realistic situations.
In [14], tasks were considered to be divisible, but this may be unrealistic owing to the
interdependency of bits in tasks. In [15,16], situations where tasks could not be divided
but did not consider queue systems were shown. Furthermore, [24] considered fixed task
deadlines. However, our study applied realistic variable deadlines. To summarize the
contents of the literature above, computational offloading papers are listed in Table A1 of
Appendix A.

Unlike previous studies, this study considered more realistic and practical scenarios
using existing research on the deadline and task drop point. Furthermore, we proposed an
effective computation offloading scheduler that considers delay, energy consumption, and
drop rate through the task scheduling and offloading decision based on DRL.

2.2. Types of Reinforcement Learning
2.2.1. Reinforcement Learning

RL is a machine learning method for agents that determines which action can receive
the maximum reward in a given situation. Agents attempt to learn the policy π that can
obtain the maximum reward in the future through interaction with the environment [27].
Policy π is a table that maps the action a to be performed by the agent in state s. In this
scenario, the agent executes an action through continuous interaction with the environment
and can achieve a reward that corresponds to that action. The objective of this type of
learning is to maximize the sum of rewards. As shown in Figure 1, when the agent selects
action at according to policy π in state st, the environment yields the next state st+1 and
reward rt to the agent. Then, policy π is updated based on the reward provided in the
next environment. Most RL problems are defined as an MDP [28]. The MDP is a decision-
making model based on the Markov chain. This model satisfies the Markov property, which
is unrelated to the history up to the present state but is only influenced by the probability
of the previous state. To solve the main problem of this study, it must be converted to
an MDP type. In general, the MDP model is defined by the tuple (S, A, P, R, γ), where
S and A are the state and action spaces, respectively. P is the state transition probability
distribution that indicates the probability of the current state moving to a different state
according to a specific action. R denotes the reward that is immediately received from the
environment after the action is completed, and γ ∈ [0, 1] is a discount factor that is the
sum of the discount rewards of the goal and is defined as follows:

Gt =
n

∑
i=0
γirt+i (1)

where rt+i is the reward in each time step t + i.

2.2.2. Q-Learning

Q-learning is a model-free learning method [29], which approximates the Q value for
a state–action pair and uses this value to determine the action to be executed in a specific



Sensors 2022, 22, 9212 5 of 26

state. This algorithm is used to compose the Q table according to the state–action pair. Here,
the Q table is a simple lookup table. When an action is taken in a specific state, the value of
Q represents the value for this action and is stored in the Q table. The action that has the
largest Q value must be selected. Q-learning is a process of creating the Q table for policy
decision making, and the equation for evaluating the value of the action is defined as

Q(st, at) = rt + γmax
at+1

Q(st+1, at+1) (2)

where st and at are the state and action at a particular time step, respectively. For a specific
step t, the action at is selected first according to the current state st and Q table. Subsequently,
reward rt and the next state st+1 are obtained from the environment. Consequently, the
new Q(st, at) is updated as follows:

Q(st, at)← Q(st, at) + α

(
rt+1 + γmaxQ

at+1

(st+1, at+1)−Q(st, at)

)
(3)

where Q(st, at) on the left side represents the updated value of st and at, whereas Q(st, at),
rt+1 and maxQ

at+1

(st+1, at+1) represent value and the maximum expected future reward value,

respectively. Further, γ and α ∈ (0, 1) represent the discount factor and learning rate,
respectively. This procedure is repeated until the terminal state is reached.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 26 
 

 

discount factor that is the sum of the discount rewards of the goal and is defined as fol-

lows: 

𝐺𝑡 = ∑ γ𝑖𝑟𝑡+𝑖

𝑛

𝑖=0

 (1) 

where 𝑟𝑡+𝑖 is the reward in each time step t + i. 

 

Figure 1. Reinforcement Learning. 

2.2.2. Q-Learning 

Q-learning is a model-free learning method [29], which approximates the Q value for 

a state–action pair and uses this value to determine the action to be executed in a specific 

state. This algorithm is used to compose the Q table according to the state–action pair. 

Here, the Q table is a simple lookup table. When an action is taken in a specific state, the 

value of Q represents the value for this action and is stored in the Q table. The action that 

has the largest Q value must be selected. Q-learning is a process of creating the Q table for 

policy decision making, and the equation for evaluating the value of the action is defined 

as 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 𝑚𝑎𝑥
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (2) 

where 𝑠𝑡 and 𝑎𝑡 are the state and action at a particular time step, respectively. For a spe-

cific step t, the action 𝑎𝑡 is selected first according to the current state 𝑠𝑡 and Q table. 

Subsequently, reward 𝑟𝑡  and the next state 𝑠𝑡+1  are obtained from the environment. 

Consequently, the new 𝑄(𝑠𝑡 , 𝑎𝑡) is updated as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡+1 +𝛾𝑚𝑎𝑥𝑄
𝑎𝑡+1

(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)) (3) 

where 𝑄(𝑠𝑡 , 𝑎𝑡)  on the left side represents the updated value of 𝑠𝑡  and 𝑎𝑡 , whereas 

𝑄(𝑠𝑡 , 𝑎𝑡), 𝑟𝑡+1 and 𝑚𝑎𝑥𝑄
𝑎𝑡+1

(𝑠𝑡+1, 𝑎𝑡+1) represent value and the maximum expected future 

reward value, respectively. Further, 𝛾 and 𝛼 ∈ (0, 1) represent the discount factor and 

learning rate, respectively. This procedure is repeated until the terminal state is reached. 

2.2.3. Deep Q-Network 

Conventional Q-learning saves the action value in the Q table. However, it is impos-

sible to create all Q tables in the MEC environment and conditions considered in this study 

due to many combinations of state and action. Therefore, we used the deep Q-network 

(DQN), which uses a neural network to approximate the Q value. A previous study 

demonstrated the improved performance and learning advantages of the DQN [30]. The 

Figure 1. Reinforcement Learning.

2.2.3. Deep Q-Network

Conventional Q-learning saves the action value in the Q table. However, it is impossi-
ble to create all Q tables in the MEC environment and conditions considered in this study
due to many combinations of state and action. Therefore, we used the deep Q-network
(DQN), which uses a neural network to approximate the Q value. A previous study demon-
strated the improved performance and learning advantages of the DQN [30]. The DQN
algorithm efficiently predicts the Q value using a neural network that has the parameter θ
instead of Q table [31]. The agent that uses a neural network that has learned the Q value is
called the Q-network. The approximation of the Q value for an action a selected in a specific
state st using the Q-network is expressed as Q(st, at, θ). Parameter θ refers to the weight of
a neural network, and the Q-network is trained by updating θ in each iteration so that it
approaches the real Q value. The DQN is trained toward the target value by minimizing
the loss in each iteration. The loss function equation is defined as

L(θ) = E[(rt+1 + γmax
at+1

Q
(
st+1, at+1; θ−

)
−Q(st, at; θ))

2
] (4)

where Q (st+1, at+1; θ−) is the largest among the target Q values predicted through the
target network with θ− as the parameter, and Q(st, at; θ) is the Q value predicted in the
evaluation network with θ as the parameter.



Sensors 2022, 22, 9212 6 of 26

2.2.4. Double Deep Q-Network

After selecting an action, the DQN uses the largest of the available action Q values in
the next state when evaluating that action. However, this can lead to overestimation of the
Q value. To solve this problem, the double DQN [32] separates the target Q action selection
and calculation. It finds the action at+1 of Q (st+1, at+1; θ−) in the target network to select
the maximum Q value. Next, the Q value of this action is calculated in the evaluation
network. Double DQN avoids overestimation from the selection of the maximum action
because the target network divides the networks for selecting an action and for evaluation.
The target Q value of the double DQN can be updated as follows:

Q(st, at) = r + γQ(st+1, argmax
at+1

Q
(
st+1, at+1; θ−

)
; θ) (5)

2.2.5. Dueling Deep Q-Network

The DQN is slow because it requires the combination of several state actions for train-
ing. To solve this problem, the dueling DQN [33] does not need to search the combinations
of all states and actions. Instead, it estimates all actions in one search. Hence, while the con-
ventional method requires a long time as it has to search all actions, the dueling DQN has a
shortened training time because it requires fewer searches. Figure 2 (top) illustrates the
conventional DQN model. In Figure 2 (bottom), the dueling DQN structurally resembles
the first part of the DQN. However, in the second half, the dueling DQN maps the output
to two fully connected layers and merges them into one Q value. It obtains the state action
value by merging the two components, i.e., value function V(st) and advantage function
A (st, at), as follows:

Q(st, at) = V(st) + A(st, at) (6)

where V(st) is the expected value of the reward that can be obtained in a specific state s,
and A(at) is a value indicating the relative importance of a specific action. The conventional
DQN calculates every Q value for each action, even for a state in which it is undesirable for
the agent to be rewarded. However, if training is conducted with the value and advantage
functions, the valuable state can be known even if the agent does not select every action in
each state for training; thus, the training time can be reduced. The equation for calculating
the Q value of the dueling DQN is as follows:

Q(st, at; θ ) = V(st; θ) + A(st, at; θ)− 1
|A| ∑

at+1

A(st, at+1; θ) (7)

Sensors 2022, 22, x FOR PEER REVIEW 7 of 26 
 

 

 

Figure 2. Deep Q-Network (top) and Dueling Deep Q-Network (bottom). 

3. System Model 

In this section, we present the MEC-based network architecture and propose a system 

model for local and offloading processing of tasks in an SD based on the architecture. First, 

details of the analysis (measurement of degree, metric), including the components, calcu-

lation model, and energy consumption adopted in this study, are explained. In addition, 

the minimization problem for the weighted sum of latency and energy is formulated. Ta-

ble 1 lists the main notations. 

Table 1. Notations. 

Notation Description 

M A set of SDs 

𝑐𝑜𝑟𝑒 loc Number of CPU cores in the device 

K Size of the task 

D Deadline of the task 

𝑐𝑦𝑐𝑙𝑒 Number of CPU cycles required to process the task 

𝛿𝑝𝑟𝑜𝑐 Processing queue of devices 

𝛿𝑡𝑟𝑎𝑛 Transmission queue of devices 

𝐿𝑖
𝑙𝑜𝑐  Processing time of the task Λ𝑖  by local computing model 

ℱ𝑙𝑜𝑐 Computational capability of SD 

𝑃𝑙𝑜𝑐 Computing power of device 

𝐸𝑙𝑜𝑐  Energy consumption of the task Λ𝑖  by a local computing model 

𝐿𝑖
𝑡𝑟 Time for transmission Λ𝑖  from the SD to the MEC server 

𝐷𝑎𝑡𝑎𝑅𝑎𝑡𝑒𝐶𝑇  Transmission rate of the SD 

𝐿𝑖
𝑀𝐸𝐶  Processing time of task Λ𝑖  by the MEC server 

𝛿𝑀𝐸𝐶  Processing queue of MEC 

ℱ𝑀𝐸𝐶  Computational capability of MEC 

𝐿𝑖
𝑜𝑓𝑙

 
Total processing time when task 𝛬𝑖 is processed by offloading it 

to the MEC server in the SD 

𝐸𝑖
𝑜𝑓𝑙

 Energy consumption of task Λ𝑖  by computational offloading 

𝑃𝑡𝑟  Transmission power of the SD 

𝐶𝑡
𝑙𝑜𝑐 Cost of local computing 

Figure 2. Deep Q-Network (top) and Dueling Deep Q-Network (bottom).



Sensors 2022, 22, 9212 7 of 26

3. System Model

In this section, we present the MEC-based network architecture and propose a system
model for local and offloading processing of tasks in an SD based on the architecture. First,
details of the analysis (measurement of degree, metric), including the components, calcula-
tion model, and energy consumption adopted in this study, are explained. In addition, the
minimization problem for the weighted sum of latency and energy is formulated. Table 1
lists the main notations.

Table 1. Notations.

Notation Description

M A set of SDs
coreloc Number of CPU cores in the device

K Size of the task
D Deadline of the task

cycle Number of CPU cycles required to process the task
δproc Processing queue of devices
δtran Transmission queue of devices
Lloc

i Processing time of the task Λi by local computing model
F loc Computational capability of SD
Ploc Computing power of device
Eloc Energy consumption of the task Λi by a local computing model
Ltr

i Time for transmission Λi from the SD to the MEC server
DataRateCT Transmission rate of the SD

LMEC
i Processing time of task Λi by the MEC server

δMEC Processing queue of MEC
FMEC Computational capability of MEC

Lo f l
i

Total processing time when task Λi is processed by offloading it to
the MEC server in the SD

Eo f l
i

Energy consumption of task Λi by computational offloading
Ptr Transmission power of the SD
Cloc

t Cost of local computing
Co f l

t Cost of processing by offloading
ω Weighting coefficients

3.1. Components

As shown in Figure 3, the MEC server is a computing device installed at a wireless
base station. We assumed a two-tier computational offloading model in which SDs are
connected to one MEC server through 5G or Wi-Fi [34,35]. However, the SDs were assumed
to be fixed or have very low mobility. Here, one or more wearable devices were connected
to the SDs through short-distance communication technology. Furthermore, the wearable
devices relay the generated computation-intensive tasks to the SDs for processing. The
set of SDs M = {1, 2, . . . , m} processes tasks received from the wearable devices locally,
offloads them to a remote MEC server through a base station (BS) or drops if it is impossible
to process them. Here, we assumed that each mobile device has the same processing
performance. In this study, offloading is not expanded to MCC or another MEC, and only
the MEC of a single-layer structure is considered. When the task received from an SD is
processed, the MEC transmits the result to the corresponding device. However, the size of
the computational result is negligible, which corresponds to several computing scenarios
such as facial recognition and video analysis [4,36]. Therefore, this study does not consider
the cost of the result response when offloading is decided.



Sensors 2022, 22, 9212 8 of 26

Sensors 2022, 22, x FOR PEER REVIEW 8 of 26 
 

 

𝐶𝑡
𝑜𝑓𝑙

 Cost of processing by offloading 

ω Weighting coefficients 

3.1. Components 

As shown in Figure 3, the MEC server is a computing device installed at a wireless 

base station. We assumed a two-tier computational offloading model in which SDs are 

connected to one MEC server through 5G or Wi-Fi [34,35]. However, the SDs were as-

sumed to be fixed or have very low mobility. Here, one or more wearable devices were 

connected to the SDs through short-distance communication technology. Furthermore, 

the wearable devices relay the generated computation-intensive tasks to the SDs for pro-

cessing. The set of SDs M = {1, 2,…, m} processes tasks received from the wearable devices 

locally, offloads them to a remote MEC server through a base station (BS) or drops if it is 

impossible to process them. Here, we assumed that each mobile device has the same pro-

cessing performance. In this study, offloading is not expanded to MCC or another MEC, 

and only the MEC of a single-layer structure is considered. When the task received from 

an SD is processed, the MEC transmits the result to the corresponding device. However, 

the size of the computational result is negligible, which corresponds to several computing 

scenarios such as facial recognition and video analysis [4,36]. Therefore, this study does 

not consider the cost of the result response when offloading is decided. 

 

Figure 3. Scenario of the MEC system Model. 

The set of tasks 𝜏𝑖 = {1, 2, … , 𝑖} is generated in wearable devices by default and un-

conditionally transferred to mobile devices. We assumed that tasks cannot be processed 

separately, and that they can be transmitted and processed only in the unit of size in which 

they were first generated. To explain the tasks that have arrived at a specific SD, each task 

was defined as 𝛬𝑖 = {𝐾𝑖 , 𝐷𝑖}, where 𝐾𝑖 and 𝐷𝑖  denote the data size and deadline, respec-

tively. The processing time of task 𝛬𝑖  must not exceed the deadline, regardless of 

whether the task is processed locally or by offloading. If the processing time exceeds the 

deadline, the task is dropped. When a new task 𝛬𝑖 arrives at the SD, where 𝑚 ∈ 𝑀, the 

DRL-based scheduler allocates this task to either the processing or transmission queue. 

Figure 4 depicts the DRL scheduler and the queue. The assumptions and their impact are 

summarized as follows: 

Figure 3. Scenario of the MEC system Model.

The set of tasks τi = {1, 2, . . . , i} is generated in wearable devices by default and
unconditionally transferred to mobile devices. We assumed that tasks cannot be processed
separately, and that they can be transmitted and processed only in the unit of size in which
they were first generated. To explain the tasks that have arrived at a specific SD, each
task was defined as Λi = {Ki, Di}, where Ki and Di denote the data size and deadline,
respectively. The processing time of task Λi must not exceed the deadline, regardless of
whether the task is processed locally or by offloading. If the processing time exceeds the
deadline, the task is dropped. When a new task Λi arrives at the SD, where m ∈ M, the
DRL-based scheduler allocates this task to either the processing or transmission queue.
Figure 4 depicts the DRL scheduler and the queue. The assumptions and their impact are
summarized as follows:

Sensors 2022, 22, x FOR PEER REVIEW 9 of 26 
 

 

 

Figure 4. Illustration of the structure of the smart device with a DRL-based scheduler. 

• It is assumed that the SDs are connected to one MEC server through 5G or Wi-Fi. SDs 

offload tasks to the wireless network. 

• We assumed that the SD is either fixed or has low mobility. Some of them are sensor 

network devices or are used by users resulting in low mobility. 

• Each SD was assumed to have the same processing performance. The number of WDs 

connected to the SD and the task size are different. Therefore, even if the performance 

of the device is the same, different results can be obtained due to external influences. 

• It was assumed that tasks could be processed and transmitted only in the first created 

unit of size. In addition, task segmentation is assumed difficult because of the de-

pendency between bits in the task. Therefore, the task is sent with full offloading. 

3.2. Computation Model 

Task 𝜦𝒊 can be processed in the MEC server by the local computation resource of an 

SD or by offloading. These models are termed as “local computing” and “remote edge 

computing,”, respectively, and are detailed below. 

3.2.1. Local Computing 

The prediction value �̂� = 0 and task 𝛬𝑖 of the DRL scheduler were processed lo-

cally. Here, the tasks that were already stored in the processing queue were processed 

first, followed by the latest tasks. Each SD has a computational capability (CPU cycles per 

second), which is denoted as 𝐹𝑙𝑜𝑐. The 𝑐𝑦𝑐𝑙𝑒𝑖 denotes the required number of cycles per 

bit of 𝑡𝑎𝑠𝑘𝑖 , and this value may vary with the task type. Therefore, the local computing 

processing time, 𝐿𝑖
𝑙𝑜𝑐 , required to run 𝐾𝑖 bytes is expressed as follows: 

𝐿𝑖
𝑙𝑜𝑐 =

(𝛿𝑝𝑟𝑜𝑐 + 𝐾𝑖)𝑐𝑦𝑐𝑙𝑒𝑖

ℱ𝑙𝑜𝑐
 (8) 

where 𝛿𝑝𝑟𝑜𝑐 is the processing queue of the device. 
According to Guo et al. [37], the CPU power consumption of a specific SD, 𝑃𝑙𝑜𝑐, is a 

super linear function of ℱ𝑙𝑜𝑐. It is a unique feature that changes with the SD and is defined 

as 

𝑃𝑙𝑜𝑐 = 𝜍𝑙𝑜𝑐𝑐𝑜𝑟𝑒𝑙𝑜𝑐(ℱ𝑙𝑜𝑐)2 (9) 

where 𝜍𝑙𝑜𝑐  is the effective switching capacity set to 10−9 [38], and 𝑐𝑜𝑟𝑒𝑙𝑜𝑐  is the number 
of CPU cores. The energy consumption of the SD, 𝐸𝑙𝑜𝑐 , can be expressed in terms of the 
CPU power consumption and task processing time as follows: 

𝐸𝑙𝑜𝑐 =   PlocLi
loc

= ςloccorelocℱloc(δproc + Ki)𝑐𝑦𝑐𝑙𝑒i 
(10) 

Figure 4. Illustration of the structure of the smart device with a DRL-based scheduler.

• It is assumed that the SDs are connected to one MEC server through 5G or Wi-Fi. SDs
offload tasks to the wireless network.

• We assumed that the SD is either fixed or has low mobility. Some of them are sensor
network devices or are used by users resulting in low mobility.

• Each SD was assumed to have the same processing performance. The number of WDs
connected to the SD and the task size are different. Therefore, even if the performance
of the device is the same, different results can be obtained due to external influences.



Sensors 2022, 22, 9212 9 of 26

• It was assumed that tasks could be processed and transmitted only in the first cre-
ated unit of size. In addition, task segmentation is assumed difficult because of the
dependency between bits in the task. Therefore, the task is sent with full offloading.

3.2. Computation Model

Task Λi can be processed in the MEC server by the local computation resource of an
SD or by offloading. These models are termed as “local computing” and “remote edge
computing,”, respectively, and are detailed below.

3.2.1. Local Computing

The prediction value ŷ = 0 and task Λi of the DRL scheduler were processed locally.
Here, the tasks that were already stored in the processing queue were processed first,
followed by the latest tasks. Each SD has a computational capability (CPU cycles per
second), which is denoted as Floc. The cyclei denotes the required number of cycles per
bit of taski, and this value may vary with the task type. Therefore, the local computing
processing time, Lloc

i , required to run Ki bytes is expressed as follows:

Lloc
i =

(δproc + Ki)cyclei

F loc (8)

where δproc is the processing queue of the device.
According to Guo et al. [37], the CPU power consumption of a specific SD, Ploc, is

a super linear function of F loc. It is a unique feature that changes with the SD and is
defined as

Ploc = ςloccoreloc(F loc)2 (9)

where ςloc is the effective switching capacity set to 10−9 [38], and coreloc is the number of
CPU cores. The energy consumption of the SD, Eloc, can be expressed in terms of the CPU
power consumption and task processing time as follows:

Eloc = PlocLloc
i

= ςloccorelocF loc(δproc + Ki)cyclei
(10)

3.2.2. Remote Edge Computing

When the prediction value of the DRL scheduler was ŷ = 1, the SD m processed task Λi
through offloading. After processing a task, the MEC server returned the computation result
to the SD m. However, because the result data size was small and the downlink transmission
rate was high, the transmission time and energy required to relay the computation result
from the MEC server to the SD was dismissed. Thus, the total processing time of task Λi
comprises two parts: the time taken to transmit task ΛI from the SD m to the MEC; and the
processing time of the MEC server. First, the transmission time for task Λi from the SD to
the edge node, Ltr

i , is defined as

Ltr
i =

δtran + Ki

DataRateCT (11)

The SD first transmits the tasks waiting in the transmission queue, followed by the
newly input tasks. δtran is the size of the tasks that first arrive and await transmission, and
DataRateCT is the transmission rate. For DataRateCT , the transmission rate of 5G or Wi-Fi
was used, depending on the communication type to which the SD is currently connected.
The processing time LMEC

i for processing task Λi that has been offloaded from an SD to the
MEC server can be expressed as follows:

LMEC
i =

(
δtran + Ki

)
Cyclei

FMEC (12)



Sensors 2022, 22, 9212 10 of 26

where FMEC is the computational capability of MEC. Therefore, the total processing time
for offloading Lo f l

i is defined as

Lo f l
i = Ltr

i + LMEC
i (13)

Furthermore, the energy consumption of the SD when task Λi is offloaded to the MEC
server is expressed as

Eo f l = PtrLtr
i (14)

where Ptr is the transmission power of the SD. In this study, the computing energy of
the MEC server was not considered because it was provided by a wired power grid.
Furthermore, we assumed that the MEC distance to every SD was the same. Therefore, the
transmission power was also identical.

4. DRL-Based Offloading Scheduler

In this section, we introduce the DRL-OS. We formulated the task offloading decision-
making of an SD as an MDP. To minimize the latency, energy consumption, and drop rate,
each SD gauged the state using RL and selected a mode for task processing. We defined the
state space, action space, and reward for offloading decisions.

4.1. State Space

Each state in the state space is composed of various pieces of information. In this
model, each state is composed of seven pieces of information: task size (unit: bytes),
deadline (unit: ms), processing queue of the SD, transmission queue and MEC processing
queue information (byte size of information), battery level, and communication type (5G or
Wi-Fi). Thus, the state is defined as follows:

S =
{

K, D, δproc, δtran, δMEC, Br, CT
}

(15)

where K is the size of the task, D is the task deadline, and the δproc, δtran and δMEC represent
the processing queue of devices, the transmission queue of devices and the processing
queue of MEC, respectively. Further Br and CT represent the residual batter of SD and
transmission rate of the SD, respectively.

4.2. Action Space

The action spaces of this study comprise three actions, and can be defined as

A = {a0, a1, a2} (16)

where a0(t) denotes local processing, a1(t) denotes remote processing in the MEC, and
a2(t) denotes the action that drops the task. In the case where both local and MEC can be
processed, decision on the action should align with the lower cost of either processing time
or energy consumption. If neither selection is possible, the task should be dropped. When
the processing time breaches the deadline or the energy of the SD is insufficient, a2 should
be selected.

4.3. Reward

In this section, the cost and reward are numerically defined according to local and
remote processing and dropping the task. To run task Λi according to each action, a decision
must be made between local and offloading. The cost of local computing Cloc

t is defined as

Cloc
t = ωLloc

t + (1−ω)Eloc
t + ∆Tloc

t (17)

where ω is a weighting coefficient to balance processing time and energy consumption and
∆Tloc

t is the time excess cost penalty.



Sensors 2022, 22, 9212 11 of 26

For SDs with sufficient battery capacity to process data through both local and remote
connections, Equation (17) is used to select a small action that requires less cost value. If
the device’s battery does not have sufficient charge, the task is dropped. The cost of the
dropping action is defined as Cdr

t , and its value is 1. When the processing time breaches the
deadline, regardless of whether the battery has sufficient charge, the algorithm imposes
∆Tloc

t . If this value is very large, the task is dropped. In general, a minimal timeout value
does not affect the Quality of Service (QoS) because it is designed to apply time tolerance
later. However, as time tolerance varies with the type of data, the case in which the deadline
is breached is designed to be dropped from the simulation process. The penalty ∆Tloc

t for
breaching the deadline is defined as

∆Tloc
t =

{
0 i f Lloc

t ≤ Dt(
Lloc

t − Dt

)2
i f Lloc

t > Dt
(18)

When processed with the deadline, ∆Tloc
t becomes 0 and does not affect the cost.

However, if the deadline is exceeded, it is designed to be added to the form of a square of
two that is considerably influenced by the larger timeout value. If the absolute value is less
than 1 due to the characteristics of the square, the value becomes negligible. Therefore, the
difference between less than 1 s may not be effective in imposing the penalty. To prevent
this, we process the time calculation in milliseconds only in this case. For example, if the
time difference is 0.1 s, the value of ∆Tloc

t is 10,000 ms, not 0.01. Similarly, costs Co f l
t and

∆To f l
t , which handle task Λi as an offloading task are defined using Equations (19) and (20),

respectively.
Co f l

t = ωLo f l
t + (1−ω)Eo f l

t + ∆To f l
t (19)

∆To f l
t =

 0 i f Lo f l
t ≤ Dt(

Lo f l
t − Dt

)2
i f Lo f l

t > Dt
(20)

where Lo f l
t and Eo f l

t are the total processing time and energy consumption for offloading
task Λi, respectively.

Each agent receives an immediate reward rt for action at selected from time slot t.
In general, the reward function is related to the cost function. The goal of optimizing
the proposed problem is to minimize costs. The local computing cost Cloc

t , offloading
computing cost Co f l

t , and cost of dropping a task Cdr
t are defined as

rewardt =


−Cloc

t i f at = 0
−Cofl

t i f at = 1
−Cdr

t i f at = 2
(21)

Therefore, this study aims to minimize the costs while maximizing the rewards.

4.4. Architecture of DRL-Based Offloading Scheduler

The action in the current state in a simulation environment was estimated using the
DRL-based computation offloading scheduler with double dueling DQN (D3QN) [39].
D3QN has advantages in convergence and stability [40]. The RL used in this experiment
is the D3QN algorithm. To implement the neural network, a fully connected deep neural
network (DNN) comprising one input layer, two hidden layers, and one output layer was
used. The first three layers have 256, 256, and 128 neurons, respectively. The fourth neural
layer was divided into advantage (action advantage) and value (state value) functions,
which originated from the dueling DQN. In the last layer, the advantage and value functions
are merged into the Q value. The model was trained to learn the optimal policy by the
offline method. After training the model, we performed decision making to process tasks
in the DRL-based scheduler of the SD.



Sensors 2022, 22, 9212 12 of 26

This model has a greater degree of complexity than conventional scenarios that only
consider computing and communication, because it considers various parameters such
as computing, energy, and deadline to optimize the latency, energy, and task drop rate.
The model encounters numerous system states as it considers a realistic scenario with
a dynamic task size, deadline, processing queue, SD transmission queue, MEC server
processing queue, SD battery level, and communication type. Furthermore, decisions
should be made regarding the method to process tasks by reflecting the current state in
the SD.

In general, conventional optimization methods such as convex optimization and
game theory cannot seamlessly execute the optimal decision in a probabilistic environment.
However, RL searches for the optimal strategy without prior knowledge through interaction
with the environment. As mentioned, this study proposes the DRL-based computation
offloading scheduler based on the D3QN, which combines double and dueling DQNs.

4.4.1. D3QN Architecture

Figure 5 outlines the network structure of the D3QN scheduler. First, the input layer
contains the state information of each SD. Each state is input in the form of an input vector
to the D3QN network and delivered to the evaluation and target networks. Overestimation
by the conventional DQN algorithm causes overestimation of the Q value and performance
deterioration when selecting the action. Hence, action selection can be markedly improved
by separating the Q value calculation and selection, with the evaluation and target networks
as the double DQN. The evaluation network selects the largest Q value. In Section 2, the
target network was expressed using Equation (5), which calculates the target Q value
through the action selected in the evaluation network. Thus, the Q value updated using the
D3QN is expressed as follows:

Q(st, at; θ−) = r + γ(V(st; θ) + A
(

st, argmax
at+1

Q(st+1, at+1; θ−); θ

)
− 1
|A| ∑

at+1

A
(

st, argmax
at+1

Q(st+1, at+1; θ−); θ

) (22)Sensors 2022, 22, x FOR PEER REVIEW 13 of 26 
 

 

 

Figure 5. Network architecture of D3QN. 

The Q value of the next step was defined by the dueling DQN method as the sum of 

V and A. Here, the double DQN method selects the action 𝑎𝑡 for predicting A in the tar-

get network, and the corresponding V and A were evaluated in the evaluation network. 

The new value was updated in the target network. 

4.4.2. Proposed Scheduler 

The trained model is used as a scheduler for task processing in the SD. The DRL-

based scheduler decides the method of processing the input task, as shown in Figure 6. 

When a task is firstly arrived, the SD’s queue status, battery status, and communication 

status are collected and transmitted to the DRL-OS to determine the mode for task pro-

cessing. The modes that can be selected at this point are local, offloading, and drop. Local 

processing refers to direct processing on an SD. Since all tasks must be processed within 

a given deadline, if a task is processed beyond the deadline, the task is treated as dropped. 

However, the difference between the drop and the drop mode beforehand is that latency 

time and energy consumption for task processing occur in drop by the deadline exceeded. 

The proposed DRL-OS processes a task using one of three modes: local mode, remote 

mode, and drop mode, based on SD and MEC status information. Figure 6 is a visualiza-

tion of the process of DRL-OS, and the process is as follows. 

Figure 5. Network architecture of D3QN.



Sensors 2022, 22, 9212 13 of 26

The Q value of the next step was defined by the dueling DQN method as the sum of V
and A. Here, the double DQN method selects the action at for predicting A in the target
network, and the corresponding V and A were evaluated in the evaluation network. The
new value was updated in the target network.

4.4.2. Proposed Scheduler

The trained model is used as a scheduler for task processing in the SD. The DRL-based
scheduler decides the method of processing the input task, as shown in Figure 6. When a
task is firstly arrived, the SD’s queue status, battery status, and communication status are
collected and transmitted to the DRL-OS to determine the mode for task processing. The
modes that can be selected at this point are local, offloading, and drop. Local processing
refers to direct processing on an SD. Since all tasks must be processed within a given
deadline, if a task is processed beyond the deadline, the task is treated as dropped. However,
the difference between the drop and the drop mode beforehand is that latency time and
energy consumption for task processing occur in drop by the deadline exceeded. The
proposed DRL-OS processes a task using one of three modes: local mode, remote mode,
and drop mode, based on SD and MEC status information. Figure 6 is a visualization of the
process of DRL-OS, and the process is as follows.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 6. Scenario of the MEC system. 

First, when a new task occurs in the SD, the SD collects its own state information and 

the state information of the MEC, and then selects a processing mode using the pre-trained 

DRL-OS. The local mode is a mode in which tasks are directly processed in the SD, and 

both latency and power consumption are large. The remote mode is a mode in which tasks 

are processed by the MEC. Both latency and power consumption are less than those in the 

local mode, but the latency may increase because the MEC can receive processing requests 

from multiple SDs. Finally, the drop mode is a mode in which a task is dropped in advance 

without attempting to process it when it is expected that the task will not be processed 

within the deadline. In principle, all tasks must be processed within the specified dead-

lines, and tasks that are not processed within the deadline are treated as dropped even if 

the task processing is completed. Therefore, when a task is preemptively dropped through 

the drop mode, there is an advantage in that no waste of computing resources occurs due 

to an attempt to process the task. 

When the processing mode is determined through the DRL-OS, the SD transfers the 

task to the queue of the selected processing mode, and in each processing queue, tasks are 

sequentially processed in the order in which the tasks arrived. 

5. Experimental Results 

In this section, the simulation results are discussed to prove the effectiveness of the 

proposed DRL-based scheduler. First, the simulation settings are presented. Next, the sim-

ulation results with various parameters are analyzed. 

5.1. Experimental Setting 

The basic simulation settings for performance evaluation are as follows. We per-

formed simulation on a computer with a hexacore Intel i7 CPU and a 3.7-GHz, 16-GB 

Figure 6. Scenario of the MEC system.

First, when a new task occurs in the SD, the SD collects its own state information and
the state information of the MEC, and then selects a processing mode using the pre-trained
DRL-OS. The local mode is a mode in which tasks are directly processed in the SD, and
both latency and power consumption are large. The remote mode is a mode in which tasks
are processed by the MEC. Both latency and power consumption are less than those in the



Sensors 2022, 22, 9212 14 of 26

local mode, but the latency may increase because the MEC can receive processing requests
from multiple SDs. Finally, the drop mode is a mode in which a task is dropped in advance
without attempting to process it when it is expected that the task will not be processed
within the deadline. In principle, all tasks must be processed within the specified deadlines,
and tasks that are not processed within the deadline are treated as dropped even if the
task processing is completed. Therefore, when a task is preemptively dropped through the
drop mode, there is an advantage in that no waste of computing resources occurs due to an
attempt to process the task.

When the processing mode is determined through the DRL-OS, the SD transfers the
task to the queue of the selected processing mode, and in each processing queue, tasks are
sequentially processed in the order in which the tasks arrived.

5. Experimental Results

In this section, the simulation results are discussed to prove the effectiveness of the
proposed DRL-based scheduler. First, the simulation settings are presented. Next, the
simulation results with various parameters are analyzed.

5.1. Experimental Setting

The basic simulation settings for performance evaluation are as follows. We performed
simulation on a computer with a hexacore Intel i7 CPU and a 3.7-GHz, 16-GB RAM
processor. The program was written with TensorFlow 2.8.0 in Python 3.9.7. The task size
and deadline were uniformly distributed with K ∈ [50, 450] KB and D ∈ [100, 300] ms,
respectively. The required CPU cycles/bit was 1000. The initial queues of the SD and MEC
server were δproc = 0, δtran = 0, and δMEC = 0, respectively. A battery with a capacity
of 4500 mAh powered the SD. For the simulation, we assumed half the battery capacity
(i.e., 2250 mAh). Table 2 lists the key simulation parameters and Table 3 summarizes the
hyperparameters with an average score acquired through optimization tuning.

Table 2. Simulation Parameters.

Parameters Settings

5G data rate 100 Mbps
Wi-Fi data rate 200 Mbps

Transmission Power, Ptr 24 dBM [36]

Input task size, K 50–450 KB
Default: 400 KB

Required CPU cycles per bit 1000 CPU cycles/bit
Local computational capability, F loc [

2.34× 109] CPU cycles/s
MEC computational capability, FMEC [

2.4× 109] CPU cycles/s
Local CPU core 8

Edge node CPU core 128
Weight factor 0.5

Table 3. Hyper Parameters.

Parameters Value

Learning rate 0.0005
Discount factor 0.99

Min epsilon 0.05
Init epsilon 0.99

Epsilon decay 0.00002
Batch size 64
Episodes 1200

To indicate the simulation result in terms of battery level, the energy consumption
was converted into battery consumption and then subtracted from the residual amount



Sensors 2022, 22, 9212 15 of 26

of battery charge. We assumed that every device had the same processing performance
and were placed at the same distance from the MEC. Thus, every device consumed the
same power. Moreover, the mobile device and MEC server used 5G/Wi-Fi communication
protocols. When data were transmitted by offloading, one of these types was randomly
selected. Identical weights were chosen for the latency and energy of each application task.
The simulation scenario contains five wearable devices, 10 SDs, and 1 MEC server.

The occurrence interval of each datum was 100 ms, which was set as one round. Five
hundred rounds were set as one scenario, and each scenario was carried out with different
simulation parameter settings. An average of 500 rounds was output for each metric.

Three performance metrics were considered to evaluate the method efficiency: drop
rate, average residual battery charge, and average latency. The performance of the proposed
scheduler was compared with five offloading schemes described below:

• A local scheme which computes tasks locally by allowing offloading decision parame-
ter without task offloading;

• A remote scheme which processes tasks by offloading them to an MEC server through
a transmission queue instead of processing them locally;

• A random scheme [41] which performs computation by randomly selecting local and
offloading regardless of the task size and network condition;

• An optimal scheme selects and performs optimal decisions by determining the mini-
mum energy and latency costs;

• A rule-based scheme [14] is an offloading decision method that considers the queue
status to minimize the latency.

5.2. Simulation Results and Discussion
5.2.1. Convergence Analysis

Figure 7 illustrates the convergence curve of the average reward for 800 epochs. The
x-axis represents the number of episodes of the learning process, and the y-axis represents
the average reward of all epochs. For 1200 episodes, ε decreased from 0.99 to 0.05, and
the discount factor was set to 0.99. According to the graph, the random exploration was
terminated at the 1000th episode, and convergence was initiated subsequently.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 26 
 

 

⚫ An optimal scheme selects and performs optimal decisions by determining the min-

imum energy and latency costs; 

⚫ A rule-based scheme [14] is an offloading decision method that considers the queue 

status to minimize the latency. 

5.2. Simulation Results and Discussion 

5.2.1. Convergence Analysis 

Figure 7 illustrates the convergence curve of the average reward for 800 epochs. The 

x-axis represents the number of episodes of the learning process, and the y-axis represents 

the average reward of all epochs. For 1200 episodes, 𝜀 decreased from 0.99 to 0.05, and 

the discount factor was set to 0.99. According to the graph, the random exploration was 

terminated at the 1000th episode, and convergence was initiated subsequently. 

 

Figure 7. Convergence of the D3QN-based Scheme. 

5.2.2. Impact of Task Size Analysis 

This section presents the simulation of the change in the performance of the DRL-OS 

with task. In all figures, the task size axis outputs the average of 500 rounds performed 

whenever one input task size was set. 

Figure 8 depicts the average of the actions according to the increase in task size. First, 

the DRL-OS maintains an action of 1.0 and gradually increases to 1.2 from 380 KB. Until 

380 KB, tasks were processed by offloading them to the MEC server, but the ratio of the 

tasks that selected a drop action increased with the task size. This indicates that most tasks 

were processed by offloading, but the action for the drop was also being executed simul-

taneously. As shown in Figure 8, Local Only maintains the average action at zero because 

every task is processed locally. Remote Only maintains the average action value at 1.0, 

because the tasks are processed by offloading. The random method progresses toward a 

uniform distribution based on the average action value of 1.0. The optimal scheme main-

tains the action at 1.0, similar to DRL-OS, and a gradual increase begins at 380 KB. Up to 

380 KB, tasks are offloaded to the MEC; however, the decision rate of drop actions are also 

increased as the task size increases. For most task sizes below 380 KB, the optimal scheme 

selects the offloading action and if the size exceeds 380 KB, it chooses the drop action to 

avoid wasting time and battery. The rule-based scheme maintains an average action of 

1.0, gradually decreasing below 1.0 from 380 KB. This is because the local action selection 

increases due to increased task size as the remote processing time become more significant 

than the local processing time. 

Figure 7. Convergence of the D3QN-based Scheme.



Sensors 2022, 22, 9212 16 of 26

5.2.2. Impact of Task Size Analysis

This section presents the simulation of the change in the performance of the DRL-OS
with task. In all figures, the task size axis outputs the average of 500 rounds performed
whenever one input task size was set.

Figure 8 depicts the average of the actions according to the increase in task size. First,
the DRL-OS maintains an action of 1.0 and gradually increases to 1.2 from 380 KB. Until
380 KB, tasks were processed by offloading them to the MEC server, but the ratio of the
tasks that selected a drop action increased with the task size. This indicates that most
tasks were processed by offloading, but the action for the drop was also being executed
simultaneously. As shown in Figure 8, Local Only maintains the average action at zero
because every task is processed locally. Remote Only maintains the average action value at
1.0, because the tasks are processed by offloading. The random method progresses toward
a uniform distribution based on the average action value of 1.0. The optimal scheme
maintains the action at 1.0, similar to DRL-OS, and a gradual increase begins at 380 KB.
Up to 380 KB, tasks are offloaded to the MEC; however, the decision rate of drop actions
are also increased as the task size increases. For most task sizes below 380 KB, the optimal
scheme selects the offloading action and if the size exceeds 380 KB, it chooses the drop
action to avoid wasting time and battery. The rule-based scheme maintains an average
action of 1.0, gradually decreasing below 1.0 from 380 KB. This is because the local action
selection increases due to increased task size as the remote processing time become more
significant than the local processing time.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 8. Task average action vs. input size. 

Figure 9 illustrates the changes in the average residual battery charge with respect to 

the task size. First, as expected, the DRL-OS maintained a high average residual battery 

charge without significant changes, even as the task size increased. The average residual 

battery charge slightly increased compared with that for Remote Only because certain 

tasks were dropped after 380 KB. Similarly, Remote Only also maintained the average 

residual battery charge, which is similar to that of the DRL-OS technique, albeit margin-

ally less than that at 380 KB. This is because Remote Only continues to offload even if the 

task size increases, which makes it impossible to process tasks. Regarding the Random 

method, we observed that the average residual battery charge steadily declined. As for 

Local Only, the average residual battery charge plummeted since the start and stagnated 

from 240 KB. 

 

Figure 9. Average residual battery vs. input task size. 

Because it is impossible to process within 100 ms from this size locally, the amount 

of battery charge consumed for 100 ms is always measured. Even if the task size increases, 

the optimal scheme shows no significant changes in the average residual battery charge 

because some tasks are dropped at 380 KB for an optimal offloading decision. In the rule-

based scheme, the average residual battery does not change until the task size reaches 380 

Figure 8. Task average action vs. input size.

Figure 9 illustrates the changes in the average residual battery charge with respect to
the task size. First, as expected, the DRL-OS maintained a high average residual battery
charge without significant changes, even as the task size increased. The average residual
battery charge slightly increased compared with that for Remote Only because certain tasks
were dropped after 380 KB. Similarly, Remote Only also maintained the average residual
battery charge, which is similar to that of the DRL-OS technique, albeit marginally less
than that at 380 KB. This is because Remote Only continues to offload even if the task size
increases, which makes it impossible to process tasks. Regarding the Random method, we
observed that the average residual battery charge steadily declined. As for Local Only, the
average residual battery charge plummeted since the start and stagnated from 240 KB.



Sensors 2022, 22, 9212 17 of 26

Sensors 2022, 22, x FOR PEER REVIEW 17 of 26 
 

 

 

Figure 8. Task average action vs. input size. 

Figure 9 illustrates the changes in the average residual battery charge with respect to 

the task size. First, as expected, the DRL-OS maintained a high average residual battery 

charge without significant changes, even as the task size increased. The average residual 

battery charge slightly increased compared with that for Remote Only because certain 

tasks were dropped after 380 KB. Similarly, Remote Only also maintained the average 

residual battery charge, which is similar to that of the DRL-OS technique, albeit margin-

ally less than that at 380 KB. This is because Remote Only continues to offload even if the 

task size increases, which makes it impossible to process tasks. Regarding the Random 

method, we observed that the average residual battery charge steadily declined. As for 

Local Only, the average residual battery charge plummeted since the start and stagnated 

from 240 KB. 

 

Figure 9. Average residual battery vs. input task size. 

Because it is impossible to process within 100 ms from this size locally, the amount 

of battery charge consumed for 100 ms is always measured. Even if the task size increases, 

the optimal scheme shows no significant changes in the average residual battery charge 

because some tasks are dropped at 380 KB for an optimal offloading decision. In the rule-

based scheme, the average residual battery does not change until the task size reaches 380 

Figure 9. Average residual battery vs. input task size.

Because it is impossible to process within 100 ms from this size locally, the amount of
battery charge consumed for 100 ms is always measured. Even if the task size increases, the
optimal scheme shows no significant changes in the average residual battery charge because
some tasks are dropped at 380 KB for an optimal offloading decision. In the rule-based
scheme, the average residual battery does not change until the task size reaches 380 KB and
decreases from 380 KB. If the task size exceeds 380 KB, it decreases because some tasks are
processed locally.

Figure 10 illustrates the result of drop rate according to the task size. First, the drop
rate of DRL-OS is constant from 0 to 300 KB; then, it increases rapidly at 380 KB and then
increases linearly. This is because from 380 KB, a few tasks are dropped as tasks begin
to accumulate in the queue. However, Figure 10 shows that the ratio of dropped tasks is
significantly less than those of the other schemes.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 26 
 

 

KB and decreases from 380 KB. If the task size exceeds 380 KB, it decreases because some 

tasks are processed locally. 

Figure 10 illustrates the result of drop rate according to the task size. First, the drop 

rate of DRL-OS is constant from 0 to 300 KB; then, it increases rapidly at 380 KB and then 

increases linearly. This is because from 380 KB, a few tasks are dropped as tasks begin to 

accumulate in the queue. However, Figure 10 shows that the ratio of dropped tasks is 

significantly less than those of the other schemes. 

 

Figure 10. Task drop rate vs. input task size. 

Remote Only also exhibited a drop rate similar to that of DRL-OS when the task size 

was small; it exponentially increased from 380 KB and reached 1.0. In other words, all 

tasks were processed as being dropped. This is because Remote Only unconditionally of-

floads regardless of the state of the MEC server, and the MEC server unconditionally at-

tempts to process it regardless of the possibility. Therefore, while resource consumption 

due to the processing attempt remained the same, almost all tasks breached the deadline. 

Consequently, the corresponding tasks were processed as being dropped. In addition, as 

a task occurs every 100 ms, tasks awaiting processing are accumulated in the MEC server’s 

queue as the number of tasks exceeding the deadline increases. 

Therefore, the method is caught in a tedious cycle of attempting to process the task, 

then attempting to process the dropping of tasks, and finally processing the failed itera-

tions. Thus, no amount of processing can be completed through offloading. In the Local 

Only method, the drop rate remains 0 for a small task size, but rapidly increases from 320 

KB. This leads to a processing failure due to a cycle similar to that of the Remote Only, as 

Local Only cannot process tasks within the deadline from 230 KB. In the random scheme, 

the drop rate is maintained below 0.4 from the initial stage to 230 KB. From 230 KB, how-

ever, it increases beyond 0.6; we confirmed that more than half of the tasks were dropped. 

Figure 10 demonstrates that the drop action is in progress through the average action 

value of the random scheme. The optimal scheme maintains the drop rate at 0 until the 

task size exceeds 380 KB. From the task size of 380 KB, the drop rate increases stepwise, 

and the increase is smaller than the DRL. The reason is that in the case of optimal scheme, 

the task that cannot be processed is accurately identified and dropped, so there is no ex-

cess of the deadline due to queue accumulation at all. In the case of DRL, there is a differ-

ence in the drop rate from the Optimal because the selection was inconsistent with the 

Optimal. For small task sizes, the rule-based scheme shows drop rates similar to that of 

DRL-OS and the optimal scheme. Then, it exponentially increased to 0.9 from the task size 

Figure 10. Task drop rate vs. input task size.



Sensors 2022, 22, 9212 18 of 26

Remote Only also exhibited a drop rate similar to that of DRL-OS when the task size
was small; it exponentially increased from 380 KB and reached 1.0. In other words, all
tasks were processed as being dropped. This is because Remote Only unconditionally
offloads regardless of the state of the MEC server, and the MEC server unconditionally
attempts to process it regardless of the possibility. Therefore, while resource consumption
due to the processing attempt remained the same, almost all tasks breached the deadline.
Consequently, the corresponding tasks were processed as being dropped. In addition, as a
task occurs every 100 ms, tasks awaiting processing are accumulated in the MEC server’s
queue as the number of tasks exceeding the deadline increases.

Therefore, the method is caught in a tedious cycle of attempting to process the task,
then attempting to process the dropping of tasks, and finally processing the failed iterations.
Thus, no amount of processing can be completed through offloading. In the Local Only
method, the drop rate remains 0 for a small task size, but rapidly increases from 320 KB.
This leads to a processing failure due to a cycle similar to that of the Remote Only, as Local
Only cannot process tasks within the deadline from 230 KB. In the random scheme, the
drop rate is maintained below 0.4 from the initial stage to 230 KB. From 230 KB, however,
it increases beyond 0.6; we confirmed that more than half of the tasks were dropped.
Figure 10 demonstrates that the drop action is in progress through the average action value
of the random scheme. The optimal scheme maintains the drop rate at 0 until the task size
exceeds 380 KB. From the task size of 380 KB, the drop rate increases stepwise, and the
increase is smaller than the DRL. The reason is that in the case of optimal scheme, the task
that cannot be processed is accurately identified and dropped, so there is no excess of the
deadline due to queue accumulation at all. In the case of DRL, there is a difference in the
drop rate from the Optimal because the selection was inconsistent with the Optimal. For
small task sizes, the rule-based scheme shows drop rates similar to that of DRL-OS and the
optimal scheme. Then, it exponentially increased to 0.9 from the task size of 380 KB. This
leads to processing failures similar to that observed in the Remote Only as the Rule-based
scheme cannot process tasks within the deadline.

Figure 11 shows the average latency results with respect to the task size. The average
latency in Local Only increases rapidly from start to task size of 230 KB and is not calculated
when it exceeds 230 KB. This is because the latency calculation is performed only for the
task that has been successfully processed. If the task size exceeds 230 KB, the Local Only
cannot process the task within the deadline. Moreover, Local Only consumes time and
battery regardless of whether tasks are dropped because it attempts to process tasks even
after the deadline. Therefore, when the deadline is breached, the task is processed and
then dropped. The random scheme performs parallel processing using local and remote
when the task size is small. Therefore, it has a small latency compared to Local Only. If the
task size exceeds 230 KB, it has only latency due to remote processing because it cannot
be processed locally. However, the queuing delay is short because the task is processed
once every 300 ms, that is, three times the generation period on average. DRL-OS, Remote
Only, Optimal, and rule-based have almost the same average latency because tasks are
processed remotely up to a task size of 380 KB. In addition, the queuing delay is slightly
higher than that of random because the average period of accumulating tasks in the queue
is approximately 100 ms, which is shorter than the average period of random. If the task
size exceeds 380 KB, the rule-based parallelizes local and remote, unlike the other three
schemes. However, it takes only processing time by offloading because local processing
is impossible due to the excess of the deadline. As more remote processing is attempted
compared to Optimal or DRL-OS, a relatively long latency due to queuing occurs.



Sensors 2022, 22, 9212 19 of 26

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

of 380 KB. This leads to processing failures similar to that observed in the Remote Only as 

the Rule-based scheme cannot process tasks within the deadline. 

Figure 11 shows the average latency results with respect to the task size. The average 

latency in Local Only increases rapidly from start to task size of 230 KB and is not calcu-

lated when it exceeds 230 KB. This is because the latency calculation is performed only for 

the task that has been successfully processed. If the task size exceeds 230 KB, the Local 

Only cannot process the task within the deadline. Moreover, Local Only consumes time 

and battery regardless of whether tasks are dropped because it attempts to process tasks 

even after the deadline. Therefore, when the deadline is breached, the task is processed 

and then dropped. The random scheme performs parallel processing using local and re-

mote when the task size is small. Therefore, it has a small latency compared to Local Only. 

If the task size exceeds 230 KB, it has only latency due to remote processing because it 

cannot be processed locally. However, the queuing delay is short because the task is pro-

cessed once every 300 ms, that is, three times the generation period on average. DRL-OS, 

Remote Only, Optimal, and rule-based have almost the same average latency because 

tasks are processed remotely up to a task size of 380 KB. In addition, the queuing delay is 

slightly higher than that of random because the average period of accumulating tasks in 

the queue is approximately 100 ms, which is shorter than the average period of random. 

If the task size exceeds 380 KB, the rule-based parallelizes local and remote, unlike the 

other three schemes. However, it takes only processing time by offloading because local 

processing is impossible due to the excess of the deadline. As more remote processing is 

attempted compared to Optimal or DRL-OS, a relatively long latency due to queuing oc-

curs. 

 

Figure 11. Average latency vs. input task size. 

When the task size reaches 450 KB, most of the tasks are dropped due to exceeding 

the deadline. Moreover, the latency is lower than that at 445 KB because the latency is 

calculated only for tasks processed successfully at the beginning of the round. However, 

as the drop rate is almost 100%, it is not a statistically significant value. For Remote Only, 

all processing is attempted remotely, but unlike rule-based, deadline exceeding due to 

queuing delay occurs from the initial round. In addition, the number of successfully pro-

cessed tasks is small, and as it is the latency for the tasks processed in the beginning, it is 

shorter than that of the rule-based. As Optimal selects a drop action if it is not a task that 

can be processed, the other tasks are processed well except for the task determined to be 

dropped. Notably, the unprocessable tasks are dropped every task generation cycle and 

the queuing delay is reduced; therefore, the latency is shorter than that in the other three 

schemes. DRL-OS parallelizes drop and remote processing similar to Optimal. However, 

Figure 11. Average latency vs. input task size.

When the task size reaches 450 KB, most of the tasks are dropped due to exceeding
the deadline. Moreover, the latency is lower than that at 445 KB because the latency is
calculated only for tasks processed successfully at the beginning of the round. However, as
the drop rate is almost 100%, it is not a statistically significant value. For Remote Only, all
processing is attempted remotely, but unlike rule-based, deadline exceeding due to queuing
delay occurs from the initial round. In addition, the number of successfully processed
tasks is small, and as it is the latency for the tasks processed in the beginning, it is shorter
than that of the rule-based. As Optimal selects a drop action if it is not a task that can be
processed, the other tasks are processed well except for the task determined to be dropped.
Notably, the unprocessable tasks are dropped every task generation cycle and the queuing
delay is reduced; therefore, the latency is shorter than that in the other three schemes.
DRL-OS parallelizes drop and remote processing similar to Optimal. However, as it does
not determine unprocessable tasks similar to Optimal, and some tasks are further delivered
to the remote, resulting in latency due to queuing delay.

5.2.3. Impact of Deadline Analysis

In this section, the effect of a variable deadline on the performance of the scheduler is
discussed. A smaller deadline implies a higher sensitivity to delays. Thus, the performance
is verified through various indices with variable deadlines, and the results are analyzed.
(These results must be added to the task size). In the simulation, the occurrence interval
cycle of each data was 100 ms, and the task size was fixed to 80 KB. Deadline D_i increased
variably by 10 ms from 100 to 300 ms.

Figure 12 illustrates the results of the average action with respect to the deadline. The
average action of DRL-OS was greater than 1 until 150 ms. This indicates that the offloading
and drop modes were selected simultaneously. However, in cases where the processing
time exceeds the deadline (150 ms), the average action decreases to 0.98, which indicates
that the tasks are remotely processed up to 150 ms, while a few are processed as dropped if
they demand a considerably longer time than the deadline. However, the average action
decreases below 1.0 if the deadline exceeds 150 ms, and then the tasks are processed locally
and remotely in parallel. Near the deadline of 150 ms, a considerable volume of tasks are
selected for local processing owing to their relatively short deadlines. As the deadline
increases, the processing of offloading increases very slightly again. However, the change
is minuscule, and the performance is virtually the same. The average action of the optimal
scheme was greater than 1 until the deadline reached 170 ms. This shows that the drop and
offloading actions are selected. If the deadline exceeds 160 ms, the average action decreases



Sensors 2022, 22, 9212 20 of 26

to 0.98, as some tasks are processed locally. Moreover, when the deadline is 100 ms, Optimal
has a more significant average action than DRL-OS. This means that more drop actions are
selected. In the Rule-based scheme, the tasks are processed locally and remotely in parallel,
and the selected actions are almost the same in all rounds because the task size does not
change. The performance of Remote Only did not change because the average action is 1.0,
and all tasks were remotely processed regardless of the deadline. The average action of the
random method has an action value of approximately 1.0 because of the uniform selection
of the three modes. Local Only has an average action value of 0 because it only selects local
processing for the task.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

as it does not determine unprocessable tasks similar to Optimal, and some tasks are fur-

ther delivered to the remote, resulting in latency due to queuing delay. 

5.2.3. Impact of Deadline Analysis 

In this section, the effect of a variable deadline on the performance of the scheduler 

is discussed. A smaller deadline implies a higher sensitivity to delays. Thus, the perfor-

mance is verified through various indices with variable deadlines, and the results are an-

alyzed. (These results must be added to the task size). In the simulation, the occurrence 

interval cycle of each data was 100 ms, and the task size was fixed to 80 KB. Deadline D_i 

increased variably by 10 ms from 100 to 300 ms. 

Figure 12 illustrates the results of the average action with respect to the deadline. The 

average action of DRL-OS was greater than 1 until 150 ms. This indicates that the offload-

ing and drop modes were selected simultaneously. However, in cases where the pro-

cessing time exceeds the deadline (150 ms), the average action decreases to 0.98, which 

indicates that the tasks are remotely processed up to 150 ms, while a few are processed as 

dropped if they demand a considerably longer time than the deadline. However, the av-

erage action decreases below 1.0 if the deadline exceeds 150 ms, and then the tasks are 

processed locally and remotely in parallel. Near the deadline of 150 ms, a considerable 

volume of tasks are selected for local processing owing to their relatively short deadlines. 

As the deadline increases, the processing of offloading increases very slightly again. How-

ever, the change is minuscule, and the performance is virtually the same. The average 

action of the optimal scheme was greater than 1 until the deadline reached 170 ms. This 

shows that the drop and offloading actions are selected. If the deadline exceeds 160 ms, 

the average action decreases to 0.98, as some tasks are processed locally. Moreover, when 

the deadline is 100 ms, Optimal has a more significant average action than DRL-OS. This 

means that more drop actions are selected. In the Rule-based scheme, the tasks are pro-

cessed locally and remotely in parallel, and the selected actions are almost the same in all 

rounds because the task size does not change. The performance of Remote Only did not 

change because the average action is 1.0, and all tasks were remotely processed regardless 

of the deadline. The average action of the random method has an action value of approx-

imately 1.0 because of the uniform selection of the three modes. Local Only has an average 

action value of 0 because it only selects local processing for the task. 

 

Figure 12. Average action vs. deadline. 

Figure 13 depicts the average residual battery capacity with respect to the deadline. 

At 150 ms, the average residual battery capacity of the DRL-OS decreases, and does not 

Figure 12. Average action vs. deadline.

Figure 13 depicts the average residual battery capacity with respect to the deadline.
At 150 ms, the average residual battery capacity of the DRL-OS decreases, and does not
undergo any significant changes even when the deadline is changed. Offloading and drop
actions were selected in parallel from 100 to 150 ms, while offloading and local actions were
paralleled from 150 ms, at which no drop actions were selected, thus slightly increasing the
battery consumption.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 26 
 

 

undergo any significant changes even when the deadline is changed. Offloading and drop 

actions were selected in parallel from 100 to 150 ms, while offloading and local actions 

were paralleled from 150 ms, at which no drop actions were selected, thus slightly increas-

ing the battery consumption. 

 

Figure 13. Average residual battery vs. deadline. 

However, because most tasks were processed in the remote mode, the average bat-

tery level remained at 2200 mAh despite a few tasks being processed in the local mode. 

As the deadline was extended, the proportion of the tasks processed in the remote mode 

increased, such that the residual battery capacity also increased. In the optimal scheme, at 

the deadline of 170 ms, the average battery charge drops to 2200 mAh and remains con-

stant. This is because local processing is increased at the deadline of 170 ms. However, the 

longer the deadline, the more tasks the remote can handle, and therefore, the average bat-

tery charge increases slightly. As the rule-based scheme only considers time, it has the 

same average residual battery charge regardless of the change in the deadline. In the ran-

dom scheme, unlike the DRL-OS and remote scheme, the battery consumption increased 

due to the proportion of tasks processed in the local mode because the capacity was uni-

formly selected from the local, remote, and drop action. In this aspect, Local Only records 

the lowest battery level because it forces only the local mode that consumes the most bat-

tery power. 

Figure 14 illustrates the result of the drop rate of the task with respect to the deadline. 

In DRL-OS, an average of approximately 40% drop occurs before the deadline of 160 ms, 

at which the action value is ≥1.0, as shown in Figure 12. However, if it exceeds 160 KB, 

most of the tasks are processed successfully. The random mode exhibits a drop rate of 

approximately 66% at the deadline of 100 ms. The rate remains unchanged until 170 ms, 

even with a deadline extension. The deadline is shortened from 180 ms, and subsequently 

a drop rate of 40–50% occurs. In the Optimal scheme, a small drop occurs initially in the 

deadline. However, the tasks are processed without drops from the deadline of 180 ms 

because the number of tasks that needed to be locally processed increased. The rule-based 

scheme has a task drop rate of 0.7 from the deadline of 100 ms. 

Figure 13. Average residual battery vs. deadline.



Sensors 2022, 22, 9212 21 of 26

However, because most tasks were processed in the remote mode, the average battery
level remained at 2200 mAh despite a few tasks being processed in the local mode. As
the deadline was extended, the proportion of the tasks processed in the remote mode
increased, such that the residual battery capacity also increased. In the optimal scheme,
at the deadline of 170 ms, the average battery charge drops to 2200 mAh and remains
constant. This is because local processing is increased at the deadline of 170 ms. However,
the longer the deadline, the more tasks the remote can handle, and therefore, the average
battery charge increases slightly. As the rule-based scheme only considers time, it has
the same average residual battery charge regardless of the change in the deadline. In
the random scheme, unlike the DRL-OS and remote scheme, the battery consumption
increased due to the proportion of tasks processed in the local mode because the capacity
was uniformly selected from the local, remote, and drop action. In this aspect, Local Only
records the lowest battery level because it forces only the local mode that consumes the
most battery power.

Figure 14 illustrates the result of the drop rate of the task with respect to the deadline.
In DRL-OS, an average of approximately 40% drop occurs before the deadline of 160 ms,
at which the action value is ≥1.0, as shown in Figure 12. However, if it exceeds 160 KB,
most of the tasks are processed successfully. The random mode exhibits a drop rate of
approximately 66% at the deadline of 100 ms. The rate remains unchanged until 170 ms,
even with a deadline extension. The deadline is shortened from 180 ms, and subsequently
a drop rate of 40–50% occurs. In the Optimal scheme, a small drop occurs initially in the
deadline. However, the tasks are processed without drops from the deadline of 180 ms
because the number of tasks that needed to be locally processed increased. The rule-based
scheme has a task drop rate of 0.7 from the deadline of 100 ms.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure 14. Task drop rate vs. deadline. 

However, from the deadline of 180 ms, the tasks can be processed without drops. 

This is because, when the deadline is short, local processing is not possible, and remote 

processing is only partially possible. However, if the deadline is more than 180 ms, all 

tasks can be processed in time. Remote Only exhibits a high drop rate in all deadlines 

because the SD generates data of 400 KB in every round. As mentioned earlier, Figure 10 

confirms the 400 KB task size and the high drop rate at a deadline of 100 ms. However, as 

the deadline is further extended, the number of tasks that can be processed increases. This 

confirms that the drop rate gradually decreases. Local Only exhibits a drop rate of nearly 

100% because it cannot process most tasks within the long and short deadlines. Although 

a minimum number of tasks were processed after 180 ms, almost all were dropped as the 

number was extremely small. 

Figure 15 illustrates the average latency result with respect to the deadline. Local 

Only shows that every input task is dropped with a deadline of 100 ms to 180 ms. If the 

deadline exceeds 180 ms, the task can be processed within the deadline, and the pro-

cessing time can be calculated. As the deadline increases, the number of tasks that can be 

processed increases; therefore, the latency increases as well. The average latency of Re-

mote Only gradually increases because the number of tasks to be offloaded increases pro-

portionally with the deadline. The random scheme generally has a low latency. This is 

because only 33% of the total generated tasks from 100 ms to 170 ms are periodically pro-

cessed remotely. From the deadline of 180 ms, the average latency increases because some 

tasks assigned for local processing are also processed. In the optimal scheme, the latency 

gradually increases because the number of tasks to be processed increases proportionally 

to the deadline, similar to the Remote Only scheme. However, it has a steeper increment 

to the Remote Only because more tasks are processed. In the rule-based scheme, when the 

deadline is small, the drop rate and latency increase due to the accumulation of remote 

queues. However, if the deadline is large, task processing is requested to the side with the 

shortest latency without any other consideration so that it has a consistent latency. 

Figure 14. Task drop rate vs. deadline.

However, from the deadline of 180 ms, the tasks can be processed without drops.
This is because, when the deadline is short, local processing is not possible, and remote
processing is only partially possible. However, if the deadline is more than 180 ms, all
tasks can be processed in time. Remote Only exhibits a high drop rate in all deadlines
because the SD generates data of 400 KB in every round. As mentioned earlier, Figure 10
confirms the 400 KB task size and the high drop rate at a deadline of 100 ms. However, as
the deadline is further extended, the number of tasks that can be processed increases. This
confirms that the drop rate gradually decreases. Local Only exhibits a drop rate of nearly
100% because it cannot process most tasks within the long and short deadlines. Although a



Sensors 2022, 22, 9212 22 of 26

minimum number of tasks were processed after 180 ms, almost all were dropped as the
number was extremely small.

Figure 15 illustrates the average latency result with respect to the deadline. Local Only
shows that every input task is dropped with a deadline of 100 ms to 180 ms. If the deadline
exceeds 180 ms, the task can be processed within the deadline, and the processing time
can be calculated. As the deadline increases, the number of tasks that can be processed
increases; therefore, the latency increases as well. The average latency of Remote Only
gradually increases because the number of tasks to be offloaded increases proportionally
with the deadline. The random scheme generally has a low latency. This is because only
33% of the total generated tasks from 100 ms to 170 ms are periodically processed remotely.
From the deadline of 180 ms, the average latency increases because some tasks assigned for
local processing are also processed. In the optimal scheme, the latency gradually increases
because the number of tasks to be processed increases proportionally to the deadline,
similar to the Remote Only scheme. However, it has a steeper increment to the Remote
Only because more tasks are processed. In the rule-based scheme, when the deadline
is small, the drop rate and latency increase due to the accumulation of remote queues.
However, if the deadline is large, task processing is requested to the side with the shortest
latency without any other consideration so that it has a consistent latency.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 26 
 

 

 

Figure 15. Average latency vs. deadline. 

DRL-OS only handles tasks remotely when the deadline is between 100 ms and 140 

ms. Then, after 150 ms, some tasks can be processed locally, and there is an effect of re-

ducing the latency by parallel processing. When the deadline is 170 ms or more, the la-

tency gradually increases as the ratio of the remote increases. Moreover, the local pro-

cessing increased as most data were processed remotely, and the model risks breaching 

the deadline if the number of tasks to be offloaded is increased further. Therefore, the task 

was processed locally so that it would not be dropped. The cost of local processing would 

have been smaller than the cost of dropping. The offloading mode, which incurred a 

smaller cost, was selected as the energy cost was higher between the delay time cost ac-

cording to remote processing and the local energy cost. Therefore, the farther the deadline, 

the more significant the proportion of the remote mode because the waiting time in the 

remote mode becomes longer and the processing time increases. Nonetheless, it had a 

smaller value compared with the Remote Only or Local Only modes. 

Although this study presents a comprehensive analysis of the computation offload-

ing scheduling problem from the perspective of SDs, further work is necessary to compare 

the results with previous studies (for instance, comparison with offloading scheduling 

from the perspective of MEC). In addition, statistical hypothesis tests conducted on the 

proposed scheme and the measurements of the remaining schemes confirmed that there 

were statistically significant differences in the measurement results obtained through the 

applied metric. The results of this section confirmed that the DRL-OS method outperforms 

existing models in various aspects with variable deadlines 

6. Conclusions 

This study proposed the DRL-OS, which uses energy balance to select between meth-

ods based on local computing, offloading, or dropping for performing a task. We investi-

gated the computation task offloading problem for computation-intensive and delay-sen-

sitive tasks in an MEC environment. We designed the DRL-OS using the D3QN, which 

enabled offloading decision making to minimize costs in terms of both delay and energy 

of the SD. We considered deadlines in addition to latency and energy consumption and 

formulated the optimization scheduling strategy that considered the benefits of reducing 

the task dropping of applications. To analyze the performance of the scheduler, three con-

ventional offloading methods, i.e., local, remote, and random, were simulated in a sce-

nario where the task size and deadline varied. The simulation result confirmed that the 

proposed algorithm guaranteed a higher battery level, a lower average latency, and a 

lower task drop ratio than other methods. 

Figure 15. Average latency vs. deadline.

DRL-OS only handles tasks remotely when the deadline is between 100 ms and 140 ms.
Then, after 150 ms, some tasks can be processed locally, and there is an effect of reducing the
latency by parallel processing. When the deadline is 170 ms or more, the latency gradually
increases as the ratio of the remote increases. Moreover, the local processing increased
as most data were processed remotely, and the model risks breaching the deadline if the
number of tasks to be offloaded is increased further. Therefore, the task was processed
locally so that it would not be dropped. The cost of local processing would have been
smaller than the cost of dropping. The offloading mode, which incurred a smaller cost,
was selected as the energy cost was higher between the delay time cost according to
remote processing and the local energy cost. Therefore, the farther the deadline, the more
significant the proportion of the remote mode because the waiting time in the remote mode
becomes longer and the processing time increases. Nonetheless, it had a smaller value
compared with the Remote Only or Local Only modes.



Sensors 2022, 22, 9212 23 of 26

Although this study presents a comprehensive analysis of the computation offloading
scheduling problem from the perspective of SDs, further work is necessary to compare
the results with previous studies (for instance, comparison with offloading scheduling
from the perspective of MEC). In addition, statistical hypothesis tests conducted on the
proposed scheme and the measurements of the remaining schemes confirmed that there
were statistically significant differences in the measurement results obtained through the
applied metric. The results of this section confirmed that the DRL-OS method outperforms
existing models in various aspects with variable deadlines

6. Conclusions

This study proposed the DRL-OS, which uses energy balance to select between meth-
ods based on local computing, offloading, or dropping for performing a task. We inves-
tigated the computation task offloading problem for computation-intensive and delay-
sensitive tasks in an MEC environment. We designed the DRL-OS using the D3QN, which
enabled offloading decision making to minimize costs in terms of both delay and energy
of the SD. We considered deadlines in addition to latency and energy consumption and
formulated the optimization scheduling strategy that considered the benefits of reducing
the task dropping of applications. To analyze the performance of the scheduler, three
conventional offloading methods, i.e., local, remote, and random, were simulated in a
scenario where the task size and deadline varied. The simulation result confirmed that the
proposed algorithm guaranteed a higher battery level, a lower average latency, and a lower
task drop ratio than other methods.

However, this study did not consider the separate processing of tasks. Hence, a
scheduling method considering the same needs to be researched. The task segmentation
feature can be significant for the high load level of an SD with limited computing resources
and battery. Therefore, hierarchical multi-tier partial offloading reflecting this feature is a
viable future direction of this research.

Author Contributions: Conceptualization, D.L. and W.L.; methodology, D.L.; software, W.L.; valida-
tion, D.L., W.L. and W.-T.K.; formal analysis, D.L.; investigation, D.L.; resources, D.L.; data curation,
D.L. and W.L.; writing—original draft preparation, D.L.; writing—review and editing, D.L.; visu-
alization, D.L. and W.L.; supervision, D.L., W.L. and W.-T.K.; project administration, I.J.; funding
acquisition, I.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Culture, Sports and Tourism R&D Program through the Korea
Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism in 2022 (Project
name: Customized tourism through AI-based tourist situation recognition and tourism information
curation development of itinerary recommendation platform technology, Project Number: R2022020116).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was supported by the Star Professor Research Program of KOREAT-
ECH in 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Sensors 2022, 22, 9212 24 of 26

Appendix A

Table A1. Summary of literatures on computation offloading.

Work Area Aim Related Work Proposed Solution

Latency based
offloading

Minimize the time consumed
by the processing of

delay-sensitive applications

[13]
The offloading problem to minimize the expected
long-term cost (latency and deadline), while considering
delay-sensitive tasks in a total offloading situation

[15]
A heuristic program segmentation algorithm in an MCC
framework to use the method based on the concept of
load balancing

[16]
[17]

A latency-aware workload offloading strategy in terms
of a new cloudlet network to minimize waiting time
Delay-tolerant and delay-sensitive tasks to achieve
optimized service delay and revenue

Energy based
offloading

Reduce the energy by
identifying the cause of
energy, considering the
battery of a device with
portability constraints

[18]
[19]
[20]
[21]
[22]

An energy-optimal mobile computing framework to
process applications by locally optimized energy or
through offloading
Data transmission schedules to reduce the total energy
consumption of mobile devices in an MCC system
An optimal computation offloading algorithm for
mobile users in intermittently connected
cloudlet systems
The variability of features of mobile devices and user
preferences to research an efficient energy
computational offloading management method
The offloading energy optimization problem, which
considered the computation capabilities

Cost based
offloading

Reduce the cost (i.e., improve
efficiency) by considering

both waiting time and energy

[23]
Minimize the energy consumption of mobile devices
through a joint communication and computation
resource allocation algorithm in MEC System

[24] An algorithm that minimized the offloading energy
consumption according to the task deadline

[25]
An algorithm that optimized the decision on the
allocation of computational re-sources of the offloading
and MEC of mobile devices

[26] A distributed offloading algorithm to resolve
competition for wireless channels among mobile devices

References
1. Li, M.; Si, P.; Zhang, Y. Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart

city. IEEE Trans. Veh. Technol. 2018, 67, 9073–9086. [CrossRef]
2. Hao, W.; Zeng, M.; Sun, G.; Xiao, P. Edge cache-assisted secure low-latency millimeter-wave transmission. IEEE Internet Things J.

2019, 7, 1815–1825. [CrossRef]
3. Dian, F.J.; Vahidnia, R.; Rahmati, A. Wearables and the Internet of Things (IoT), applications, opportunities, and challenges: A

Survey. IEEE Access. 2020, 8, 69200–69211. [CrossRef]
4. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
5. Nguyen, Q.-H.; Dressler, F. A smartphone perspective on computation offloading—A survey. Comput. Commun. 2020, 159, 133–154.

[CrossRef]
6. Zheng, J.; Cai, Y.; Wu, Y.; Shen, X. Dynamic computation offloading for mobile cloud computing: A stochastic game-theoretic

approach. IEEE Trans. Mob. Comput. 2018, 18, 771–786. [CrossRef]
7. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-computing architectures for internet of things applications: A survey. Sensors 2020,

20, 6441. [CrossRef]
8. Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on multi-access edge computing for internet of things

realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [CrossRef]
9. Kuru, K. Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework.

IEEE Access. 2021, 9, 6571–6595. [CrossRef]

http://doi.org/10.1109/TVT.2018.2865211
http://doi.org/10.1109/JIOT.2019.2957351
http://doi.org/10.1109/ACCESS.2020.2986329
http://doi.org/10.1109/COMST.2017.2745201
http://doi.org/10.1016/j.comcom.2020.05.001
http://doi.org/10.1109/TMC.2018.2847337
http://doi.org/10.3390/s20226441
http://doi.org/10.1109/COMST.2018.2849509
http://doi.org/10.1109/ACCESS.2020.3049094


Sensors 2022, 22, 9212 25 of 26

10. Eom, H.; Juste, P.S.; Figueiredo, R.; Tickoo, O.; Illikkal, R.; Iyer, R. Machine learning-based runtime scheduler for mobile offloading
framework. In Proceedings of the 6th International Conference on Utility and Cloud Computing, Washington, DC, USA, 9–12
December 2013; Volume 2013, pp. 17–25. [CrossRef]

11. Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation offloading and resource allocation in wireless cellular networks
with mobile edge computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]

12. Ali, Z.; Jiao, L.; Baker, T.; Abbas, G.; Abbas, Z.H.; Khaf, S. A deep learning approach for energy efficient computational offloading
in mobile edge computing. IEEE Access. 2019, 7, 149623–149633. [CrossRef]

13. Tang, M.; Wong, V.W.S. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput. 2020, 21, 1985–1997. [CrossRef]

14. Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-optimal computation task scheduling for mobile-edge computing systems. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; Volume 2016,
pp. 1451–1455. [CrossRef]

15. Jia, M.; Cao, J.; Yang, L. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing.
In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 27
April–2 May 2014; Volume 2014, pp. 352–357. [CrossRef]

16. Sun, X.; Ansari, N. Latency aware workload offloading in the cloudlet network. IEEE Commun. Lett. 2017, 21, 1481–1484.
[CrossRef]

17. Samanta, A.; Chang, Z. Adaptive service offloading for revenue maximization in mobile edge computing with delay-constraint.
IEEE Internet Things J. 2019, 6, 3864–3872. [CrossRef]

18. Xiang, X.; Lin, C.; Chen, X. Energy-efficient link selection and transmission scheduling in mobile cloud computing. IEEE Wirel.
Commun. Lett. 2014, 3, 153–156. [CrossRef]

19. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under stochastic wireless
channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

20. Zhang, Y.; Niyato, D.; Wang, P. Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Trans. Mob. Comput.
2015, 14, 2516–2529. [CrossRef]

21. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C.M. An efficient computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing. IEEE ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

22. Yang, L.; Zhang, H.; Li, M.; Guo, J.; Ji, H. Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Trans.
Veh. Technol. 2018, 67, 6398–6409. [CrossRef]

23. Sardellitti, S.; Scutari, G.; Barbarossa, S. Joint optimization of radio and computational resources for multicell mobile-edge
computing. IEEE Trans. Signal Inf. Process. Netw. 2015, 1, 89–103. [CrossRef]

24. Lyu, X.; Tian, H.; Ni, W.; Zhang, Y.; Zhang, P.; Liu, R.P. Energy-efficient admission of delay-sensitive tasks for mobile edge
computing. IEEE Trans. Commun. 2018, 66, 2603–2616. [CrossRef]

25. Eshraghi, N.; Liang, B. Joint offloading decision and resource allocation with uncertain task computing requirement. In Proceedings
of the IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; Volume 2019, pp. 1414–1422.

26. Yang, L.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. A distributed computation offloading strategy in small-cell networks integrated
with mobile edge computing. IEEE ACM Trans. Netw. 2018, 26, 2762–2773. [CrossRef]

27. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
28. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. Adv. Neural. Inf. Process. Syst. 2017, 30, 6382–6393.
29. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
30. Hausknecht, M.; Stone, P. Deep reinforcement learning in parameterized action space. arXiv 2015, arXiv:1511.04143.
31. Baird, L. Residual algorithms: Reinforcement learning with function approximation. In Machine Learning Proceedings; Morgan

Kaufmann: Burlington, MA, USA, 1995; Volume 1995, pp. 30–37.
32. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. arXiv 2016, arXiv:1509.06461. [CrossRef]
33. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning.

In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1995–2003.
34. Oo, T.Z.; Tran, N.H.; Saad, W.; Niyato, D.; Han, Z.; Hong, C.S. Offloading in HetNet: A coordination of interference mitigation,

user association, and resource allocation. IEEE Trans. Mob. Comput. 2016, 16, 2276–2291. [CrossRef]
35. Dos Anjos, J.C.S.; Gross, J.L.G.; Matteussi, K.J.; González, G.V.; Leithardt, V.R.Q.; Geyer, C.F.R. An algorithm to minimize energy

consumption and elapsed time for IoT workloads in a hybrid architecture. Sensors 2021, 21, 2914. [CrossRef]
36. Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 2019,

68, 5031–5044. [CrossRef]
37. Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z. Energy-efficient dynamic computation offloading and cooperative task scheduling in

mobile cloud computing. IEEE Trans. Mob. Comput. 2018, 18, 319–333. [CrossRef]
38. Nath, S.; Wu, J.; Yang, J. Delay and energy efficiency tradeoff for information pushing system. IEEE Trans. Green Commun. Netw.

2018, 2, 1027–1040. [CrossRef]

http://doi.org/10.1109/UCC.2013.21
http://doi.org/10.1109/TWC.2017.2703901
http://doi.org/10.1109/ACCESS.2019.2947053
http://doi.org/10.1109/TMC.2020.3036871
http://doi.org/10.1109/ISIT.2016.7541539
http://doi.org/10.1109/INFCOMW.2014.6849257
http://doi.org/10.1109/LCOMM.2017.2690678
http://doi.org/10.1109/JIOT.2019.2892398
http://doi.org/10.1109/WCL.2013.122113.130825
http://doi.org/10.1109/TWC.2013.072513.121842
http://doi.org/10.1109/TMC.2015.2405539
http://doi.org/10.1109/TNET.2018.2873002
http://doi.org/10.1109/TVT.2018.2799620
http://doi.org/10.1109/TSIPN.2015.2448520
http://doi.org/10.1109/TCOMM.2018.2799937
http://doi.org/10.1109/TNET.2018.2876941
http://doi.org/10.1007/BF00992698
http://doi.org/10.1609/aaai.v30i1.10295
http://doi.org/10.1109/TMC.2016.2613864
http://doi.org/10.3390/s21092914
http://doi.org/10.1109/TVT.2019.2904244
http://doi.org/10.1109/TMC.2018.2831230
http://doi.org/10.1109/TGCN.2018.2846524


Sensors 2022, 22, 9212 26 of 26

39. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining improvements in deep reinforcement learning. In Proceedings of the AAAI Thirty-second AAAI conference on
artificial intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [CrossRef]

40. Sheng, S.; Chen, P.; Chen, Z.; Wu, L.; Yao, Y. Deep reinforcement learning-based task scheduling in iot edge computing. Sensors
2021, 21, 1666. [CrossRef]

41. Venieris, S.I.; Panopoulos, I.; Venieris, I.S. OODIn: An optimised on-device inference framework for heterogeneous mobile
devices. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA, 23–27
August 2021; Volume 2021, pp. 1–8. [CrossRef]

http://doi.org/10.1609/aaai.v32i1.11796
http://doi.org/10.3390/s21051666
http://doi.org/10.1109/SMARTCOMP52413.2021.00021

	Introduction 
	Related Work 
	Computation Offloading 
	Types of Reinforcement Learning 
	Reinforcement Learning 
	Q-Learning 
	Deep Q-Network 
	Double Deep Q-Network 
	Dueling Deep Q-Network 


	System Model 
	Components 
	Computation Model 
	Local Computing 
	Remote Edge Computing 


	DRL-Based Offloading Scheduler 
	State Space 
	Action Space 
	Reward 
	Architecture of DRL-Based Offloading Scheduler 
	D3QN Architecture 
	Proposed Scheduler 


	Experimental Results 
	Experimental Setting 
	Simulation Results and Discussion 
	Convergence Analysis 
	Impact of Task Size Analysis 
	Impact of Deadline Analysis 


	Conclusions 
	Appendix A
	References

