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Abstract: Biological treatment methods for the biodegradation of anthropogenic toxic pollutants are
eco-friendly in nature and are powered by a variety of microbial enzymes. Green chemistry and
enzymes play a crucial role in catalyzing the biodegradation of organic and inorganic pollutants
including azo dyes; polyaromatic hydrocarbons; lead; organic cyanides; aromatic amines; mono-,
di-, and polyphenols; polymers; and mercury. Laccases form a prospective group of multifunctional
oxidoreductase enzymes with great potential for oxidizing different categories of organic and in-
organic pollutants and their diversified functions, such as pigment formation, lignin degradation,
and detoxification of industrial wastes including xenobiotics mainly from the pharmaceutical, paper
textile, and petrochemical industries. Therefore, it is very important to study laccases as green and
environmentally friendly alternatives for the degradation of xenobiotics. This review article will
cover comprehensive information about the functions and properties of bacterial laccases for a deep
understanding of their scope and applications for effective bioremediation of recalcitrant xenobiotics.

Keywords: biodegradation; laccases; oxidoreductases; green biocatalysts; xenobiotics

1. Introduction

Laccases are the potential enzymes for oxidoreductases (a broad group of enzymes that
catalyze electron transfers from one molecule to another), which are widely distributed in
nature in plants, bacteria, fungi, and insects [1–3]. They are suitable for green catalysis, organic
synthesis, and the biodegradation of environmental xenobiotics due to their high efficiency
and sustainable applications. A wide variety of organic compounds can be oxidized by laccase,
and they can be widely applied in the biodegradation of pollutants for detoxification of envi-
ronments, such as delignification and pulp-bleaching, treatment of textile dyes, wastewater
treatment, and treatment of other environmental xenobiotics [4–10].
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During the last few decades, laccases from different sources, such as plants, algae,
fungi, and bacteria, have been identified. Among all of these, bacterial laccases have
drawn great interest due to their good tolerance for organic compounds and high thermal
stability. Bacterial laccases have industrial advantages over fungal laccases due to their
high activity and high thermal stability, their reactivity over a wide range of pH values,
and their resistance to denaturation by detergents as compared to fungal laccases. The
enzymes isolated from bacterial cultures are laccase-like enzymes that have been found
to resemble fungal laccases; however, their activities are different [11]. The biological
functions of laccases can be attributed to the source of origin as well as physiological
and pathological conditions [11,12]. The intrinsic characteristics of laccases, such as their
efficiency and sustainable applications, make them acceptable as green catalysts for the
treatment of xenobiotics and for organic synthesis. Laccases are known as prospective
alternatives to conventional synthetic treatment techniques due to their biodegradation
potential and minimal side effects [13,14]. These are oxidative biocatalysts containing
copper in their active site, and they oxidize different substrates by using molecular oxygen
as a co-substrate [15]. Laccase is a very suitable enzyme to oxidize phenolic compounds,
dyes, pharmaceuticals, polyaromatic hydrocarbons, pesticides, and other pollutants [16].
During this reaction, four copper atoms are an integral part of the reaction, and the last
receptor of the electron is oxygen. The general mechanism of the reaction is shown in
Figure 1.
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Figure 1. General mechanism of the reaction of bacterial laccases (adopted from [17]).

Laccases have huge applications as green biocatalysts in diversified areas of biotechnol-
ogy, such as the synthesis of fine chemicals, environmental remediation; biosensor designing;
pharmaceutical, cosmetic, and personal care products; decolorization of synthetic dye; and
detoxification of the environment by removing recalcitrant xenobiotics [17–19]. Microorgan-
isms are able to produce laccases in their natural habitat in the process of the biodegradation
of substrates, protection, virulence, sporulation, and synthesis of pigments [20].

Many studies have been focused on fungal laccases (white rot fungus) due to their
high thermal stability, high redox potential, and biotechnological utility [21]; however,
the production and utility of fungal laccases are obstructed due to their small tolerance
for difficult conditions, low desired pH ranges, lengthy fermentation periods, slower
growth rates, and difficulties with heterologous hosts [22,23]. On the contrary, bacterial
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laccases have a diverse range of bioremediation potential because the optimal nutrient and
environmental conditions are provided by bacteria through biostimulation processes, the
ability to tolerate a wide range of temperatures and pH levels, easy genetic manipulations,
and exceptional stability in the presence of inhibitors [24]. Nevertheless, the literature
survey reveals that not much information is available on bacterial laccases, their detailed
properties, and their applications. Furthermore, the mechanism of stability of bacterial
laccases at temperature and pH extremes and their enzymatic enantioselectivity have
been reported in a few studies only. Therefore, there is a need to understand the role of
bacterial laccase in biodegradation along with its molecular properties and mechanism
of action. The main aim of this review article is to evaluate the potential for bacterial
laccases as biocatalysts in the bioremediation of environmental xenobiotics as green and
viable alternatives.

2. Bacterial Laccases
2.1. Sources and Evolution

The bacterial laccase was first reported in Azospirillum lipoferum, which was isolated
from the rhizosphere (plant root) [25]. Since then, most of the identified laccases have be-
longed to the Bacillus and Streptomyces genera, such as Bacillus subtilis, Bordetella campestris,
Caulobacter crescentus, E. coli, Mycobacterium tuberculosum, Yersinia pestis, etc. [26,27]. Strepto-
myces laccases work on pigmentation, antibiotics, and morphogenesis, and they are helpful
in lignin degradation [28]. Many species have also been reported for the detoxication of post-
methanated distillery effluents and pulp–paper waste, which contains chlorolignin [29,30].
According to a recent study, Bacillus atrophaeus laccases’ genes were coded, which corre-
sponds to a protein with 278 amino acids [31]. Many species of laccase-producing bacteria
were reported in the last decade, including Bacillus [32], Pseudomonas species [33], the
Geobacillus species [34], Marinomonas mediterrânea, and Pseudomonas putida [35]. The latest
research isolated different strains of laccase-producing bacteria in waste released from
the soap industry [36]. The researchers emphasized that the bacterial species may be of
significant importance commercially in producing laccase during the scaling-up process at
the bioreactor level.

2.2. Production Conditions, Properties, Substrates, and Mediators

Some species of bacteria, such as the Streptomyces sp., are known to produce extra-
cellular laccases that are useful in micropollutant degradations [37]. One of the cheaper
and more easily available substrates for laccase production is agricultural waste, such as
rice bran, banana peel, and sawdust. The production of laccase is significantly affected by
the optimum growth time, the intensity of light, the optimum pH and shaking conditions,
and the amount of dissolved oxygen and organic salts, though different microorganisms
require different amounts of time for an optimum yield of laccase [38] (Figure 2).

A wide range of molecules can be oxidized by laccases, and more than a hundred
compounds have been identified as substrates for laccases; however, it is difficult to oxidize
all types of substrates directly by laccases due to their large sizes, which obstruct their
penetration into the active site of the enzyme, and their high redox potentials. To remove
this difficulty, many chemical mediators that are suitably oxidized by laccase are used,
and, eventually, the oxidized forms are able to interact with the substrate with high redox
potential. Bacterial laccases comprise enzymes with low redox potential, from 0.4 to 0.5 V,
which can withstand more difficult conditions than fungal laccases [30]. Table 1 shows an
overview of a few bacterial organisms and substrates along with some optimum conditions
for action.
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Table 1. Production conditions and characteristics.

Name of the Organism Substrate Used Optimum Temperature
for Activity (◦C)

Optimum pH of
Activity Mol. Wt. of Protein References

Aquisalibacillus elongatus 2,4-dimethoxy phenol 40 8.0 69 [38]

Azospirillum lipoferum Syringaldazine 70 6.0 81.5 [39]

Bacillus Subtilis MTCC1039 Guaiacol 30 5.0 NR [40–42]

Bacillus Subtilis MTCC 2414 Guaiacol 30–40 7.0 NR [41–43]

Bacillus cereus TSS1 Guaiacol 37 7.0 NR [42–44]

Bacillus tequilensis SN4 MTCC 11828 2,4-dimethoxy phenol 85 8.0 75% pH [43–45]

Bacillus safenis DSKK5 NR 37 6.2 NR [31,44,45]

Bacillus subtilis WPI 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid 25 NR NR [31,45,46]

Bacillus licheniformis LS04

2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid

60 4.4 NR [31,45,46]2,4-dimethoxy phenol

Syringaldazine

Pseudomonas aeruginosa 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid 35 6.0 NR [46–48]

Pseudomonas putida F6Q Syringaldazine 30 7.0 59 [47–49]

Stenotrophomonas maltophilia Syringaldazine 60 6.8 NR [48–50]

Streptomycetes species 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid 35 6.0 NR [46–48]

Streptomycetes cyaneus 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid 60 4.5 NR [49–51]

Streptomyces bikiniensis Syringaldazine 6–7 50–60 69 [50–52]

Geobacillusthermocatenulatus 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid 37 6.2 NR [51–53]

Bacillus HR03 Syringaldazine, 2,4-dimethoxy phenol 55 5.5 20 [31,52,53]

Pseudomonas desmolyticum Hydroquinone 60 4.0 43 [31,53,54]



Water 2022, 14, 4068 5 of 12
Water 2022, 14, x FOR PEER REVIEW 4 of 13 
 

 

Factors 
affecting 

the 
Production 
of Lacasse

Dissolved 
Oxygen & 
Organic 

Salts

Intensity 
of Light

Optimum 
Growth 

Time

Optimum 
pH & 

Shaking 
Conditions

 
Figure 2. Factors affecting the production of Laccase. 

A wide range of molecules can be oxidized by laccases, and more than a hundred 
compounds have been identified as substrates for laccases; however, it is difficult to oxi-
dize all types of substrates directly by laccases due to their large sizes, which obstruct their 
penetration into the active site of the enzyme, and their high redox potentials. To remove 
this difficulty, many chemical mediators that are suitably oxidized by laccase are used, 
and, eventually, the oxidized forms are able to interact with the substrate with high redox 
potential. Bacterial laccases comprise enzymes with low redox potential, from 0.4 to 0.5 V, 
which can withstand more difficult conditions than fungal laccases [30]. Table 1 shows an 
overview of a few bacterial organisms and substrates along with some optimum condi-
tions for action. 

Table 1. Production conditions and characteristics. 

Name of the Organism Substrate Used 
Optimum Tem-
perature for Ac-

tivity (°C) 

Optimum 
pH of Activ-

ity 

Mol. Wt. 
of Protein 

References 

Aquisalibacillus elongatus 2,4-dimethoxy phenol 40 8.0 69 [38] 
Azospirillum lipoferum Syringaldazine 70 6.0 81.5 [39] 

Bacillus Subtilis MTCC1039 Guaiacol 30 5.0 NR [40–42] 
Bacillus Subtilis MTCC 2414 Guaiacol 30–40 7.0 NR [41–43] 

Bacillus cereus TSS1 Guaiacol 37 7.0 NR [42–44] 
Bacillus tequilensis SN4 MTCC 11828 2,4-dimethoxy phenol 85 8.0 75% pH [43–45] 

Bacillus safenis DSKK5 NR 37 6.2 NR [31,44,45] 

Bacillus subtilis WPI 
2,2′-azino-bis(3-

ethylbenzothiaziline-6-
sulphonic acid 

25 NR NR [31,45,46] 

Bacillus licheniformis LS04 

2,2′-azino-bis(3-
ethylbenzothiaziline-6-

sulphonic acid  60 4.4 NR [31,45,46] 

2,4-dimethoxy phenol  

Figure 2. Factors affecting the production of Laccase.

Laccase is a type of enzyme that is substrate-specific, which oxidizes a wide range of
substrates, acts as a biocatalyst in the synthesis of organic compounds, and stops reactions
of many aromatic organic contaminants. The degradation of highly toxic contaminants
leads to a green and eco-friendly environment, and the organic synthesis via the production
of nonhazardous by-products leads to bioremediation [38,39]. Substrates such as 2,2 ′-azino-
bis (3-ethylbenzothiazoline6-sulfonic acid), 2,6-dimethylphenol, syringaldazine, guaiacol,
etc. are extensively used and are the most commonly used substrates for enzyme assays.
The binding of the substrate with protein by using syringaldazine is shown in Figure 3.
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Substrates with a large redox potential, such as azo dyes, anthraquinolic dyes, etc., are
not degraded or oxidized by laccase, directly. These kinds of substrates require an electron
shuttle mediator between the laccase and themselves [40]. Basically, the mediators are
those low molecular weight laccase substrates whose enzymatic oxidation produces stable
intermediates with high oxidation potential. The first kind of such a synthetic mediator
was 2,2′-azino-bis (3-ethylbenzothiazoline6-sulfonic acid), which is used to function as a
laccase substrate mediator with enhanced enzyme action [41].

In liquid media, the growth of bacteria is usually faster than that of fungi, which favors
scaling-up processes for the production of laccase [56]. In different bacteria, different inor-
ganic metals and detergents affect the yield of laccase distinctly. In many cases, inorganic
metals (Mg+2, Hg+2, and Zn+2) highly inhibit the activity by changing the protein confor-
mation, indicating that the enzymatic yield of laccase was not dependent on positively
charged metals [57]. According to one hypothesis, Hg+2 decreases the yield of laccase,
which shows the important role of a thiol-possessing amino acid in laccase activity [58,59].

3. Catalytic Activity and Substrate Specificity

As compared to fungal laccases, bacterial laccases find few industrial applications due
to their low expression levels and catalytic feature. Recently, attention has been paid to
the engineering of bacterial laccases, such as directed evolution approaches, heterologous
functional expression, etc., which have been used by many researchers to reduce these
hurdles. The relationship between the laccase’s structure and function has been determined
recently with the resolution of the crystal structure of many laccases [60]. The 2,2′-azino-
bis(3-ethyl benzothiazoline-6-sulphonic acid bound structure shows that 23 amino acids
surround the substrate, among which His419, His497, and Cys492 are coordinated with
T1Cu, and a disulfide bond is formed between Cys229 and Cys322. The five residues
remain unaltered [61]. The catalytic efficiency is influenced by the mechanism of mutation,
which is the change in the interaction between the enzyme and the substrate, as well as the
variety of redox potential in the T1Cu site. The quantity and length of the hydrogen bonds
may also be changed between the laccase’s pocket residues and the substrate. Figure 4
shows the catalytic action of the laccase.
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Laccases have low specificity to the substrate and are adaptable to a high variety
of chemical compounds released from several industries that continuously expand their
diversification according to the evolution of human impact on the environment, but there
are challenges, such as the optimization of the process of biosynthesis and the action of
these enzymes to the level of industrial applications. Since the biosynthesis of enzymes
through microbes is an expensive process, the use of cheap culture media, mutant strains
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with good productive potentials, and the cultivation of fungi under solid-state fermentation
with the synthesis of laccases can reduce the cost of the biosynthesis process. Another way
to cut costs is the treatment of xenobiotics at the source itself, where the enzymes are present
in minimal amounts. In order to ensure environmental sustainability, regular monitoring
of the technological processes and technologies is a must. As a result of technological
advancements, only laccases are now studied extensively.

4. Factors Affecting Degradation of Pollutants by Microbial Enzymes

The biodegradation of industrial pollutants is greatly influenced by chemical factors
(such as chemical structure, especially the functional group of the pollutant, concentration,
etc.), physiochemical and environmental factors (such as pH, temperature, aeration, BOD,
salinity, etc.), and the type of microbial consortia used for the degradation of pollutants.
For instance, textile dyes with low molecular weight and simple structure exhibit higher
color removal rates than azo dyes with structural complexity. Singh et al. reported in
their study that the enzymatic degradation of azo phenol is enhanced by electron-donating
substituents, such as methoxy and methyl groups, while electron-withdrawing groups
inhibit oxidation [62]. Among the environmental factors, the temperature is a very im-
portant factor that affects the functioning of both intracellular and extracellular microbial
enzymes. At low temperatures, the enzymatic activity is reduced, thereby reducing the rate
of microbial degradation of a pollutant [63]. However, the efficiency of enzymatic degra-
dation potentially depends upon the availability, activity, and adaptation of the chosen
microorganism. For instance, petroleum hydrocarbon degradation is mainly affected by
the availability of a microorganism that can catabolize pollutants [64].

5. Applications of Laccases

Laccases as biocatalysts are gaining popularity in different fields from the application
point of view. Laccases are potential green, biological tools that work efficiently in the air
and release water as the only by-product. Hence, laccases, especially bacterial and fungal
laccases, have wide applications when applied in different areas (Figure 5).
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5.1. Detoxification and Bioremediation of Industrial Effluents

Bacterial laccases have the capability of oxidizing all kinds of substrates, whether toxic
or non-toxic. Various effluents from industries such as the pulp–paper, textile, pharmaceu-
tical, distillery, and food industries are also treated by bacterial laccases. In the pulp–paper
industry, laccase has become known for the removal of black liquor and the wastewater
produced from pulp–paper mills [65]. Laccases work on phenolic lignin fragments in which
the substrate reacts with the lignin polymer, resulting in the degradation of the lignin.
Though decolorization by chemical bleaching is very effective, these methods have serious
drawbacks due to the release of toxic byproducts. Delignification by laccase systems is a
better method for reducing toxicity, and it has been adapted to current pulp production
lines as a green and sustainable alternative.

5.2. Textile Dye Degradation and Decolorization

Chemicals of diverse compositions, ranging from organic to polymer products, are
used in the textile industry. The chemical structure of dyes makes them fade-resistant on
exposure to chemicals, heat, light, and water, and synthetic dyes hardly decolorize due to
their synthetic nature. Many dyes are prepared from aromatic organic compounds, such as
benzidine, which are highly carcinogenic [65]. Consequently, the textile industry’s effluents,
when disposed of in water, reduce light penetration into the water and strongly affect the
photosynthetic process of green aquatic plants [66].

The contaminated water may be carcinogenic and pose threats to the environment and
marine life due to the presence of degraded dye products, metals, halogens, etc. [67–69].
The laccases are considered promising solutions for chemically diversified dyes, including
synthetic dyes [70,71]. The released reactive dyestuff can be bleached quickly by laccase
as a part of the washing solution, which results in less processing time, cost, energy, and
volume of water required for the desired quality of textile [72]. Laccases have been widely
studied for the degradation of azo dyes [73,74]. The decolorization of some synthetic dyes,
such as methyl orange, Congo red, methylene, and toluidine blue, etc., and the industrial
effluents were achieved by the bacterial species S. maltophilia AAP56 [75].

5.3. Bioremediation of Food Industry Wastewater Effluents

The wastewater effluents released from the food industry contain a remarkable num-
ber of aromatic compounds, especially phenols, which have toxic effects on health [76].
According to a study, approximately 40–90% of phenolic compounds are removed in a
co-immobilized form by 95% of the laccase units in a bioreactor [77]. Organic gel-trapped
laccase removes organic aromatic compounds from aqueous suspensions, and the enzyme
is reused without any efficiency loss [78]. Dark brown wastewater released from beer facto-
ries has a high concentration of polyphenols in bioremediation via C. gallica [79]. Sugarcane
factories release vinasse as a by-product in the production of ethanol, which contains toxic
organic matter and is also treated by the laccase from T. versicolor [74,80].

5.4. Other Applications

Many reports have shown that xenobiotics can also be degraded by laccases. Accord-
ing to a recent report, the bacterial laccase CueO’s mutations of chemical plant sludge
displayed that the mutants G276R, G276N, G276Y, and G276K can oxidize the carcinogen
benzo[α]pyrene very efficiently [81]. The degradation of Tyramine (a toxic compound in
food) by laccases can resolve the problems generated in food. In addition to the applica-
tions discussed above, laccases are also used in the production of polymers [82], indo-dye
synthesis [83], biosensors, and bioremediation [84,85]. Laccases are green catalytic enzymes
with great potential for the biodegradation of environmental xenobiotics. They have great
potential for biotechnological applications, such as biosensors, biopulping, biobleaching,
organic synthesis, biofuels, antimicrobial applications, etc. Laccases are currently being
represented as the latest topic of research for the biodegradation of xenobiotic compounds,
pharmaceutical products, and different dyes in an eco-friendly manner [86–92].
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6. Conclusions and Future Prospects

This review article encompasses the latest available reports about the role of laccases
as a green solution to the biodegradation of environmental contaminants and as biocata-
lysts. Laccases have huge potential in the bioremediation of waste generated by several
industries, such as the pharmaceutical, pulp–paper, textile, and food industries, among
others. Laccases are very useful novel biocatalysts in many industrial applications due to
the versatile nature of the substrates. Efforts have to be made to design biodegradable dyes
to enhance decolorization by laccase by using a modified substituent. Further research
should put more focus on the natural mediators produced by laccase in a bio-environment
during the degradation of lignin and the development of immobilized laccases that use an
eco-friendly nanomaterial that can be recycled and hence reused. A greater understanding
of the functioning of laccase will enhance the development of more economical and efficient
applications of laccases.

Author Contributions: Conceptualization, N.A., A.S. (Anupama Singh), B.P., M.A.H. and S.C.; Data
curation, K.K.Y., W.L. and N.A., methodology, K.K.Y., W.L. and V.S.S., validation, V.S.S., S.C., C.L.
and B.-H.J., formal analysis, A.G., V.S.S. and B.P.; resources, N.A., B.-H.J., M.A.H. and A.S. (Amrita
Srivastava); writing—original draft preparation, V.K.Y., V.S.S., S.C. and N.A., writing—review and
editing, A.G., V.S.S., S.C., V.K.Y., W. L., K.K.Y., B.P. and B.-H.J., supervision, V.K.Y., V.S.S. and B.-H.J.,
A.S. (Anupama Singh), A.S. (Amrita Srivastava) and M.A.H., project administration V.S.S., V.K.Y.,
A.S. (Anupama Singh), A.S. (Amrita Srivastava), K.K.Y. and W.L., Funding acquisition, M.A.H., A.S.
(Anupama Singh), A.S. (Amrita Srivastava) and A.G., Investigation, K.K.Y., N.A., V.S.S., V.K.Y., B.-H.J.,
N.A., A.S. (Anupama Singh) and A.S. (Amrita Srivastava); Software’s, M.A.H., A.G., B.-H.J., A.S.
(Anupama Singh), B.P. and A.S. (Amrita Srivastava); Visualization, A.G., B.-H.J., M.A.H., S.C. and
K.K.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All relevant data are included in the article.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University, Abha, Kingdom of Saudi Arabia, for funding this work through Large Groups
RGP.2/43/43. This work was supported by the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of
Korea (No. 20213030040270). This research is also supported by Prince of Songkla University and the
Ministry of Higher Education, Science, Research and Innovation under the Reinventing University
Project (Grant Number REV65017).

Conflicts of Interest: All authors declare that there is no conflict of interest.

References
1. Gianfreda, L.; Xu, F.; Bollag, J.M. Laccases: A useful group of oxidoreductive enzymes. Bioremediat. J. 1999, 3, 1–25. [CrossRef]
2. Tzanov, T.; Basto, C.; Gübitz, G.M.; Cavaco-Paulo, A. Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton,

Macromol. Mater. Eng. 2003, 288, 807–810.
3. Susana, R.C.; Herrera, J.L.T. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513.
4. Breen, A.; Singleton, F.L. Fungi in lignocellulose breakdown a biopulping. Curr. Opin. Biotechnol. 1999, 10, 252–258. [CrossRef]
5. Li, K.; Xu, F.; Eriksson, K.E.L. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model

compound. Appl. Environ. Microbiol. 1999, 65, 2654–2665. [CrossRef]
6. Kandelbauer, A.; Maute, O.; Kessler, R.W.; Erlacher, A.; Gübitz, G.M. Study of Dye Decolourization in an Immobilized Laccase

Enzyme-Reactor Using Online Spectroscopy. Biotechnol. Bioeng. 2004, 87, 552–563. [CrossRef]
7. Pointing, S.B.; Vrijmoed, L.L.P. Decolorization of azo and triphenylmethane dyes by Pycnoporussanguineusproducing laccase as

the sole phenoloxidase. World J. Microbiol. Biotechnol. 2000, 16, 317–318. [CrossRef]
8. Karam, J.; Nicell, J.A. Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol. 1997, 69, 141–153.

[CrossRef]
9. Raghukumar, C. Fungi from marine habitats: An application in bioremediation. Mycol. Res. 2000, 104, 1222–1226. [CrossRef]
10. Bogan, B.W.; Lamar, R.T. Polycyclic aromatic hydrocarbon degradation capabilities of PhanerochaeteleavisHHB-1625 and its

extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 1996, 62, 1597–1603. [CrossRef]
11. Wu, J.; Kim, K.-S.; Lee, J.-H.; Lee, Y.-C. Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas

hydrophila WL-11. J. Environ. Sci. 2010, 22, 635–640. [CrossRef] [PubMed]

http://doi.org/10.1080/10889869991219163
http://doi.org/10.1016/S0958-1669(99)80044-5
http://doi.org/10.1128/AEM.65.6.2654-2660.1999
http://doi.org/10.1002/bit.20162
http://doi.org/10.1023/A:1008959600680
http://doi.org/10.1002/(SICI)1097-4660(199706)69:2&lt;141::AID-JCTB694&gt;3.0.CO;2-U
http://doi.org/10.1017/S095375620000294X
http://doi.org/10.1128/aem.62.5.1597-1603.1996
http://doi.org/10.1016/S1001-0742(09)60156-X
http://www.ncbi.nlm.nih.gov/pubmed/20617743


Water 2022, 14, 4068 10 of 12

12. Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure-function relationship among bacterial, fungal and plant laccases. J.
Mol. Catal. B Enzym. 2011, 68, 117–128. [CrossRef]
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