
Received 1 November 2022, accepted 19 November 2022, date of publication 28 November 2022,
date of current version 5 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225193

Improving NVM Lifetime Using Task Stack
Migration on Low-End MCU-Based Devices
JEONGMIN LEE 1, MOONSEOK JANG 1, KEXIN WANG1, (Student Member, IEEE),
INYEONG SONG1, HYEONGGYU JEONG1, JINWOO JEONG 1, (Student, IEEE),
YONG HO SONG2, AND JUNGWOOK CHOI 1, (Member, IEEE)
1Department of Electronics Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics, Hwaseong, South Korea

Corresponding author: Jungwook Choi (choij@hanyang.com)

This work was supported in part by Samsung Electronics Company Ltd., and in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) Grant funded by the Korea Government (MSIT) (Logic Synthesis for NVM-based PIM
Computing Architecture) under Grant 2022-0-00971.

ABSTRACT Tiny embedded devices are cost and energy-sensitive, and high-density emerging non-volatile
memory (NVM) can help reduce energy consumption at a fraction of the cost. However, high-density
NVM has low write endurance compared to volatile memory, so it is vulnerable to write concentration.
Most NVM lifetime improvement studies in the existing embedded environment have distributed writes
by modifying the mapping relationship between physical and logical addresses. However, applying the
existing wear leveling techniques in low-end MCUs such as ARM Cortex M3/M4 that use only physical
addresses is hard. Therefore, we wear-level the write-heavy stack area to improve the NVM lifetime in
low-end MCUs. However, since the stack of bare metal applications is difficult to move during runtime,
we implement the migration function targeting the task stack of FreeRTOS. The task stack moves based on
time, and to avoid the pointer validation problem caused by the movement of the task stack, we migrate the
stack under safe conditions. In addition, FreeRTOS uses a single heap to preferentially allocate to low free
space, which reduces the degree of freedom where the stack moves, reducing the effect of distributing the
writes. To alleviate this problem, we add another heap for the stack migration and introduce circular dynamic
allocation in the heap. Through our experiments, the proposed method was about 19.6% larger than the ideal
case of maximum write, and the computational overhead was about 0.2%.

INDEX TERMS Embedded software, memory management, nonvolatile memory, real-time systems.

I. INTRODUCTION
Emerging non-volatile memory (NVM) is capable of random
access, consumes low standby power, and has a performance
close to that of volatile memory, so it can simultaneously
serve as the main memory and storage of a tiny embed-
ded device. When ultra-compact embedded devices reduce
energy consumption by using NVM [1], applications such
as TinyML [2], [3], [4] that perform data acquisition and
machine learning simultaneously can run for a long time
by placing the device close to the data. NVM can be
divided into low-density NVM and high-density NVM.High-
density NVMs such as phase-change memory (PCM) [5] or

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

multi-level cell (MLC) spin transfer torque magnetoresistive
random-access memory (STT-MRAM) [6], [7] have lower
performance and shorter lifetime than low-density NVMs
such as a single-level cell(SLC) STT-MRAM [8], [9], but
high-density NVMs are cheaper based on the same mem-
ory capacity. Although computing performance and energy
consumption characteristics are essential for tiny embedded
devices, the device’s manufacturing cost is also important.
In other words, using a high-density NVM in a tiny embedded
device means that the tiny embedded device can be man-
ufactured at a relatively low cost while having an NVM’s
performance and energy characteristics.

However, the high-density NVM has shorter write
endurance than the conventional volatile memory, which may
be a problem when using the high-density NVM as the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 125319

https://orcid.org/0000-0002-1153-9736
https://orcid.org/0000-0003-3751-4630
https://orcid.org/0000-0001-6485-0029
https://orcid.org/0000-0002-5691-4771
https://orcid.org/0000-0003-3181-4480


J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

main memory. A computation-intensive application such as
TinyML generates many writes concentrated in the stack
area. In this case, the lifetime problem of high-density NVM
becomesmore prominent. Tiny embedded devices sometimes
use low-end MCUs without a memory management unit and
cache, and in this case, applying the existingwrite distribution
techniques is not easy.

Previous studies mainly attempted wear leveling using the
mapping relationship between logical and physical addresses.
Write-related information was collected in units of memory
blocks, and wear leveling was attempted based on this infor-
mation [10], [11], [12]. Some studies have circularly moved
the data for lighter wear leveling [13], [14]. However, the
above studies modify the mapping through MMU, but it is
challenging to apply to low-end MCU without MMU.

In this study, writes on the stack are distributed when NVM
is used as the main memory using the existing hardware
resources and RTOS task characteristics in low-end MCUs.
RTOS tasks have their stack, so it is easier to distribute writes
on the stack than in a bare metal environment. Since the
amount of writes in the stack is different for each task and
the location of the task stack is fixed, the task stack causes
non-uniform wear out in the NVM. To increase the lifetime
of the NVM, we measure the operation time of a task, and
if a task operates for more than a critical time, the stack
location of the task is changed during runtime to distribute
writes. However, if the stack is migrated during runtime, the
validation of pointers in the stack cannot be guaranteed, and
task operation may fail. We made the stack migration condi-
tion not to damage pointer validation during stack migration.
Also, the pointer is updated based on the new stack loca-
tion to ensure the validation of the pointer after the stack is
migrated.

In addition, since the dynamic allocation of RTOS is
designed based on the volatile memory system, distributing
writes decreases if the existing dynamic allocation method
is used for stack migration. Since the existing dynamic allo-
cation prioritizes the low free space of the heap, the loca-
tions where the stack moves also be concentrated in the
low space of the heap. In addition, other memory objects
other than the stack can also be allocated on the heap. Since
these other memory objects do not move during runtime,
they affect the moveable position of the stack. To prevent
write distribution degradation due to stack migration due to
the existing dynamic allocation method, we create a sep-
arate heap to which only the task stack can be allocated.
Moreover, the dynamic allocation is circularly performed
on the heap. In addition, to increase the randomness of the
location where the stack moves in the heap, we create ran-
dom strides to allocate the stack to various locations in a
heap.

The main contributions of this study are summarized as
follows.
• Since obtaining write information in the low-end
MCU environment is difficult, we perform time-based
lightweight wear leveling.

FIGURE 1. Memory accesses of computation-intensive applications.

• To avoid the risk of moving the stack during runtime,
we limit the conditions that can be migrated, and update
the pointer after migration.

• Since our proposed wear leveling performs software-
based wear leveling using existing hardware resources
and RTOS, portability to other environments is easy.

The following text is structured as follows. Section 2 intro-
duces the motivation for our study. Section 3 deals with stack
migration methods using time-based information and avoid-
ing pointer validation issues. Section 4 describes methods
to increase the write distribution effect by stack migration.
Section 5 shows the measurement and analysis of overhead
and write distribution effects caused by the proposed write
distribution method. Section 6 discusses the significance
and limitations of our study and future research directions.
Section 7 examines NVM wear leveling and related studies
and compares them with ours. Finally, we summarize this
study.

II. MOTIVATIONS
In order to analyze the memory access that occurs in the
low-endMCU in a computation-intensive application such as
TinyML and DSP, ARM CMSIS-NN and CMSIS-DSP were
performed on the ARM Cortex M4F and the memory access
was measured [3], [15]. When 13 applications were executed
once, memory access was shown in Fig. 1. Fig. 1(a) shows
the proportion of fetch, read, and write to the total memory
access of each application, and Fig. 1(b) shows the ratio of
memory accesses occurring in each memory section. In all

125320 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 2. Distribution of memory accesses occurring on the stack.

applications, fetch was the most, followed by read and write
the least. However, most of the writes occurred in the stack
area in all applications. This is because computation-intensive
applications use more than a number of variables that can be
handled simultaneously in the CPU’s registers. Variables that
cannot be accommodated in registers are temporarily stored
on the stack. Also, in computationally intensive applications,
function calls are frequent. When a function is called, reg-
isters, return addresses and passed arguments are stored on
the stack. Due to the preceding operations, computationally
intensive applications cause more writes to the stack. Fig. 2
shows more about the memory access that occurs inside
the stack. When looking at the distribution of the amount
of memory access that occurred in the stack of 4 applica-
tions, writes were concentrated on specific addresses, and this
concentration of writes also occurred in other applications
of ARM CMSIS. In conclusion, to use NVM, which has a
limited lifespan, in low-end MCUs, a method for distributing
writes occurring in the stack is required.

III. EXTENSION OF RTOS KERNEL FOR STACK
MIGRATION
In low-end MCUs, obtaining write information during
operation is challenging, and since there is no MMU, apply-
ing wear-leveling techniques that distribute writes using a
mapping between physical addresses and logical addresses
is challenging. When an application is executed, the greater
the amount of computation, the greater the memory access
amount, and the longer the application’s operating time. This
study used the operation time to infer the amount of writing
instead of directly acquiring write information using these
characteristics.

A single application runs in a bare metal environment,
and most operate using a single stack. On the other hand,
in a real-time operating system (RTOS), a plurality of tasks
(or processes) are executed, and each task has an individual
stack allocated on the heap. Therefore, when applications
performing the same function are run in each environment,
writes occurring in the stacks are relatively distributed due
to a plurality of task stacks in the RTOS environment. Also,
since the task’s stack is not affected by the actions of other
tasks, the task stack can be moved to a different location

FIGURE 3. Correlation between task running time and write amounts in
the task stack.

in memory to distribute writes. However, the movement of
the task stack may make the pointers that point directly to
a specific location in the stack invalid, which may cause an
obstacle to the operation of the task. In addition, the stack can
be moved only in a partial range due to the existing dynamic
memory allocation of the RTOS preferentially allocating a
low address in a heap, so write distribution can occur only
in a partial range of the heap. In this study, to alleviate these
problems, the task stack is moved to another location under a
condition that is safe from pointer validity, and the task stack
is moved to the whole heap through circular allocation.

A. TIME-BASED TASK STACK MIGRATION
Because low-end MCU-based devices struggle to obtain
memory access information during runtime, we use the task
running time to determine whether stack migration should be
performed. In RTOS, the task scheduler periodically works
through a tick interrupt generated by the tick timer built into
the low-end MCUs. The proposed task stack migration uses
a tick timer to measure time; therefore, additional hardware
is not required to measure the task running time.

In tinyML and DSP applications, the longer the CPU time,
the more write instructions are generated. Fig. 3 shows the
running time measured by the tick timer and the number of
write instructions during that time when 13 DSP applications
and CNNs were run on a Cortex M4. In all cases, the running
time of the task and the number of write instructions have
a high positive correlation. The number of writes induced by
the task can be inferred from the task running time. Therefore,
task running time is used as a criterion for stack migration in
this study.

However, a high positive correlation does not exist for
running times and write amounts for all task types. Tasks
with few mathematical operations generate a small number
of writes on the stack, even if the running time is long.
These types of tasks should be excluded from stack migration
because the write distribution effect of stack migration is
small. Therefore, we use flags to identify tasks that allow
stack migration. Since application designers can quickly
identify tasks requiring significant computation, theymust set
the flags in the task creation process.

The proposed time-based stack migration consists of task
running-time measurement and stack migration, and most

VOLUME 10, 2022 125321



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 4. Context switching and TCB structure with the proposed
time-based stack migration function.

operations are performed in context switching. Context
switching operates in the kernel mode, and because the task
operation stops at this time, a relatively accurate time mea-
surement is possible. The task running time measurement
used a tick timer built into the low-end MCU, and a space
for storing the measured time is added to the TCB.

The context-switching operation, including the proposed
stack migration function, is shown in Fig. 4. When the task
is switched in, the time measurement starts, and the time is
measured until the corresponding task is switched out. In the
TCB, in addition to information for storing the running time
of a task, a variable for storing flag information for man-
aging the migration information of the corresponding task
is required. Fig. 4 shows the configuration of the migration
information flags, and the migration information is recorded
in the lower 4-bit of one byte. TheMF flag indicates whether
stack migration is allowed for the task, and this flag is set
when the task is created. The task with theMF flag of SET has
much computation. The RS flag indicates whether the task is
running, paused, or suspended. The RS flag is SET if the task
is running or paused, and RESET if it is suspended. A high
possibility exists that pointers that refer to the stack pointer
or point to a specific location on the stack are used during
code execution in the task function. Therefore, migrating a
stack while the task function is running or paused is prone
to pointer validation problems. If the stack migrates when
the task is complete, the risk of pointer validation problem is
low; thus, the safety of stack migration through the RS flag is
checked. TheMT flag is used to determine whether a task is a
target for stackmigration during the following restart process,
and when the operating time of the task exceeds the migration
threshold time, it becomes SET. TheME flag records whether
a task stack migration has occurred and causes the task to
update the local pointer immediately after stack migration.

In particular, the RS and ME flags are used to avoid pointer
validation problems caused by stack migration, as described
in the next section.

B. AVOIDING POINTER VALIDATION PROBLEM CAUSED
BY STACK MIGRATION
Because stack migration moves the task stack location, it can
cause pointer validation problems. When the local pointer
points to a specific space in the stack, it still points to the pre-
vious location, even if the task stack migrates. Furthermore,
when a function call occurs, the current registers and stack
pointer values are stored in the stack. The values stored in
the stack are restored when the called function ends. Then,
the codes of the location where the call occurred are executed
continuously. If task stack migration arises before returning
the called function, and if function return occurs, the restored
stack pointer references an address on the previous stack.
In other words, task stack migration can cause pointer vali-
dation problems.

Pointer validation problems can be avoided by limiting the
conditions under which the task stackmigration is performed.
DSP or tinyML tasks can be implemented to operate at regular
intervals or when a defined condition is satisfied. For these
types of tasks, it is easy to distinguish between a start point
and an endpoint. As mentioned, migrating the stack while
a task runs or pauses can cause a pointer validation prob-
lem. Therefore, stack migration should only be performed
when the task is complete to avoid the pointer validation
problem. When a function that suspends a task is called,
the TS flag becomes RESET. When the task is restarted by
context switching, and TS flag becomes SET. When a task
is paused, the TS flag remains in the SET state. If stack
migration is allowed only when the TS flag is RESET, the
pointer validation problem can be partially avoided.

However, if a local pointer exists on a register, a pointer
validation problem may occur even though stack migration is
performed under limited conditions. Fig. 5 shows an example
of a pointer validation problem during stack migration, which
occurs because a local pointer exists in a register. Even after
stack migration, the pointers in the registers are not updated
automatically. Therefore, the local pointer on register 2 points
to a location in the stack prior to migration. Therefore, the
pointer in register 2 is invalid. Fig. 6 shows an example of
avoiding the validity problem of a pointer located in a register.
In this study, when stack migration occurred, the ME flag
is SET before task restart. When a task restarts, it reads the
ME flag at the restart point of the task function to determine
whether migration has occurred. If theME flag is set to SET,
the local pointer is updated. As the local pointer updates the
referenced address by calculating the relative position based
on the current stack pointer, the validity of the local pointer
is guaranteed.

C. CIRCULAR ALLOCATION BY DEALLOCATED STATE
The dynamic allocation of the FreeRTOS first allocates the
lower free space of the heap, and the deallocated space is

125322 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 5. Pointer validation problem in registers owing to stack
migration.

FIGURE 6. Avoiding pointer validation problems by updating pointers
after stack migration.

immediately converted into free space. When the stack is
moved to a higher space on the heap, the space previously
allocated to the stack becomes a free space. When the stack
is migrated again, it is moved to the lower space of the heap
where the previous stack is located, even though sufficient
free space is available in the higher space of the heap. In other
words, in the existing dynamic allocation method, even if the
stack is migrated, most of it is moved only to the low spaces
of the heap. Therefore, the distribution of writes is made only
in part of the heap. Fig. 7 compares the migration processes
using existing FreeRTOS and the proposed dynamic alloca-
tion methods. Fig. 7(a) shows the dynamic allocation of the
FreeRTOS. The existing dynamic allocation method allows
the stack to migrate only within a limited heap area. Fig. 7(b)
shows the dynamic allocation method proposed to solve the
existing dynamic allocation problem. When the free space
on the heap is less than the requested allocation size, the
deallocated spaces are converted into free spaces. The pro-
posed dynamic allocation delays the free-space transition by
introducing a deallocated state space, which induces dynamic
allocation to be performed circularly from low to high. The
circular allocation also moves the space where writes occur
circularly, resulting in the spread of writes across the heap.

Newly defined deallocated state spaces must be managed
for circular allocation. Since the data in the deallocated state
space are invalid, we place the linked list in the deallocated
state space to manage the deallocated state space. Fig. 8
shows an example of managing deallocated state spaces as a

FIGURE 7. Comparison of stack migration using the existing and
proposed memory allocations.

linked list in circular allocation. To reduce management load,
they are linked in the order in which they are deallocated.
The previously deallocated state space is at the front of the
linked list, and the subsequently deallocated state space is at
the back. The deallocated state space at the front of the linked
list is preferentially converted into free space. Depending on
the situation, performing a free space conversion operation
several times may be necessary for creating the required free
space. However, searching or sorting is unnecessary for man-
aging the deallocated state; therefore, the overhead required
for management is negligible.

IV. TECHNIQUES FOR IMPROVING THE
WRITE DISTRIBUTION
When performing time-based stack migration, the allocation
status in a heap and the task stack size limit the stack’s
moveable position. If the movable position of the stack is
restricted, the effect of distributing writes is also reduced.
In particular, the heap of FreeRTOS is a single structure, and
various memory objects, such as the task stack, TCB, queue,
and user space, are allocated. Other memory objects can limit
the migration of the stack and consequently reduce stack
migration efficiency. A dual heap structure with a heap added
only for stack migration is applied to alleviate this problem.
Additionally, the location where the stack is migrated may be
more concentrated at specific addresses. This concentration
is because the dynamic allocation location may be fixed
depending on the direction in which the circular dynamic
memory allocation proceeds and the size of the task stack.
Before a stack is migrated, a random-size stride is allocated
to a heap to increase the randomness of the stack’s moveable
position.

A. DUAL HEAP STRUCTURE TO PREVENT HEAP
FRAGMENTATION
The existing dynamic memory allocation of RTOS uses a
single heap space to allocate the task stack, TCB, queue,
semaphore, user space, and others. Memory objects generally
do not move from where they are initially allocated until
deallocated. However, in terms of stack migration, fixed-
memory objects fragment the heap. If the heap is fragmented,
the location where stack migration is possible is restricted,
and the write distribution by stack migration is also reduced.

VOLUME 10, 2022 125323



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 8. Example of circular allocation.

FIGURE 9. Comparison of the existing single heap structure and the dual
heap structure.

To prevent heap fragmentation caused by fixed memory
objects, we propose a dual heap structure with a heap for
stack migration. The existing single-heap structure allocates
all the memory objects to one heap. In contrast, the proposed
dual heap structure has a stack heap where only task stacks
for which stack migration is allowed are allocated and a
general heap where all other memory objects are allocated.
Fig. 9 shows an example of stack migration operation in the
existing single-heap structure and the proposed dual heap
structure. Fig. 9(a) shows the case of a single heap when only
three tasks, A, B, and C, are created, and stack migration is
performed. Because TCBs do not move, the space between
TCBs in terms of stack migration can be considered frag-
mented. Only stack A can enter the space between TCBs A
and B in Fig. 9(a), whereas stacks B and C cannot migrate.
Therefore, only stack A can be located in this space, and
only the write patterns that occur in task A are accumulated.
Fig. 9(b) shows the dual heap structure. This Fig. is an exam-
ple of stack migration when TCBs are aligned to a general
heap, and only stacks are allocated to the stack heap. The total
size of the general heap and stack heap is the same as that of
a single heap, as shown in Fig. 9(a). As shown in Fig. 9(b),

FIGURE 10. Example of random size stride generation.

unlike in the case of a single heap, the stack movement is
unrestricted owing to the TCB when migrating the stack.
In a real RTOS, more memory objects are allocated to the
heap; therefore, the heap becomes more fragmented. This
further limits the stack movement. The proposed dual heap
structure is more effective in distributing writes because it is
free from the heap fragmentation caused by other memory
objects during stack migration.

B. RANDOM SIZE STRIDE FOR IMPROVING
WRITE DISTRIBUTION
Other stacks, deallocated state space, and free space limit the
stack moves. If the location the stack moves is constrained,
the stack moves more to a specific location within the heap.
The more frequently the stack is migrated to specific loca-
tions, the more writes are accumulated in those locations.
So we use random size strides to increase the randomness of
where the stack moves. 10 shows an example of creating a
random size stride, created before stack migration and imme-
diately converted to a deallocated space. Fig. 11 is an example
of the stack migration difference depending on whether or not
stride is used when a stack of the same size is migrated in a
situationwhere there is not enough free space. It is a condition
that all stacks have the same size. In this case, if a random
size stride is not used, as shown in Fig. 11(a), the stack is
circularly allocated at regular intervals. Because stacks move
at regular intervals, writes also move at regular intervals and
accumulate, limiting the distribution of writes. Fig. 11(b) is
an example of stack migration when using a random size
stride. Because random size strides are created before the
stack is migrated, the stack can bemoved to various locations.
In other words, random size strides accumulate writes on
the stack to various locations on the heap, distributing the
writes. However, additional computational overhead occurs
if a random size stride is used.

C. TIME BASED STACK MIGRATION WITH LIMITED
COMPUTATION OVERHEAD
As mentioned earlier, our proposed time-based stack migra-
tion method migrates the task stack based on time. If a task
runs for more than a threshold time, the stack is migrated
to another location in the heap before the task is restarted.

125324 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 11. Comparison of stack migration with and without random size
strides.

TABLE 1. Variables of stack migration process.

However, in creating a random size stride and migrating the
stack, it is necessary to secure space for allocation. Due to
circular allocation using deallocated state, the heap often
does not have enough free space for allocation. In this case,
the deallocated state space is converted to free space. How-
ever, the newly created free space may still not be sufficient
for allocation, and in this case, the free space conversion
operation is performed again. If this free space conversion
operation occurs continuously, the task deadline can be sig-
nificantly violated. Therefore, we set the maximum depth to
perform the free space conversion operation during the stride
generation and stack migration processes.

Fig. 12 shows the proposed time-based stack migration
method, and Table 1 shows the symbols in Fig. 12. The
proposed time-based stack migration is divided into the stride
generation process and the stack migration process. In the
stride generation process, the maximum stride depth is used
to limit the maximum number of free space searches and
conversions. If there is the insufficient size of free space for
stride generation until the maximum stride depth is reached,
the stride generation fails and goes to stack migration. In the
stack migration process, the maximum migration depth is

FIGURE 12. Proposed stack migration process.

used to limit the maximum number of free space searches
and conversions. Also, if a sufficient size of free space for
stack migration is not secured until the maximum migration
depth is reached, the stack migration is regarded as failed,
and the operation is completed. Therefore, our proposed
time-based stack migration may fail even if the task stack
meets the migration conditions. Even if the migration fails
at a specific point in time, the writes are distributed because
the stack moves to a different location based on a long
term.

The time complexity of the proposed algorithm is O(n2).
Free space search searches for free space in the stack heap
through a loop operation, and the time complexity is O(n).
Also, the stride creation process and stack migration process,
which include searching for this free space, have loop oper-
ations depending on the situation, so the time complexity is
O(n2). However, since the number of iterations is limited by
themaximum stride depth and themaximummigration depth,
the computational overhead is suppressed so that it does not
become larger than a certain amount.

VOLUME 10, 2022 125325



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

TABLE 2. Primary experiement envirionments.

V. EXPERIMENT
The time-based stack migration method proposed in this
study aims to improve the lifetime of NVM in a low-end
MCU environment. The proposed method moves the
write-intensive task stack so that the writes are distributed in
the stack heap. In this study, we used software simulation to
verify the proposed method and measure performance. The
experiment simulator is Imperas OVPsim [16], and ARM
Cortex M4, among various processors supported by OVPsim,
was used. Amazon FreeRTOS [17], [18] was used as an RTOS
to implement the proposed method, and the task management
and memory management functions of the FreeRTOS kernel
were expanded. The proposed time-based stack migration
method was verified while performing the examples men-
tioned above of ARM CMSIS. However, in OVPsim, it is not
easy to measure the detailed information related to the move-
ment of the stack, and the size of memory access information
collected in a short period is enormous, so OVPsim is not
suitable for long-term experiments. Therefore, we measured
the write distribution over a long period by modeling the
memory access and stack migration behaviors that occur in
stack heap when simulated with OVPsim. Table 2 shows the
primary environments in which experiments were performed.

We measured the overhead caused by the proposed write
distribution method and analyzed the worst-case execution
time (WCET) at this time. Moreover, we implemented the
applications of ARMCMSIS as tasks and measured the write
distribution effect while migrating the stack of these tasks.
Since our proposedmethod is affected by the number of tasks,
the running time of the task stack, the migration threshold
time, the maximum depth, Etc., we performed performance
measurements while changing the conditions. Table 3 shows
the operation time and stack size of the tasks used in these
experiments, and the amount of write access generated in the
task stack when each task operates once is shown in Fig. 13.

A. COMPUTATIONAL OVERHEAD
Time-based stack migration causes more operations in the
RTOS kernel mode than previously, and time-based stack
migration may require additional operations, such as free
space conversion, depending on the situation at the time
of migration. It may be challenging to meet the real-time
performance required by the application due to the compu-
tational overhead of executing time-based stack migration
once. As mentioned earlier, in this study, the maximum stride
depth and the maximum migration depth were introduced to

FIGURE 13. Write patterns.

TABLE 3. Running time and stack size of tasks.

limit the maximum computational overhead in the time-based
stack migration process. By limiting the maximum amount
of computation through the maximum stride depth and max-
imum migration depth, it is possible to determine WCET by
time-based stack migration, which makes it easy to guarantee
the real-time of the application.

Since the status of stack heap, the size of stacks, and the
number of stacks affect the operation of stride generation
and stack migration, and it is not easy to accurately measure
the computation overhead of time-based stack migration.
Therefore, we divided the time-based stack migration’s pri-
mary operations and performed these operations several times
to obtain the average computation overhead to the second
decimal place. The computation overhead is expressed to the
second decimal place because the average overhead changes
frequently in the first decimal place depending on the stack
heap status and stack type.

In Fig. 14, the central computation overheads in the stride
generation and stack migration processes are shown in red.
Table 4 shows the cycles of these computation overhead gen-
erating operations and the cycle required to measure the task
running time. time management is the process of measuring
and updating the running time of a task, and it occurs every
tick interrupt and other overheads occur when performing
time-based stack migration. We measured the process of
searching free space for dynamic allocation by dividing it
into initial free space search and free space search. When
the stack is moved more than a certain number of times,
a significant amount of space inside stack heap is deallocated,
which makes it difficult to initially find a sufficient amount
of free space during the stride generation and stack migration
process. If the free space search fails, free space conversion
occurs, so it is easy to find a relatively sufficient free space

125326 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 14. Major computational overhead factors.

TABLE 4. Average computational overheads in time based stack
migration.

in a subsequent free space search attempt. Also, initial free
space search contains the action to be performed in dynamic
allocation before the free space search proceeds. As a result,
in the stride generation process and stack migration process,
initial free space search, which searches for free space for the
first time, required more cycles than free space search, which
is an additional search operation.

The overhead that occurs when creating a stride depends
on whether or not the stride was successfully created and
the number of free space conversions and searches to create
the stride. SuccessStride represents whether or not the stride
generation succeeded as 1 if it succeeded in creating a stride
and 0 if it failed. Based on this, when the number of free space
switching and search attempts is dr , the overhead OStride
generated in the stride generation process is as follows.

OStride = RG× dr + SSInit + SSFree × (dr − 1)+ SCFree
× (dr − SuccessStride)+ (AStride + DStride)

× SuccessStride

The overhead incurred during stack migration also varies
depending on whether the migration was successful and the

FIGURE 15. WCET according to maximum stride depth and maximum
migration depth.

number of free space conversions and searches for migration.
SuccessStack represents 1 if the migration succeeds and 0 if it
fails, indicating whether the migration was successful. Based
on this, when the number of free space switching and search
attempts is dm, the overhead OMigration generated in the stack
migration process is as follows.

OMigration = SSInit + SSFree × (dm − 1)+ SCFree
× (dm − SuccessStack )+ (AStack
+DStack + CStack + UStack )× SuccessStack

Furthermore, when time-based stack migration operates at
one tick time, the total computational overhead, including the
time management overhead, is as follows.

OTotal = TM + OStride + OMigration

Referring to the overhead factors above, when the
maximum stride depth is 1-6, and the maximum stack migra-
tion depth is 1-6, the maximum execution times under each
condition are shown in Fig. 15. The maximum execution
time occurred when stride generation and stack migration
succeeded at the maximum depth of each stride depth and
migration depth. Therefore, as the stride depth and migration
depth increased, the WCET increased. When the stride depth
and migration depth limited in this study were the largest,
the WCET corresponded to about 2550 cycles. This cycle
occupied about 12.8% of the tick length of this study. The
lower the WCET, the easier it is to respond to the real-
time requirement, so finding the appropriate stride depth and
migration depth is necessary.

B. MEMORY OVERHEAD
The proposed time-based stack migration causes additional
writes to the stack heap by moving the stack, circular allo-
cation, Etc. First, as the stack moves to a new location, valid
data from the old stack must be moved onto the new stack.
The stack is migrated from the bottom of the task function in
the proposed algorithm. Therefore, the size of valid data in the
task stack was 66 bytes, which was constant regardless of
the task type. Moreover, circular allocation causes additional
writes in creating allocated space, deallocated state space,
and free space. Each state space stores information for search

VOLUME 10, 2022 125327



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

and management, and each state requires 8 bytes. In addi-
tion, additional writes occur in the general heap by task
operation timemanagement, migration flagmanagement, and
stack address update, but at the level of 1-4 bytes. However,
the above additional writes are negligible, with a size much
smaller than the size of the writes that occur on the task stack.

C. ANALYSIS OF STACK MIGRATION
The write variance of the time-based stack migration method
is influenced by various factors such as stack heap size, task
stack size, task stack count, write pattern of task stack, max-
imum stride depth, maximum migration depth, maximum
stride size, task operation time, and migration threshold time.
We set up two task configurations to check the effect of
write distribution of time-based stack migration according to
different task configurations: {CNN}, {Bayesian, Convolu-
tion, FFT, Matrix, SVM}. The two task configurations were
tested while changing the migration parameters, and the max-
imum write, relative standard deviation, average overhead,
andmigration efficiencyweremeasured. Themaximumwrite
indicates the write amount of the address with the most
significant accumulated write amount in a stack heap. The
smaller the maximum write, the slower the NVM lifetime
may be reached. Relative standard deviation indicates how
far the data falls from the mean. Since a less relative standard
deviation means that the data are closer to the mean, a less
relative standard deviation means that the writes are better
distributed across a stack heap. In the same task configura-
tion, since the total and average of write in a stack heap are
the same regardless of themigration parameters, the lower the
relative standard deviation, the higher the write distribution.
The average overhead represents the average computation
overhead per tick time, and the smaller the size, the smaller
the average computation overhead caused by the time-based
stack migration. Distribution efficiency refers to the degree of
distribution of write per cycle, and the higher the distribution
efficiency, the better the distribution of write per the overhead
generated during the migration process. We performed exper-
iments to analyze the effect of changing the maximum stride
depth, maximum migration depth, maximum stride size, and
migration threshold time on the write distribution in two task
combinations.

1) ONE CNN TASK
We tried to verify the effect of write distribution by migra-
tion parameters when one task was stack migrated through
CNN single-task configuration experiment. In theCNN single
task configuration experiment, there was no difference in the
migration threshold time. The reason is that the CNN task
takes 290.0 ticks for one operation, which is longer than
the 100 tick time, which is the longest migration threshold
time covered in this study, so the result does not change
depending on the difference in the migration threshold time.
Fig. 16 shows the maximum write, relative standard devia-
tion, average overhead, and distribution efficiency when the
CNN task stack was migrated 106 times. In the CNN single

task experiment, the maximum write and relative standard
deviation tended to decrease as themaximummigration depth
decreased and the maximum stride size increased. However,
the maximum stride depth had little effect on the write distri-
bution when it exceeded a specific size.

In this experiment, when the maximum migration depth
was one, the reason for the highest write distribution was that
there was only one stack to be migrated. If only one task is
being migrated in a stack heap, the space size transitioned
to a deallocated state during the stack migration process is
always the same. If the maximum migration depth is more
significant than a specific size, there is a high possibility
that the stack will be reallocated in the space where the
stack previously stayed during the stack migration process.
In addition, near the start position of the stack heap, the
randomness of the position where the stack moves due to the
stride is not sufficiently random, so it was often allocated at
a position slightly away from the existing allocation position.
As a result, the area in which large write occurred overlaps,
and the area in which the write was concentrated is not
well distributed. However, if the maximum migration depth
was one, if sufficient free space was not found during the
initial free space search attempt, the free space conversion
operation was performed, and the stack migration process
was terminated. Therefore, the case of stack reallocation
to the same location was reduced; most of the deallocated
space was created during the stride generation process; the
randomness of allocation was increased when the stack was
migrated. It can be seen from the stack migration success rate
according to the change in the maximum migration depth in
Fig. 17. When the maximum migration depth was one, the
stack migration success rate was very low, but the maximum
write and the relative standard deviation were lower than
those with larger maximum migration depths.

As the maximum stride size increased, the maximum write
and relative standard deviation decreased. This tendency is
because as the maximum stride size increases, the distri-
bution of the sizes of the generated strides becomes more
diverse, thus increasing the randomness of the position of
movement of the stack through the strides. The average over-
head decreased as the maximum migration depth, maximum
stride depth, and maximum stride size decreased (Fig. 16(c)).
This result is because the number of occurrences of ran-
dom number generation, free space search, and free space
conversion increases as the migration parameters increase.
However, since the running time of a CNN task is 290 ticks,
the time-based stack migration is performed every 290 ticks.
There was no significant difference in the average overhead
per tick in the change of migration parameters, and it con-
verges to 40 cycles, which is the time management over-
head that occurs every tick interrupt. As mentioned above,
migration efficiency indicates the degree of distribution of
writes per overhead. Since there was no significant difference
in the average overhead overall, the case where the maxi-
mum migration depth was one was the best. In this case,
the distribution efficiency was highest when the maximum

125328 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 16. When running CNN tasks, the largest write in the stack heap according to the migration depth, stride depth, and
maximum stride size difference of time-based stack migration, relative standard deviation, average overhead, and distribution
efficiency.

FIGURE 17. When excuting CNN task, stride generation success rate and
migration success rate.

stride depth was two or more and the maximum stride size
was 1000 or more. Since the WCET also increases as the
maximum stride depth and maximum stride size increase, the
smaller the maximum stride depth and the maximum stride
size possible, the better when the distribution efficiency is
at a similar level. Therefore, when migrating the stack of a
CNN single task, the writes were effectively distributed when
the maximum migration depth was one, the maximum stride
depth was two, and the maximum stride size was 1000.

Fig. 18 shows the distribution of writes in a stack heap
according to the migration policy in a CNN single task case.
No Mig had no stack migration, so writes were concentrated
where the stack was first allocated. No Stride was a case
of stack migration without generating a stride, and the stack
was moved in the stack heap according to the size of the
stack. Proposed was the result of applying the proposed
stack migration method, and it was the write distribution
when the relative standard deviation was the smallest in the
previous Fig. 19. Compared to No Strdie, writes were more
evenly distributed by random size stride. Ideal was an ideal
write distribution result that could be expected from the stack
migration proposed by the stack andwas thewrite distribution
when the stack was moved at 4-byte intervals.

No Stride had a size of 9.1% compared to the maximum
write of No Mig as the stack is moved to the free space
of the stack heap by circular allocation. Furthermore, the
maximum write of Proposed was about 1/4 the size of the

FIGURE 18. Write in the stack heap with migration policies.

maximum write of No Stride. Also, Propose had a 19.60%
higher maximumwrite compared to Ideal, which showed that
the proposed time-based stack migration could distribute the
writes close to the ideal case.

2) FIVE DSP TASKS
Five tasks were sequentially operated to verify write distri-
bution when migrating multiple stacks for a total of 106 tick
time.Moreover, while changing themigration parameters, the
maximum write, average standard deviation, average over-
head, andmigration efficiencyweremeasured. As can be seen
from Fig. 13 and Table 3, the stack size, write pattern, and
operation time of each task are different. That is, there may
be a difference in the times each task stack migrated for a
certain period.

Fig. 19 shows the maximum write, relative standard devia-
tion, average overhead, and distribution efficiency when five
DSP tasks were operated, and time-based stack migration
was performed while changing the migration parameters. The
greater the deviation of the operation time, the greater the
difference in the frequency of stack movement, so it is easy to
compare the effect of the difference in themigration threshold
time. Therefore, we used five tasks of Bayesian,Convolution,
FFT, Matix, and SVM in this experiment because the differ-
ence in operation time of each task was significant. Unlike
the previous single task experiment, the operation time of all
five tasks used in this experiment is shorter than the largest
migration threshold time, so each task’s time-based stack

VOLUME 10, 2022 125329



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 19. When executing five DSP tasks, the largest write in the stack heap according to the migration depth, stride depth, and
maximum stride size difference of time-based stack migration, relative standard deviation, average overhead, and distribution
efficiency.

migration execution frequency varies according to the change
in the migration threshold time. Therefore, the experiment
was conducted while changing the four migration param-
eters: the maximum migration depth, the maximum stride
depth, the maximum stride size, and the migration threshold
time. Moreover, Fig. 20 shows the stride generation success
rate, stack migration success rate, free space conversion per
stride generation attempt, and free space conversion per stack
migration attempt.

The maximum writes tended to decrease as the maximum
migration depth increased when the migration threshold time
was one tick. However, when the migration threshold time
was five ticks or more, the maximum write may be rela-
tively large depending on the maximum stride depth and
maximum stride size conditions. This increase in maximum
write was because, as the migration threshold time increased,

the deviation in the number of time-based stack migrations
between tasks became relatively large. Table 5 shows the
ratio of time-based stack migration according to the change
in the migration threshold time. When SVM with the shortest
one-time operation time executed time-based stack migration
once, it indicates the number of times each task executed
time-based stack migration. As the migration threshold time
increased, the deviation in the number of time-based stack
migrations between tasks with short operation time and long
operation time increased. If the number of successful stack
migrations of one task is much higher than that of other tasks,
the stack of the task is more likely to be reallocated to the
same location. Another factor that increased the reallocation
possibility was a situation in which it was difficult to obtain
sufficient randomness due to the stride, and the maximum
stride depth was one, or the maximum stride size was 200.

125330 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

FIGURE 20. When executing five DSP tasks, stride generation success rate
and migration success rate.

TABLE 5. Time-based stack migration operation ratio by task according
to migration threshold time.

In other words, the larger the migration threshold time, the
more the stack of the FFT with a long operation time is
migrated relatively more than the stacks of other tasks; In this
situation, writes are relatively less distributed if the random-
ness caused by the stride generation is low.

The relative standard deviation showed a similar trend
to the maximum writing. If the maximum stride depth was
two or more, the stride generation was successful in most
cases. Therefore, when the maximum stride depth was two
or more, there was no significant difference in the write
distribution according to the change in the size of the max-
imum stride depth. In addition, although the relative standard
deviation tended to decrease as the maximum stride size
increased when the maximum migration depth was three or
more, decreasing the relative standard deviation according to
the increase in the maximum stride size was insignificant.
Moreover, when the migration threshold time was one tick,
the relative standard deviation was more significant than
when the other migration threshold times were, so the write
distribution was low. This phenomenon was also affected by
the time-based stack migration frequency of tasks. When the
migration threshold time was one tick, more stacks of tasks
with short running time were migrated than at longer migra-
tion threshold times, and a lot of deallocation state space
with a smaller size than the stack of FFT task was created.
Therefore, securing sufficient free space was difficult when
FFT stack was migrated. This could be indirectly confirmed
by looking at Fig. 20(a), that when the migration threshold
time was one, the stack migration success rate was lower
than the other migration threshold time conditions under the
migration depth three and five conditions. However, when the
maximum migration depth was one, the migration success
rate was higher than when the migration threshold time was

significant because tasks with short operation times and small
stacks succeeded in stack migration more. It should be noted
that when the migration threshold time was 100 ticks, the
relative standard deviation was, on average, 5-10% greater
than when the migration threshold time was 10 and 50 ticks;
This was because when the migration threshold time was100
ticks, FFT task successfully migrated the stack relatively
more than other tasks.

The average overhead increased as the maximum migra-
tion depth, maximum stride depth, and maximum stride size
increased. On the other hand, the average overhead decreased
as the migration threshold time increased. The distribution
efficiency increased as themigration threshold time increased
due to the low average overhead. However, as mentioned
above, the write distribution decreased when the migration
threshold time was 100 ticks. Therefore, the distribution effi-
ciency was similar to when the migration threshold time was
50 ticks despite the reduced overhead.

VI. DISCUSSION
We proposed a software-based NVM lifetime enhancement
technique for low-end MCUs without MMU. We migrated
the task stack of RTOS to distribute writes on the stack.When
running the CNN task through this, an average of about 0.2%
computational overhead occurred, and the maximum write
is about 19.6% larger than the ideal case, so the proposed
method can effectively distribute the writes with less over-
head. However, most studies on NVM lifetime improvement
through write distribution did not consider the environment
without MMU. On the other hand, we have shown that the
lifetime of NVM main memory in low-end MCUs can be
improved using only existing hardware.

Regardless, since our study requires an RTOS, there is
a limitation in that additional computation overhead occurs
compared to the bare metal environment. Second, stack
migration may occur consecutively in multiple tasks, making
it challenging to ensure hard real-time. Finally, when a plural-
ity of tasks performs migration using the stack heap, the task
currently being migrated may have restrictions on movement
by other tasks in the stack heap, thereby increasing migration
overhead. Therefore, we will find ways to reduce the com-
putational overhead that can occur when stack migration of
multiple tasks in a future study.

VII. RELATED WORK
Various wear-leveling studies have improved the lifetime of
NVMs over the past few decades. First, there were [10],
[11], [14], [19], [20], [21], [22], [23], [24], [25], and [26]
in wear-leveling research that changes the location of data
based on write-related information. On the other hand, there
was [10], [13], and [11] in a study to perform wear leveling
by randomly changing the location of data. Ouroboros [12]
proposed a method to perform wear leveling using both write
information and randomness. Some of these studies [19],
[24], [25], [27] improved the NVM lifetime by modifying
the memory allocation method. However, all of the above

VOLUME 10, 2022 125331



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

studies remapped a specific unit of memory space or adjusted
the location of data in memory through separate hardware.
These studies require dedicated hardware to coordinate the
data location. In addition, a significant number of studies have
remapped data using MMU. However, low-end MCUs do not
have an MMU and are small in size, making it difficult to
apply such wear-leveling techniques.

Considering an environment without an MMU, such as a
low-end MCU, some studies have attempted wear leveling
of the stack through a software technique. Dynamic stack
[28] distributes writes to the stack by adjusting the posi-
tion of the stack frame to account for wear. However,
writes occurring inside the stack frame are not considered.
Loop2Recursion [29] performs wear-leveling in an environ-
ment without MMU. The loop operation induces the concen-
tration of writes by repeated operations in a specific stack
area. Loop2Recursion changes the loop operation to the form
of a recursive function and raises the level of the stack,
so that writes occur in a wide area within the stack. However,
depending on the execution depth of the recursive function,
writes may bemore concentrated at a specific address, and the
write deviation inside the recursive function is not considered.

Unlike previous studies, our study performed software-
based write distribution in an environment without MMU.
At this time, the randomness of the position of the stack is
increased, so that writes occurring on the stack are evenly
distributed within the stack heap. Unlike previous studies,
our study performed software-based write distribution in an
environment without MMU. At this time, the randomness of
the position of the stack is increased, so that writes occurring
on the stack are evenly distributed within the stack heap.

VIII. CONCLUSION
We proposed a method of distributing writes by migrating the
task stack of FreeRTOS to improve the lifespan of NVM in a
low-endMCU environment without anMMU.We used a task
operation time for selecting the migration target task. Since
moving the stack can impair pointer validation, we limited
the migration condition of the stack and updated the pointer
after the stack moved. We introduced a circular allocation
and a dual heap structure to avoid pointer validation problems
due to stack movement and improve write distribution limited
by the existing dynamic allocation. Also, we used random
strides to allocate the stack in various places within the heap.
In addition, we set migration parameters to limit the amount
of computational overhead. Through this, the maximumwrite
size was 19.6% larger than the ideal stack migration under
the condition of executing a CNN single task. At this time,
the instruction increased by 0.2% due to computational over-
head. The proposed method can operate only with existing
hardware resources and has a small overhead, so it is expected
to be easily applied to other low-end MCUs.

REFERENCES
[1] S. H. Kang, ‘‘Embedded STT-MRAM for energy-efficient and cost-

effective mobile systems,’’ in Symp. VLSI Technol. (VLSI-Technology),
Dig. Tech. Papers, Jun. 2014, pp. 1–2.

[2] P. P. Ray, ‘‘A review on TinyML: State-of-the-art and prospects,’’ J. King
Saud Univ. Comput. Inf. Sci., vol. 34, no. 4, pp. 1595–1623, Apr. 2022.

[3] N. Suda and D. Loh, ‘‘Machine learning on ARM cortex-M microcon-
troller,’’ Tech. Rep., 2019.

[4] X. Wang, M. Magno, L. Cavigelli, and L. Benini, ‘‘FANN-on-MCU: An
open-source toolkit for energy-efficient neural network inference at the
edge of the Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 5,
pp. 4403–4417, May 2020.

[5] F. Arnaud, P. Ferreira, F. Piazza, A. Gandolfo, P. Zuliani, P. Mattavelli,
E. Gomiero, G. Samanni, J. Jasse, C. Jahan, and J. P. Reynard, ‘‘High
density embedded PCM cell in 28 nm FDSOI technology for automotive
micro-controller applications,’’ in IEDM Tech. Dig., Dec. 2020, p. 24.

[6] Y. Chen, X. Wang, W. Zhu, H. Li, Z. Sun, G. Sun, and Y. Xie, ‘‘Access
scheme of multi-level cell spin-transfer torque random access memory and
its optimization,’’ in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst.,
Aug. 2010, pp. 1109–1112.

[7] M. Aoki, H. Noshiro, K. Tsunoda, Y. Iba, A. Hatada, M. Nakabayashi,
A. Takahashi, C. Yoshida, Y. Yamazaki, T. Takenaga, and T. Sugii, ‘‘Novel
highly scalable multi-level cell for STT-MRAM with stacked perpendicu-
lar MTJs,’’ in Proc. Symp. VLSI Technol., Jun. 2013, pp. T134–T135.

[8] C. Yoshida, T. Ochiai, Y. Iba, Y. Yamazaki, K. Tsunoda, A. Takahashi,
and T. Sugii, ‘‘Demonstration of non-volatile working memory through
interface engineering in STT-MRAM,’’ in Proc. Symp. VLSI Technol.
(VLSIT), Jun. 2012, pp. 59–60.

[9] J. J. Kan, C. Park, C. Ching, J. Ahn, Y. Xie, M. Pakala, and
S. H. Kang, ‘‘A study on practically unlimited endurance of STT-MRAM,’’
IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3639–3646, Sep. 2017.

[10] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mosse,
‘‘Increasing PCM main memory lifetime,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2010, pp. 914–919.

[11] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, ‘‘A durable and energy efficient
mainmemory using phase changememory technology,’’ inProc. Int. Symp.
Comput. Archit. (ISCA), vol. 37, no. 3, pp. 14–23, Jun. 2009.

[12] Q. Liu and P. Varman, ‘‘Ouroboros wear leveling for NVRAM using hier-
archical block migration,’’ ACM Trans. Storage, vol. 13, no. 4, pp. 1–31,
Dec. 2017.

[13] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, ‘‘Enhancing lifetime and security of PCM-based main memory
with start-gap wear leveling,’’ in Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2009, pp. 14–23.

[14] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha, ‘‘Curling-
PCM: Application-specific wear leveling for phase change memory based
embedded systems,’’ in Proc. 18th Asia South Pacific Design Automation
Conf. (ASP-DAC), Jan. 2013, pp. 279–284.

[15] ARM Cortex-M4 Processor Technical Reference Manual, ARM, 2009.
[16] Simulation Control of Platforms and Modules User Guide Imperas Soft-

ware Limited Simulation Control of Platforms and Modules User Guide, I.
S. Limited, 2020.

[17] The FreertosT Reference Manual, A. W. Services, 2017.
[18] R. Barry, ‘‘Mastering the freertos T real time kernel,’’ Tech. Rep., 2016.
[19] H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi, ‘‘Prolong-

ing PCM lifetime through energy-efficient, segment-aware, and wear-
resistant page allocation,’’ in Proc. Int. Symp. Low Power Electron. Design,
Aug. 2014, pp. 327–330.

[20] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y.-M. Wang,
‘‘Age-based PCM wear leveling with nearly zero search cost,’’ in Proc.
49th Annu. Design Autom. Conf. (DAC), New York, NY, USA, 2012,
pp. 453–458.

[21] J. Dong, L. Zhang, Y. Han, Y. Wang, and X. Li, ‘‘Wear rate leveling:
Lifetime enhancement of PRAM with endurance variation,’’ in Proc. 48th
Design Autom. Conf. (DAC), New York, NY, USA, 2011, pp. 972–977.

[22] V. Gogte,W.Wang, S. Diestelhorst, A. Kolli, P.M. Chen, S. Narayanasamy,
and F. T. Wenisch, ‘‘Software wear management for persistent memories,’’
in Proc. 17th USENIX Conf. File Storage Technol., Boston, MA, USA,
Feb. 2019, pp. 45–63.

[23] Y. Han, J. Dong, K.Weng, Y.Wang, and X. Li, ‘‘Enhanced wear-rate level-
ing for PRAM lifetime improvement considering process variation,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1, pp. 92–102,
Jan. 2016.

[24] W. Li, Z. Shuai, C. J. Xue, M. Yuan, and Q. Li, ‘‘A wear leveling aware
memory allocator for both stack and heapmanagement in PCM-basedmain
memory systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2019, pp. 228–233.

125332 VOLUME 10, 2022



J. Lee et al.: Improving NVM Lifetime Using Task Stack Migration on Low-End MCU-Based Devices

[25] S. Yu, N. Xiao, M. Deng, Y. Xing, F. Liu, Z. Cai, and W. Chen, ‘‘WAlloc:
An efficient wear-aware allocator for non-volatile main memory,’’ in Proc.
IEEE 34th Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2015,
pp. 1–8.

[26] C. Hakert, K.-H. Chen, H. Schirmeier, L. Bauer, P. R. Genssler,
G. von der Brüggen, H. Amrouch, J. Henkel, and J.-J. Chen, ‘‘Software-
managed read and write wear-leveling for non-volatile main memory,’’
ACM Trans. Embedded Comput. Syst., vol. 21, no. 1, pp. 1–24, Jan. 2022.

[27] J. Zhu, S. Li, and L. Huang, ‘‘Wamalloc: An efficient wear-aware allocator
for non-volatile memory,’’ in Proc. IEEE 22nd Int. Conf. Parallel Distrib.
Syst. (ICPADS), Dec. 2016, pp. 625–634.

[28] Q. Li, Y. He, Y. Chen, C. J. Xue, N. Jiang, and C. Xu, ‘‘A wear-leveling-
aware dynamic stack for PCM memory in embedded systems,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2014, pp. 1–4.

[29] W. Li, L. Wu, M. Yuan, C. J. Xue, J. Xue, and Q. Li, ‘‘Loop2Recursion:
Compiler-assisted wear leveling for non-volatile memory,’’ in Proc. IEEE
38th Int. Conf. Comput. Design (ICCD), Oct. 2020, pp. 581–588.

JEONGMIN LEE received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2014, where
he is currently pursuing the Ph.D. degree with
the Department of Electronics and Computer
Engineering.

His research interests include embedded com-
puting and the IoT devices.

MOONSEOK JANG received the B.S. degree in
electronic engineering from Hanyang University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree with the Department
of Electronics and Computer Engineering. His
research interests include computer architecture,
embedded systems, and flash memory storage.

KEXIN WANG (Student Member, IEEE) received
the B.S. degree from the School of Optoelectronic
Engineering, Changchun University of Science
and Technology, in 2017. She is currently pur-
suing the Ph.D. degree with the Department of
Electronic and Computer Engineering, Hanyang
University, Seoul, South Korea. Her research inter-
est includes high-performance solid state drive
architecture.

INYEONG SONG received the B.S. degree in
electronic engineering from Myongji University,
Yongin, South Korea, in 2018. He is currently
pursuing the Ph.D. degree with the Department of
Electronics and Computer Engineering, Hanyang
University, Seoul, South Korea. His research inter-
ests include embedded systems and NAND flash
memory-based storage systems.

HYEONGGYU JEONG received the B.S. degree in
electronic engineering from Hanyang University,
Seoul, South Korea, in 2019, where he is currently
pursuing the Ph.D. degree with the Department
of Electronic Engineering. His research interests
include computer architecture, next generation
memory, and storage systems.

JINWOO JEONG (Student, IEEE) received the
B.S. degree from the Department of Electronic
Engineering, Hanyang University, South Korea,
in 2015, where he is currently pursuing the
Ph.D. degree with the Department of Electronics
and Computer Engineering. His research inter-
ests include nand flash-based storage systems and
error-correction codes.

YONG HO SONG received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, in
1989 and 1991, respectively, and the Ph.D. degree
in computer engineering from the University of
Southern California, Los Angeles, CA, USA,
in 2002.

He worked as a Professor at the Department
of Electronic Engineering, Hanyang University,
Seoul. He is currently the Executive Vice President

with Samsung Electronics Company Ltd. His current research interests
include the system architecture and software systems of mobile embedded
systems, which further include SoC, NoC, multimedia on multicore parallel
architecture, and NAND flash-based storage systems.

Dr. Song has served as a Program Committee Member of several presti-
gious conferences, including the IEEE International Parallel and Distributed
Processing Symposium, IEEE International Conference on Parallel and
Distributed Systems, and IEEE International Conference on Computing,
Communication, and Networks.

JUNGWOOK CHOI (Member, IEEE) received
the B.S. and M.S. degrees in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2008 and 2010, respectively, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Illinois at Urbana—
Champaign, USA, in 2015. He worked at the
IBM T. J. Watson Research Center as a Research
Staff Member, from 2015 to 2019. He is currently
an Assistant Professor with Hanyang University,

South Korea. His research interest includes the efficient implementation of
deep learning algorithms. He has received several research awards, such as
the DAC 2018 Best Paper Award. He has actively contributed to academic
activities, such as the Technical Program Committee of DATE 2018–2020
(the Co-Chair) and DAC 2018–2020, and the Technical Committee (DiSPS)
in IEEE Signal Processing Society.

VOLUME 10, 2022 125333


