IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 December 2022, accepted 20 December 2022, date of publication 26 December 2022,
date of current version 30 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3232130

==l RESEARCH ARTICLE

Local and Global Search-Based Planning for
Object Rearrangement in Clutter

JINHWI LEE“1:2, (Student Member, IEEE), CHANGJOO NAM 3, (Member, IEEE),
JONG HYEON PARK 2, (Member, IEEE), AND CHANGHWAN KIM', (Member, IEEE)

I'Korea Institute of Science and Technology, Seoul 02792, South Korea
2Department of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
3Division of Electronic Engineering, Sogang University, Seoul 04107, South Korea

Corresponding author: Changhwan Kim (ckim @kist.re.kr)
This work was supported in part by the Technology Innovation Program and Industrial Strategic Technology Development Program

(Development of Service Robot Technologies for Cleaning a Table) under Grant 20018256, and in part by the Korea Institute of Science
and Technology (KIST) Institutional Program under Project 2E31560.

ABSTRACT We propose two algorithms based on local and global searches for a Task and Motion Planning
(TAMP) problem, which considers a robotic manipulator to rearrange obstacles and grasp a target in clutter.
In the problem, no collision-free path for a robotic manipulator is available unless some obstacles blocking
a target are relocated. The two algorithms determine the sequence of obstacles to be removed for grasping a
target without collisions. The local search algorithm determines the sequence quickly in an online manner but
could be suboptimal in the number of removed obstacles. The global search algorithm based on tree search
needs upfront computation but runs in polynomial time. In numerical simulation settings, we consider objects
in various shapes, which could make reachable directions bounded. From the simulations the planning time
of local search algorithm is faster than that of global search, whereas the global search algorithm removes
the less number of obstacles than the local search. In addition, we show that the global search algorithm with
a heuristic cost is faster than without the cost but the minimum number of removed obstacles is still obtained
from the global search algorithm without the heuristic cost. Practical experiments show the applicability of
our algorithms in real environments

INDEX TERMS Task and motion planning, object rearrangement, local and global search, manipulation
planning.

I. INTRODUCTION

In a workshop or home environment, a robot could per-
form manipulation tasks in cluttered environments, where
movable objects may occlude each other as seen in Fig. 1
(e.g., bin picking in warehouses). When a target object is
occluded by other objects (so called obstacles), it is neces-
sary to rearrange the obstacles and grasp the target without
collisions.

In such cluttered environments as Fig. 1 overhand grasping
may not be available geometrically so that the approaching
motions from the side or front are essential. This approach-
ing may request several sub-tasks to remove some obstacles

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

blocking a target object. When a robot wants to move an
object into a certain spot, the sequential actions of pick-and-
place are necessary. The more objects to move, the more pick-
and-place actions are requested. In other words, a smaller
number of objects to move could make the number of pick-
and-place actions decrease. Eventually, reducing the number
of robot actions for removing the obstacles affects the effi-
ciency of rearrangement and target grasping. Due to this, the
present work focuses on minimizing the number of obstacles
to be removed. The rearrangement problem determines the
sequence of obstacles to be removed and is known to be
computationally difficult as mentioned in [1]. In addition, the
problem could become much harder, if the reachable direction
to objects is bounded by the shapes of objects, which is dealt
with in this work as well.

134899

https://orcid.org/0000-0001-7927-9056
https://orcid.org/0000-0002-9169-0785
https://orcid.org/0000-0001-6263-375X
https://orcid.org/0000-0003-0961-8758

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

FIGURE 1. An example of cluttered environment. Certain objects need to
be removed from the clutter to grasp a target object.

Some previous works propose rearrangement methods
based on motion or path planning. Dogar and Srinivasa [2]
present a planning framework that generates a straight line
path from an end-effector to a target object. Removing the
obstacles on the path is planned as sub-tasks and other objects
may also be removed to get spaces to place such obstacles
removed from the path. Similarly, in [3], the motion of a
manipulator is generated first without considering the obsta-
cles and then all the obstacles in collision with the robot
are removed. Murali et al. [4] suggest the rearrangement
method considering the accessibility between a gripper and
a target object. The method is not intended to minimize
the rearrangement task to grasp a target object. However,
considering the 6-dof of the gripper poses, it finds an obstacle
that prevents the manipulator from grasping a target object
efficiently in real-world. Sundermeyer et al. [5] also propose
a learning based method called Contact-GraspNet to find the
grasping points of an object in clutter by considering the
object’s pose and collisions with other objects. The method
calculates the 6-DOF of a gripper with contact points between
the gripper and an object, even if an unlearned object is given.
Danielczuk et al. [6] propose a method to place an object
without collisions in clutter. The method converts objects and
an environment scene into point clouds and finds the 6-DOF
pose of an object for a gripper to place it safely in the clouds
of an environment. Moll et al. [7] suggest the planner that
plans a path to a target by pushing all the obstacles on the
path aside a bit. The planner generates a path by a random
tree expansion whose strategy is a concern about improving
the coverage of the tree rather than determining the number
of obstacles to be pushed. Papallas and Dogar [8] also suggest
the method to grasp a target by pushing objects. When a
human commands the start and end points of the end-effector,
arobot generates a motion that pushes objects around a target.
Ren et al. [9] propose a rearrangement planning algorithm
to make a gap between dense blocks and help a finger-
gripper grasp the target with ease. The algorithm applies a
heuristic function to RRT (Rapidly exploring Random Tree)
to reduce planning time. Eitel et al. [10] propose a method of
singulating each object so that a finger-gripper can grasp the
objects by considering the grasping points of the objects in
clutter. The method generates a push plan by learning images

134900

using CNN. The images represent the expected state when
objects are pushed. Pinto et al. [11] and Yuan et al. [12]
propose methods that do not directly optimize energy or time
for accomplishing a manipulation task but mainly consider
the validity of their plans. Therefore, it is observed that
some obstacles may be removed unnecessarily. Most of these
approaches focus on finding the obstacles to be relocated, not
reducing the number of obstacles seriously. In addition, they
do not consider such a constraint as the reachable directions
of objects that could affect both of task and motion planning
in real world. Thus, our goal is to plan as small numbers of
sub-tasks as possible for grasping a target object, considering
the reachable directions of objects.

Another works aim to optimize the performance of
the object rearrangement to be a goal configuration.
Han et al. [13] solve an optimization problem for object
rearrangement by using a tree search algorithm, which aims
at minimizing the number of pick-and-place actions and the
travel distance of the end-effector. Krontiris and Bekris [14]
and Han et al. [15] also propose the methods that minimize
the number of object movements for a rearrangement, where
objects are stored in stack-like containers. These methods are
similar to the Tower of Hanoi algorithm. Eljuri et al. [16] and
Wang et al. [17] also propose rearrangement planning algo-
rithms to relocate objects for a given goal state by checking
the motion feasibility of the state. Although their algorithms
show high efficiency and solution quality, the problems are
not involved with complex motion planning and only con-
siders placing objects on the top of the container. On the
other hand, scalability of a planning algorithm is important as
cluttered environments have a nontrivial number of objects.
Vega-Brown and Roy [18] produce high quality solutions
based on a graph search for rearrangement problems, which
are to move objects to a designated space by a mobile robot.
The environments in the problems are not cluttered due to
the small number of objects compared to the size of map,
so increasing scalability of them remains unsolved. These
rearrangement problems are, however, slightly different from
the present one, since the present one is to find what obstacles
to be relocated in what order for grasping a target.

We propose two Task and Motion Planning (TAMP) algo-
rithms that decide the obstacles to be relocated. The first
one is based on locally searching the obstacles that are
most accessible by the end-effector of a robot. The acces-
sibility of obstacles is evaluated by employing Vector Field
Histogram+ (VFH+) [19], which finds obstacle-free direc-
tions for approaching an obstacle. This algorithm runs fast
(less than 0.05 sec to generate a plan for ten objects) and is
complete. It could, however, make a suboptimal solution in
aspect of the number of obstacles to be removed. We develop
another algorithm to find an optimal solution using Breadth-
First Search (BFS) of a tree representing possible manip-
ulation actions and resultant states. The optimal solution
removes the minimum number of obstacles so that the total
execution time can be reduced and the computation time
significantly by pruning and ordering as well (e.g., less than

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

TABLE 1. Nomenclature.

N the total number of objects

t target object

v node of tree in the global search

Up parent node of v

O set of all the objects in robot workspace including ¢
(ie. O ={o1,02, -+ ,on_1,t})

or an obstacle to be removed

Op, Oz sets of objects in the nodes v; and x, respectively

Os set of obstacles to be removed

K the number of elements of Oy

M robot configuration

Q frontier implemented by the node v

U frontier implemented by dmax

dmax the max. radial distance from the center of an object
to grasp for computing histogram

H histogram of the sector in robot workspace

Hg histogram of the sector having minimum magnitude

HE Hg of the target object

sector the angle range surrounding a given object

(i.e. —180° to 180° in the x-axis of histogram)

0.6 sec with ten objects). The two algorithms deal with the
reachable directions of objects, which are bounded by the
shapes of objects and end-effector. We run some simulations
for the two algorithms and compare the results. We attach
a video clip describing the algorithms and the simulation
results as well.

Il. PROBLEM DESCRIPTION

In this section, we describe the terminologies, the definition
of a direction angle, and the assumptions for the present
problem in detail. First, the notations and terminologies used
in the paper are given as seen in TABLE 1.

A. CONCEPT AND DEFINITIONS OF DIRECTION ANGLES
We define tree types of direction angles of an object for
grasping as seen in Fig. 2. Accessible directions are the angle
range that is not blocked by obstacles so that the end-effector
can approach an object in the directions without collisions.
Reachable directions denote the angle range which is deter-
mined according to the shape and size of an object and the
workspace of an end-effector. Reachable directions can vary
depending on a gripper for the same object. Graspable direc-
tions are then obtained by the intersection of accessible and
reachable directions, in which the end-effector can approach
the object and grasp it without collisions.

B. ASSUMPTIONS

We consider the problem of grasping a target object, which
requires a robot to rearrange obstacles and avoid collisions.
The problem deals with an environment with N objects
including a target object ¢. The basic assumptions are give as
follows: (i) The robot knows the configurations and geome-
tries (i.e., pose, shape, size) of all objects including a tar-
get. (ii) The end-effector has no collision-free path to a
target without relocating some obstacles.! (iii) The removed
obstacles are placed outside the environment, which is

IWhen a collision-free path to a target exists, our method is able to give
that path without requesting rearrangement.

VOLUME 10, 2022

="
7 N
\.

[+--=] Angle range of the reachable direction

[—"¥ Angle range of the accessible direction
[~ Angle range of the graspable direction

. L

7
iy 4 \
i] @
o 9'
(A . 1
vy B
N v/
N

v

~ .
——

FIGURE 2. The definitions of three types of direction angles for grasping
an object (t, a green box): Accessible directions denote the angle range
around on an object except the angle blocked by an obstacle (o, a red
circle). Reachable directions are obtained according to the geometries
(herein shape) of an object and an end-effector. The intersection of
accessible and reachable directions represents the graspable directions.
If the end-effector approaches the object from one of the graspable
directions (Three graspable directions are possible in the figure), it can
grasp the object without collisions. If none of objects occludes a target,
reachable directions are identical to graspable directions.

predetermined. (iv) Overhand grasping is not allowed, since
the present work focuses on manipulating of objects in such
environment as seen in Fig. 1. (v) There is at least one object
that has enough space for manipulation such that the finger of
a gripper has a graspable direction for the object.” (vi) Objects
can be grasped in different reachable directions owing to their
various shapes. The reachable directions of objects are known
as a priori.

Among these assumptions, the last may bring more chal-
lenges in establishing a task plan for rearrangement, since
grasping motions could be constrained significantly by the
limited reachable directions of objects. For example, a cuboid
with different side lengths as in Fig. 2 would be grasped only
in one side (the shorter), if the size of end-effector is not
wide enough. Therefore, task and motion planning needs to
consider the reachable directions of objects carefully.

C. PROBLEM STATEMENT

In this work, our goal is to remove as few obstacles as
possible and obtain a collision-free path for an end-effector
to grasp a target object in clutter. Removing an obstacle
assigns an additional grasping task and necessarily yields
collision-checking between objects and a robot body, which
causes significant computational efforts to find valid paths.
Therefore, reducing the number of obstacles to be removed
could generate less grasping actions and save time for extra
collision checks in motion planning, which finally decreases
the total execution time for rearrangement. In formulation,
we aim to find a sequence of obstacles to be removed O; =
{forlr =1,--- K} from O = {01,072, -+ ,0n—1,}, Where
O is the set of all N objects including a target 7. The objective
of problem is to minimize K and find the corresponding Oy,
where K = |Oy|.

Ill. METHODS FOR OBSTACLE REARRANGEMENT
CONSIDERING GRASPABLE DIRECTIONS

In this section, we describe the two algorithms of LocalSearch
and GlobalSearch. Both of them employ Vector Field

2The violation of assumption (v) means that there is no object to be
grasped without collision due to very small gaps between objects. A robot
manipulator cannot then grasp any object and the algorithm is terminated.

134901

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

Histogram+ (VFH+) [19], which has been widely used for
mobile robots to find obstacle-free directions for autonomous
navigation. We modify VFH+ and use it as a subroutine to
find a collision-free direction to an object. We first give a
brief description on the modified version of VFH+ and then
introduce the algorithms.

A. THE MODIFIED VFH+

The modified VFH+ computes a histogram to represent the
graspable directions of an object in two steps. First, it finds
obstacle-free angle ranges as seen in Fig. 2 (i.e., accessible
directions in blue). Next, the modified VFH+ computes the
graspable directions (in green as seen in Fig. 2) by computing
the intersection between the accessible and the reachable
directions. A robot can take one of the resultant graspable
directions to grasp an object. We briefly summarize the
computation of the accessible directions using VFH+ (The
technical details are referred to [20]).

The key idea is to consider the environment in the perspec-
tive of a target object, which is the center circle in green as
seen in Fig. 3a. In the coordinate system, the direction from
the target object to the robot base is determined as the x-
axis and 0°. From the configuration of objects, the modified
VFH+ computes a polar histogram according to the positions
and sizes of objects around the target. Considering the sizes
of gripper and objects, we have the outline circle of each
object enlarged for collision-checking as seen in Fig. 3a.
A collision occurs, when the gripper is in the enlarged circles
in red. The histogram range is determined by considering the
sizes of enlarged circles. The overall histogram considering
all objects is computed by the sum of the polar histogram of
each object as seen in Fig. 3b. In Fig. 3b, there are three angle
ranges in the polar histogram (i.e., -134° .(-42°), -9°..80°,
24°_172°), where non-zero magnitudes of histogram are
computed. A single obstacle occludes the target in some
ranges so that the magnitude of histogram in the ranges is
one. Multiple obstacles could block the target so that the
magnitude of histogram is larger than one (e.g. it is two in the
range of 24°.80° in the figure). The angle range with zero
magnitude means that there is no object blocking the target
in the range. Due to geometrical limitations, the workspace
of robot arm is bounded so that the sector of histogram is
partially and practically available. For the example in Fig. 3c,
the sector of angle ranges from -45°.45° is the workspace
such that the robot cannot reach outside that sector. The valid
histogram H of the sector is computed as shown in Fig. 3d.
From H, a set of accessible directions can be obtained. If the
target object is reachable from any direction (like a cylindrical
object), all the accessible directions become graspable direc-
tions. If the object has limited reachable directions (which
is known as a priori), the graspable directions could change
according to the pose of the object.

GraspabilityCheck determines the minimum magnitude
of the histogram (H) out of the histogram (H) and its
corresponding sector for a given object. The histogram (H)

134902

180°(-180°) 180°(-180°)

(a) An example of a configuration
(green solid circle: target, red solid
circles and box: obstacles, enlarged
outlines in red: safety check for ob-
stacle)

3.0 3.

(b) The polar histogram of the
configuration

251 Out of Robot Out of 25

o

2.0

Magnitude
Magnitude

=
)

o
o
o
o

0.0, 00— ——— . .
-180-135 -90 -45 0 45 90 135 180 —45.0 -225 0.0 225 45.0

Sector (degree)
(d) The partial histogram on the
robot workspace (-45° .45°)

Sector (degree)
(c) The normal histogram corre-
sponding to (b)

FIGURE 3. An example of a configuration and its histogram from the
modified VFH+: In (a), the enlarged outlines in red surrounding the
objects denote the safety areas for collision-checking with the robot
gripper. Through the histograms in (b) and (c),the partial histogram in
(d) on the robot workspace is finally obtained.

for a given object is obtained by the modified VFH+ as
mentioned before. The inputs of GraspabilityCheck are a
configuration of objects O, a target object ¢, a robot configura-
tion M (i.e., robot kinematics and position), and a parameter
d max. The parameter d max is used to determine the area
for obstacle detection, which is described in Sec. III-B in
detail. Within the reachable directions, the sector having the
minimum magnitude of the histogram is obtained as H (3,
which is the output of GraspabilityCheck. GraspabilityCheck
is complete, because the histogram must have at least one
minimum magnitude. There are two cases depending on the
minimum magnitude of histogram: (i) If the magnitude is
zero, there is an obstacle-free direction to the target. Thus, the
algorithm can find graspable directions to grasp a target. (ii)
If the magnitude is nonzero, there exists at least one obstacle
blocking a target. For the example in Fig. 3d, the minimum
magnitude of the histogram, H 3, is zero. This means that no
obstacle blocks the target in the sector so that the target can
have a graspable direction in that sector. If the target has a
limitation on its reachability in the shape like a box, the sector
could shrink more. A time complexity of GraspabilityCheck
is linear. GraspabilityCheck calls the modified VFH4- once
to compute a histogram H. The modified VFH+ runs on
N objects at most in the order of O(N) in [20]. Then Gras-
pabilityCheck runs to find the graspable directions with the
minimum magnitude of the histogram. The time complexity
depends on the resolution of the histogram sector. If we divide

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

(a) The initial dpy,4x (to include all
objects to compute a histogram by
GRASPABILITYCHECK

(b) The updates of dp,x 0 tO ex-
clude obstacles that do not have to
be considered anymore

FIGURE 4. An illustration d max computation, which is updated after
each removal of an obstacle. (a) Initially, d max,0 IS the Euclidean
distance between the target and the farthest object such that all the
objects are considered in GraspabilityCheck to compute the histogram.
(b) Once Obstacle A is removed, d 1,5y 1, Which is the distance between
the target and Obstacle A, is used by GraspabilityCheck to find the next
obstacle to remove. Once Obstacle B is removed, d 1,y 5 is used.

the sector into L segments (i.e., angle intervals), the time
complexity of GraspabilityCheck is O(N + L).

B. LOCAL SEARCH ALGORITHM

LocalSearch algorithm in Alg. 1 aims to find the obstacles to
remove one by one through iteration. If multiple obstacles
block a target object, the algorithm recursively runs until
it finds graspable obstacles by chaining obstacles from the
one near to the target to the one that is graspable. Once
the robot removes a graspable obstacle that is not the target,
the algorithm is called to find the next obstacle for removing
with the updated object configuration (O), which the current
obstacle is excluded from. The algorithm is called repeatedly
until the target ¢ is removed from O.

The quantity d max determines what obstacles are included
for computing the histogram. Initially, d max is given as the
Euclidean distance from the target to the farthest obstacle
from it. After each step (after removing an obstacle), d max
is updated as the Euclidean distance between the target and
the obstacle that is most recently removed (line 6). By this
update, the obstacles in other directions but the one the robot
is currently “digging” can be excluded. Figs. 4 shows how to
update d max. In the beginning, the Euclidean distance from
the target to its farthest object in O is computed (d 5% in
Fig. 4a) so that all the objects in O are initially considered.
Once Obstacle A is removed, the distance from the target to
Obstacle A (i.e., d pax 1) is used by GraspabilityCheck to
find the next obstacle to remove (Fig. 4b). After removing
Obstacle B, d max,2 is computed in the same way. If d max
is not updated as shown above, the robot could have removed
more obstacles. For example, after removing Obstacle A in
Fig. 4b, Obstacle C could be the next, if the algorithm keeps
using d max,0- This is due to the fact that Obstacle C is still
included for computing the histogram.

3Inour experiments, the number of segments L is 90, when the angle range
of total sector is 90° (i.e., the range of robot workspace) and the resolution
of the sector is 1°.

VOLUME 10, 2022

Algorithm 1 LocalSearch

Input: The original target ¢, current target 7. (initial z, = 1),
configuration O that is set of all objects remaining in the
workspace including ¢, robot configuration M, distance
from a target to a farthest object d max

Output: The set of an obstacle to be removed Oy, updated

d max

1: Oy =¢

2: H g = GraspabilityCheck(O, t., M, d max)

3: Choose o, which is in the sector of H i and the closest
to the target

4: if o, == 1. then

5 if MotionPlanning(o,) == True then

6: d max = EuclideanDist(o,, 1)

7: Os = {0/}

8 return Oy, d max

9 else

10 Choose other o, which is in the sector of H (5 and

the next closest to the target
11: endif
12: end if
13: t. = o,
14: (Oy, d max) = LocalSearch(z, t., O, M, d max)

The minimum magnitude of histogram H is computed
by GraspabilityCheck in line 2. The magnitude of H ¢ repre-
sents the minimum number of obstacles to be removed in the
direction angles of H G Therefore, the robot can remove the
minimum number of obstacles. If there are multiple obstacles
in the sector of H (3, the algorithm chains the obstacles from
the closest to the target to the farthest. The chain of obstacles
begins from the target, since the histogram indicates which
obstacle blocks the target. Thus, the closest obstacle o, is
chosen for removal in line 3. If the chosen obstacle is not
the current target 7., it means other obstacles still remains
to be chained. Thus, the algorithm recursively finds the next
obstacle in the chain by considering o, as a temporary target
(it denotes the current target ¢, lines 13—14). If the obstacle
o, is the current target #., it means the magnitude of H 5
is zero. It is then evaluated whether a motion planning to
grasp o, is feasible. If the motion planning is feasible, o,
is graspable and the set of O; with a single element of o, is
returned (lines 5-8). When the motion planning is infeasible,
a new o, that is the next closest to the target in the sector
of H (is selected (line 10). This recursion occurs until the
algorithm finds a graspable obstacle, which is at the end of
the chain. Once the graspable obstacle is removed, Alg. 1
is called to find the next obstacle until the original target (¢)
becomes graspable. Due to this, the algorithm solves a new
removal problem after removing an obstacle, which could be
favorable to dealing with such dynamic situations as the poses
of objects change or new objects appear.

Three examples of the algorithm are shown in Figs. 5.
In Fig. 5a, a sector range of @ has the minimum magnitude

134903

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

Z Histogram

@

NNNNN

Magnitude

® ®
@

. —2‘5 . 0.0 2‘5 5.0
Sector (degree)

(a) The case where no obstacle-free direction exists: The histogram on the
right does have no sectors with zero magnitude. Thus, the end-effector
cannot grasp the target without removing obstacles.

£ 7777, 77 77 b Histogram
7
P
3.0
Las
7
2.
i 5
'\“ s 15
e ® @
\“ - 4
| 5 ™, o8 @
i\ Ay N,
IR \ & 0.0 ;
A} A "\, =45.0 =225 0.0 225 45.0
L @ \\@ i Sector (degree)

(b) The case where there is an obstacle-free direction: The histogram on
the right shows the sector of 3) with zero magnitude. Therefore, the end-
effector can grasp the target directly through the sector of 3).

77 »
_— Histogram

35

SANNNNNN

Magnitude

® @

Graspable

[NNNN

R ble

(c) The case where the target has limited reachable direction angles: The
intersection of the accessible directions (the sector (3)) and the reachable
directions denotes the graspable directions as seen in the right figure.

FIGURE 5. Examples illustrating the histograms (in the right figures)
computed by the modified VFH+ for the cluttered configurations on the
left. The numbers in circles on the left represent areas in the
configurations, which matches the same numbers in the histograms on
the right. The positive angle of the histogram is measured
counterclockwise from the base line, which is vertically from the target in
green to the robot base (just under the bottom line of the figures on the
left). The histograms on the right are shown partially from —45° to 45°,
which is the workspace of robot manipulator.

for the histogram H . Within the sectors, the obstacle o3 at
the bottom is chosen to remove. In the example of Fig. 5b,
the sector @) has the zero magnitude of H 3, which means
that the target has graspable directions in that sector. If only
the target has limited reachable directions in the same con-
figuration, the graspable directions could shrink as seen in
Fig. 5c (graspable directions in green on the left and the
corresponding histogram on the right).

It is noticed that Alg. 1 is complete and runs in polynomial
time as shown in the following theorems.

Theorem 1: Alg. 1 is complete and a robot manipulator
eventually grasps a target.

134904

Proof: By Sec. III-A, GraspabilityCheck is complete
so that it always returns an object to be grasped (either the
target or an obstacle). Therefore, Alg. 1 can always find
a graspable object returned by GraspabilityCheck. In each
recursive call of Alg. 1, one object is removed. After the
recursion is repeated for all N — 1 objects in the worst case
(i.e., all obstacles are blocking the target so removed), the last
remaining object, which is the target, is grasped. Thus, Alg. 1
guarantees that the target is grasped.]

Theorem 2: Alg. 1 runs in polynomial time.

Proof: Initially, Alg. 1 needs the maximum among all
the Euclidean distances from the target to all obstacles. The
maximum operation takes O(N) but only once. Then, Alg. 1
is called recursively at the most N times for all N objects
in O. The subroutine GraspabilityCheck is with O(N + L) as
proven in Sec. III-A. Therefore, the time complexity of Alg. 1
is OON + N(N + L)) = O(N? + NL). O

C. GLOBAL SEARCH ALGORITHM

Alg. 1 runs in polynomial time and could take relatively low
time cost to find obstacles to remove. However, the solution
may be suboptimal in the number of removed obstacles as the
algorithm chains obstacles locally without considering global
optimum. Thus, we develop a global search algorithm using
a tree search method.

We define a tree to search a sequence of obstacles to be
removed. As shown in Fig. 6, a node in the tree represents a
state of objects (i.e., an object configuration). A goal node
represents a configuration, where the target has graspable
directions without collision. If object o is removed from the
current configuration O, a child node is generated to represent
the configuration where o does not exist anymore, i.e., O \ o.
Thus, the depth of the tree denotes the number of removed
obstacles. A tree search algorithm traverses over the tree
structure until the goal node is found. In each node, multiple
child nodes can be generated, since multiple objects need to
be removed. A frontier stores the nodes that will be searched
while expanding the tree. Among the nodes in the frontier, the
next node is determined by the search strategy for expansion.

We should employ one of the uninformed search strategies,
as we do not have any information regarding the goal state
so that evaluating the expansion of the tree is not possible.
We choose the Breadth-First Search (BFS) to find the optimal
solution among many possible ones. BFS searches all the
nodes in the same depth and moves to the next depth. If a
goal node is found by BFS, the node is at the shallowest
depth compared to all the other solutions [21]. In our problem,
a deeper depth means removing more obstacles such that the
goal at the shallowest depth indicates the minimum number
of removed obstacles.

However, BFS has exponential time complexity so that it
may run slow to find a goal node. To reduce the practical
runtime, we use a pruning and an ordering method. We prune
the tree, if a node to be generated has the same state with
one of existing nodes. On the other hand, the order of nodes
in the frontier could affect the search efficiency significantly.

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

jth depth

Remove
an obstacle

(+ Dth depth

[0

FIGURE 6. The concept of a tree structure: Each node represents an
object configuration. A child node is generated by removing an object
from the configuration. The depth of tree denotes the number of
obstacles to be removed.

ES
o
=%
o
o
[}

v 77277 Z

QO Q. @ .Q.__.
| % 3
é ‘ % Wi ring
0 7)) Ll
e Lo o3 (23] | [o3e] o

2 With ordering

FIGURE 7. An example of ordering the frontier: The fan shape in the left
figure shows the reachable directions of the target in green. The first row
of the right figure shows the frontier without ordering for the
configuration of objects in the left figure. The nodes are searched in the
order of B, C, and D. We consider the reachable directions of the target
for ordering. Since the end-effector can approach an object through its
reachable directions, it is more important to search first the objects
within the directions. After ordering, the algorithm searches D-C-B as
seen in the bottom row of the right figure.

Since BFS explores all the nodes in the same depth, it could
work faster if the nodes that are most likely the goal are
searched first [22]. After every expansion of the tree, we order
the nodes in the frontier (implemented by a First-In-First-
Out queue) to remove the obstacle that likely clears the path
to the target. The details of the pruning and the ordering
method are described below with the pseudocode shown
in Alg. 2.

Alg. 2 has a similar input and output with Alg. 1. Since
Alg. 1 works in an online manner, it is called repeatedly to
remove objects (obstacles) one by one and grasp a target.
Thus, Alg. 1 needs to return d max for the next call in addition
to the set O, indicating which object to remove. Since Alg. 2
finds the full sequence of the objects to be removed, d max is
used and updated inside the algorithm. In addition, an initial
node vy is an additional input argument to Alg. 2.

In the beginning, the frontiers Q and U and the set of
obstacles to be removed O; are initialized. Then the root
node vg and the initial d max are inserted into the frontiers
of Q and U. Before the target is grasped, the following
loop repeats (lines 4-34). First, the node v and d max to be
expanded are dequeued (line 5-6). For each object in O in the
state v, GraspabilityCheck checks if each of the objects has
graspable directions (line 8). If an object has such graspable
directions (i.e., H 3 has zero magnitude), the object can be
removed. Thus, a new node vT is generated and saved to
the frontier (lines 10-11). The quantity d j,,x is obtained in
the same way as done in Alg. 1 for the next computation

VOLUME 10, 2022

of GraspabilityCheck. Pruning is done in line 32. When a
tree is generated, multiple nodes representing an identical
state can be generated. For example, if two graspable objects
are removed in different orders, they result in the same
state. Duplicating of nodes may cause unnecessary searching
efforts and make the algorithm slow. To check the duplication
in node generation, we compare all the nodes in the same
depth. Since the nodes in other depths have the different
numbers of removing objects, those nodes never share the
same state.

In line 33, the nodes in the frontier are ordered.
As described before, the frontier stores the nodes to search,
which are generated by removing an obstacle. Thus, the nodes
in the frontier represent the state where each of graspable
objects is removed. In Fig. 7, the top row of the right figure
shows the frontier without ordering for the configuration of
objects on the left. The nodes are searched in the order of
B, C, and D. To order the nodes, we consider the reachable
directions of the target. Since the end-effector approaches an
object in its reachable directions, it is important to consider
the objects within the directions first. In each expansion
of the tree, we find the reachable directions of the target.
In the left figure of Fig. 7, the reachable directions of target
are represented in the fan shape. The first node into the
frontier represents the configuration, where the correspond-
ing obstacle occludes the target most and is selected for
removal (determined by the histogram). The next nodes are
determined according to the same manner (i.e., dependent on
how much the corresponding obstacle occludes the target).
The nodes outside the reachable directions are then inserted
into the frontier by the lexicographical order. The bottom
row of the right figure in Fig. 7 shows the ordered frontier.
The nodes are searched in the order of D, C, and B after
ordering.

Once a child node is generated, the algorithm checks if
the node is a goal state. In other words, if the corresponding
object to be removed is not the target, the same process runs
to find another object to remove. If the object to be removed
is the target, the algorithm saves the sequence of all the
objects(i.e. obstacles) to be removed so far. This is done by
chaining the parents nodes back to the root (lines 16-21). The
objects in the chain are saved to Oy in the reverse order as
seen in line 22, (i.e., the order of obstacles from the robot
to the target). Then, the algorithm evaluates whether the
motion planning for the set Oy is feasible. If it is feasible,
the algorithm terminates and returns the set O (lines 23-24).
If not feasible, Oy becomes empty, and the last elements of
frontier Q and U are deleted (lines 25-27). And replanning
proceeds until a new goal node is found. Fig. 8 shows an
execution example of Alg. 2. In the example, a goal node is
found at the depth level 3 so that the two objects as obstacles
are removed and the target is grasped in the node order of
B-D-G.

It is noted that Alg. 2 is complete and runs in exponential
time as shown in the following a theorem.

134905

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

Depth
of tree
0 e
o [E]e TR

10

TASK PLANNER
MOTION PLANNER

FIGURE 8. An execution example of Alg. 2: In the beginning (Node A), the
obstacles to be removed are found by GraspabilityCheck. Since o, and
05 are removable and o, and t are not graspable in Node A, two nodes B
and C are generated from Node A. Their order is determined by the
ordering method described above. Since 0, blocks more widely the
reachable directions to the target than o3, it is searched earlier. After the
two nodes are generated from the root node, the search goes to the next
depth because of no more obstacles to be removed in the current depth.
It is noticed that Node E is pruned in the next depth, since it is identical
to Node D. Finally, the target is grasped in the bottom depth. If motion
planning for nodes B-D-G is feasible, the sequence is returned.

Theorem 3: Alg. 2 is complete so that it eventually gives a
plan to grasp a target object.

Proof: By Sec. IlI-A, GraspabilityCheck is complete so
it always returns an object to be grasped (either a target or
an obstacle). Alg. 2 always expands the search tree by
removing the object indicated by GraspabilityCheck. Since
we use BFS that is shown to be complete, the solution
is always found. Thus, Alg. 2 guarantees a sequence of
objects(obstacles) to be removed including a target. g

D. HEURISTIC SEARCH

The Breadth-First Search (BFS) in Alg. 2 determines a node
v in the first-in-first-out (FIFO) order from Q in dequeue as
in [21] (line 5-6). Instead we may apply the heuristic search
proposed in [23] to dequeue and select a node by employing
a heuristic cost for efficiency as in [22]. The cost for each
node is defined as the sum of two H tG values of the current
node and its parent node. H'~ is H (; value of the original
target ¢, which is computed from GraspabilityCheck at each
node. The heuristic search determines a node with a minimum
cost among the nodes in the frontier since the H'~ of the goal
node is 0. The simulation results of Alg. 2 using BFS and the
heuristic search are compared and investigated in Sec. IV-A4.

IV. EXPERIMENTS

We run simulations and practical experiments to validate our
algorithm. In the simulations, we verify the characteristics of
each algorithm and compare the proposed algorithms with
another algorithm. In the practical experiments, we show
that the proposed algorithms could be applicable to real
environments.

A. SIMULATIONS
We run numerical simulation in a virtual environment using
the dynamic simulator V-REP [24]. In the simulation, we use

134906

Algorithm 2 GlobalSearch

Input: The original target 7, robot configuration M, distance
from the target 7 to its farthest object d 5 . node
vo representing the initial configuration that has the set
of all objects in the workspace including ¢

Output: O; that includes the obstacles to be removed and the
target ¢

L Os=¢;0=¢;U=¢
2: Enqueue(Q, vo)
3: Enqueue(U, d max,O)
4: whiler ¢ O do
5. v = Dequeue(Q)
6: dmax = Dequeue(U)
7. foreacho € vdo
8: H G = GraspabilityCheck(v, 0, M, d max)
9: if H g == 0 then
10: Generate node v which represents v except o
11 Enqueue(Q, v1)
12: d'ax = EuclideanDist(o, t)
13: Enqueue(U, d fhax)
14: if o ==t then
15: x=vT
16: while x # vg do
17: vp = GetParent(x)
18: o' =0p\ O,
19: Oy =0, U {0/}
20: X =V
21: end while
22: O, = ReverseOrder(Oy)
23: if MotionPlanning(O,) == True then
24: return O
25: else
26: O;=¢
27: Delete the last elements of Q and U
28: end if
29: end if
30: end if
31: end for
32: (Q, U) = Pruning(Q, U)

33: (Q, U) = OrderFrontier(Q, U)
34: end while

Kinova JACOI, a 6-DOF manipulator anchored at the base
location. The simulation instances of the problem are com-
posed of cluttered and constrained environments as seen in
Fig. 9. In the environments, three types of objects which are
cylinder, cup and box are used. Considering a typical two-
finger gripper as we used, we set the reachable directions
of each object to 360° for a cylinder (all surface), 60° for a
cup (round surface except the handle part) and 30° for a box
(two narrow sides). It is not assumed that the manipulator can
approach objects from the top. Obstacles are supposed to be
placed on the predefined spots of a shelf next to the robot.

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

FIGURE 9. An instance of a simulated environment with V-REP. The
shapes of objects are cylinder (red), cup (magenta), and box (purple). The
target object is the green box.

All the simulations were run on an Intel i7-7700 3.6 GHz
with 16 GB memory.

1) RUNTIME OF GlobalSearch

First, we investigate the runtime of Alg. 2. The algorithm is
implemented in python2.7 and Moveit! [25] and RRTcon-
nect [26] of Open Motion Planning Library (OMPL) [27]
are used for motion planning. The algorithm is performed
with the 30 random object configurations for each case of the
varying numbers of objects N = 7,10, 13 and 16 as seen
in TABLE 2. The tree search time increases in proportion
to the number of objects N. The motion planning time is
also proportional to the tree search time, since the number
times of motion planning is in proportion to the depth of the
tree. As the number of objects N increases, the probability
of failure in motion planning increases. This failure causes
more searching efforts to find a node where motion planning
is valid such that the runtime of algorithm increases. The
reasonable computation time may be obtained by pruning and
ordering efficiently. Since this planning is done in advance,
no other computation is required during robot’s execution.
In a practical application, the number of objects would not be
prohibitively large, since an environment is bounded, dense,
and confined. Therefore, Alg. 2 can be applicable to real-
world instances.

TABLE 2. The runtime of GlobalSearch. The tree search time and the
runtime with motion planning increase in proportion to the number of
objects N.

N (the number of objects) 7 10 13 16
practical tree search time (s) | 0.033 | 0.425 | 1.558 4.810
including motion planning (s) | 2.105 | 6.021 | 6.548 | 10.320

2) COMPARING OF LocalSearch AND GlobalSearch

LocalSearch basically uses the same method as in [20] to
determine which object to be relocated. The method in [20]
was compared with other previous works in [2] and [28], pro-
viding the fewer number of removed obstacles. In this paper,
we compare the algorithms of LocalSearch and GlobalSearch

VOLUME 10, 2022

»

w

N

-

of removed obstacles (K)

R

Graph Local Global Graph Local Global
Search Search Search Search Search Search

7 0

o

(a) The average K for N = 10, 16. The values above the graph are the P-
values of the t-test.
N=10 N=16
250

S
o
o

N

o

o
w
o
o

-
[°
o

-y
o
o

total time (sec)
total time (sec)
N
o
o

-y
o
o

a
o

i A

o

Graph Local Global Graph Local Global
Search Search Search Search Search Search

(b) The total time for N = 10, 16
FIGURE 10. Simulation results: (a) The average number of removed

obstacles (K) for N = 10, 16. (b) The average total time (in seconds) for
N =10, 16.

with a graph search method of [29]. The graph search method
finds an obstacles sequence by creating paths between adja-
cent objects. We test the environments with the number of
objects N = 10 and 16 and generate 30 random instances for
each. The objects are placed randomly on a 0.6(m) x 0.4(m)
planar area. The results are summarized in Figs. 10. The num-
ber of removed obstacles (K) from GlobalSearch is always
same as or smaller than one from LocalSearch and the graph
search method. Since the graph search method is a global
searcher but has fewer search cases than GlobalSearch, results
of the method are less than LocalSearch but more than Glob-
alSearch. The difference in K among the methods becomes
larger as N grows, because LocalSearch and the graph search
method have more chances to meet local minima if there are
more objects. In Fig. 10a, the number above the graph is the
P-value of the t-test. When P < 0.05, results of two methods
are interpreted as statistically different. At N = 10, the results
of LocalSearch and GlobalSearch are statistically different.
At N = 16, there is a statistically significant difference
between the results of the three methods. On the other hand,
GlobalSearch has longer planning time and the algorithm
needs to search again when motion planning is infeasible.
However, the total time, which denotes the sum of planning
time and robot execution time, for GlobalSearch is smaller
than other methods as seen in Fig. 10b. The reduction comes
from finding the global solutions, which have smaller K so
that the execution of relocating the K objects takes less time.
On average, GlobalSearch reduces 24% in the number of

134907

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

TABLE 3. Algorithm runtime for the successful tasks.

(a) The success rate of each algorithm

N (the number of objects) 7 10 13 16
Success method in [20] 100 93 73 60
rate (%) LOCALSEARCH 100 [100 | 100 | 100
(b) Algorithm runtime for the successful tasks
N 7 10 13 16
Runtime method in [20] 0.038 | 0.045 | 0.056 | 0.067
(s) LOCALSEARCH | 2.357 | 3.445 | 4951 | 6.167

removed obstacles such that 23% in the total time is reduced,
comparing with LocalSearch.

3) PERFORMANCE OF LocalSearch WITH

MOTION PLANNING

LocalSearch is based on the method in [20] and is integrated
by adding motion planning in this paper so that some of the
searched results might fail in motion planning. The motion
planning is employed to avoid collisions so that LocalSearch
is the advanced version of the method in [20]. We compare
the results of the two algorithms in this section. For balanced
comparison, the method in [20] is modified to consider the
reachable directions of the object.

The success rate of task execution and the algorithm run-
time are compared in TABLE 3. The simulation was con-
ducted 30 times for each case of N = 7,10, 13 and 16.
If any other object but the removing obstacles falls down
due to collision while a robot executes the task of grasping
a target, the task fails. The algorithm runtime was mea-
sured only for the successful cases and is summarized in
(b) of TABLE 3. When the task is successfully executed
(i.e., no collision in motion planning), the number of obsta-
cles to remove is same for both algorithms. This is because
the two methods use the same method to determine which
object to be relocated. The algorithm runtime of LocalSearch
is 82 times longer than that of the method in [20] on average
because of the computing time for motion planning. The task
executions always succeed in LocalSearch, whereas the fail-
ures of the method in [20] happens more frequently as the
number of objects increase. In LocalSearch the object to be
removed is determined by considering only the gripper and
motion planning then determines whether the object can be
grasped without full-link collision. When motion planning
fails, LocalSearch searches another object. The success rate
of the method in [20] decreases for denser environments,
because full-link collision is not checked.

4) GLOBALSEARCH WITH BFS AND HEURISTIC SEARCH
Finally, we compare GlobalSearch using the Breadth-First
Search (BFS) and the heuristic search. In addition, we com-
pare the algorithms with and without d max. As described
in Sec. III-D, the heuristic search employs a heuristic cost,
which is defined as the sum of the minimum magnitudes of
histogram at the current node and its parent node such that it
may search less number of nodes compared with using BFS.
This may cause reduction in searching time.

134908

~

BBFS with dmax

BHeuristic search with dmax
OBFS without dmax

OHeuristic search without dmax

=)

o

N

N w

of removed obstacles (K)

s
SR
o

-
RN
RN

(=}

7 10 13
of objects (N)

(a) The average number of removed obstacles (the average K) of
BFS and the heuristic search

15 —-BFS with dmax

—+—Heuristic search with dmax
BFS without dmax
Heuristic search without dmax

time (sec)
=

($)]

of objects (N)
(b) The algorithm runtime of BFS and the heuristic search

FIGURE 11. Simulation results for BFS and the heuristic search.

FIGURE 12. An instance of a real environment for experiments and a
vision view from the vision sensor mounted on the wrist.

The simulation results in 30 random configurations for
each N are summarized in Figs. 11 (N = 7, 10, 13, and 16).
For both of BFS and the heuristic search, d max limits the
area around a target and the objects only within that area
are involved to compute the histogram. Due to this, using
d max could reduce the average K in Fig. 11a and the algo-
rithm runtime in Fig. 11b for the both searches, compared to
the results without using d max. BFS with d max removed
the fewest number of objects on average as in Fig. 1la.
For the case of 16 objects, the heuristic search with d max
reduces 70% in the algorithm runtime compared to BFS
with d max.

When d max is not applied, the average K’s of BFS and
the heuristic search are same in Fig. 11a. The heuristic cost
(H IG) without d max decreases by 1 per the depth of tree
because a node is generated for removing each object from
outside to inside in the workspace. This may cause the same
average K’s for both searches. When using d max, some

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

(b) The task with GLOBALSEARCH. The number of removed obstacles (K) is 1.

FIGURE 13. The task execution with N = 8. A target object is a blue box (diget box).

nodes, where H'~, decreases by more than one per the depth
of tree, can be generated. This can reduce the number of
objects and the histogram. In some cases, BFS can reach a
node, where the histogram magnitude converges to O (i.e., the
target is graspable) earlier than the heuristic search, even
any node at the same depth in the sequence does not have a
minimum H'~. Therefore, BFS may have the fewer average
K than the heuristic search. Since the number of generated
nodes in heuristic search is smaller than in BFS, the heuristic
search took less time as in Fig. 11b.

B. PRACTICAL EXPERIMENTS
Experiments are conducted to validate the applicability of
our two algorithms in a real environment. We use a Panda
manipulator which has 7-DOF and a Robotiq 2F-85 grip-
per which has 2-fingers with 85mm stroke. The experiment
instances consist of objects placed randomly on a shelf and
a tub to place the objects as seen in Fig. 12. The objects
are snack boxes which are different in shape. To obtain
the poses and shapes of objects, we use an Intel realsense
D435i as a vision sensor and Complex-YOLO [30] for object
recognition. Complex-YOLO creates a 3D bounding box that
represents the shape and pose of an object with a point cloud.
The reachable direction of the object is determined by the
stroke of the gripper and the bounding box. The vision sensor
is attached to the wrist of the manipulator.

We test our algorithms with the number of objects N = 5,
8 and with 30 random instances for each N. Figs. 13 show the
task process of each algorithm with N = 8. We measure
the number of removed obstacles (K) and the success rate.
The results of the experiments are summarized in TABLE. 4.
GlobalSearch has a lower K compared to LocalSearch.
As N increases, the difference in K between the two
algorithms increases like the simulation results (Fig. 10a).
However, The success rate is higher in LocalSearch than
in GlobalSearch. The main cause of the task failure is the
uncertainties of the objects’ postures. The values of an object

VOLUME 10, 2022

TABLE 4. The success rate of each algorithm.

(a) The number of removed obstacles of each algorithm (standard deviation)

N (the number of objects) 5 8
of removed LOCALSEARCH 1.43 (0.50) | 2.27(0.64)
obstacles (K) GLOBALSEARCH 1.23(0.43) | 1.80(0.55)

(b) The success rate of each algorithm

N (the number of objects) 5 8
LOCALSEARCH 93 | 83
GLOBALSEARCH 9 | 77

’ Success rate (%)

recognized by the vision sensor have errors in size or pose.
In particular, the error of an object in the back, which is partly
hidden from view, is higher than that of an object in the front.
LocalSearch selects an object by using the newly updated
poses of objects before grasping. On the other hand, Glob-
alSearch finds the order of obstacles based on the initially
obtained values of objects. Therefore, GlobalSearch has a
higher probability of failure to grasp objects during operation
compared to LocalSearch.

V. CONCLUSION AND FUTURE WORKS
In this paper, we propose a global search and a local search
algorithms to plan the rearrangement of objects in clutter to
grasp a target. The two algorithms aim to determine as few
obstacles to be removed as possible. Also, they consider the
variable reachable directions of objects. The algorithms are
evaluated with the varied number of objects and compared in
realistic simulation environments.

The global search algorithm finds a global solution through
a tree search method. The search strategy used runs in expo-
nential time but its algorithm runtime is not prohibitive,
as pruning and ordering are implemented to improve search-
ing speed. Even with the moderate runtime (up to 10 seconds
with 16 objects), the number of removed obstacles can be
reduced so that the total time (the sum of algorithm run-
time and robot execution time) can decrease. On the other
hand, the local search algorithm performs faster than the

134909

IEEE Access

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

global search algorithm and can work online, which means it
searches an object to be remove one by one. If an environment
changes dynamically (i.e., a hidden object appears or object
recognition is noisy so object poses change frequently as in
the practical experiments), the local search algorithm could
be more appropriate as it doesn’t compute the entire sequence
again but remove the next obstacle at each step. Also, the
local search algorithm has a polynomial time complexity so
it can be adaptive to the size of instances. It is shown that the
both algorithms are complete and can guarantee to obtain a
solution. For the global search, a heuristic cost was applied
to reduce the number of searching nodes such that it could
provide a solution close to the global optimum but in less time
than using BFS.

To consider the uncertainties of sensing data in the real
world, one of the future works may employ an error mea-
surement experiment to estimate the size and posture of an
object. This may help our planners to be more reliable in real
applications. Another future work is to deal with partially
observable environments. If a target or some objects are
invisible due to the poses of a camera and other objects, it is
necessary to find such objects effectively.

REFERENCES

[1] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, ‘“Manipulation
planning among movable obstacles,” in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 2007, pp. 3327-3332.

[2] M. R. Dogar and S. S. Srinivasa, “A planning framework for non-
prehensile manipulation under clutter and uncertainty,” Auto. Robots,
vol. 33, no. 3, pp. 217-236, Oct. 2012.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2014, pp. 639-646.

[4] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DOF
grasping for target-driven object manipulation in clutter,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 6232-6238.

[S] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
GraspNet: Efficient 6-DoF grasp generation in cluttered scenes,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 13438-13444.

[6] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object rearrange-
ment using learned implicit collision functions,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 6010-6017.

[7]1 M. Moll, L. Kavraki, and J. Rosell, “Randomized physics-based motion
planning for grasping in cluttered and uncertain environments,” IEEE
Robot. Autom. Lett., vol. 3, no. 2, pp. 712-719, Apr. 2018.

[8] R. Papallas and M. R. Dogar, “Non-prehensile manipulation in clutter
with human-in-the-loop,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 6723-6729.

[9] K. Ren, L. E. Kavraki, and K. Hang, ‘“Rearrangement-based manipula-
tion via kinodynamic planning and dynamic planning horizons,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Aug. 2022.

[10] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects using
a push proposal network,” in Robotics Research. Cham, Switzerland:
Springer, 2020, pp. 405—419.

[11] L.Pinto, A. Mandalika, B. Hou, and S. Srinivasa, “‘Sample-efficient learn-
ing of nonprehensile manipulation policies via physics-based informed
state distributions,” 2018, arXiv.:1810.10654.

[12] W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, and K. Hang, ““Rearrange-
ment with nonprehensile manipulation using deep reinforcement learn-
ing,” 2018, arXiv:1803.05752.

[13] S.D.Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu, “Complexity
results and fast methods for optimal tabletop rearrangement with overhand
grasps,” Int. J. Robot. Res., vol. 37, nos. 13-14, pp. 1775-1795, Dec. 2018.

134910

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

A. Krontiris and K. E. Bekris, “Dealing with difficult instances of object
rearrangement,” in Robotics: Science and Systems, 2015.

S. D. Han, N. M. Stiffler, K. E. Bekris, and J. Yu, “Efficient, high-
quality stack rearrangement,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 1608-1615, Jul. 2018.

P. M. U. Eljuri, L. El Hafi, G. A. G. Ricardez, A. Taniguchi, and
T. Taniguchi, “Neural network-based motion feasibility checker to validate
instructions in rearrangement tasks before execution by robots,” in Proc.
IEEE/SICE Int. Symp. Syst. Integr. (SII), Jan. 2022, pp. 1058-1063.

R. Wang, K. Gao, D. Nakhimovich, J. Yu, and K. E. Bekris, “Uniform
object rearrangement: From complete monotone primitives to efficient
non-monotone informed search,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2021, pp. 6621-6627.

W. Vega-Brown and N. Roy, “Asymptotically optimal planning under
piecewise-analytic constraints,” in Proc. Workshop Algorithmic Found.
Robot., 2016.

1. Ulrich and J. Borenstein, ‘“VFH+: Reliable obstacle avoidance for
fast mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., May 1998,
pp. 1572-1577.

J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle rearrange-
ment for object manipulation tasks in cluttered environments,” in Proc. Int.
Conf. Robot. Autom. (ICRA), May 2019, pp. 183-189.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2009.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2016.

J. Lee, C. Nam, J. Park, and C. Kim, “Tree search-based task and motion
planning with prehensile and non-prehensile manipulation for obstacle
rearrangement in clutter,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2021, pp. 8516-8522.

M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, ‘“Virtual robot experi-
mentation platform V-REP: A versatile 3D robot simulator,” in Proc. Int.
Conf. Simulation, Modeling, Program. Auto. Robots, 2010, pp. 51-62.

S. Chitta, I. Sucan, and S. Cousins, “Movelt! [ROS topics],” IEEE Robot.
Autom. Mag., vol. 19, no. 1, pp. 18-19, Mar. 2012.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. Millennium Conf. IEEE Int. Conf.
Robot. Automation Symposia (ICRA), Apr. 2000, pp. 995-1001.

1. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72-82, Dec. 2012.
F. Zacharias, C. Borst, and G. Hirzinger, “Bridging the gap between task
planning and path planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2006, pp. 4490-4495.

C. Nam, S. H. Cheong, J. Lee, D. H. Kim, and C. Kim, “Fast and resilient
manipulation planning for object retrieval in cluttered and confined envi-
ronments,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1539-1552, Oct. 2021.
M. Simony, S. Milzy, K. Amendey, and H.-M. Gross, ‘“Complex-YOLO:
An euler-region-proposal for real-time 3D object detection on point
clouds,” in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops, Sep. 2018,
pp. 197-209.

JINHWI LEE (Student Member, IEEE) received
the B.S. degree in mechanical engineering from
Hanyang University, where he is currently pursu-
ing the Ph.D. degree in mechanical engineering.
He is also a Student Researcher with the Artificial
Intelligent Robotics Center, Korea Institute of Sci-
ence and Technology (KIST), Seoul, South Korea.
His research interests include task and motion
planning for a mobile robot.

VOLUME 10, 2022

J. Lee et al.: Local and Global Search-Based Planning for Object Rearrangement in Clutter

IEEE Access

CHANGJOO NAM (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
from Korea University, Seoul, South Korea, in
2009 and 2011, respectively, and the Ph.D. degree
in computer science from Texas A&M Univer-
sity, College Station, TX, USA, in 2016. He has
been an Assistant Professor with the Depart-
ment of Electronic Engineering, Sogang Univer-
sity, since 2021. From 2018 to 2021, he was
a Senior Research Scientist with the Robotics
and Media Institute, Korea Institute of Science and Technology (KIST),
Seoul. He worked with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, as a Postdoctoral Fellow, from 2016 to 2018. His
research interests include task and motion planning for multirobot coordi-
nation and robotic manipulation.

JONG HYEON PARK (Member, IEEE) received
the B.S. degree in mechanical engineering from
Seoul National University, Seoul, South Korea,
in 1981, and the S.M. and Ph.D. degrees from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 1983 and 1991, respec-
tively. Since 1992, he has been working at the
School of Mechanical Engineering, Hanyang Uni-
versity, Seoul, where he is currently a Professor.
He was a Visiting Researcher at Waseda Univer-
sity, Tokyo, Japan, in 1999, as a part of the Korean Science and Engi-
neering Foundation-Japan Society for the Promotion of Science Program,
a KOSEF-CNR Visiting Researcher at the Scuola Superiore Sant’ Anna, Pisa,
Italy, in 2000, a Visiting Scholar at MIT, from 2002 to 2003, a Visiting
Scholar at Purdue University, West Lafayette, IN, USA, from 2008 to 2010,

VOLUME 10, 2022

and a Visiting Scholar at the University of Stuttgart, Germany, in 2019.
He was also associated with Brooks Automation Inc., Chelmsford, MA,
USA, from 1991 to 1992, and from 2001 to 2002. From 2010 to 2017,
he was served as the Senior Editor for the Journal of Mechanical Science and
Technology. His research interests include biped robots, robot dynamics and
control, haptics, and biorobots. He is also a member of the Korean Society of
Mechanical Engineers, the Korean Society of Automotive Engineers, Korean
Society of Precision Engineering, and Institute of Control, Robotics, and
Systems.

CHANGHWAN KIM (Member, IEEE) received
the B.S. degree in mechanical engineering and
the M.S. degree in machine design engineering
from Hanyang University, Seoul, South Korea,
in 1993 and 1995, respectively, and the Ph.D.
degree in mechanical engineering from The Uni-
versity of Iowa, Iowa City, IA, USA, in 2002.
From 2002 to 2004, he was a Research Associate
with the Robotics and Automation Laboratory,
University of Notre Dame, Notre Dame, IN, USA.
Since 2004, he has been working at the Korea Institute of Science and
Technology (KIST), Seoul. His research interests include task and motion
planning for robot manipulation and social robots.

134911

