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Abstract

Research has shown that sensor data generated by a user during a VR experience is

closely related to the user’s behavior or state, meaning that the VR user can be quantita-

tively understood and modeled. Eye-tracking as a sensor signal has been studied in prior

research, but its usefulness in a VR context has been less examined, and most extant

studies have dealt with eye-tracking within a single environment. Our goal is to expand the

understanding of the relationship between eye-tracking data and user modeling in VR. In

this paper, we examined the role and influence of eye-tracking data in predicting a level of

cybersickness and types of locomotion. We developed and applied the same structure of a

deep learning model to the multi-sensory data collected from two different studies (cyber-

sickness and locomotion) with a total of 50 participants. The experiment results highlight

not only a high applicability of our model to sensor data in a VR context, but also a signifi-

cant relevance of eye-tracking data as a potential supplement to improving the model’s

performance and the importance of eye-tracking data in learning processes overall. We

conclude by discussing the relevance of these results to potential future studies on this

topic.

1 Introduction

One method that has attracted significant attention in recent VR research involves using the

data collected from the sensor equipment worn by the user as a way to analyze various aspects

of their state or behavior during the VR experience. For example, studies have examined

changes in the user’s eye movement (e.g., focus point, gaze movement, pupil diameter) based

on the data collected from an eye-tracking device, those in their head or body movements col-

lected from head-mounted displays (HMD) or trackers, and those in their electrodermal activ-

ity (EDA) collected from wearable devices [1–6]. Studies have also attempted to understand

the relationships between the collected sensor data and user-driven factors, such as stress,

engagement, satisfaction, and conversation quality, through statistical analysis and model

development [7–11]. Findings from these studies not only help determine whether the goal of
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a given VR system has been achieved but also provide design insights that can be used to

improve the user experience and the system itself.

When collecting data during a VR experience, it is especially important to measure and

monitor human states or behaviors as unobtrusively as possible. Hence, collecting signals gen-

erated from standard devices (e.g., HMD) or from devices that do not cause the user discom-

fort is essential. It is worth noting that many studies have been investigating eye-tracking

primarily because visuals are the first channel of information collection from a human [12,

13]. The use of eye-tracking data in research is also increasing because eye-tracking devices

have become more affordable in recent years. Eye-tracking is key to human processing of

visual information as well as measuring attention, interest, and arousal. In other words, eye-

tracking data can be used to digitize the ways in which people communicate with computers,

allowing researchers to identify and analyze patterns of visual attention of individuals as they

perform specific tasks (e.g., reading, searching, driving, scanning an image). Perhaps due to

such important roles, eye-tracking data has been used for different purposes, including inten-

tion recognition [14], image classification [15–18], depression recognition [19], and attention

prediction [20].

Another group of research has focused on developing prediction models. Studies have

employed machine learning algorithms (e.g., Support Vector Machine (SVM), Logistic Regres-

sion, Random Forest, k-Nearest Neighbors, Na ve Bayes), and more recent studies have begun

to utilize deep learning methods (Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM)) to extract deep features of the data and construct a more complicated

learning models [18, 21, 22]. These studies have utilized various types of features extracted

from sensor signals as the data for their prediction models and demonstrated high possibilities

of predicting users’ states or behaviors through their models.

In this work, we aimed to achieve the same goal as prior studies, which is to measure and

model a user’s state and behavior based on sensor signals, particularly in terms of eye-tracking

data in the context of VR. Despite its demonstrated role in depicting human characteristics in

prior studies, the adaption and study of eye-tracking data in VR has been under-studied.

Another limitation is a lack of consideration of measuring and analyzing a prediction model

from multiple case studies, which possibly fails to suggest more generalizable results or

insights. To fill these research gaps, this paper presents two independent case studies of cyber-

sickness [23, 24] and locomotion [25], both of which are closely related to the VR user experi-

ence. Our two case studies leverage various sensor signals generated from an HMD, a tracker,

and a physiological device (e.g., head, eye, and ankle movement, electrodermal activity (EDA))

for the development of two deep learning models that classify the level of cybersickness and

the type of locomotion, respectively. The model was designed to learn not only characteristics

of the individual sensor data modalities through an attention technique (i.e., calculating differ-

ent degrees of the importance of data features during training) [26] but also the temporal
sequence of the sensor data. The same model architecture was applied to both studies as our

intention was to examine a possible generalization of the role of eye-tracking data in under-

standing a user’s state and behavior. For the same purpose, we recruited enough participants

for each study comparable to prior studies [27, 28]. The cybersickness study involved 27 par-

ticipants, and the locomotion study was conducted with 23.

The experiment results of two studies were quite similar. Both studies showed that the

addition of eye-tracking data increased the performance of the model, which was at its highest

when all sensor modalities were used. These results demonstrated the effectiveness of both our

model structure and the use of eye-tracking data as a supplemental method to improve the pre-

diction performance.

In summary, this paper makes the following contributions.
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• We proposed a deep learning-based architecture for modeling a user’s state and behavior

(cybersickness and locomotion), based on sensor data in VR.

• We identified a role for eye-tracking data signals in modeling users in VR.

2 Related work

2.1 Research using eye-tracking data

Eye-tracking data is generated based on the movement of the pupils. Some devices that can

take these measurements include Tobii (https://www.tobii.com/) and Pupil labs (https://pupil-

labs.com/). Recent HMD devices, such as HTC VIVE Pro Eye (https://www.vive.com/us/

product/vive-pro-eye/overview/) and FOVE (https://fove-inc.com/), provide eye-tracking

components at affordable prices, making the utilization of eye-tracking data in a VR environ-

ment more practical and relevant for researchers and practitioners.

Research utilizing eye-tracking data has been actively conducted in non-VR contexts. One

of the topics that has been widely studied is image classification. To name a few, Ahmed and

Noble [15] used eye fixations to classify and acquire the image frames of head, Zhou et al.

[29] used fixations and region of interest (ROI), Karessli et al. [16] used gaze points, Saab

et al. [18] used gaze data, Roy et al. [17] used eye fixations, fixation duration, pupil diameter,

and polar moments to develop a cognitive model for ambiguous image classification. Other

classification topics include intention recognition [14], attention prediction [20], depression

recognition [19], and reading pattern detection [30]; similar types of eye-tracking features

were used.

Eye-tracking in a VR context also provides researchers with opportunities [31] to accurately

control the VR environment through ROI settings, which helps enhance the user experience

by providing a more thorough understanding of the interactions between the user and the

objects inside the VR environment [1–3, 32, 33]. For example, Lahiri et al. [3] developed a VR

system that supports social skill improvement for people with autism. Pfeiffer et al. [33] studied

the shopping motives of users in a VR environment. While eye-tracking features are identical

regardless of whether they were collected and studied in non-VR or VR conditions, differences

in the environment from which they were collected are quite different. VR is a virtual world

that can be manipulated depending on its goals or tasks; as such, the characteristics and inter-

pretations of sensor signals associated with users’ experiences and interactions in such an

environment may be different from those in a non-VR environment. In this sense, we aim to

examine the role of eye-tracking data in VR contexts and discuss ways to utilize it to enhance

user experience.

2.2 Research on prediction model with eye-tracking data

Most studies described in the previous section defined various classification models and their

performances, highlighting the role and influence of eye-tracking data [34, 35] on character-

izing users and tasks in specific scenarios. Some of the most widely used eye-tracking features

include pupil diameter, pupil position, eye fixations, blinking, and gaze point. Various types

of classification algorithms, including Support Vector Machine (SVM), k-Nearest Neighbors

(kNN), Decision Trees, Logistic Regression, and Na ve Bayes have been employed to track

this data. SVM appears to be the most promising [34, 35]. Recent studies have begun to

employ deep learning algorithms [18, 36], such as CNN and LSTM, but the number of deep

learning-based modeling research is smaller than that of machine learning-based one. As

deep learning models have shown greater performances than machine learning models in

many domains, we expect to see more studies on learning user characteristics through deep
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learning algorithms in VR domains. Given that a large volume of sensor data is generated

in VR, deep learning algorithms have the potential to play a key role in modeling and under-

standing users.

The goal of our research is also to utilize eye-tracking data to model a user’s state or

behavior as we found that the utilization of eye-tracking data in a VR context is quite under-

studied. In this paper, we present a study that offers additional insights into the way in which

eye-tracking data can be collected and used. We present a deep-learning model using atten-
tion, one of the learning mechanisms employed to calculate different degrees of the impor-

tance of data features during training. Our model also considers temporal sequences of the

data in order to more accurately capture a user’s state and behavior. Furthermore, we present

findings from the application of the model to two specific case studies (one is cybersickness

and the other is locomotion). The demonstration of the use of our model in two different

case studies also highlights the robustness of our proposed multimodal, attention-based

deep learning model in terms of its potential use and application in other VR/AR scenarios

as well.

3 Case study backgrounds

Fig 1 illustrates the overall procedure, which was the same for both studies. Two studies col-

lected different types of data to define their participants’ experiences. Eye-tracking, head, and

physiological data were collected from the cybersickness study while eye-tracking, head, waist,

and ankle data were collected from the locomotion study. The model learning and analysis

phases were the same for both studies. Our study was reviewed and approved by the internal

institutional review board at the authors’ university (Hanyang University, HYUIRB-202209-

003). We recruited participants over the age of 19 and obtained written informed consent

from all participants in the experiment.

Fig 1. The study procedure. Each study has its own VR content, providing participants with the proper environment for cybersickness or locomotion.

We collected eye-tracking, head, and physiological data from the cybersickness study and collected eye-tracking, head, waist, and ankle data from the

locomotion study. We used the same model architecture and analysis methods for both studies.

https://doi.org/10.1371/journal.pone.0278970.g001
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3.1 VR sickness (cybersickness)

3.1.1 Study background. Cybersickness is one of the main degrading factors that of the

VR/AR experience. One possible way to alleviate this involves developing a technology that

can predict and respond to cybersickness based on data collected from the environment. Vari-

ous body-related data (e.g., eye tracking, head movement, body movement) from an HMD or

a tracker as well as biometric data (e.g., skin conductance, heart rate) from additional wearable

sensing devices can be used to determine each factor’s association with cybersickness. As

more effective and advanced artificial intelligence algorithms that learn the characteristics of

time-series sensor data continue to develop, it is expected that sensor signals can be utilized in

cybersickness prediction.

3.1.2 Study procedure. As individuals may feel different levels of cybersickness, we

prepared videos in various topics. Thus, we prepared 20 VR videos with 10 categories (each

category comprised two videos), namely cycling, driving, flat rides, flying, motorbikes, planes,

roller coasters, sailing, space travel, and water slides (as shown in Fig 1).

We used the HTC VIVE Pro Eye and the Empatica E4 wristband (https://www.empatica.

com/research/e4/) for the experiment and played the VR videos in VR environments (made

with Unity 3D) in a Windows 10 PC with Intel Core i7 and GeForce RTX 2070.

We recruited 27 participants via university bulletin boards and word-of-mouth. The experi-

ment consisted of two phases: (1) answering a survey and (2) watching VR videos. Before the

experiment began, we explained the goal and procedure of our study to each participant and

let them know that they could opt-out anytime. We then obtained informed consent from the

participants.

First, each participant was informed of the goal and procedure of the study and asked to

answer demographic questions (age, gender, and VR experience) and to complete the Motion

Sickness Susceptibility Questionnaire (MSSQ) [37] before starting the experiment. The mean

age was 26.2 (SD = 3.3) and 16 participants were male and 11 were female. 19 of the partici-

pants had previous VR experience, and the VR experience question offers yes or no answer

options, following [38, 39]. MSSQ is designed to measure the user’s usual motion sickness

level. It contains nine questions (with a five-point Likert scale) about whether a subject feels

motion sickness from various riding conditions (e.g., cars, trains, swings). The higher the sum

of the responses, the more likely the subject is to feel motion sickness. The average MSSQ

score of our study participants was 10.0 (SD = 8.8), which is similar to those in [37] (mean:

12.9, SD = 9.9 from 148 participants) and [40] (mean: 9.8, SD = 7.9 from 12 participants). This

means that our study participants were not different from those in other studies regarding

MSSQ. Lastly, the participants were instructed to describe their condition upon experiencing

severe cybersickness and were again assured that they could end their participation at any

time. The participants were also provided with enough time to become familiar with the HMD

and the E4 wristband.

Second, each participant was asked to sit on a chair and watch a VR video in a position

that was comfortable for them (Fig 2-left). The video-watching phase consisted of four ses-

sions. Five VR videos were played during each session, with each video running for 45 sec-

onds, and the order of five videos was randomly chosen from different categories. Given

that previous cybersickness studies used the videos that ran for around 30 seconds [41, 42],

we believe that the length of the videos in our study was sufficient. The participants were

given a 15-second break at the end of each video and a 7-minute break at the end of each

session to minimize the effect of their experience in the previous video before watching

the next one, following [27, 41]. They were also offered additional time to rest between

videos and sessions. It took around 46 minutes per participant to complete the study. The
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participants who completed the experiment received a $10 gift card for their time and

participation.

It is important to note that the participants may have had different degrees of inherent

motion sickness. The representative scales for measuring cybersickness level are the Simulator

Sickness Questionnaire (SSQ) [43] and the Fast Motion Sickness scale (FMS) [44]. The SSQ

responds to 16 questions related to cybersickness symptoms, and each symptom is evaluated

by dividing it into three factors (oculomotor, disorientation, and nausea). On the other hand,

the FMS has a simpler evaluation method than SSQ. The user needs to choose a number

between 0 (no sickness at all) and 20 (frank sickness). Prior studies have proven that the

responses from the SSQ and from the FMS are highly correlated; thus many studies have used

either question method depending on the design and goal of their experiment [27, 41, 45–51].

In this work, we employed the FMS which has the advantage of taking quick responses about

each video. The participants were asked to indicate their level of cybersickness after watching

each VR video via the FMS. In accordance with prior research [27, 47], we defined the level of

cybersickness based on the quartiles which were determined based on the data from all partici-

pants. In our data, the first quartile (Q1) was 1.0, the second quartile (Q2) was 4.0, and the third

quartile (Q3) was 7.0. The data was labeled as follows.

Cybersickness level ¼

None if 0 � FMS � Q1

Low if Q1 < FMS � Q2

Moderate if Q2 < FMS � Q3

High if Q3 < FMS � 20

8
>>>>>>><

>>>>>>>:

ð1Þ

Eye-tracking and head movements were collected using the HMD and physiological data

was collected using the E4 wristband, both were set to a frequency of 30Hz. The eye-tracking

data consisted of 23 features, including gaze direction (x,y,z) with both eyes integrated as well

Fig 2. Data collection. Left: cybersickness study, Right: locomotion study.

https://doi.org/10.1371/journal.pone.0278970.g002
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as gaze direction (x,y,z), gaze origin (x,y,z), pupil diameter, pupil position (x,y) and eye open-

ness for each eye. The head movement data was made up of six features, including position

and rotation data (x,y,z). We considered a single EDA feature as a physiological signal that

is frequently done in VR research [27, 45, 52] (See Table 1). Overall, we collected a total of

24,300 seconds of data: 27 (number of participants) × 20 (number of videos) × 45 (one video

time).

3.2 VR locomotion

3.2.1 Study background. Given that locomotion is body reactions, VR environments

need to be able to support it if the corresponding VR scenarios involve user movement (e.g.,

walking, running, moving around). Locomotion research can be broadly classified into walk-

ing-, steering-, selection-, and manipulation-based techniques [53]; of these, the walking-

based technique has been studied the most. In this technique, Walking-in-Place (WiP), which

refers to step-like movement while remaining stationary [25], is best known. The user’s limb

movements can be tracked, or stepping and treadmill-like input devices can be used, similar to

our study environment (Fig 2-right), to register the step-like movements and translate them

into VR motion.

3.2.2 Study procedure. VR technology has been widely adopted to support virtual

training in many scenarios [54–56]; as such, the context of our study of VR locomotion

was firefighting training. This training involves many different types of movements that

are expected to be supported by VR training; the locomotion types (walking, running,

walking on one’s knees, crawling, standing) considered in our study were the ones that

firefighters use during their missions. Walking and running were defined based on move-

ment speed and magnitude. Kneeling forward and crawling on one knee are actions that

lower one’s posture and move the body forward. Standing refers to a posture with the

knee of the front leg slightly bent and the hind leg extended to support the weight. Our

research team collaborated with local firefighters for the design and implementation of

this VR training system, and one of their design requirements was the inclusion of such

movements.

We recruited 23 participants (all firefighters) for the user study by sending official

invitations to local municipal fire departments because the study was part of firefighting train-

ing system development. We believe that data collected by domain professionals (real firefight-

ers) would increase the reproducibility of our data in other training scenarios (e.g., military

Table 1. Data features used in each study. Two studies used the same features from the HMD. The physiological sen-

sor was used in the cybersickness study, and the features from the tracker were used in the locomotion study.

Data device Cybersickness Locomotion

HMD • head movement and orientation (x,y,z)

• gaze direction (x,y,z) with both eyes integrated

• gaze direction and origin (x,y,z)

• pupil diameter, pupil position (x,y)

• eye openness

presented from right and left eyes

Tracker - • waist movement and orientation

• ankle movement and orientation

all presented by x,y,z values

E4 wristband electrodermal activity -

https://doi.org/10.1371/journal.pone.0278970.t001
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training, safety training) in which locomotion data generated from professionals is important.

The participants were invited to a living laboratory organized by a research institution and

given instructions on how to use the VR devices and what to do in the VR environment. The

mean and SD of the participants’ age were 24.3 and 2.6, respectively. All participants were

male, and twelve of them had previous casual VR experience.

Fig 1 (the locomotion area colored in yellow) shows the virtual environment (a case of a fire

disaster in a basement of a building) that we created for data collection, and Fig 2-right shows

five types of locomotion that the participants performed. The participants were asked to wear

an HMD, and VIVE trackers were attached to their waist and ankles. We asked the partici-

pants to follow the prompt (e.g., “walk forward for ten seconds”) on the HMD screen as natu-

rally as possible when it appeared on the screen. After each prompt, the participants were

given a five-second break before another message prompting the next locomotion type (e.g.,

“kneel and move forward for ten seconds”) popped up on the screen. One session includes five

movement types and lasted about 70 seconds in total. We planned for three sessions during

the experiment. Most of the participants (74%; 17 out of 23) completed three session, but some

did up to five sessions as they wanted to allow for the collection of a sufficient amount of sen-

sor data (305 seconds per participant on average, 7,020 seconds in total) that corresponded to

each movement types. All sensor data was also collected at 30Hz, same as the cybersickness

study. The participants who completed the experiment received a $10 gift card for their time

and participation.

We used the x, y, and z coordinates of waist and ankle movement and orientation. Same as

the cybersickness study, we used the same features of head movement, orientation, and eye-

tracking data from the HMD.

4 Model development

Our proposed model consists of three key components as follows: (1) an attention-based indi-

vidual subnetwork that considers the relative importance of each data modality to fuse modal-

ity-specific features, (2) an attention-based LSTM subnetwork that extracts the importance of

timestep and fuse the hidden state of the Bidirectional LSTM (BiLSTM), and (3) an output

layer that uses a softmax function to obtain the probabilities for classification. Fig 3 illustrates

the detailed architecture of our model.

4.1 Attention-based individual subnetwork

Each data modality has different feature sizes, thus, we first passed the raw features to Principal

Component Analysis (PCA) [57] in order to have the same feature size for all data modalities.

Individual convolutional subnetwork was used to extract features of each data modality. The

frequency representation of the ith sensor at time t, xti, was passed to the convolutional subnet-

work. Two convolutional layers with the activation function ReLU (Rectified Linear Unit) [58]

were used in the subnetwork. Then a feature vector vti was generated and used as the input to

the attention fusion subnetwork.

We employed an attention network to prioritize the importance of data modalities [59].

The network takes the feature vectors of data modality [vt1, vt2, . . ., vti] as input and generates

an attention weight for each modality. The hidden representation of vti was computed to get

μti with a sensor-level context vector w1.

mti ¼ tanhðW1vti þ b1Þ ð2Þ
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Then a normalized weight αti was computed through a softmax function.

ati ¼
expððmtiÞ

Tw1Þ
P

iexpððmtiÞ
Tw1Þ

ð3Þ

where W1, b1, w1 are parameters of the attention network. They are randomly initialized and

jointly learned through the training phase. Then the vectors of all data modalities are fused by

using their attention scores as weights in order to make a uniform feature representation vec-

tor qt.

qt ¼
X

i

ativti ð4Þ

4.2 Attention-based LSTM subnetwork

The output [q1, q2, . . ., qN] is passed to a stacked LSTM structure [60]. LSTM is a recurrent

neural network (RNN) architecture that remembers values over arbitrary intervals and deals

with the vanishing gradient problem that can be encountered when training traditional RNNs.

ft ¼ sðWf � ½ht� 1; qt� þ bf Þ ð5Þ

it ¼ sðWi � ½ht� 1; qt� þ biÞ ð6Þ

eCt ¼ tanhðWC � ½ht� 1; qt� þ bCÞ ð7Þ

Ct ¼ ft � Ct� 1 þ it � eCt ð8Þ

ot ¼ sðWo½ht� 1; qt� þ boÞ ð9Þ

ht ¼ ot � tanhðCtÞ ð10Þ

Fig 3. Model architecture used in two studies. The model mainly consists of the attention-based individual network and the attention-based LSTM

subnetwork. The cybersickness study has four classes, and the locomotion study has five classes (N means time t, which is t = 1,2,. . .,N).

https://doi.org/10.1371/journal.pone.0278970.g003
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where ft is a forget gate, it is an input gate, and ot is an output gate. Ct is a cell state. A hidden

state ht is generated at each timestep. Standard RNN (including LSTM) uses the last timestep

as a single representation for the whole input sequence. This generally leads to less consider-

ation of the front part of the sequence for classification. Because the hidden state at each

timestep may show a different level of impact on classification (in our case, occurrence of

cybersickness), we applied the attention mechanism again to calculate the weighted average

sum of all hidden states.

Given all hidden states H = [h1, h2, . . ., hN] (ht refers to a hidden state at timestep t), the atten-

tion for LSTM can be formalized as follows:

gt ¼ tanhðW2ht þ b2Þ ð11Þ

bt ¼
expððgtÞ

Tw2Þ
P

texpððgtÞ
Tw2Þ

ð12Þ

d ¼
X

t

btht ð13Þ

where w2 is a time-level context vector, βt is a normalized weight through a softmax function,

and δ is the uniform representation of the whole sequence computed based on the sum of

all hidden states. Each hidden state is updated by its attention weights. W2, b2, w2 are the param-

eters of the attention-based LSTM subnetwork which are randomly initialized and jointly

learned during the training phase. We constructed a BiLSTM model that better learns the tem-

poral characteristics of the data. BiLSTM has been found to be more efficient than unidirec-

tional LSTM because it considers both past and future data through an interactive network [61].

4.3 Output layer

The output of attention-based LSTM subnetwork is calculated through an output layer using a

fully-connected layer and a softmax function to predict cybersickness.

prediction ¼ argmax
a2A

ðsoftmaxðW3 � dþ b3ÞÞ ð14Þ

where A is the set of all data modalities. δ is transformed to the probability of each modality

and the prediction result is determined by searching modality with maximum probability.

5 Experiment setup

For the experiment, we implemented our model in Pytorch and trained it on a server with

GeForce RTX 2070.

First, for cybersickness, the data of each participant consists of a set S of different data

modalities in the form of time series data St = {Et, Ht, Pt}, where E, H, and P refer to eye-track-

ing, head movement, and physiological data, respectively. For locomotion, St = {Et, Ht, It, At}

was used, where I and A refer to waist and ankle data, respectively.

Then, each item in St is divided into a set of r time windows Wa
t ¼ fw

a
t1;w

a
t2; :::;w

a
trg of a

fixed length of Tw seconds (we set r = 30 and Tw = 1). St is then split into the training set, vali-

dation set, and test set with the ratio of 7:1:2 by chronological order.

Second, for model training, we used cross entropy for loss function and Adam for

optimizer. The model was trained up to 500 epochs, and an early stop strategy was used

with 20 times of patience. The best parameters of the model was selected through parameter

tuning with the validation set (batch size = 64 and learning rate = 0.001). We used 5-fold cross
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validation for model training and used the macro F1-score as the metric for the performance

evaluation of the model on the testing dataset. The macro F1-score is preferred over the micro

F1-score, because it can evaluate the overall performance of the multi-classifier by giving equal

weight to all classes [62, 63].

We measured the effectiveness of our model by comparing it with other models. The mod-

els that we considered for the comparison include SVM, CNN, BiLSTM, and CNN-BiLSTM

that have been extensively used in cybersickness prediction in prior studies [27, 28, 41, 49, 64].

Our model has three variants including A-INV that has the attention network only in the indi-

vidual subnetwork, A-BiLSTM that has the attention network only in the LSTM subnetwork,

and our proposed model (Ours) that has the attention network both in the individual and

LSTM subnetworks.

6 Results

6.1 VR sickness (cybersickness)

Table 2 summarizes performance results of the model for cybersickness. Our proposed model

yielded the highest performance (0.82 F1-score) compared with other models. A-INV showed

a better performance than A-BiLSTM (3% difference). Overall, the application of the atten-

tions for the sensor modalities and the BiLSTM appeared to be effective.

As a result of the ablation study, the role of eye-tracking data is found to be clear. When it is

used together with other data modalities, the performance of the model significantly increased

(Table 3). Gain indicates the increased ratio of the model performance after the addition of the

eye-tracking data (shown in the parenthesis). This result is also well aligned with the result of

attention weights placed on each modality (Fig 4-top). Eye-tracking data showed the highest

result (35.7%), showing its importance during the model training in the context of cybersickness.

6.2 VR locomotion

Table 4 summarizes performance results of the model for the locomotion study. Same as

the cybersickness study results, our proposed model yielded the highest performance (0.95

Table 2. The model performance by architecture (cybersickness). Our model yielded the highest performance.

Model architecture F1-score

SVM 0.57

CNN 0.52

BiLSTM 0.71

CNN-BiLSTM 0.68

A-INV (CNN-Attention-BiLSTM) 0.81

A-BiLSTM (CNN-BiLSTM-Attention) 0.78

Ours (CNN-Attention-BiLSTM-Attention) 0.82

https://doi.org/10.1371/journal.pone.0278970.t002

Table 3. Ablation study for cybersickness (addition of eye-tracking). Eye-tracking data already shows a strong rela-

tionship with cybersickness, and when it is considered with other data modalities, the performance of the model signif-

icantly increases. Gain indicates the increased ratio of the model performance after the addition of the eye-tracking

data.

Feature groups F1-score Gain (%)

Eye 0.68 -

Head (+ Eye) 0.56 (0.75) 33.9

Physiological (+ Eye) 0.36 (0.78) 116.0

[All] Head + Physiological (+ Eye) 0.57 (0.82) 43.8

https://doi.org/10.1371/journal.pone.0278970.t003
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F1-score) compared with other models. The model performances from both studies not only

demonstrate the effectiveness of our model architecture (i.e., leveraging attention and tempo-

ral characteristics) but also highlight a promising research direction of modeling a user’s states

and behaviors in VR.

One different point between two studies is a relatively weak role of eye-tracking when only

the eye-tracking data was used in modeling. This might be because the second study with loco-

motion involved a large amount of movements and signals from the participants’ head and

Fig 4. Attention weights of data modalities.

https://doi.org/10.1371/journal.pone.0278970.g004

Table 4. The model performance by architecture (locomotion). Our model yielded the highest performance.

Model architecture F1-score

SVM 0.86

CNN 0.79

BiLSTM 0.85

CNN-BiLSTM 0.90

A-INV (CNN-Attention-BiLSTM) 0.93

A-BiLSTM (CNN-BiLSTM-Attention) 0.94

Ours (CNN-Attention-BiLSTM-Attention) 0.95

https://doi.org/10.1371/journal.pone.0278970.t004
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body. Thus, it appears that eye-tracking data only did show small influence; yet were used as a

strong supplement to improve the learning of locomotion types. This insight is quite well pre-

sented in the ablation study. Eye-tracking data shows a comparable attention weight when it is

trained together with other sensor modalities (Table 5). The results of the attention weight

analysis showed a comparable importance of the eye-tracking data in learning (Fig 4-bottom).

7 Discussion

One notable aspect of our findings involves the role of multiple sensor data and especially eye-

tracking data features obtained from the HMD. When our model was trained with just the

HMD data, it performed reasonably similar to its best result (0.75 F1-score from the HMD

data vs 0.82 from all data for cybersickness; 0.80 from the HMD data vs 0.95 from all data for

locomotion). The HMD is a basic device within the VR/AR sphere, and the fact that the user’s

state or behavior can be well understood using only the data from this device is promising but

also calls for a more thorough investigation for its extensive application to other VR scenarios.

The fact that users can receive support for cybersickness or locomotion issues without wearing

additional equipment also emphasizes this data’s high usability.

In this work, we have proven the role of eye-tracking data. Since it has a number of features

(e.g., gaze direction, gaze origin, pupil diameter, pupil position, eye openness), as the next step,

we believe that it would be important to investigate the role of each feature of the eye-tracking

data more extensively. Two approaches can be considered. First, we can measure the attention

weight of each feature. Similar to the examination of the attention weight for each data modal-

ity, we can extract the attention weight for the features and specifically examine the importance

of each feature. Second, we can measure the changes of the eye-tracking data features. Selected,

important features can be used in the model to reduce the time for model training and to

derive faster model results. This is also expected to enable real-time application of the model to

the VR system, which might be one of the requirements for a wider application of the model to

many VR scenarios and domains.

Although the role of the attention mechanism was seen to be useful in terms of improving

our model performance, we found the influence of the individual subnetwork and the LSTM

subnetwork were different between two studies. This indicates that assigning different weights

on each subnetwork depending on a VR scenario or goal seems necessary to better learn a

degree of a user’s state or behavior. While this insight is interesting, we propose that it may

not be generalizable and requires further verification through more experiments. Applying a

different approach, such as the Fast Fourier transform [65] (presenting the changes within

the energy content of a signal) may improve the characterization of sensor data and produce a

Table 5. Ablation study for locomotion (addition of eye-tracking). Using eye-tracking data only shows little influ-

ence on locomotion. However, when eye-tracking data are combined with other data modalities, they served as a strong

supplement to improve the performance of the model.

Feature groups F1-score Gain (%)

Eye 0.15 -

Head (+ Eye) 0.61 (0.80) 31.1

Waist (+ Eye) 0.58 (0.82) 41.3

Ankle (+ Eye) 0.67 (0.74) 10.4

Head + Waist (+ Eye) 0.87 (0.90) 3.4

Head + Ankle (+ Eye) 0.91 (0.89) 2.1

Waist + Ankle (+ Eye) 0.85 (0.91) 7.0

[All] Head + Waist + Ankle (+ Eye) 0.94 (0.95) 1.0

https://doi.org/10.1371/journal.pone.0278970.t005
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better representation thereof through attention. The resulting model would also be more

specific to each user upon retraining. As the amount of data used for training for each user

increases over time, it may take longer to retrain the model each time. This issue could poten-

tially be mitigated by either applying a weighted model that prefers recency or truncating the

past data and applying the most recent data. Lastly, in this work, we trained the model using

all participants’ data; though, it is worth considering developing a more personalized model

based on only an individual’s data if the amount of the data is sufficient. In summary, there are

several potential directions for model development, which is the inspiration for one of our

future studies. While the performance of our proposed model has been verified in both scenar-

ios (cybersickness and locomotion), it is also important to examine how good the performance

can be in real time. Some VR studies have proved the applicability of the model by comparing

the prediction results with the actual values (ground-truth) over time by providing a visualiza-

tion of the comparison results in real-time [27, 66]. Other studies have reported the perfor-

mance of the model in a VR environment that is significantly different from the environment

in which the data was collected [67]. Although we did not consider the aspect of real-time in

this work, we demonstrated high performance of our model in two different VR environ-

ments, which also highlights a possible extension of our methodology to learning other types

of user states or behaviors that may influence user experience in VR. We believe these are

unique contributions compared to other studies, yet will take the real-time aspect of the model

into account in our future study.

8 Conclusion

This paper examined the role of sensor signals, with a particular focus on eye-tracking data, in

the understanding and learning of users’ state or behavior. Although many studies have exam-

ined eye-tracking data in the context of user modeling, our study found that the understanding

of their role within the virtual environment is somewhat lacking. To fill this gap, we conducted

experiments with a total of 50 participants using multimodal sensor data generated during VR

experiences in the context of cybersickness (27 participants) and locomotion (23). Our study

results highlighted the high feasibility of the methods of using sensor signals to understand

users and demonstrated the role that eye-tracking data could play in improving user modeling.

The results also showed the effectiveness of our model architecture, which employed the atten-

tion mechanism and learned temporal sequences for individual sensor modalities. Important

future studies could involve the consideration of more diverse VR situations and users in

sensor-based user modeling, the comparison of eye-tracking data to other measurements of

users’ state or behavior, and the practical validation of the model through its application to VR

systems.
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